ISSN 0105-8517

The Potential Use of
Action Semantics in Standards

Peter D. Mosses
David A. Watt

DAIMI PB - 206
April 1986

AARHUS UNIVERSITY | hﬂ
COMPUTER SCIENCE DEPARTMENT -
Ny Munkegade 116 — DK 8000 Aarhus G — DENMARK | || | i : :Frj:_r T
Telephone: +456 127188 Telex: 64767 aausci dk]

— |

Abstract
ges generatky

angua
ntic descriptions-
Action Seman
rom Denotational gemantics
has some features that may
se in standards than other
jbes and motivat
listic exampl

PFOBFaming 1
n formal, sema
discussed-

ndards for
rather thal
e reasons for this are
has been developed £
mantic Algebras,

ttractive for u
This paper descr
gives some rea

current sta
use informal,
possibl
tics, which
and pbstract Se
make it more a
pproaches.

formal @
and

tion gemantics,

use-

THE POTENTIAL USE OF ACTION SEMANTICS 1IN
STANDARDS
(Position Paper for IS0 ad hoc Group on Formal Semantics)

Peter D. Mosses David A. Watt®

1 Introduction

For many Years now, BNF (with minor variations) has been used for de-
scribing the context-free syntax of programming languages. It has been
found to be generally acceptable and useful - to language designers and
standardizers, to programmers and implementors, and in formal studies.
In contrast, there is no such consensus with semantic descriptions.
There is a diversity of approaches, each having advantages for some ap-
plications, but also having disadvantages for others. In particular, none
of the current approaches to formal semantics seems to be appropriate for
use in standards for programming languages, and standardizers have gener-
ally kept to informal, natural-language descriptions of semantics [2,3].
But it seems doubtful that informal descriptions of such complex arte-
facts as programming languages can ever be made sufficiently precise to
rule out mis-interpretation by implementors and programmers; likewise,
they cannot be used reliably in connection with program verification.
The main approaches to formal semantics are Denotational Seman-
tics, Axiomatic Semantics and Operational Semantics. Let us look at them
briefly in turn, and consider their strengths and weaknesses.
Denotational Semantics [21,23,22,12] is perhaps the main contender
for use in standards. It seems that it is able to cope with every-
thing that language designers can come up with, and it is founded upon
an elegant and powerful theory. But there are problems with the com-
prehensibility of denotational descriptions: the lambda-notation used in
the semantic equations is a foreign language to most programmers and
implementors, requiring a considerable investment of time and effort to

*Computing Science Department, The University, Glasgow, Scotland G12 80Q

master; and descriptions of full-scale languages are extremely difficult
to grasp, due to poor modularity.

There have been some attempts to "sugar® the notation used in De-
notational Semantics. In particular, the meta-language of VDM (usu-
ally referred to as "Meta-IV') [7]1 provides notation for a variety of
mathematical constructs, such as sets and mappings, and has imperative
features. The foundations of VDM and its precise relationship to lambda-
notation have never been given in full. To deal with concurrency and
non-determinism, Meta-IV would need to be extended [10].

The (largely) functional programming language ML [15]1 is comparable
to Meta-IV as a meta-language for expressing denotational descriptions:
imperative features are available, and ML would need extending to deal
with concurrency and non-determinism. The type abstraction facility in
ML could probably be used to provide the various mathematical data types
that are built into Meta-1V; it could also be used to provide modularity.
Unfortunately, there is as yet no formal definition of Standard ML. The
ML implementation, however, can be used for the empirical testing of
semantic descriptions (and for rapid prototyping [241).

It is even possible to use a general-purpose programming language
as a meta-language for expressing denotational descriptions: variants of
Pascal, Algol68, C, and Ada have all been proposed for this purpose.
This might seem attractive, due to the use of familiar notation, and the
possibility of achieving modularity. However, general-purpose program-
ming languages, even when reduced to an applicative subset and extended
to allow higher-order functions (which makes them less familiar!), turn
out to be rather clumsy for expressing denotational descriptions [11.
They also lack formal definitions themselves, making it impossible to
reason about the semantics given to programs in the described language
(especially with meta-circular descriptions!). Finally, it is not at all
clear that it is desirable to reduce the semantics of new languages to
the (often idiosyncratic) semantice of existing languages.

