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Abstract

This paper presents some results on non-sequential processes
using the language of net theory. The results are concerned
with the relationship between various formalizations of the
intuition that the causality relation enforced by a process
should be in some sense "finitely realizable". The formaliza-
tions proposed are of very different flavours, based on

notions of observability, approximability, state space covering
and discreteness.
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0. INTRODUCTION

The aim of this paper is to present some results concerning
non-sequential processes using the language of net theory.

In this framework a process will consists of partially-ordered
holdings of conditions and occurrences of events. The ordering
relation associated with a process is to be interpreted as the
causality (dependency) relation. One question that then arises
is: What restrictions should be placed on such an ordering
relation?

Here we wish to concentrate on those restrictions which
try to capture the intuition that the causality relation enforced
by a process should be in some sense "finitely realizable". For
instance, it seems counter-intuitive to admit processes in which
the occurrence of an event needs to be preceded by the occurrence
of an infinite chain of other events; it would take "for ever"
for such an event to occur. (An implicit assumption here is that
the focus of interest is "discrete processes" and not "analog
processes".)

A number of proposals with very different flavours and
origins have been made so far to formalise the intuitive demand
that the causality relation associated with a non-sequential
process should be in some sense finite. The main thrust of the
paper is to argue that these different proposals essentially
lead to the same class of objects.

In the next section we introduce the basic terminology and

notations. In section 2 we show that the notion of observability

due to Winskel [ W ] is equivalent to the notion of a full state

space. Informally, a process is observable if it is possible to
give a sequential description of the process; in other words, if
it is possible to assign an integer "time" point to every element
of the process so that the assignment respects the causal ordering.
A process is said to have a full state space if there is a marking
starting from which the standard token game (associated with

marked nets) can lead to the occurrence of every event in the

processes.



In section 3 we consider a proposal due to Goltz and Reisig
[ GR ]. They suggest the restriction that one should consider
only those processes that can be "built up" using just finite
processes (i.e. processes which have only a finite number of
elements). We show that a process is observable iff it can be

built-up using chain-bounded processes, i.e. the building blocks

are processes for which there is a uniform upper bound on the
lengths of chains. We then provide two characterisations of pro-
cesses that can be approximated by finite processes.

Next we turn to an attractive density property called

b-discreteness (bounded-discreteness) proposed first - as far

as we know - by Gordon Plotkin. This property states that for
every two elements of the process there is a finite upper bound
on the lengths of the chains between the two elements. In section
4 we obtain two characterisations of b-discrete processes. Our
results show that the essential difference between b-discreteness
and observability is countability; and this puts the finishing
touch to the nice result due to Winskel [W ] which states that
for countable processes b-discreteness and observability are
equivalent notions.

Since it seems reasonable to consider only those processes
that have a countable number of elements, we are then led to
conclude that the various proposed restrictions considered in
the paper basically give rise to the same class of processes. In
the final section we give a more complete summary of results and
related work.



1. NOTATIONS AND TERMINOLOGY

In this section we collect together some of the notions of
net theory that will be used throughout the paper. In doing
so we shall also briefly motivate the net theoretic model
of non-sequential processes that will provide the basis for

our study. We start with the concept of a net.

Definition 1.1 A (directed) net is a triple N = (S,T;F)
satisfying
[ SNT = @ and SUT # @.

(ii) F <(SxT) U (TxS) so that

dom(F) U ran(F) = SU T where
dom(F) = {x€SUT | 3y €SUT: (x,y) €EF}
ran(F) = {ye€SUT | 3x€SUT: (x,y) €F} o

S is the set of S-elements, T is the set of T-elements and

F is the flow relation. SUT is the set of elements of N.

In diagrams, the S-elements will be drawn as circles and
the T-elements as boxes. If (x,y) € F, we indicate this by
drawing a directed arc from x to y. Nets can be used to represent
the structure of distributed systems and processes. In such
applications the S-elements will denote the local atomic states,
the T-elements the local atomic changes-of-states (transitions)
and the flow relation will capture the neighbourhood
relationship between the local states and transitions. This
will become clear in the sequel once we introduce the notions
of markings and steps. For now we wish to introduce a very useful
notation for representing the neighbourhoods of the elements of
a net. Let N = (§,T;F) be a net and x€ SU T. Then

N-
I

{yesuT | (y,x) €F} - The pre-set of x

»
I

{yesuT | (x,y) €F} - The post-setof x



In net theory, non-sequential processes are modelled
by a special kind of nets called occurrence nets. Before
introducing occurrence nets, it will be convenient to agree
on the following conventions.

Through the rest of the paper we let INdenote the set
of natural numbers, E% the set of non-negative integers and
Z the set of integers. For the binary relation R c Y x Y where
Y is a set, we let R" denote the transitive closure of R and R*
the reflexive transitive closure of R. Finally |Y| will denote
the cardinality of the set Y.

Definition 1.2 An occurrence net is a net N = (B,E;F)
such that
(i) VbEB: |["bl, |b"] 1.

(ii) Vx,y€EBUE: (x,y) €EF = (y,x) ¢F .
(iii) Ve € E: e # @ and e # Q. o

In the literature an occurrence net is often required to
satisfy just the clauses (i) and (ii). Here we have thrown in
(iii) for technical convenience.

Let N = (B,E;F) be an occurrence net. Then B is the set

of conditions, E is the set of events and F is the flow relation

of N. Moreover XN = BUE is the set of elements of N.

A simple - but for our purposes crucial - observation is
this:

With the occurrence net

poset PON = (X

N = (B,E;F) we can associate the
:< ) where < def px, It is this feature of

N’°N N T @

occurrence nets that make them a candidate for modelling non-

sequential processes. Now for some terminology concerning posets.



Definition 1.3 Let PO: (X;2) be a poset and s,l1 two

non-empty sub-sets of X.

def

(i) 1 {(x,y) €XxX | xgy or y<sx}.

(11} 1 is & chain (li-set) 1ff W, vyE€l: ¥ 11 y
|11] is the length of 1.
Let 1 be a chain and x,v € X.
Then 1 is said to be a chain fromx to y iff

(vx'el) [x<x'2y].

