T .._ 18UsIaAIUN SNYIRY INIRSU| YSHELBlely
+ 1]
YP 125N€E L9/ 49 X3[31 ‘GG ER TL (90) W}
2 snyiey 0008 - epeBajunp AN ~ oG BuuBAg
=

ONIT3A4VY HS190TVYLVa

£198-9010 NSSI

9861 Atenue[
¥03% - dd INIVd

uaspnuy] aoyspur] uafief

WSTURYII Surppue uondaoxy
2ATIR19d0-07) ‘[edTYIICIINY V

J.L.Knudsen: Exception Handling Mechanism

PB - 204

G5 €8 2L (90) NWO3Y MAHL

A Hierarchical, Co-operative Exception Handling Mechanism

Jorgen Lindskov Knudsen
Computer Science Department
Aarhus University, Denmark

Abstract

One of the most dominant philosophies within programming disciplines is
the philosophy of layered systems. In a layered system (or hierarchical system)
the layers are thought of as each implementing an abstract machine on top of
the lower layers. Such an abstract machine in turn implements utilities (e.g.
data-structures and operations) to be used at higher layers.

This paper will focus on exception handling in block-structured systems (as
a special case of layered systems). It will be argued that none of the existing
programming language proposals for exception handling support secure and
well-behaved termination of activities in a block-structured system. Moreover,
it is argued that certain termination strategies within block-structured systems
cannot be implemented using the existing proposals. As a result of this
discussion and as a solution to the problems, a hierarchical, co-operative
exception handling mechanism is proposed.

Introduction

The area of exception handling has been the topic of many papers during the last ten
years. The foundation of the work has been the pioneering work by J.B. Goodenough®
and most proposals for exception handling within programming languages owe a lot to
this work. As a consequence hereof the proposals share at least one characteristic, namely
that exceptions and their handlers are defined separately and handlers are associated with
exceptions either by binding imperatives (e.g. bindings that are executed at run-time), or
by dynamic bindings (e.g. exception handlers are found in the dynamic context of the
raising statement).

In this paper we will propose an exception handling mechanism that does not share
the above characteristic. We will examine the possibility of static binding of handlers to
exceptions. To be more precise, we examine the possibility of declaring the exception and
its handler together. Moreover, we examine static definition of the termination level. That
is, static determination of which parts of the system should be destroyed as a consequence
of raising a specific exception.

The origin of the static approach to exception handling is the sequel concept, first
introduced by R.D. Tennent***®. The origin of the sequel concept is the program-
point concept, introduced by Landin'®!*. The static approach to exception handling is
introduced by this author in a previous paper'® that was published independently of a
paper by R.D. Tennent, who examined the introduction of sequels into Pascal®®. (Note,
that R.D. Tennent uses the term exit instead of sequel in reference 25 and 26.)

The present paper extends the proposal to take into account several aspects of exception
handling within block-structured systems. When an exception occurs in a block-structured
system, an exception handling wave will go through a specific part of the system. This
exception handling wave consists of exception handling within specific blocks (those affected
by the exception handling wave). In order for this exception handling within a specific
block to be secure and well-behaved when it is part of an exception handling wave, one
must assume that outer blocks are in a consistent state that makes exception handling in
this particular block possible. If consistency of outer levels is not ensured, handling of
exceptions is difficult merely by the fact that the particular block cannot assume anything
about the state of outer blocks. This is because the exception can occur at any of a number
of different places (i.e. the state of outer blocks may be any of a number of different states).
Furthermore, the exception handling in this particular block must ensure that the block
1s in a consistent state before inner blocks are allowed to perform any exception handling
actions. (Note, that these consistent states are specific for exception handling and may
not be consistent states if no exceptions had occurred.) Finally, the exception handling in
this particular block must perform some specific actions, related to the handling of the
exception in that block.

In order to cope with exception handling as described above, the static approach to
exception handling is extended to include so-called prefixed and virtual sequels. It will be
shown that the structure obtained by using prefixed and virtual sequels is well-suited for
convoluting exception handling in inner blocks with exception handling in outer blocks.
Traditional approaches to exception handling (as the Goodenough proposal) are only well-
suited for sequential exception handling in block-structured systems. That is, first perform
exception handling in the innermost block involved, then in the next to innermost block,
and so on until the outermost block involved is reached.

Exception handling has been dealt with from the viewpoint of verification, too. One

notable approach in this direction is the work by F. Cristian*®. The exception handling

mechanisms discussed in reference 4 are similar to the Clu mechanisms and those discussed
in reference 5 are similar to those of Ada. The aspect of verification of exception handling
is important but outside the scope of this paper.

Organization of the paper

The static approach to exception handling is introduced in section 1. Section 2 contains
a discussion of the problems of termination in block-structured systems and concludes that
new language constructs are needed. Section 3 is the core of the paper and presents the
proposal for a hierarchical, co-operative exception handling mechanism that is able to cope
with the problems discussed in section 2. Moreover, a discussion of other proposals for
hierarchical exception handling is given.

Appendices A,B and C are only introductory material and can be skipped by the
knowledged reader. Appendix A is an introduction to prefixing and is intended to be read
in connection with section 3.1. Appendix B is an introduction to virtual binding and is
intended to be read in connection with section 3.2. Finally, appendix C is a taxonomy for
exception handling and gives an introduction to the area of exception handling and clarifies
several of the terms from the area. Appendix C is intended to be read either before, or in
parallel with, reading the rest of the paper.

1 An Introduction to Static Exception Handling

The static approach to exception handling’® is an attempt to contribute to a better
understanding of writing structured programs with exception handling. The kernel of the
static approach is the sequel concept.

1.1 The Sequel Concept

A sequel is an abstraction of the goto-statement and is based on the procedure concept.
A sequel is declared in the following way:

sequel S(...) begin ... end

A sequel definition defines three aspects of exception
handling: Firstly, it defines the name of an exception.
Secondly, it defines the handler associated with the ex-
ception. Finally, it defines the termination level of the
exception

Semantically, the sequel concept is similar to the procedure concept except for the
transfer of control after the sequel body has been executed. When a sequel is invoked and
the sequel body has been executed, control is transferred to the termination point of the
block in which the sequel is declared.

A sequel invocation will initiate the execution of the
body of the sequel. If the body terminates successfully,
the encloser® of the sequel will be terminated immedi-
ately

A sequel invocation will not terminate successfully if, during execution of the body of
a sequel, another sequel is invoked. That is, this second sequel will take over and the
termination level of the entire exception handling will be the termination level of this
second sequel invocation. This applies of course recursively if this second sequel invocation
is interrupted by a third sequel invocation. *

The consequences of this semantics are twofold: Firstly, during handling of an exception
occurrence it might be discovered that the exception cannot be handled locally — that is,
invocation of a sequel declared in an outer block. Secondly, it might be possible to discover
that the exception can be handled more locally — that is, invocation of a sequel declared
in an inner block.