Axjomatic Semantics [13,41 is reasonably accessible to programmers
and implementors, being based directly on axioms and inference rules.
The main problems here are with generality and comprehensibility - some
simple programming constructs, Llike procedures with parameters, have un-
comfortably intricate descriptions - and with ensuring consistency. The
published axiomatic description of Pascal [14] does not cover the full
language, and, moreover, the rules for function declarations give logical
inconsistency [5].

By the way, the so-called nyeakest precondition” semantics of [9] is

not really axiomatic, even though it uses assertions: it is denotational,
and suffers from much the same drawbacks as the usual denotational ap-
proach.

Operational Semantics [251 fis just abstract programming of com-
pilers and interpreters, and as such is quite easy for programmers and
implementors to work with. However, operational descriptions of full-
scale languages are rather voluminous documents, and little attention
has been paid to modularity. There is a constant danger of operational
specifications being biased towards particular implementation strategies,
making it difficult to relate them to (real) implementations based on al-
ternative strategies. Even when there is no bias towards a particular
implementation strategy, there are certain to be details in the opera-
tional description that are of an implementation nature and not essential
to an abstract understanding of the programming language's semantics. It
is presumably this that accounts for the voluminousness.

The Structural Operational Semantics approach [20,19,8] essentially
gives an axiomatic description of operational transitions. It can be used
for static semantics and translation, as well as dynamic semantics. It
has yet to be tried out "in the large", although a modified version,
SMoLCS [6]1, is currently being used in an attempt to give a formal
description of Ada. Both Structural Operational Semantics and SMolCS
seem to have some advantages over the pure axiomatic and operational
approaches.

A weakness shared by all the above approaches is the lack of any
explicit relation to familiar computational concepts, such as order of
computation, scope rules, etc. The reader of a formal semantic descrip-
tion is forced to rediscover the concepts that were in the mind of the
language designer in the first place. Informal semantic descriptions,
when well-written, can avoid this problem, and possibly this is the ma-
jor factor that causes programmers to prefer them to formal descriptions.

We are proposing a new approach to semantic description, one that
attempts to avoid the disadvantages of the approaches mentioned above.
our approach is still evolving, and we are currently conducting a large-
scale experiment - a full semantic description of 150 Standard Pascal
(Level 0) - to show how well we can cope with conventional sequential
languages. This experiment is nearing completion, and the results so
far look promising [18]. But much work is needed to show that we can
also handle concurrent and non-conventional languages. Thus we are not
(yet) in a position to propose our approach for adoption in standards
documents.

The new approach is called Action Semantics. It is a development
of "Abstract semantic Algebras" 116,171, but the emphasis is now on the
user interface, rather than on the underlying foundations.

In essence, Action semantics is denotatianal (or ncompositional™),
in that the semantics of each phrase is expressed in terms of the seman-
ties of 1ts subphrases. The denotations, however, are no longer taken to
be higher-order functions, expressed in \ambda-notation: they are "ac-
tions", which have a (reasonably) simple operational interpretation - and
quite nice algebraic properties.

We shall see some examples of actions later. The semantics of a wide
class of programming Languages (both functional and imperative) can, it
seems, be given in terms of a fairly small number of standard primitive
actions and action combinators. This gives the possibility of re-using
parts of previous semantic descriptions when describing new languages,
and facilitates the semantic comparison of languages. Moreover, actions
enjoy a high degree of orthogonality, which gives good modifiability of
semantic descriptions.

The proposed notation for actions is intentionally verbose and sug-
gestive. This, we believe, makes it possible to gain a (broad) impression
of a language's semantics from a casual reading of its action-semantic
description - and may encourage the casual reader to become a serious
reader! There seem to be substantial pragmatic advantages, both for the
readers and the authors of a semantic description, in having a notation
with a fair amount of redundancy. Our action notation mimics natural
Language, but remains completely formal. Of course other, more “mathe-
matical®, representations of the notation could be used when conciseness
is a primary concern.