(iii) co = {(x,V)EXx X | x£y and y £ x}

(iv) s is a co-set (anti-chain) 1iff vx,v€s: x COo VY.
(v) s is a slice iff it is a maximal co-set. In other
words, s is a co-set and (Vx€ X - s) (3IyE€ s)

[x < y or v < x].

(vi) For A c X,

joh
D
Hh

YA
+A

{x€X | Ja€A: x<a}
{x€X | 3a€A: agx}.

[oh
(0]
Hn

If A = {a} is a singleton, we shall write +4a (4a)
instead of +{a} (+{a}).

In this paper we shall assume the axiom of choice. In
particular we shall assume that every co-set of a poset can
be extended to a slice.

Let N = (B,E;F) be an occurrence net and PON = (XN;éN)

the associated poset. Then SLN will denote the set of slices

of PON. Where N is clear from the context, we will often write

SL instead of SLN' Here is an example of an occurrence net

where we have shown some of the slices with the help of dashed

lines passing through the elements contained in a slice.



Fig. 1.1

In order to interpret an occurrence net as a model of
the underlying (causality) structure of a non-sequential
process, we need to introduce a restricted kind of markings

and an associated token game.

Definition 1.4 Let N = (B,E;F) be an occurrence net. Then a

permissable marking of N is a function M: B- {0,1} such that

B = {beB | M(b) = 1} is a slice of N. o

In what follows we will deal with only permissable
markings. Hence for brevity we will drop the qualifying adjective
'permissable' and just talk about markings. Let N = (B,E;F) be
an occurrence net, M a marking of N. Since M: B- {0,1} it will
be convenient to identify M with the set of conditions that hold
at M, i.e. we shall identify {be B | M(b) = 1} with M.



Keeping this convention in mind, we can now introduce one of

the central ideas of this paper.

Definition 1.5 Let N = (B,E;F) be an occurrence net and

M a marking of N.

(i) Let ® # u ¢ E. Then u is enabled at M (u is a step at M)
iff (Ve€u) ["e c M].
M[u> will denote the fact that u is enabled at M.

If u = {e} is a singleton we write M[e> instead of M[{e}>.

(ii) Suppose  # u € E is enabled at M.
Then events in u can occur concurrently at M to lead to the

marking M' given by:

M' = (M - "u) Uu® where "u = L_/ ‘e and u’ = Lj e’
ecu ecu
The transformation of M into M' by the occurrence of the step u
(i.e. by the concurrent occcurrences of the events in u) at M
will be denoted as M[u>M'.

If u = {e} is a singleton, we write M[e>M'. By convention,
M[@>M. o

Thus for an event e to occur at a marking M, its pre-
conditions ("e) must hold. Since M is a slice, if e can occur
at M, none of the post-conditions of e will hold at M. When e
occurs at M, its pre-conditions cease to hold and its post-
conditions begin to hold.

In order to establish our main results in a fairly general
setting, we will include both the past and the future in defining

the state space generated by a marking.

Definition 1.6 Let M be a marking of the occurrence net
N = (B,E;F). Then [M], the state space generated by M is the

least set of markings of N given by:




(1) M€ [M]

(ii) If M'€[M], u c E and M" is a marking of N such
that M'[u>M" or M"[u>M' then M" € [M]. o

Markings of an occurrence net can be (causally) ordered
as follows.

Let M' and M" be two markings of the occurrence net N = (B,E;F).
Then M' = M" iff tM" < 4M' (or equivalently +M' c +M"). For

the marking M of N, consider M" € [M]. If M' & M then M' lies

in the "past" of M, i.e. the state M' must have preceded M. If

M £ M' then M' lies in the "future" of M; M must precede M' in
the process modelled by the quadruple (B,E,F,M). It is also
possible, that two markings in [M] are incomparable. Consequently

the state space [M] is partially ordered under z. This is the

justification for viewing (B,E,F,M) as a model of a non-sequential

process.
The question addressed in this paper is: What is the class of
occurrence nets that should be chosen to serve as the underlying
nets of a non-sequential process?
That we must exclude some occurrence nets can be brought out

through an example.

Fig. 1.2

The trouble with this net is that for the. "natural" initial mark-
ing M~ shown, the event e will not be enabled at any marking in
the state space [MO]. Indeed there is no marking M for this
occurrence net such that every event is enabled to occur at some

marking in [M]. The point is that in some sense, the underlying



causal ordering éN of this net is not "realizable". Our aim

is to consider various proposals for evaluating the "goodness"

-~

of the ordering relation =N° The first one is in terms of state
spaces. We propose that one should consider only those

occurrence nets that have a full state space.

Definition 1.7 Let N = (B,E;F) be an occurrence net.

(1) Let M be a marking of N. Then [M] is said to be
a full state space of N iff (Ve € E) (3IaM' € [M])
[e is enabled at M'; M'[e>].

(ii) N has a full state space iff for some marking M of N,

[M] is a full state space. )

The second proposal is to consider only those occurrence

nets that are observable.

Definition 1.8 Let N = (B,E;F) be an occurrence net and
PON = (XN;QN) the associated poset.
(i) An observer of N is a function

O: XN - 7 such that

(Vx,y € Xy) [x <y y = 0(x) < 0(y)]

(ii) N is observable iff it has an observer. fu}

It is not difficult to verify that the net shown in fig. 1.2
is not observable. Indeed our first task will be to show that

the notions of full state space and observability coincide.
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2. THE EQUIVALENCE OF OBSERVABILITY AND FULL STATE SPACE

In order to establish that the notions of observability and

full state space coincide, it will be convenient to rework

the notion of full state space. The intuitive idea is to

place tokens on the arcs of an occurrence net and play a token

game in which both the conditions and events have occurrences.
Formally, let N = (B,E,F) be an occurrence net and

s < XN a slice of N. Then

actt (s)

{x€s | x° 20 A "(x") = s}

act (s) {xes | "x # 0 A ("x)" < s}.
Consider the following occurrence net. For the slice s

shown, act+(s) = {e} and act (s) = {bq,bz,e}

Fig. 2.1

Note that we can replace e (in s) by its post-condition
to obtain a new slice; we can also replace both b1 and b2
(in s) by e' to obtain a new slice. In other words, act+(s)

and act_(s), the set of forward active and backward active

elements of a slice,can be used to define a transition relation

over slices.
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Definition 2.1 Let s,s'€ SLN for the occurrence net
N = (B,E,F). Then s-s''iff there exists Y = act+(s) such that
s' = (- "(X¥"'))uy . o

The following facts are easy to verify.