The example in figure 1 illustrates the use of sequels for exception handling. In the
example, three sequels are declared: TableError, SearchError and ItemFound. They are
declared in three different blocks and function TableSearchAndCount has a formal sequel
parameter ItemNotFound. The sequel represents three aspects of exception handling:
definition of the exception, association of the exception statically with a handler (the sequel
body), and definition of the termination level. The semantics of the sequel concept are
such that if TableError, SearchError or ItemFound is invoked and terminates successfully
then it will result in termination of block B,, block B,, or the current invocation of
function TableSearchAndCount, respectively. The semantics of sequels as parameters are
such that if ItemNotFound is invoked within TableSearchAndCount(A4’,X’,SearchError)
and terminates successfully, then it will result in termination of block B, whereas within
TableSearchAndCount(A’,X’, TableError) it will result in termination of level B,. The
difference is due to the termination level of SearchError and TableError, respectively.

In the previous paper on the static approach to exception handling, numerous examples
of the use of the sequel concept are given and the semantics of the sequel concept are
discussed in detail.

Note that we use the terms exception and exception occurrence when we discuss certain
events during program execution, whereas we use the terms sequel and sequel invocation
when we discuss the specific language construct, designed to be used for static exception
handling.

1.2 Static vs. Dynamic Exception Handling

In this section we will give a brief comparison of the static approach to exception handling
with the dynamic approach to exception handling taken by Clu'®. We have chosen Clu
because it is a very strict proposal. I.e. the dynamic aspects of the proposal are limited
compared with other dynamic approaches such as the proposal by Goodenough®, PL/1"
and Ada. Moreover, the Clu proposal has been the inspiration of a proposal for an
exception handling mechanism in Pascal®.

The Clu proposal consists of three parts. Firstly, each procedure or iterator (hereafter
called routines) declares which exceptions it might raise during execution of the body of
the routine. All exceptions raised within a routine are propagated to the immediate caller
which must handle the exception. This rule is not followed strictly: Any exceptions not
handled by the caller are converted into the universal exception Fazlure. This exception

* By encloser is meant the program unit (e.g. block, procedure invocation) in which the sequel is declared

* Please note, that this semantics of sequel invocation is not concistent with the semantics described in section
2.9 of the previous paper'’. In fact, the semantics described there does not solve the problems discussed and
the semantics described here is the only realistic alternative. The semantics of section 2.9 in the previous paper
should therefore be abandoned

declare (* block B, *)

function TableSearchAndCount(A:Table; X:Item;
sequel ItemNotFound(Item)): TableIndex;
declare
var I : TableIndex;
sequel ItemFound(J: TableItem);
begin
A[J].Occurrences : = A[J].Occurrences + 1;
TableSearchAndCount : = J;
end;
begin
I : = Hash(X);
loop
if A[l].Item
elseif A[I].Item

Il

X then ItemFound(I)
Nullltem then ItemNotFound(X)

end;

I:= (I mod TableMax) + 1;
end;
TableSearchAndCount : = I;

end;

sequel TableError(X:Item);
begin ... end;

begin
declare (* block B, *)

sequel SearchError(X:Item);
begin ... end;

be:g‘i‘n

i.t;amPos : = TableSearchAndCount(A’, X', SearchError);
en;:l;
i.t.emPos := TableSearchAndCount(A’, X’, TableError);

end

Figure 1: An example of sequels used for static exception handling

can be propagated through any routine-call without being handled. Secondly, exceptions
are handled by the so-called catch-phrases attached to routine-calls. Thirdly, in order to
be able to do local exception handling (i.e. exception handling internally in a routine) it
is possible to raise exceptions that must be handled within the routine itself and cannot
be propagated. If the exception is not handled locally, it is converted into the previously
mentioned Fazlure exception. (Local exceptions are raised by the exit-statement whereas
non-local exceptions are raised by the signal-statement.)

To illustrate the differences between the dynamic approaches and the static approach
to exception handling, two examples are given (figure 2 and figure 8). The examples are
the same (useless) program, formulated in Clu and using the static approach, respectively.
The example program is taken from reference 15.

sign = proc(x:int)returns(int)signals(zero,neg(int))
if %<0 then signal neg(x)
elseif x =0 then signal zero

else return(x)
end sign
begin
a : = sign(x) except when neg(i:int)
S1;
exit done
end
b : = sign(y) except when neg(i:int)
S2;
exit done
end
end except when done
S3
end

Figure 2: A Clu example with exception handling

These examples illustrate several differences. First of all, the static approach gives a
more clear separation of the specification of the standard execution and the exceptional
execution (textually separated). Secondly, specifically with respect to Clu, the examples
show that within the static approach there is no need for two different ways of raising
exceptions, as in Clu (signal (non-local exceptions) and exit (local exceptions)). This is
because the static definition of the termination level makes it possible for the programmer
to explicitly state the difference between local and non-local exception at the time of
definition of the exception. (L.e. in the static approach, the termination level is a property
of the exception declaration and not the raising statement.) Thirdly, except for the sequel
concept no additional concepts need to be introduced. Finally, although not explicit in the
examples above, it is impossible, using the static approach, to raise an exception without it
being handled. This avoids the need for such mechanisms as Failure exceptions with special
propagation rules as in Clu.

function sign(x:integer; sequel zero; sequel neg(integer)):integer;
begin

if x<0 then neg(x)

elseif x=0 then zero

else sign := x

end
end

declare
sequel done; begin S3 end;
sequel negl(i:integer); begin S1; done end;
sequel neg2(i:integer); begin S2; done end;
sequel zero; begin ... end;

begin
a := sign(x,zero,negl);
b : = sign(y,zero,neg2)

end

Figure 3: The Clu example implemented using sequels

1.3 Discussion of Derived Definition

In addition to the sequel concept, derived definition is presented in the previous paper.
Derived definition is not directly tied to exception handling, but is a very useful gen-
eralization of Ada’s derived type and generic definition'®. However, the application of
derived definition to sequels has shown some advantages that justify a discussion of derived
definition in connection with exception handling.

Derived definition can be illustrated by modifying the example in figure 3. Assume that
we within the declare-block several times want to handle the exceptions neg and zero as in
the assignments to a and b. This fact can be expressed explicitly by derived definition as
illustrated in figure 4.