Action Semantics was originally developed for use in specifying
just the dynamic semantics of programming Languages. Recently, we have
become attracted by the idea of using it for expressing the checking
of static constraints as well. Both the static and dynamic semantics
can thus be specified as mappings from context-free abstract syntax to
actions, using the same notation.

our concern for the casual reader is reflected in the organization
of action-semantic descriptions. First, an action semantics introduces
the standard action notation to be used, giving an informal explanation
of how actions can pe “performed". The formal specification of actions
themselves is relegated to an appendix, and may be ignored by the casual
reader.

Then comes an abstract syntax for the programming \anguage, and its

relation to concrete syntax. The abstract syntax is context-free, and
is assumed both by the static semantics and by the dynamic semantics,
which are given separately. (We prefer to avoid the introduction of an
intermediate abstract syntax that incorporates statically-determinable
context-sensitive information, even though that might permit a more con-
cise dynamic semantics.)

The static and dynamic semantics both have the same form: they start
by introducing the necessary value sorts and operations, followed by ad
hoc abbreviations for commonly-occurring patterns of standard actions;
then come the semantic equations, expressing the semantics of each phrase
of abstract syntax in terms of the semantics of its subphrases, using the
action notation.

1f the formal specification of actions is ignored, we are left
with what could be called a nformalizable" semantics. We suggest that
such partial formal descriptions might be acceptable to programmers and
implementors as an alternative to informal semantic descriptions, with
the denotational structure and the standard notation for actions being
regarded as merely a useful discipline for organizing informal- Looking
descriptions.

The formal specifications of standard actions that we prefer to
give are algebraic. This facilitates the introduction of new actions (as
may be needed for expressing neW computational concepts); and algebraic
axioms provide useful information about the properties of actions. Note
that we do not expect the reader to acquire an intuitive grasp of actions
just by gazing at the axioms for them; rather, the axioms may be used to
ufine-tune' a previously—established conceptual understanding.

We shall not dwell on the algebraic gpecification of actions in
this paper. We refer the reader to [171 for examples and a discussion of
foundational aspects.

In the rest of the paper, We shall first indicate the meta-notation
used in Action Semantics, and explain the coricept of actions. Then we
shall give some examples of the use of Action Semantics, taken from the
current version of our pascal semantic description.

2 Action Semantics

The meta-notation used in Action Semantics consists of BNF (for abstract
syntax), parts of oBJ2 [111 (for specifying actions and values) and
semantic equations (for specifying semantic functions). It is fully
formal.

Now for the concept of actions. An action is just an entity that
can be performed. The outcome of performing an action may be either
completion, escape, OF non-termination, or else the performance of the
action might fail (i.e., have no outcome). An action receives information
of various kinds: immediate values; values contained in variables; values
bound to identifiers; input and output. An action may likewise produce
information of the same kinds (provided that it completes or escapes).

our standard actions are chosen to correspond to familiar computa-
tional notions. (The following informal descriptions of actions are very
brief. They are intended only to give a rough impression of what the
actions mean.)

An action may be primitive or compound. A primitive action may
contain terms (T) that refer to information received by the action, and
may introduce a name (N) for the value (V) of a term. Here are some
examples of standard primitive actions:

- 1gbtain an N from T' simply gives the name N to the value of T
(but fails if the value is not of the sort indicated by N).

. 1check T is V' fails unless the value of T is V.

. icreate an N' creates a simple variable, and gives the name N to
(the identity of) the variable.

. igtore T1 in T2' updates the contents of the variable (whose
identity is) given by 12, to the value of T1.

. ibind T1 to T2' binds the identifier given by T1 to the value of
T2.

- 1gkip' is a dummy action.

There are standard action combinators for expressing fundamental
ways of combining actions. For example, if Al and A2 are actions, then
so are the following (symbols in square brackets below are optional):

. t[either] A1 or A2' chooses one of Al or A2, but if the chosen
action fails the other one is chosen instead.

. i[bothl A1 and AZ' performs Al and A2 in an implementation- de-
pendent order.

. 1pfirst] A1 then A2' performs Al and A2 sequentially.
. 1a1 before A2' accumulates bindings produced by Al and A2.