Theorem 2.2 Let N = (B,E,F) be an occurrence net.
(1) Suppose s is a slice and Y1 =t act+(s) and
L5 & act (s). Then both
(8 = '(Yi))LJY% and
(s - ('Yz)')U'Y2 are slices.

(ii) Let s and s' be a pair of slices. Then s- s' iff
there exists Y c act (s') such that
s = (s' = ("Y¥)")U "Y. o

The modified notion of a full state space can now be stated.

Definition 2.3 Iet N = (B,E,F) be an occurrence net and s
a slice.
(i) Then [s]l, the slice space generated by s is the
least sub-set of SLN given by
a) se sl
b) If s'e[s]] and s" € SLN such that s'- s" or

s" > s8' then s"e[s].

(ii) [sJis a full slice space iff

U {s'e€ SL s' e [sl}= X

w | N
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(iii) N has a full slice space iff there exists a
slice s¢€ SLN such that [s] is full. o
Remark It will be useful to observe that s'e [[s]] is

equivalent to saying that there exists a sequence of

i = = !
slices 5051"'Sn such that s SO and s, s' and for
<
0£i<n, si—asi+1 or si+1—>si.
Theorem 2.4 The occurrence net N = (B,E,F) has a full

state space iff it has a full slice space.

Proof

= Assume that M is a marking of N such that [M] is a full
state space. By definition of a (permissable) marking,
M is a slice. We shall argue that [M] is a full slice

space.

Let XEEXN. We must show that for some s€ [M]], X€ s.
First assume that x is an event. (Using the fact that

XU X" # @ because N is a net, we will later dispose off
the case where x¢€ B). Since [M] is a full state space, we
orMyre-- /M € [M] and
qressrUp_4 S E such that M = M
or Mi+1[ui>Mi and Mn[x> (i.e.

can find a sequence of markings M

a sequence of steps Uy,u 0’
&
for 0= 1% n;, Mi[ui>Mi+1

®x 1is enabled at Mn). We shall first prove by induction on n
that M € IM.

n =20 Trivial.
n >20 By the induction hypothesis Mn_1E:HMD. Assume
that Mn—1[un—1>Mn' (The proof in case Mn[un—1>Mn—1 is

completely symmetric and we shall omit it.)
Then “u o act+(M ) and therefore
n-1 = n-1

8. = (Mn_1 - un~1)lJun—1 is a slice. Moreover Mn_1—>sn.
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* =
But then u,_4 S act (sn) and Mn = (sn - un_.l)Uun_1

so that sn—>Mn. From Mn € [M] it now follows at once
that M_€ IM].

-1

To complete the argument that [MIl is a full slice space,
recall that Mn[x>. Then °*x c act+(Mn) so that

s = (Mn - 'x) U {x} is a slice with M_-s. Hence we have
found s€ [M] with x€ s.

In case X€ B, we can pick an event x'€ "x U x° and apply
the above argument to obtain s' € [M] such that x'€s'.
If x"€ "x, then s = (8" - {x"})U (x')" will be a slice
satisfying x€ s and s'-»s. If on the other hand x'€x",
then s = (s' - {x'}) U " (x"') will be a slice satisfying

Xx€s and s-»>s8'". In either case s € [M].

- Let s be a slice such that [s]] is full. Let u = sN E and
M= (s - u)U “u. Clearly M is a (permissable) marking and
viewed as a slice, we have M- s. We claim that [M] is a
full state space. To see this, let e€ E. Then from the fact
that [s]l is a full slice space it follows that there exists
a sequence of slices SgrSqre--rSy such that s = Sqr
for 0£i<n S8 4q OF S, ,.45S; and eEﬁsn
Again by induction on n it is easy to prove that for some
M' € [M], e is enabled at M', o

Remark In what follows we shall write [s] instead of [s]

for the sake of convenience.
To prove the main result of this section we start
with the notion of the distance of a net element from a

co-set.
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Definition 2.5 Let s be a co-set of the occurrence net
N = (B,E;F) and x¢€ X. Then

Sup{n | YE s A yan}, if x€ 4s

dF(XrS) Sup{n | VES A XFnY}, if x€ 4s

0 , otherwise o

Remark Since s is a co-set and FO is the identity relation
over X, by convention, we have that dF: XN - I%)U {e}.

(The usual ordering over ENO denoted as £ is extended to

INOLJ{m} in the obvious way.) For the sake of convenience,

we will also often write < instead of in dealing with

the ordering relationship associated wizh the occurrence

net N. From the context it should be clear as to which
ordering relation is meant. We will also often write X
instead of X,,. Finally, we let |k| denote the absolute value

N
of the integer k.

Lemma 2.6 Let s be a slice of the occurrence net N=(B,E;F).

Then [s] is a full slice space of N iff vx € X: dF(x,s)Eimo.

Proof
= Let x € X. Since [s] is full, there exists a seguence

or s, -5,
+1 i+1 i

and xéisk. We wish to show that dF(x,s);;k. To this end

assume that for some y € Sqyr yEJlx so that it is sufficient

s = 50’51""’Sk such that for 0:21i<k, si—»si

to prove that n<k. (The proof for the case xEle is com-

pletely symmetrical and we shall omit it.)

Since yEJlx we have y = xOE‘x1E‘X2 i E‘xn = X where for
0£41i<n, xi(EX. As a first step we shall show that each X,
belongs to at least one of the slices 50'51""’Sk‘
Suppose that there exists X'Ei{xo,x1,...,xn} such that
x' ¢ sj for 023j £k. We claim that for 0£ j £k, there

exists Zj €sj such that zj < x'. The claim can be established
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by induction on j. First note that x' # X because

v = XO€ Sge

. _ - ;
j =0 Then z2y = yEisO and we know that y Xg < %'
J >0 By the induction hypothesis, there exists

2 € s. such that z. < e IE 2z € s. then
J=1 J=1 =1 & J

we are done. So suppose B ¢ 8-

Then either @ # (zj_1)' S 84 or @ # '(zj_1) < 8y
If @ # '(zj_1) S Bs then there exists sz s. such

that sz‘zj_ which implies that z. < x' because

1

Z . < x' by the induction hypothesis.