That is, derived definition is used to specialize a parameterized program unit (such as
a function, procedure, sequel, ...) by providing (some of) the parameters such that these
parameters are constantly bound within the scope of the derived definition. The concept
of "curried” functions (see for instance reference 23) is an example of this specialization
technique used for functions.

Unfortunately, the previous paper on the static approach did not discuss the semantics
of derived definition applied to sequels. The problem is the definition of the termination
level. Fortunately, the nature of the sequel concept leaves only two possibilities. Let us
discuss the example of figure 5.

The termination level is either block B, (i.e. the encloser of S), or block B, (i.e. the
encloser of the derived definition of §’). In the latter case, the relationship between S and
$’ is only a matter of "lending” code. We find that S’ is a specialization of S and as such,
$” must inherit all of the properties of S, including the termination level. That is, the
termination level of $” must be the termination level of S (i.e. block B;).

All in all, §"is a shorthand for § in that some of the parameters of § may be bound in
§” and furthermore the remaining parameters of § may be specialized in §’.

In a recent report on a conceptual framework for programming languages'?, the derived

function sign(...):...;
begin

(* as in example 3 *)
end;

declare
(* declarations of sign, negl, neg2 and zero as in example 3 *)
function a-sign(x:integer) is new sign(x,zero,negl);
function b-sign(x:integer) is new sign(x,zero,neg2);

begin
'a 1= a-sign(x); ... x : = b-sign(z);
. b-sign(y); ... y : = a-sign(r);
end

Figure 4: An example of the use of derived definition on sequels

declare (* block B, *)
;cle‘quel 5(...); begin ... end;
be‘;g;‘i.n
;it;clare (* block B, *)
;;:‘quel S'(...) is new S(...);
be:gli‘n
LS
end;

end

Figure 5: What is the termination level of S’?

definition concept is discussed in further detail as a general language mechanism supporting
specialization.

As it will be shown in the following, the hierarchical, co-operative exception handling
mechanism contains derived definition as a special case and we therefore do not discuss
derived definition of sequels any further.

2 Discussion of Termination in Block-Structured Systems

Many of the proposals for exception handling mechanisms are based on a termination
model. That is, as a consequence of the occurrence of an exception some part of the system
is terminated. In this section we will discuss the problems of termination in block-structured
systems as a motivation for a proposal for a hierarchical, co-operative exception handling
mechanism.

Let us assume that we have a block-structured system as outlined in figure 6 and let us

[B, |
ﬂ

Figure 6: A block-siructured system

further assume that an exception occurrence has been identified in block B, and therefore
an exception (named E) has been raised in block B;.

Assuming that the exception handling mechanism being used follows a termination
model, two problems arise: How do we determine the termination level? (i.e. the outermost
block that must be terminated as a consequence of the exception occurrence), and how do
we terminate each intermediate block?

The problem of how to determine the termination level has been discussed in length
in the previous paper'’ and will furthermore be summarized in section C.2.3. We will
therefore only discuss the termination process here.

Let us assume that the termination level is found to be block B; (j<7—1; ie. there
is at least one intermediate block between the raising block B; and B;). That is, blocks

B,B;_,,.. ,Bj +1’Bj have to be terminated. The most common termination process is
the following: Terminate blocks B, B;_;,... »B;., abruptly (i.e. no local clean-up actions
possible) after which block B; is allowed to do some local clean-up actions (specified in the
exception handler for the exception) before it terminates.

In many cases this is too abrupt since the intermediate blocks B, B,_,,. -»B;,, have
no opportunity to do local clean-up actions. Several of the proposals do therefore contain
mechanisms that is oriented towards this situation (see section 3.5).

Unfortunately, there exist a range of exception handling strategies that cannot be
implemented using any of these mechanisms. Let us again consider the system outlined in
figure 6 in which exception E is raised in block B; and where the termination level is block
B..

! Now let us further assume that exception E represents an erroneous computational
state of the program and that we want some debugging information to be written on a
specific file X in the case of E being raised. Let us further assume that clean-up handlers
Hj +10---»H;_1,H; (as discussed above) are specified in blocks B, 410 s B g B

The problem is: Where do we specify the opening of the file X. One solution (which we
for obvious reasons will abandon) is to open the file at initialization of block B, regardless
of whether E will ever happen. If we specify the opening in handler H, in block B
the handlers H;, \,...,H;_,,H, are unable to write debugging information on X since it IS
not open when these handlers are activated (since the handlers are activated in sequence:
H,H;_,,...,H). Then, the only possible solution is to specify the opening in handler H,. If,
on the other hand it could happen that E were raised in block Ba—-—l’ handler H,_ has to
be able to open X. This implies that all handlers might specify opening of X. Thls 1mp11es
further that a very careful programming style is needed in order to ensure that the file is
opened when needed and that only one handler actually opens the file.

In general, the problem is that in some cases, a block must be in a consistent state before
any termination process of the inner blocks can be initiated in order to ensure a consistent
termination of these inner blocks. That is, the termination of a block is a three-phased
process: Firstly, the state of the block must be made consistent. Secondly, the inner blocks
are allowed to terminate consistently and finally, the block itself may perform some local
clean-up actions, ensuring further consistency.

In the example above, the consistent state with respect to exception handling of E in
block B,, is that file X is open and that the blocks B BJ +1s ---» B;_; have all done their
preample debugging.

One final requirement is that the clean-up actions of each intermediate block can be
made dependent on the identity of the exception that initiated the termination process.

—o000—

We find that the two termination processes outlined above are very different and
will therefore use two different terms to identify them: Abrupt termination and smooth
termination.

By abrupt termination is meant that blocks B,.B; ,,-

-»B;,, are all terminated immediately, after Wthh the
handler in block B is executed, and then block B is
terminated

By smooth termination is meant that the blocks B,
B;_y,...,B; are each given the opportunity to do some
local clean -up actions before they are terminated

We have not seen smooth termination discussed elsewhere although its relevance is
demonstrated by the above discussion. In section 3.5 other proposals for hierarchical
exception handling will be discussed (AML/ X20 Mesal'®, Multics PL/ 2, Clu'Y, Adal'®,
ANSI/IEEE Pascal proposal®’ and Taxis?').

In the next section we will introduce an extension to the static approach to exception
handling. An extension that allows smooth termination without sacrificing the static
behavior of the approach.

The prime source of inspiration to the proposal can be found in an article on prefixed
procedures®®, Prefixing used as a general program structuring mechanism is a very
important aspect of the programming language Beta'?, and is discussed in depth in
reference 11.