. 1Al where # = A2' is jteration; Al is performed, with unfolding
of A2 at occurrences of the dummy action e,

. tenact T' performs the action encapsulated in the abstraction
given by the value of T.

. iplock A* performs A, but restricts the scope of any bindings
produced by A.

1t is sometimes convenient to introduce ad-hoc abbreviations for
commonly-occurring patterns of standard actions. For instance, in the
pascal Action Semantics, We introduce:

. 1coerce an N from Tt, which encapsulates all the implicit co-
ercions in pascal (integer to real, variable to current value,
etc.);

. 1allocate an N of T', which extends 'create! to compound variables
with type given by T; and

- 1assign T1 to 12, which extends 'store'! to compound variables.

pifferent performances of an action may have different outcomes,
corresponding to non-determinism or imlemntation-dependence. We say
that an action A' is a correct implementation of another action A when
(in any context) the outcome of each performance of A' is the outcome
of some performance of A. This can be reformulated to give correctness
criteria for real implementations of programming languages, based on
their action semantics.

3 Examples of Use

In this section, we shall illustrate the use of Action Semantics with
(somewhat simplified) excerpts from the semantic description of standard
pascal that we are currently developing [181. First, some semantic equa-
tions for the dynamic semantics. (Note that 11t starts an informal,
end-of -Line comment; the rest is completely formal!)

evaluate: Expression -> Action

[} 1evaluate E' computes the un-coerced value of E.
! 1t produces a result.

! 1t may make changes to variables.

! 1t produces no bindings.

evaluate [11 =
obtain a result from binding-of(id I)

evaluate [E1 DO E2 1 =
both evaluate E1 then
coerce a 1st operand from the result
and evaluate E2 then
coerce a 2nd operand from the result
then operate DO then
obtain a result from the operator-result

operate: pyadic-Operator -2 Action

! 1operate DO' applies DO to two operands.

! It receives a 1st operand and a 2nd operand,
! and it produces an operator-result.

! It makes no changes to variables.

! It produces no bindings.

execute: Statement -> Action

! lexecute S' executes S.

! It produces no values.

! It may make changes to variables.
! It produces no bindings.

execute [§1 ";" 821 =
first execute S1
then execute S2

execute ["while" E "do" S] =
where # =

first evaluate E

then coerce a boolean from the result

then either
check the boolean is true then
execute S then #

or

check the boolean is false then
skip

execute [VD ";" "begin" S "end" 1 =
block establish VD
before execute S

establish: variable-Declarations -> Action

! 1establish VD' executes the declarations in VD.
! It produces no values.

! It creates variables.

! It produces bindings.

establish ["wvar™ I "M 7Y] =
first typify TY
then allocate a variable of the type
then bind id I to the variable

The static semantic action for a program phrase just fails unless
the program phrase satisfies the static constraints. Note that the action
notation used in the static semantic equations (below) is essentially
a restriction of the notation used in the dynamic semantics - albeit
over different sorts of values. In particular, there is no need for
creating variables, nor for potentially non-terminating iterations in

static semantics.

evaluate-mode: Expression -> Action

! 1evaluate-mode E' checks E and deduces its mode.
! 1t produces a resul t-mode.

! It produces no bindings.

evaluate-mode [1 1 =
obtain a result-mode from binding-of(id I)

evaluate-mode [E1 DO E2 1 =

both evaluate-mode E1 then

coerce a val-mode from the result-mode then

obtain a 1st operand-type from type-of (the val-mode)
and evaluate-mode E2 then

coerce a val-mode from the result-mode then

obtain a 2nd operand-type from type-of (the val-mode)
then typify-result DO then

obtain a result-mode from

val -mode(the operator-result-type)

- -

typify-result: Dyadic-Operator -> Action

! 'typify-result DO' checks the application of DO to

! two operands.

! 1t receives a 1st operand-type and a 2nd operand-type,
! and it produces an operator-result-type.

! It produces no bindings.

10

constrain: Statement -2 Action
! 1constrain $' checks S.

! 1t produces no values.