3-1
So assume that @ # (zj_1)' c s.. Since we are
assuming that x' ¢ Sj' we are assured that

! . < = * !
x' ¢ (Zj—1) . But then N F* and Zj—1 <N}< together
guarantee that for some sz (zj_1)', zj<‘x'. But

then zj Esj and we are done.

Since the claim is now proved we have that for some zkEZsk,
! ' = i L =

zp <x'. Recall that x Ei{x1,...,xn x}. Since x X X

we have that zk<:x which is a contradiction because both

Zy and x are in the slice Sk -

Hence each Xy (0 £1i€n) belongs to one of the slices

50’51""'5k' If n>k then at least two different elements

in {XO’X1""’Xn} would belong to the same slice which is

of course a contradiction because xOE‘x1E‘x2 — E‘xn

Therefore n = k.

We want to prove the following:

Vx € X, there exists a sequence s = SqrSqre--18, such
5

that xEZsk and S; Sy, OF si+1~>si for all 0=21i<k.

The proof is by induction on dF(x,s) = n.

n =20 dF(x,s) = 0 implies x € s and the result follows

immediately.
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n > 0 We only consider the case x€ ts (the proof for the
case X€ 4s is similar and we omit it).

Define a = s by
a={yes | yF'x}

a is by definition a non-empty subset of s, and we
claim that a = act+(s).
Assume y€ a and “(y') ¢ s. From the definition of
occurrence nets y € B and there exists another
B-element y' € “(y°) not in s.
y' € s implies 3z € s such that y' < z or z < y'.
If y' < z then y < 2z, a contradiction since y,z € s.
If z < y' then zF'x with m > n, which contradicts
S the fact that dF(x,s) = n.

So, a c act+(s). Define Sy = (s - “(a’))uvua-.

We then have s s, and d(x,s1) < n. The result now

follows from the induction hypothesis. o

We come now, with the next three lemmas, to the main theorem
of this section, that is: that the class of occurrence nets
with full state (slice) spaces coincides with the class of

observable occurrence nets. We start with

Definition 2.7 et N = (B,E;F) be an occurrence net, s € SL and

O an observer for N. O is synchronized on s iff s={x€ X | 0(x)=0}.

Lemma 2.8 Let N = (B,E;F) be an occurrence net with
([s] as) a full slice space. Then N has an observer which is

synchronized on s.
Proof Define QO: N » Z as follows.

dF(x,s) if X € +s
VXEX : O(x)=
—dF(X,s) if xX€ s



17

0 is a well defined mapping by Lemma 2.6. From the definition
of dF it follows that O is an observer which is synchronized

on s. m}

Lemma 2.9 Let N = (B,E;F) be an observable occurrence net.

Then N has an observer which is synchronized on some slice of N.

Proof Let O be an observer for N. We first modify O as

follows. Define:

- 2x 0(x) if O(x)

v
o

¥x € X n(x) =
2x 0(x) + 1 4if O(x) < 0.

n is clearly an observer for N, with the property that all
positive values are even and all negative values odd. From
this it follows that all sets {x€X | [n(x)| = i} with iz0 are
co-gsets. This property is used in the following.

Define inductively

X
0

1

{x€X | n(x) = 0} and for i > 0,

X.
1

{xex | ln(x]l=iAxcoXj 0sj<il

(where x co Xj Tl g VyEXj: X0 Yy )

We claim that s = (U X, is a slice.
120

From the definitions s is clearly a co-set. We have to prove
that it is a maximal co-set.

Assume x¢ s. For some i, |n(x)] = i and foXi which means
that there exists yEZXj c s J<i such that x1liy. Hence s

is a maximal co-set; a slice.
Define now:

0 if x€es
T(x) =
n(x) otherwise
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synchronized on s,

Let x<y, we know that n(x) < N(y) and we want to prove
that T(x) < T(y).

If n(x) = T (x) and n iy = T (y) then the Yesult is obviously
true.
If n(x) # 1 (x) and n(y) #1(y) it follows that

T (%)
Ry,

T (y) which implies X,¥€ s a contradiction since

So, the only possible cases in which "things coulg go wrong"
are:

1) T(x) # n(x) < n(y) = T(y)
From t(x) # ni{x), it follows that x€s. Since X<y,
we then have Y € s and hence T(y) # 0. This implies that
n(y) # o.

Suppose that n{y) > 0. We then at once have T(x) < 1(y)
because T(x) =0 by virtue of X € s and T(y) = niy).

Suppose that n(y) < 0. Since Yy € s, we must have for some
zExj,y<z O z<y where 0< 7« IM(y) . We claim that
Z2<YyY 1s impossible. This is because 0 being an Observer,
2 <y would imply that ni(z) < n(y) which in turn woulg
imply that In(y) | <In(z)|. But we know that In(z) = 5
and j < [n(y)]. Hence it must be the case that y<z.

tion because both x and z are supposed to be members
of the slice S. Hence n(y) <0 is impossible.

2) 1(x) = N(x) <n(y) # T(y)
= M) AMy) ¥ 1iy)

As before v € s ang T(y) = 0 follow from niy) # T(y).
X € s follows from x<y. Hence 1(x) = nix) # 0. 1f
n{x) < 0 we have at once n(x) = T(X) <1(y) = 0.
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We can rule cut n(x) >0 as follows. Since n(x) = T(x)
we have that z <x or x< z for some ZEZXj with

0£3< In(x)]. x<z would imply that n(x) < ni(z) which
in turn would imply that In(x)| < In(2)| which is
ruled out by In(z)| =3 and j < In(x)|. But then z <x
is also not possible because this would lead to

z <y and we know that z,v € s. o

Lemma 2.10 Let N = (B,E;F) be an occurrence net with an

observer which is synchronized on a slice s. Then [s] is a full

slice space.

Proof Let O be an observer which is synchronized on s. It

follows from the definitions that
Vx € X: %JX£);|om)|

The desired result now follows immediately from Lemma 2.6.

]

To sum up, we have:

Theorem 2.11 Let N = (B,E;F) be an occurrence net. N is

observable 1iff it has a full slice (state) space. n]
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3. CHAIN-BOUNDED APPROXIMATIONS

In this section we consider another way of formalising the
intuition that the causality relation associated with an
occurrence net ought to be finitely realizable. The proposal is
to admit only those occurrence nets that can be "built up" using
occurrence nets of "finite length". This is a generalisation

of the proposal made by U. Goltz and W. Reisig [GR] to the effect
that one should consider only those occurrence nets that can be
built up using finite occurrence nets. We will discuss the im-
plications of this stronger restriction towards the end of this

section.