3 Hierarchical, Co-operative Exception Handling

Inspired by the above discussion we want to define an exception handling mechanism that
allows hierarchical exception handling. Furthermore, the multi-level termination process
should involve co-operation of the involved levels during the termination process (i.e.
smooth termination).

Such an exception handling mechanism can be obtained by replacing the derived
definition concept by the far more powerful prefixing concept. For an introduction to
prefixing, see appendix A.

3.1 Prefixed Sequels

A prefixed sequel is similar to a derived sequel — the main difference is that the body-part
of the sequel can be expanded by the prefixed sequel. Assume that sequel S is defined in an
outer block, then sequel S’ can be defined as a prefixed sequel by means of the following
declaration in an inner block:

sequel S°(...) prefix S(...) begin ... end;

We call §’ the prefixed sequel and § the prefix of S’

A prefixed sequel is a specialization of another sequel.
The termination level of a prefixed sequel is the termina-
tion level of the prefix. The body of a prefixed sequel is
a specific combination of the body of the prefix and the
body of the prefixed sequel itself

Figure 7 illustrates the prefixed sequel concept by repeating figure 5 now formulated
using prefixed sequels.

The differences between the two examples are the INNER statement in S and the prefix-
and body-part of §’. The semantics of S are the same here as in figure 5 — in the case
of § being invoked explicitly, the INNER statement is equivalent to the Skip statement.
The semantics of §’, on the other hand, are as follows: The termination level of S’ is the
termination level of the prefix (i.e. block B,). When §’ is invoked, control is immediately
passed to the prefix § which then executes codel. In this case, execution of the INNER
statement means execution of the body of the prefixed sequel S’. Execution of S’ means
execution of code3 after which control is returned to S which in turn executes code2. If §

10

declare (* block B, *)
;;:.quel S(...) begin codel; INNER; code2; end;
be.g:i.n
;Sit;clare (* block B, *)
;c-:;]uel §'(...) prefix S(...); begin code3 end;

begin

Figure 7: The example in figure 5 implemented using prefixed sequels

terminates successfully, then blocks B, and B, will be terminated immediately. Note, that
the body of S’ will not be executed if either no INNER-statement is present in the body of
§, or if the INNER-statement in the body of § is not executed.

In general, assume that we have sequels

B Sppeney By eny S
where S, is prefixed with S,_, (as illustrated in figure 8). Then the termination level of
S; is the same as the termination level of ;. When §; is invoked, control is passed to Sy
which executes pre, and then passes control to S, (as a result of the INNER statement).
S, then executes pre,, etc. until control reaches S; which executes pre; then INNER as a
Skip statement (since S; is the invoked sequel), then executes post,, and then passing control
to §;_, which executes post,_,, and so on until control reaches Sy which executes post,.
If this computation terminates successfully, then the blocks B,,B,,...,B; are terminated
immediately. That is, the execution history of invoking S, is:

exe(S;) => exe(pre,)
exe(pre,)

exe(pre,)
exe(Skip)
exe(post;)

exe(post,)
exe(post,)
terminate(block B;)
terminate(block B,_,)

terminate(block B)

11

sequel S; declare
decl,
begin
pre,;
INNER;
post,
end;

sequel S, (...) prefix 5,(...) declare
decl;
begin
pre;;
INNER;
post,
end;

sequel S(...) prefix S._,(...) declare
decl,
begin
pre;;
INNER;
post;
end;

sequel S_(...) prefix S__,(...) declare
decl,
begin
pre,;
INNER;
post,
end;

Figure 8: Multi-layered prefixing of sequels

12

Additionally, within a prefixed sequel, the identifiers, etc. that are declared local to the
prefix (and local to its prefix, etc.) are accessible. That is, S, may use global identifiers, and
all identifiers declared locally in §,,S,,...,5,_;,S, (i.e. declared in decl,, decl,, ..., decl)).

Similarly to derived definition, it is possible to let a prefixed sequel bind some (or all) of
the parameters defined in the prefix.

The control flow of prefixed sequels is complex, but this complexity is justified by four
factors. First of all, all prefixed sequels follow the same pattern of control flow; I.e. it is
therefore a matter of comprehending this uniform pattern of control flow initially, and then
utilize this pattern when approaching any actual prefixed sequel. Secondly, the problem
of hierarchical exception handling as discussed above contains inherited complexity that
must be reflected in any solution, whether it is explicitly programmed using one of the
traditional methods, or by means of a specific language construct as prefixed sequels.
Thirdly, as pointed out by Dijkstra’ understanding of programs is eased if the static
structure of the program reflects directly the structure of the corresponding computation.
It is our claim that the static properties of prefixed sequels directly reflect the structure of
the corresponding computation, and that the benefits of the proposal outweight the initial
difficulty in learning the concept. Moreover, implementation of prefixed sequels does not
cause severe problems. Finally, the complexity of prefixed sequels (and virtual sequels, see
later) is found to be comparable to the complexity of the exception handling mechanisms
of languages like Ada.

Unfortunately, prefixed sequels are only a partial solution to the problem discussed
in section 2. Indeed, prefixed sequels represent a hierarchical, co-operative exception
handling mechanism that solves the problem of where to specify the opening of file X
(namely in pre, — and X can then in turn be closed in post;). Moreover, as the scope
of the identifiers declared in the prefix includes the prefixed sequel, declaring X local to
Sy would prevent unintended access to X (i.e. accesses other than for debugging). The
deficiency of prefixed sequels is that invoking S, in block B, will cause smooth termination
of blocks B;,B;_,,...,B,,B,, but invoking .S} (7 < 7) in block B; will cause abrupt termination
of blocks Bz-,Bl._l,...,Bj +1- Initially, this seems to be a problem of only minor concern,
but if .S} is invoked within a routine declared in block Bj but invoked from block B;, the
problem becomes apparent. Of course, returning to a dynamic approach would give an
easy solution, but would abandon the merits of the static approach. We therefore extend
the static approach (slightly) to cope with the problem — the extension is termed virtual
sequels. For an introduction to virtual binding, see appendix B.

3.2 Virtual Sequels

A virtual sequel is very similar to an ordinary sequel or a prefixed sequel, and can be
declared in one of the following ways:

sequel S(...) virtual begin ... INNER ... end;
sequel 5(...) virtual prefix S’(...) begin ... INNER ... end;

The first declaration declares a virtual sequel by giving its default body (handler).
(We refer to this first declaration as the initial virtual binding.) The second declaration
combines the prefixing and virtual concepts — that is, declares a virtual sequel by giving
its default body (handler) as a prefixed sequel.