1 1t produces no bindings.

constrain [s1 ";" 821 =
both constrain S1
and constrain S2

constrain ["while" E udo" S 1 =
both evaluate-mode E then
coerce a val-mode from the result-mode then
check type-of(the val-mode) is boolean-type
and constrain §

constrain [VD ";" upegin® § "end" 1 =
hide-locals VD before
declare VD before
constrain S

hide-locals: variable-Declarations -> Action

! thide- locals VD' hides any non-local bindings of
1 identifiers declared in VD.

! 1t produces no associations.

! It produces bindings to 'undefined'.

1

declare: Variable-Declarations -> Action

! tdeclare VD' checks the declarations in VD.
! It produces no values.
1 It produces bindings.

declare [“var™ I ":" TY] =
first typify TY
then both check binding-of(id I) is undefined
and bind id I to entire-var-mode(the type)

12

References

[

[21
[31

[4]

[51

61

(71

[81

[91

[10]

[111

[121

(131

[14]

[151

Formal Definition of the Ada Programming Language, Preliminary Ver-
sion. 1980.

The Pascal Standard, 1SO 7185. 1982.

Reference Manual for the Ada Programming Language, ANSI/MIL-STD
1815 A. 1983.

K. R. Apt. Ten years of Hoare's logic: A survey. In Proc. 5th
Scand. Logic Symp., Aalborg Univ. Press, 1979.

E. A. Ashcroft, M. Clint, and C. A. R. Hoare. Remarks on 'Program
proving: Jumps and functions, by M. Clint and C. A. R. Hoare. Acta
Inf., 6:317-318, 1976.

E. Astesiano et al. On parameterized algebraic specification of
concurrent systems. In Proc. CAAP-TAPSOFT 85, Springer-Verlag,
1985. LNCS 185.

D. Bjgrner and C. B. Jones. Formal Specification and Software
Development. Prentice-Hall, 1982.

D. Clement, J. Despeyroux, et al. Natural Semantics on the Com-
puter. Rapport de Recherche No. 416, INRIA, 1985.

E. W. Dijkstra. Guarded commands, non-determinacy, and formal
derivations of programs. Commun. ACM, 18:453-457, 1975.

P. Folkjar and D. Bjgrner. A formal model of a generalized CSP-like
language. In Proc. IFIP'80, North-Holland, 1980.

K. Futatsugi, J. A. Goguen, et al. Principles of 0BJ2. In Proc.
POPL'84, ACM, 1984.

M. J. C. Gordon. The Denotational Description of Programming Lan-
guages. Springer-Verlag, 1979.

C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12:576-580, 1969.

C. A. R. Hoare and N. Wirth. An axiomatic definition of the pro-
gramming language PASCAL. Acta Inf., 2:335-355, 1973.

R. Milner. The standard ML core language. Polymorphism, 11(2),
1985.

13

(161

(171

[181

[191

[201

[211

[221

[23]

[24]

[25]

P. D. Mosses. Abstract semantic algebras! In Proc. IFIP TC2 Work-
ing Conference on Formal Description of Programming Concepts 1I
(Garmisch-Partenkirchen, 1982), North-Holland, 1983.

P. D. Mosses. A basic abstract semantic algebra. In Proc. Int.
Symp. on Semantics of Data Types (Sophia-Antipolis), Springer-
Verlag, 1984. LNCS 173.

P. D. Mosses and D. A. Watt. Pascal: Action semantics. March 1986.
Draft, Version 0.28.

G. D. Plotkin. An operational semantics for CSP. In Proc. IFIP TC2
Working Conference on Formal Description of Programming Concepts 11
(Garmisch-Partenkirchen, 1982), North-Holland, 1983.

G. D. Plotkin. A Structural Approach to Operational Semantics.
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

D. S. Scott and C. Strachey. Towards a Mathematical Semantics for
Computer Languages. Tech. Mono. PRG-6, Programming Research Group,
oxford University, 1971.

J. E. Stoy. The Scott-Strachey Approach to Programming Language
Theory. MIT Press, 1977.

R. D. Tennent. The denotational semantics of programming languages.
Commun. ACM, 19:437-453, 1976.

D. A. Watt. Executable semantic descriptions. Software: Practice
and Experience, 16:13-43, 1986.

P. Wegner. The Vienna definition language. ACM Comput. Surv., 4:5-
63, 1972.

14