Occurrence nets of "finite length" can be formalised as follows.

Definition 3.1 Let N = (B,E;F) be an occurrence net. N is

chain-bounded iff there exists an integer kNEIIJO such that

for every chain 1 < X, |1] ékN.

Definition 3.2 Let N1 = (B1,E1;F1) and N2 = (B1,E2;F2) be a
i i = = = *
pair of occurrence nets with X1 B1kJE1, X2 B2LJE2, 21 F1
4 = *
and 25 F2.
1) N, is a subnet of Ny, denoted N, ¢ N,, irE B, < By,
E1 & E2 and F,I = F2r1[(B1x E1)L1(E1x B1)].

idi) N1 is a convex subnet of N2 iff N1 = N2 and (Vx,ye}ﬂ)

. < <
(VZEXZ). [x S, Z 5, y=:»zEX1].
Our next goal is to characterise the class of observable occurrence
nets as the class of those occurrence nets which can be approx-
imated by chain-bounded occurrence nets in the following techni-

cal sense.
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Definition 3.3 Let N = (B,E;F) be an occurrence net. N is
said to be approximated by the sequence of occurrence nets NT’NZ""

iff

i) Each N, is a convex subnet of N,
4 i+1

ii) N = (U Bi,UEigUFi) o

iz iz1 - oiz1

Lemma 3.4 Let N = (B,E;F) be an occurrence net. If N is
approximated by a sequence of chain-bounded occurrence néts
NT’NZ""’ then N is observable.

Proof The idea is to define an observer for N1 and then
inductively one for Ni and finally construct an observer
for N.
First, note that 1f N is chain-bounded then the set of
maximal elements, max N of N, constitutes a slice, with the

property that:
VX € X dF(x,max N) £k
where k € Nb

Assume that all chain lengths of N, are bounded by ki’
1 <£i. Assume that Ni = (Bi,Ei;Fi) and Xi = BiUEi for iz 1.

is the bound of all wchain lengths.

For N1 define:

VX € X 01(X} =k, - d., (x,max N1)

1 1 F1

It is not difficult to verify that O, is an observer for N

1 1
with the property that 101(x)| £k, for all x€X,.

1 1
We now define an observer for Ni inductively. We begin

with a "partial" observer T for Ni'

Oi_1(x) if x(?Xi_1
i
Vi>1: VxEX,. T.(x) = k. if x € max N.~X,
1 1 j=1 J i 7i-1
L_undefinec‘l, otherwise
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Intuitively, Oi—T is just extended with some large value

for possibly new maximal elements in Xi (part of the
i-1
s 5 k.).
j=1
Now we extend Ty to what will turn out to be an observer for

N, .
al

induction hypothesis is that IOi_1(x)l

Ti(X), if Ti(X) is defined

vzeX; O, (x} min{t, (y)-n | xF"y and 7, (y) is.defined},

otherwise

First of all it follows from the fact that max Ni is a
slice and that Ni is chain-bounded that Oi: Xia Z is a

well defined mapping. Furthermore from the hypothesis
i-1 i
10, 4 (x) 15 =z

k. it follows |0O.(x)] = k..
=) *

j=17

Now let x,yE:Xi with x<y, we have to prove that Oitx)< Oi{y).
If Ti(X) is undefined the desired property follows imme-
diately from definition.

If Ti(X) is defined then XEEXi—T' —q the
property follows for the fact that Oi_1 is an observer

if also v € Xi

for Ni—1'
If xEXi_1 and yEin_1, then it follows from the fact
that Ni—1 is a convex subset of Ni that for no z € Xi—1'

n i-1
yvF7 "z, and hence from definition Oi(y) >.Z kj. But xEEXi_1,
and from the induction hypothesis we 1=0
have that

i-1
0,x) = 01_1(x) §j§1kj and so Oi(x)<:oi(y)

Finally define O: X - Z as
Vx € X O(x) = Oi{x) ‘where x € X:i.'

It is straightforward from the above to verify that O

is an observer for N. u}
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3.5 Let N = (B,E;F) be an occurrence net. If N is
vable then N is approximated by a seguence of chain-bounded

rence nets.

Since N is observable, there is a slice s such that
[s] is full. Then from the proof of lemma 2.8 it follows that
O defined below is an observer of N which is synchronised

on s.

dF(X,S), if X € +s

Vx € X: O(x) =
—dF(x,s), if x € ¥s.

Now define inductively for iz 1,

Y, = {yex | 0< |o(y)]<i}
Z; = {z€s | Jy €Y, zliyl
X, = ¥ Uz,

Ny = (XiﬂB, X; NE; F|X.).

1

We claim that the Ni's constitute an approximating

sequence of chain-bounded occurrence nets. So, we have

to prove
Claim 1 Each Ni is a chain-bounded occurrence net.
Claim 2 Each Ni is a convex-sub-net of Ni+1'
Claim 3 U Xi = X.
Proof of claim 1 That each Ni is an occurrence net
is merely an observation. The only non-trivial part
is to verify that dom(Fi)lJran(Fi) = Xi'
Let yeY, and |O(y)] = k. Then 0<k:zi. If dF(y,s)> 0

then there exists y'E‘YiLJZi such that y'e€ *y. If
dF(y,s)< 0 then there exists y'E‘YiU Zi such that
y'€y" . In any case Ni is a net and hence an occurrence
net. The fact that each Ni is chain-bounded follows
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from the observation that all O-values on Xi are

numerically bounded by i.

Proof of Claim 2 N. © N,
1 = Tl

have to prove is convexity. It is sufficient to prove

from definition, so all we

that each Ni is a convex subnet of N. So, assume
x,ye.xi and x<z<y for some z€ X. If O(z) = 0 then
z€s and z € Zi = Xi from definition. If O0(z) # 0 then
10(z) | <max(]0(x) |, 10(y)|) and hence z€Y, ¢ X, .