13

A virtual sequel allows inner blocks to augment its body
(handler) in such a way that all invocations of the sequel
will invoke the augmented handler as long as the inner
block is active. The termination level of a virtual sequel
is the termination level of the initial virtual binding

The inner blocks may issue a further binding of the virtual sequel by means of the
following declaration:

sequel S(...) virtual bind begin ... INNER ... end

The example in figure 9 illustrates the virtual sequel concept. In block B,, § is declared

declare (* block B, *)
;;quel S(...) virtual begin ... INNER ... end
belg;n
t‘:l';:clare (* block B, *)
;;e;luel 5(...) virtual bind begin ... INNER ... end
be'g'i‘n
S0
en;l;

end

Figure 9: Virtual binding of sequels

virtual and in block B,, a further binding of § is done.

A virtual sequel is a sequel that allows inner blocks to augment its handler. In many
respects, the semantics of sequel S in block B, is the same as sequel $’in figure 7 — that is,
sequel S in block B, can be considered as prefixed with sequel S in block B,. The difference
between the semantics of S in block B, in figure 9 and §’ in figure 7 is that in figure 9,
invoking § in block B, (either directly as in figure 9 or indirectly through a routine declared
in block B,) will always lead to smooth termination of block B,.

In general, if sequel S is declared virtual in block B, then any inner block is allowed
to augment the sequel by a further binding (as § in block B, in figure 9). The semantics
of a virtual sequel define the termination level to be the termination level of the prefix,
and moreover a partial handler that is concerned with the clean-up actions in that block.
Furthermore, inner blocks are allowed to augment the handler to ensure local clean-up
actions in those blocks. In some respects, virtual sequels resemble dynamic exception
handling but it is very important to note that when using virtual sequels it is impossible to
nullify previous handlers — it is only possible to augment the previous handlers to take care
of local clean-up. Even the termination level is static. We find that virtual sequels are a far
more structured tool for co-operative exception handling than the dynamic approaches to
exception handling as discussed in section 3.5. The advantages of virtual sequels are that

14

the static structure of the program reflects the desired computation directly, and moreover
that the co-operation among the handlers during the smooth termination process is far
more structured than can be obtained using any of the dynamic approaches.

3.3 Default Exception Handling

Default exception handling covers two distinct notions: Default Exception Handler and
Default Smooth Termination (see appendix C). In several proposals these notions are dealt
with by means of specialized constructs such as default handlers in Taxis, and Others-clauses
in Clu and Ada.

In the static approach it is always the case that an exception has a handler (namely the
body of the sequel) and a notion of default handlers is therefore superfluous. The notion of
virtual sequels can though be thought of as default binding of a handler in case no further
bindings are defined.

Default smooth termination cannot immediately be dealt with within the static ap-
proach. However, virtual binding can be used to simulate a similar behaviour as illustrated
by the example in figure 10.

declare (* block B, *)
sequel Default virtual begin codel; INNER; code2 end
begin

declare (* block B, *)
sequel S prefix Default begin code3; INNER; code4 end
begin

declare (* block B, *)
sequel Default virtual bind
begin codeb; INNER; code6 end

sequel S’ prefix S
begin code7; INNER; code8 end
begin
declare (* block B, *)
sequel Default virtual bind
begin code9; INNER; codel0 end
begin
L .
end
end

end

end

Figure 10: Semulation of Default Smooth Termination

15

Let us examine what happens when S’ is invoked in block B,. Since S’ is prefixed with $
which in turn is prefixed with Default and Default is virtual with further bindings in block
B; and B,, the following execution path will be followed:

codel; codeb; code9; code3; code7; Skip;
code8; code4; codel0; codeb; code2; terminate(B,)

thereby terminating blocks B,, By and B, as well. This usage of virtual prefixing results in a
two-phased exception handling technique. The first phase is the default exception handling
of all the blocks in which the virtual prefix is further bound (e.g. codel;code5;code9 and
codel0;codeb;code2 in the above execution path). The second phase is exception handling
of the particular exception occurrence (e.g. code3;code7 and code8;code4 in the above
execution path).

However, the above usage of virtual prefixing is not the ultimate solution to default
smooth termination. First of all, if S had not been prefixed with Default, B, would
have been terminated abruptly. That is, it is not possible to ensure that default smooth
termination always is applied to a specific block without examinating all sequels that might
be invoked in inner blocks. That is, default smooth termination will not be a property of
the block itself, but a property of some of the sequels that might be invoced in the block,
or in inner blocks. Secondly, as a consequence of this simulation, the termination level of
§’ will be the same as the termination level of Default. That is, simulating default smooth
termination as above will interact with the termination level of S’. However, if the initial
virtual binding of Default were at the same level as S, there would not be any problems
with this interaction. This, however, leads to a programming style in which any declaration
of a sequel is accompanied with an initial virtual binding of a default sequel to be used
as a virtual prefix of the original sequel. That is, all sequels will be declared as virtually
prefixed.

This programming style is for most practical usages comparable to declaring the original
sequel by means of an initial virtual binding. In fact, using virtual sequels is a far more
simple mechanism for default smooth termination that the above mentioned method and
should be preferred. There is, however, one drawback with using virtual sequels as the
basis for default smooth termination: Default smooth termination is still a property of the
individual sequels and not a property of the individual blocks. In fact, virtual sequels do
not support default smooth termination as defined in appendix C but on the other hand,
virtual sequels alliviate the need for direct support of default smooth termination.

In order to support default smooth termination within the static approach, we have to
introduce the concept of default sequels. A default sequel is declared in the following way:

sequel 5(...) default begin ... INNER ... end

If a default sequel in invoked explicitly, its semantics are the same as if default had not
been specified (that is, exactly as the equivalent simple sequel).

However, a default sequel can also be invoked implicitly as part of an exception
handling wave. Implicit invocation will take place if the block in which the default sequel
is declared, is terminated abruptly. When a default sequel implicitly becomes part of an
exception handling wave, it is inserted in the prefix chain of the explicitly invoked sequel.
The position of the default sequel in the prefix-chain is determined in the following way:

Let the prefix-chain of the explicitly invoked sequel S be E,, E,,...,E_(i.e. E,
is prefixed with E; | and E, = S). Let E,, E,, ..., E, be declared in blocks

16

B,, By, ..., B,. Let the default sequel D be declared in block B. Then B, <
B < B;,, for some j (0 =< j =< n), and therefore D is implicitly inserted in the
prefix-chain: E, ,...,EJ—, D, E}-Jrl,...,En. If § is non-virtual, this is read: Ej, D.

Of course, all default sequels that are involved in the exception handling wave is
implicitly inserted as above, and their relative positions in the chain are defined by the
nesting of their defining blocks. That is, the resulting prefix-chain before the exception
handling is initiated will be:

BBy Dis Epyyuves By Digs DigpusssllpBi yavserlis Bl

That is, all default sequels corresponding to blocks that are abruptly terminated, are
inserted in the prefix-chain according to the nesting of their defining blocks.

As it can be seen from above, the static approach needs specialized constructs for default
smooth termination — just as Clu, Ada and others need Others-clauses to deal with it. This
seems to be an inherited property of default smooth termination and we should therefore
not be surprised that specialized constructs appear in the static approach too.

3.4 Hierarchical, Co-operative Exception Handling — An Example

In this section we will present yet another example of the usage of the proposed language
mechanisms for hierarchical, co-operative exception handling. Unfortunately, such ex-
amples are extensive by the nature of the domain, but it is our hope, that the following
example will prove valuable.

Let us consider the following scenario. In some part of a program a resource is used.
The resource is controlled by the well-known request-release scheme. We further assume
that the resource is utilized through some utility operations (not important here), and in
addition the resource has an Undo operation — undo as much as possible of the work done
since last request.

During the utilization of the resource, the program engages in a specific communication
pattern with some third party. We assume that this communication pattern is described
in a manner similar to scripts®. We assume that the script is controlled by the following
operations: Engage is used by an object to indicate that it is willing to engage in the script;
Disengage is used by an object to indicate that it considers its obligations in the script
as fulfilled; ScréptError is used by an object to indicate that it is not able to fulfill the
obligations of the script (e.g. due to some exception occurrence internally in the object);
And moreover, there may be additional script control operations (not important here). We
assume finally that if the script cannot be fulfilled, then the resource must undo upto last
request. (This example might seen imaginary but think of the resource as a database system
and the script as describing a particular database transaction.)

The problem can now be formulated as follows: How do we handle an exception
occurrence during engagement in the script in such a way that, first of all, the script is
informed properly and secondly, the resource is informed to undo and then released.

Using the proposed language mechanisms in this paper, the problem can be formulated
as outlined in figure 11.

Note first of all the clean separation of exception handling with respect to the resource
and the script, respectively. It should also be noted that, although textually separated, the
exception handling of the script is convoluted in the exception handling of the resource.

Although this example is programmed using prefixing, it could have been programmed
using virtual binding (even with additional benefit). If we had declared ResourceError as

17

declare (* block B, *)
sequel ResourceError
begin
ResourcelUndo;
INNER;
ResourcelRelease
end
begin
ResourcelRequest;

declare (* block B, *)
sequel LocalError prefix ResourceError
begin
Script!ScriptError;
INNER;
ScriptIDisEngage
end
begin
ScriptlEngage;

LocalError; (* Exception occurrence ¥)

Script!DisEngage
end

ResourcelRelease
end

Figure 11: Hierarchical Exception Handling — An Example

18

virtual in block B, and further bound it in block B, instead of declaring LocalError in
block B,, then we would have had the additional benefit that even if ResourceError were
invoked indirectly by an operation declared in B,, exception handling of the script would
be performed properly.

3.5 Mechanisms towards Hierarchical Exception Handling in Other Proposals

In this section we will give a brief overview of some of the other proposals for exception
handling mechanisms and relate them to our proposal for a hierarchical, co-operative
exception handling mechanism.

AML/X

The hierarchical exception handler binding mechanism of AML/X?® can be used to specify
a hierarchical structure of exceptions very similar to the one that can be specified using
derived definition of sequels. The main differences between the two proposals are that
the AML/X proposal is highly dynamic (e.g. allows computable association of handlers),
and furthermore substitution of parameters down the hierarchy is not possible in AML/X.
Furthermore, the AML/X proposal is a very divergent proposal that is intended to be
useful for many very different ways of handling exceptions. The hierarchical part of the
AML/X proposal is essentially an exception renaming mechanism similar to the possibility
of renaming exceptions in Ada'®. That is, the hierarchical structure is not suitable for the
specification of smooth termination as discussed above.

Mesa

The exception handling mechanism in Mesa'® contains the so-called Unwind-mechanism
that to some degree alleviates the problem of hierarchical exception handling as discussed in
section 4. Intuitively, the Unwind-mechanism behaves as if the exception Unwind is raised
within each intermediate block just before it terminates. The termination level of Unwind
is always the same as the block itself. This means that if each intermediate block specifies a
handler for exception Unwind, local clean-up actions can be specified in that handler. The
remaining problem is that the clean-up actions in this way are always the same irrespective
of which exception originally caused the termination process to be initiated. In this respect
the Unwind-mechanism is similar to default sequels.

The Multics System®? has extended the PL/I exception handling mechanism to include
an Unwind-mechanism similar to that of Mesa.

Clu, Ada, a.o.

Most other proposals alleviate the problem of hierarchical exception handling by allowing
handlers to reraise exceptions and using a particular programming style. The method is as
follows: Each intermediate block defines its own handler for the exception if local clean-up
is needed. This handler contains the local clean-up actions and immediately before the
terminating end of the handler, the propagated exception is reraised (e.g. Clu and Ada).
This method is possible because of the dynamic or computable association of handlers.
Another way to alleviate the problem of hierarchical exception handling is by means
of the so-called Others-clause (in languages like Ada and Clu). An Others-clause in
an exception handler specifies that the handler is ready to handle any exception that
is propagated to it. The body of the Others-clause will be executed if an exception is

19

propagated to the handler and not otherwise handled by that handler. That is, the
Others-clause specifies default exception handling. The effect of Unwind can now be
implemented by reraising the propagated exception at the end of the body that is attached
to the Others-clause.

The ANSI/IEEE proposal for extending Pascal

The joint ANSI/IEEE proposal for introduction of exception handling mechanisms into
Pascal (by the joint ANSI X3]J9 and IEEE P770 standards committee)?’ contains a hierarchi-
cal structuring mechanism for exceptions that is useful both for default exception handling
and for renaming of exceptions as the AML/X proposal. It is important to note that
the hierarchical structure is a structure of the names of exceptions and not a hierarchical
structure of the exception handlers (as the proposals in this paper). Therefore, although the
ANSI/IEEE proposal is an interresting proposal, it does not support hierarchical exception
handling as discussed in section 3.

Taxis

The exception handling mechanism of Taxis®' contains similar ideas to those presented
in this paper. But there are some basic differences. The exception handling model is
single-level termination with dynamic association of handlers. This implies that smooth
termination as discussed above does not apply to the Taxis proposal. Moreover, all
exceptions are raised implicitly when either pre- or post-conditions of transactions are
violated, or the return-value of the transaction does not conform with the specification.
The user can specify which exception should be raised when a specific pre- or post-
condition is violated, whereas a pre-defined exception is raised when the return-value is
nonconformable.