Proof of Claim 3 We want to prove that each x€ X is a

member of some Xi'

o)1 € *lox) "

If O(x) = 0 then X€ s and since N is an occurrence net

If O(x) # 0 then obviously xX€Y

there exists a y € X such that either xFy or yF x and

O(y) # 0. In both cases x¢€ ZIO(Y)| = XIO(y)I' o

Summing up the main result of the last section with the last

two lemmas, we get:

Theorem 3.6 Let N = (B,E;F) be an occurrence net. The following

three characterisations are equivalent:

1. N has a full state (slice) space.
2 N is observable.
s N is approximated by chain-bounded occurrence nets.

As promised at the beginning of the section we shall now examine
the proposal that one should consider only those occurrence nets
that can be approximated by finite occurrence nets. It turns out

that such occurrence nets are characterised by two properties:

Definition 3.7 Let N = (B,E;F) be an occurrence net.

(a) N is countable iff XN is a countable set.
(b) N is interval-finite iff Vx,yE.XN: [[x,y]] <= where
[x,y] = {z€Xy | xsz<y}
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A useful concept which will be used in the next theorem and

also in the next section is that of convex closure.

Definition 3.8 Let N = (B,E;F) be an occurrence net and

X' € X = BUE. The convex closure of X', denoted by <X'>, is
given by <X'> = {y€ X | 3y1,y26X': y,léygyz}.

Theorem 3.9 Let N = (B,E;F) be an occurrence net. N can be

approximated by finite occurrence nets iff N is countable and

interval-finite.
Proof (=) Trivial.

(«) Let XqrXyr¥ore .. be an enumeration of XN_and g: XN-axN a
function which satisfies,VxE{XN: g(x) e "xux".
Since N is a net, the existence of g is assured. Let

XO = {XO, g(xo)} and for iz 0 define inductively,

Xi+1 = <XiLJ{xi+1,g(x

) }>

i+1

It is easy to prove that for each iz 0

N, = (X,nB, X.NE, (X, xX.)NF) is an occurrence net.
i i i i i

We shall first verify that each Xi is finite. Clearly X

0
is finite and so assume that Xi is finite and we shall prove
that X, is finite.
i+1

. . .

Setting Xi = {xi+1,g(xi+1)} for convenience, we then have
— U
X4 = %50 (U {lx,y] | XeEX, AyeEX i)
UCU{lx,y] | xeX{Ay€eX, ]})

Xi+1 must be finite because Xi is finite and N is interval-
finite.

Since <Xi> = Xi and Xic:Xi we have at once that for

il

each i, N. is a convex sub-net of Ni+1'

i
N = ( kj B., ® E,, (v) F,) where Ni = (Bi,Ei;Fi), because
izo * ix0 *t iz0 * -

X.. is countable.
N
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We conclude this section with a second characterisation
of those occurrence nets that have finite approximations.

This characterisation is in terms of injective observers.

N = (B,E;F) is said to have an injective observer iff it

has an observer O such that O: XN-+Z is an injective function.

Theorem 3.10 The occcurrence net N = (B,E;F) can be

approximated by finite occurrence nets iff it has an injective

observer.
Proof
= Assume that N is approximated by the sequence of occurrence
nets N1,N2,... such that each Ni is finite.
+
Let N, = (Bi,Ei;Fi), X, = B,UE;, <; = F. and co, the

co-relation associated with Ni for all iz 1. We start
by constructing an injective observer O

Let XOEEX1 and define

1° X1~+Z for N1.

x) = {x,}
X; = {XGX1 | x <4 xo}
X3 = X, - (x?ux?)
Choose an enumeration y1,y2,...,yn of X: (with IXT[ = n)

such that for 1£12n and 123j2n, 1<j implies

Yy 081 yj or Yq <1 yj. Choose an enumeration 21,22,..;,zm
of X,l such that for 1£1<mand 1£jsm, 1< j implies
Zj co,I Z2q or z <1 zl.

Define 01: X1—>Z as follows.

01(X0) =0

118
o

oA o
Oq(yj) j for 1=73

01(Zj) = = for 1£jsm.
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Clearly O1 is an injective observer for N1. The reason for
constructing O,l in this elaborate fashion is to ensure
that with k1 = IX1I, 01{x)€i[-k1,k1} for every x € X

easy to see that 01 satisfies this requirement.

E It is

Assume inductively that we have an injective observer Oi
for Ni such that VX € X, Oi(x)E [—ki,ki] where ki = |Xii
(for i 21). Then

X0 1 Xy
X1+1 = {xE;'Xi+1 - X, | % <,4q X' for some x' EXi}
XI+1 = X T (XSH UXy,q)-

Choose an enumeration Y :¥yr---/¥Yy of XI+1 (with n = IXI+1[)

= T £ e i i
such that 1£12£n and 1$j<n, 1<3j implies Yy €Oy g yj

OF ¥, Sy Ty

Choose an enumeration ZVZ2""’Zm of X;+ such that for

1
1£12mand 1£j<m, 1< j implies yj CO;,q ¥Yq OF Yj <i+1 ¥q-

Now define Oi+1: X, - 7Z as follows.

i+1
Oi+1(X) = Oi(x) for every X €X,
i+,I(yj) = ki+j for 1£3<n
i+T(zj) = —(ki+j)‘ for 1£j<m

It is easy to show that O, is an injective observer of

i+1
N;,q- Moreover VxEﬁXi+1, Oi+1(x)€ [—ki+1'ki+1] where
ki+1 = lXi+TI' Finally define 0: X = U X, % as

iz1

Vx € X: 0O(x) = Oi(x) 1.1 xEin.

It is routine to verify that O is an injective observer of N.
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= Suppose that O is an injective observer of N. Then N must

be countable and interval-finite. By theorem 3.9 we have

that N can be approximated by finite occurrence nets. o

An obvious consequence of the preceding two results is
Corollary 3.11 The occurrence net N has an injective observer
iff it is countable and interval-finite. o

This result has been independently obtained by E. Smith
[ s] without appealing to the notion of finite approximations.
In fact we were motivated to characterise finitely approximable
occurrence nets in terms of injective observers by Smith's

result.
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4. B-DISCRETENESS

In this section we lock at an attractive density property called

bounded discreteness or b-discreteness for short. An occurrence

net is said to have this property, if for any two elements, not only
are all chains between them finite (discreteness), but there is also

a finite upper bound on the length of such chains (boundedness).