Default exception handling is done by associating a default handler with the exception
at the time of definition of the exception. (That is, static association of the default handler.)

The hierarchical part of the proposal is divided into two parts. Both exceptions and
handlers are organized in a specialization hierarchy but the two hierarchies are independent
in the sense that any handler may be associated with any exception (of course, the
parameters must match).

The hierarchical structure of the exceptions is used in the same way as the hierarchical
structure of exception names in the ANSI/IEEE proposal. That is, a handler associated
with a specific exception is capable of handling occurrences of that exception and any
specializations hereof. The hierarchical structure of the handlers is used to structure the
handlers in the same way as transactions (in fact, handlers are transactions).

3.6 Final Remarks

We have presented a hierarchical, co-operative exception handling mechanism as an
extension to the static approach to exception handling. The proposal is divided into three
parts: Prefixed sequels that make it possible to specify smooth termination; Virtual sequels
that make it possible to augment a handler in inner blocks; And finally default sequels that
make default exception handling possible within the static approach and thereby extend
the possibilities of smooth termination.

Implementation of the static approach has not been tried yet. But since the underlying
principles of prefixing and virtual binding are well-known and implemented elsewhere (e.g.
Simula67 and Beta), we do not find that implementation of the proposal will give rise to

20

significant difficulties. Implementing sequels is similar to implementing procedures with a
non-local goto (to the end of the encloser) immediately before the terminating end.

This proposal is only a proposal for a new language construct, not an entire language
proposal. We find that the proposed language constructs can be incorporated into any
language in the Algol family (e.g. Algol60, Pascal, Ada). That is, in any statically scoped
language. The extra complexity introduced hereby is felt to be in the same line as the extra
complexity that is introduced by the exception handling mechanisms of, say, Ada.

With that in mind, we find that prefixing and virtual binding is a generally useful
structuring mechanism (as discussed in reference 11 and 2). We would therefore prefer
that this proposal was incorporated in a language in which prefixing and virtual binding
were general structuring mechanisms. The proposal would in that way be part of a more
homogenous language design. As examples of languages of this sort are Galileo', Taxis®!,
Simula67° and Beta'?. (Note that Galileo and Taxis do not support virtual binding.)

Acknowledgements

The work reported here has benefited from many discussions with Kristine Stougaard
Thomsen and Ole Lehrmann Madsen. Thanks are also due to Brian H. Mayoh, Peter
Mosses and the referees for reading earlier drafts of this paper and giving many valuable
comments.

References

1. A. Albano, L. Cardelli, R. Orsini, "Galileo: A Strongly-Typed, Interactive Con-

ceptual Language”, ACM Transactions on Database Systems, 10 (2), (June 1985),
230-260.

2. A. Borgida, "Features of Languages for the Development of Information Systems at
the Conceptual Level”, IEEE Software, 2 (1), (Jan. 1985), 63-72.

3. L.D. Cottam, "Extending Pascal with One-entry/Multi-exit Procedures”’, SIGPLAN
Notices, 20 (2), (Feb. 1985), 21-29.

4. F. Cristian, "Exception Handling and Software Fault Tolerance”, IEEE Transactions
on Computers, 31 (6), (June 1982), 531-540.

5. F. Cristian, "Correct and Robust Programs”, IEEE Transactions on Software Engi-
neering, 20 (2), (Mar. 1984), 163-174.

6. O.-J. Dahl, B. Myhrhaug, K. Nygaard, "Simula 67, Common Base Language”,
Publication No. S-22, Norwegian Computing Center, 1970.

7. E.W. Dijkstra, ”Notes on Structured Programming”, in O.-]. Dahl, E.W. Dijkstra,
C.A.R. Hoare, "Structured Programming”, Academic Press, London 1972.

8. N. Francez, B. Hailpern, "Script: A Communication Abstraction Mechanism”, RC
9995 (44379), IBM Thomas J. Watson Research Center, Yorktown Heights, New
York 10598.

9. J.B. Goodenough, "Exception Handling: Issues and a Proposed Notion”, Communi-
cations of the ACM, 18 (12), (Dec. 1975), 683-696.

21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22,

23,

24,

2h;

26.

2r.

J-L. Knudsen, "Exception Handling — A Static Approach”, Software — Practice &
Experience, 14 (5), (May 1984), 429-449.

J.L. Knudsen, K.S. Thomsen, "A Conceptual Framework for Programming Lan-
guages”, DAIMI PB-192, Computer Science Department, Aarhus University, April
1985.

B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen, K. Nygaard, "Abstraction Mech-
anisms in the Beta Programming Language”, Proceedings of the 10'th ACM Sympo-
stum on Principles of Programming Languages, Austin, Texas, 1983.

P.J. Landin, ”A Correspondance between ALGOL 60 and Church’s lambda-notation:
Part I & II”, Communications of the ACM, 8 (2&3), (Feb. & Mar. 1965), 89-100 &
158-165.

P.J. Landin, "The Next 700 Programming Languages’, Communications of the
ACM, 9 (3), (Mar. 1966), 157-166.

P.A. Lee, "Exception Handling in C Programs”, Software — Practice & Experience,
13 (5), (May 1983), 389-405.

B.H. Liskov, A. Snyder, "Exception Handling in Clu”, IEEE Transactions on Sofiware
Engineering, 5 (6), (Nov. 1979), 516-558.

M.D. MacLaren, "Exception Handling in PL/I”, SIGPLAN Notices, 12 (3), (Mar.
1977).

Military Standard, "Ada Programming Language”, American National Standards
Institute, Inc., ANSI/MIL-STD-18154-1983, 22. January 1983.

J.G. Mitchell, W. Maybury, R. Sweet, "Mesa Language Manual”, CSL-79-3, Xerox
PARC, April 1979.

L.R. Nackman, R.H. Taylor, "A Hierarchical Exception Handler Binding Mecha-
nism”, Software — Practice & Experience, 14 (10), (Oct. 1984), 999-1007.

B.A. Nixon, "A Taxis Compiler”, CSRG Technical Report #33, Department of
Computer Science, University of Toronto, April 1983.

E.I. Organic, ”The Multics System”, The MIT Press, 1972.

J.E. Stoy, "Denotational Semantics: The Scott—Strachey Approach to Programming
Language Theory”, The MIT Press, 1977.

R.D. Tennent, "Language Design Methods besed on Semantic Principles”, Acta
Informatica, 8 (2),(1977), 97-112.

R.D. Tennent, "Principles of Programming Languages”, Prentice-Hall, Inc., 1981.