Definition 4.1 An occurrence net N is said to be b-discrete

iff for every x,yEﬁXN there exists a natural number dX y such
r

that the length of any chain from x to y is bounded by dx

¥

Now, what is the relationship between this density property

and the properties we have discussed in the previous sections?
All the examples we have considered so far don't bring out any
difference between b-discreteness and say observability. However,
Winskel [W ] has proven the following result (in a slightly
different setting).

Theorem 4.2

1) All observable occurrence nets are b-discrete.

2) There exist b-discrete occurrence nets which are

not observable.

3) All countable, b-discrete occurrence nets are

observable. O

In this section we shall look for general characterisations

of b-discreteness in terms of the other properties under consi-
deration. To put this in perspective let us just present an
example of a non-observable, b-discrete occurrence net -

essentially taken from Winskel [ W ].
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Example 4.3 The example is built around a countable set of

chains as follows.

€02 S5 i
€01 = €41
€00 S10 , €io0

f For each slice of this set consisting of events only

s = e . s€,. 4... , oOur example has a distinct event e with
030 131 s

distinct chains from eij to By of length 2xi+1.
i

i events

OO~ =0+ J+0O—=[ Ju°

(0]

eoj0 e1j1 2j2 iji
This occurrence net is clearly b-discrete (and uncountable).

Assume that the net has an observer, 0. There must exist a slice,
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s, as above with only positive O(eij‘)-valuesYiriﬁial). But
il .
this means that O(es) cannot take any finite value - a

contradiction.

Modifying Winskel's proof of Theorem 4.2 3) slightly, we get the
following result. In this result we shall work with an extended
notion of observability. More specifically, the poset

PO' = (X':£') is observable iff there exists 0: X' = Z such that
Vx,vX': x<'y=>0(x) <0(y).

Theorem 4.4 Let N = (B,E;F) be an occurrence net. Then the

following statements are equivalent.

1) N is b-discrete
2) The convex closure of every countable subset of XN
(viewed as a poset) is observable.
3) The convex closure of every finite subset of XN is
observable.
Proof
1) = 2) Assume that N is b-discrete and let Xogr¥qreo- be a

fixed enumeration of some countable subset X' ¢ X . We want
to prove the existence of an observer for (<X'>,2"), where
<' is £ = F* restricted to <X'>. The proof builds up such
an observer by constructing an observer Oi for

<Xj> = <{xpy,x
0 for <X,

. >
i+1 1+1
values for <Xi>)'

1""’Xi}> and extending this to an observer

= <{x .,Xi+1}> (i.e. preserving Oi_

0r-*

So the induction hypothesis is that we have an observer Oi
for <Xi> taking values from some finite interval [—ki,ki].
This is trivially obtainable for i = 0 (choosing Oo(xo) = 0,
ko = 0).
Now for the induction step. If X4 €<Xi> we just define
O = 0,. If x, is in the relation co to all elements

i+1 8 1+1 —_—
of <Xi> we extend O, to O, 4 by choosing Oi+1(xi+1) =0.

These were the easy cases. Two are left -
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a) xi+1 is greater than some elements of <Xi>, but

not smaller than any-.

B) Xy 49

but not greater than any.

is smaller than some elements of <Xi>’

In the following we just treat case a), the treatment of

b) being completely symmetrical.

Claim 1 The length of any chain from an element of <Xi>

to Xi 41 is finitely bounded by

def - R n
c, £ sup{n | 0=£j=zi and ij1 Xi+1}

This follows easily from the nature of <Xi> and

b-discreteness.

Now define

0, (x) 1E X € <X D
i i
0. (x) = | ey n
i+1 k; + sup{n | 023 =1andxj Fox}
L if XEZ<Xi+1>\<Xi>
Claim 2 0, is an observer for <X, .> extending O,
P i+1 i+1 i

and taking values in the finite interval [—ki—ci,ki+ci].

This follows by simple arguments using the induction

hypothesis and Claim 1.
2) = 3) Trivial.

3) = 1) Take any two elements X,y'EXN. Assuming that the
convex closure <{x,y}> is observed by 0O, it is clear that
the length of chains between x and y are bounded by
|0(x)-0(y) |. u!
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Let us note that the observability of an occurrence net can

be rephrased as

N is observable iff the convex closure of every subset

of XN is observable.
Then the last theorem brings out the difference between obser-
vability and b-discreteness, which makes Winskel's result -
Theorem 4.2 - fit nicely into the framework.

Now, does a similar characterisation result hold for b-discreteness
in terms of the notion of full slice (state) space? The following

result gives a positive answer to this guestion.

Theorem 4.5 Let N = (B,E;F) be an occurrence net. Then the

following statements are equivalent.

1) N is b-discrete

2) Every countable subset of X is covered by some slice
space

3) Every finite subset of X is covered by some slice space.

(where X' (c XN) is covered by a slice space iff there exists

s € SLy such that X'c U{s' | s'€[s]}).
Proof
1) = 2) Let X' be a countable subset of X. According to

Theorem 4.4 <X'> has an observer, and by arguments similar
to the ones in the proof of Lemma 2.6, it follows that we

can find a maximal co-set of <X'>, call it Sy such that
L] .
Vx € <X'>: dF(x,s1) < o

However, S is not necessarily a slice of N, nor
can it be extended in an arbitrary way to a slice of N
with the desired property (that its slice space covers

<X'>), as indicated by the following example.
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<X'>

{b} = sS4

"l"

possible extension of

S4 to a slice of N

which doesn't cover e.
Figure 4.1

For this reason we introduce the notion of border elements

of a subset Y of XN'

Border(v) €& (xex Y| ("xnY # @) v (x"0Y # @)

Thus Border (<X'>) are the events and conditions "sticking

out" from <X'>:

The idea is now to extend 51 to a maximal co-set of ¢

<X'> U Border (<X'>), s1lJ52. This may still not be a slice

of N, but let us start by proving
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Claim 1 VX € <X'>. dF(x’Sz) < oo,
The first observation is that S, © B. Assume b TF e, where
b€ <X'> and e € Border (<X'>) (eF b handled symmetrically).
We want to prove a contradiction. Since b € <X'> there
exists y € 54 such that bliy. b<y implies esy
(since |b"| £ 1) and hence e € <X'> (since <X'> is convex)
- a contradiction. vy Zb implies y<e - a contradiction

to S1lJ82 being a co=set., Thus s, © B,

2

Claim 1 follows now by a proof of the following

VX €<X'> VbEs,. (anbvanx):nng(X,S.I)

Let us just take the case x = x1E‘x2E‘...§%1Fb. From

the definition of Border (<X'>), the convexity of
<X'>, and the fact that |"'bl £1 it follows that all the
xi’s belong to <X'>, and hence, there exists z € s

1
such that xnlj_z. z;;xn leads to a contradiction to

s, Us, being a coset, and therefore xn‘:z. Hence,

1 2
there exists a chain from x to Sq (z) of length at least

n, and n;édF(x,s1) follows.

This finishes the arguments for Claim 1.

Now we extend s, Us, arbitrarily to a slice of N,

1 2
s = 51L152U 53.

Claim 2 Vx € <X'>. dF(x,s 0.

3)
To see this assume w.l.o.g. that x = XOE‘X1P'...P1XH =y

where y € sé. We want to prove that no such chain can exist.
Since x€<X'> and v ¢ (<X'>), there must exist an i such

that xi_€<X'> and Xi41 g <X'>, in which case
€ Border (<X'>). Since s

X U 52 is a maximal co-set in

i+1 1

<X'> U Border (<X'>), we must have for some z € S1U s

2’
xi+1 1i =z.
But z < x.

i+ leads to the contradiction z<y (s being a

co-set) .
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Suppose Xi+1< z. Then this leads to the contradiction

X;41E€ <X'>, To see this first consider z €8s, < <X'>. Then

X, E<XX'> and x, < X. < z so that x. € <X'>. Next consider
1 i i+1 i+1

z € s, S B (as proved in establishing claim 1). Then X: <z

would imply that Xi,q5€ where {e} = "z. Since z € Border (<X'>)

+1
we must have e € <X'>. (Otherwise z" N<X'> # @ and from

xiE£<X'> and xi_<xi+1 £ e <z we would obtain the contradiction
that z € <X'>.) But we now have Xi.<xi+

that x. E KX'">.
1+

1 £e with xi,eEZ<X'> e}

1

So we have.pro%éh the existence of a slice s in N for which
dF(x,s)< «ww for all %€ <X'>, and the desired result follows
from Lemma 2.6.

2) = 3) Trivial.

3) = 1) Assume the convex closure of every finite subset is
covered by a slice space. By arguments similar to the ones
in the proof of Lemma 2.6, it follows that these closures
also have observers, and hence from Theorem 4.4 that N is

b-discrete. o

Note that parts of Theorems 4.4 and 4.5 can be read as
"compactness results" for countable occurrence nets. Let us just
state such an interpretation for the slice space case. Note that
the result doesn't hold for occurrence nets in general

(Example 4.3).

Corollary 4.6 Let N be a countable occurrence net. Then the

following statements are equivalent.

1) Any subset of X . is covered by a slice space.

N
2) Any finite subset of XN is covered by a slice space.

O

As mentioned in the introduction, this paper has been an investi-

gation into four restrictions on occurrence nets suggested in
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the literature: Observable, slice space covered, b-discrete
and finitely approximable. As we have seen these give rise to
three different classes. Let us finish off by stating some
guite liberal restrictions under which these three classes

collapse into one. Before stating the result let us agree that

an occurrence net N = (B,E,F) is degree-finite if for every
event e, |‘el,le’ | <.
Theorem 4.7 Let N be a countable, degree finite occurrence

net. Then the following statements are equivalent.

1) N is observable
2) N is covered by a slice space
3) N is b-discrete
4) N is finitely approximable.
Proof Since N is countable, 1), 2) and 3) are equivalent

by previous results in this paper. 4) implies 1) by
Theorem 3.10. And finally b-discreteness and degree-finiteness
together imply interval-finiteness so that 3) implies 4)

by Theorem 3.9. =
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5. CONCLUSIONS

In this paper we have addressed the question: In what sense is
the causality relation associated with a non-sequential process
"realizable"?

Using occurrence nets as a model of non-sequential processes
we have examined a number of fairly natural proposals to formalise
the notion of realizable processes. We have shown that the notions
of observability and full state space coincide (Theorem 2.11). We
have shown that these two notions are also equivalent to approx-
imability by chain-bounded occurrence nets (Theorem 3.6). Using
these results we have also obtained two characterisations of those
occurrence nets that can be approximated by finite occurrence nets;
they are precisely the occurrence nets that are interval-finite
and countable on the one hand (Theorem 3.9) and which are injectively
observable on the other hand (Theorem 3.10).

As for the density property called b-discreteness we have
obtained two characterisations; one in terms of observability
(Theorem 4.4) and the other in terms of full slice (state) space
(Theorem 4.5). Our results further strenghten the insight due to
Winskel (Theorem 4.2) that countability is the essential difference
between observability and the weaker notion of b-discreteness.
Finally by imposing the restrictions of countability - justified
by our wish to consider the only "discrete" processes - and finite-
degree - to capture the demand that each event should have only
"finite" causes and effects - we have identified a class of
occurrence nets for which the four appealing notions - obser-
vability, full state space, finite approximability and b-discreteness
- considered in the paper turn out to be equivalent (Theorem 4.7).
What is lacking at present 1s the way to approximate b-discrete
occurrence nets.

C.A. Petri has proposed a number of other restrictions one
might impose on a model of non-sequential processes [P ]. In the
context of the present paper two of the restrictions proposed by

Petri are highly relevant. One is the demand that every slice and
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every line should have an intersection - the so-called K-density
property - and the other is a generalisation of the classical
Dedekind countinuity of the reals - the so-called D-continuity
property. K-density has been studied in [B ] and D-continuity

in [FT ].

Here we have restricted our attention to deterministic
processes. A more general model called event structures using
which one can model non-deterministic non-sequential processes
have been proposed in [NPW ] and extensively investigated in [W ].
Most of our results however can be - we believe - smoothly carried
over to this more general model. Thus we feel justified in
claiming that under reasonable circumstances (countability and
degree-finiteness!), the various proposals made so far to capture
the intuitive demand that one should consider only "realisable"
processes lead to the same class of cobjects. And to demonstrate

this has been our major goal here.
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