R.D. Tennent, "Some Proposals for Improving Pascal”, Computer Languages, 8
(3/4), (1983), 125-137.

T.N. Turba, "The Pascal Exception Handling Proposal”, SIGPLAN Notices, 20 (8),
(Aug. 1985), 93-98.

22

28. J.G. Vaucher, "Prefixed Procedures: A Structuring Concept for Operations”’, INFOR,
13 (8), (Oct. 1975).

23

A
A Introduction to Prefixing

The concept of prefixing originates from the programming language Simula67°. It was
further developed by J.G. Vaucher into a structuring mechanism for operations?® and in
the programming language Beta it is used as a general program structuring mechanism’2.

We would like here to give a short general introduction to the concept of prefixing.
The foundation of prefixing is the concept of some sort of descriptor® that may consist
of a formal parameter part, a declarative part, and an action part. Examples are classes,
procedures, functions and sequels.

Let us consider the example in figure 12. In order to make prefixing possible, we

P = descriptor(FP,,FP,,...,.FP) - - formal parameter part
DP
DP

1)

93

- - declarative part
DE._.;

begin
5y;
S, 1

INNER; - - action part

i+1°

S
S,
end

Figure 1: A descriptor

have introduced a special kind of action (called INNER). The semantics of INNER will be
explained soon.

Figure 13 shows how a new descriptor P’ can be prefixed with P. The overall principle
of prefixing is that the formal parameters of P’ are the union of the formal parameters of
P and those specified in P’. The identifiers declared in P’ are the union of those of P and
those specified in the declarative part of P’. Finally, the actions of P’ are the actions of
P with the action part of P’ merged into the action part of P at the point of the INNER
statement.

Figure 14 illustrates the semantics of prefixing. However it should be noted that P” is
not literally the semantics of P’ since the bindings in P are done in the environment of P
only whereas the bindings in P’ are done in an environment similar to that of P”. That is,
P cannot use the bindings in P’ but P’ can use the bindings in P.

The control pattern of prefixed procedures can be illustrated by figure 15. As an

abstraction mechanism, the prefixed procedures S, §’ and §” expresses a three layered
system:

- - prefix level of §’

- - prefixed level of §

*For a further discussion of descriptors in programming languages, see reference 11.

24

P’ = prefix P - - prefix part
descriptor(FP’,,....,FP’) - - formal parameter part
DP’;;
DP’,;
- - declarative part
DP’;
begin
5’
S’J-_lg
INNER; - - action part
81
s
end

Figure 2: A prefixed descriptor

P” = descriptox(FP,,...FP FP’ . FP’)

D;; - - concatenation of
- - formal param. parts
D

ms

D';; - - concatenation of
- - declarative parts
D';
begin
S;;
Sz'—I:
8.
1)
- - merge action parts
S}—z; - - (i.e. substitute
INNER; - - INNER in P with the
8 - - action part of P’)
St
Si+ 13
S;;
end

Figure 3: P” illustrates the semantics of P’ in figure 13 — except for the binding aspect of
prefixing

25

procedure S(...) begin ... INNER ... end

®

procedure S°(...) prefix 5(...) 13

®

procedure S”(...) prefix 5°(...) begin ... INNER ... end

ol 0% N0 |@

Figure 4: The control pattern of prefixed procedures

in which §”is a specialization of § and §” a further specialization of §’. For a discussion of
prefixing as a general abstraction mechanism, see reference 2 and 11.

The execution of each prefixed procedure can be seen as a five phased execution.
When the control enters the prefixed procedure, it is immediately passed to the prefix
levels to let those execute their initial actions. When control is passed back from the
prefix levels, the prefixed procedure itself executes some initial actions (e.g. initialize local
data-structures and bringing them into a consistent state). Then, when control reaches an
INNER statement, it will be passed to the prefixed level (if any). When the prefixed levels
have terminated their actions, control is passed back to the prefixed procedure that then
executes some finalization actions (e.g. local clean-up, collecting results from the prefixed
levels, etc.). Finally, when the prefixed procedure has executed all of its actions, control
will be passed to the prefix levels.

This pattern of control can be pictured as in figure 15.

Note, that in the case of the prefixed level being non-existent, the INNER statement

acts as a Skip/NoOp statement (see INNER in S” of figure 15).

B Introduction to Virtual Binding

The origin of the concept of virtual binding is the programming language Simula67® and
is further developed as part of the programming language Beta!?. In both languages a
virtual binding can be introduced in a class definition and further binding is only allowed
in sub-class definitions of that class.

We extend the concept of virtual binding slightly. First of all, we assume in this paper
that virtual bindings can be introduced in ordinary blocks as well. Furthermore, we allow
further bindings of virtual bindings in outer blocks to appear in inner blocks. That is,
virtual bindings introduced in ordinary blocks are only allowed to be further bound in
inner blocks. (In fact this is not an extension of the original virtual binding concept but
rather a consequence of considering blocks as anonymous program units and inner blocks
as anonymously prefixed with the outer block.)

Let us discuss the block-structured systemn outlined in figure 16 and let us further assume
that identifier E is bound to some descriptor D within block §. If E is bound non-virtually
within S, then all invocations of E within S, S’, $” and S’ will result in execution of the
action part of D. If, however, E is bound to D’ within §’, invoking E in § will result in
execution of the action part of D whereas invocation of E in §°, §” or §” will result in

26

5

Figure 5: A block-structured system

execution of the action part of D”.* If E is bound to D’ in §’ and D’ is prefixed with D then
invocation of E in S will result in execution of the action part of D only, whereas invocation
of Ein §’, §” or §”” will result in execution of the action part of both D and D’ (as explained
in the previous section on prefixing).

Virtual bindings behave differently. Let us assume that E is virtually bound to D in S.
The virtual binding of E means that if E is further bound to D’ in, say, §’ then first of all,
D’ must be prefixed with D and secondly, the further binding will have effect on invocations
of E in S. That is, if from within S’, $” or §”, E is invoked in §, the action part of both D’
and D will be executed just as if E were invoked directly in §’, $” or §’”. This is in contrast
to a non-virtual binding of E to D’ in §’, in which case invocations of E in S from within
S’, §” or §”” would result in execution of the action part of D only, and invocations of E
directly in §’°, $” or §”” would result in execution of the action part of both D’ and D.

E may be further bound to D” in §”, and to D’ in §’”. Since §” and §’” are parallel
blocks it is only necessary to demand that D” and D’” both are prefixed with D’. That is,
D’ need not be prefixed with D’”, or vise versa.

Note that virtual binding is not the same as dynamic binding. A very important aspect
of virtual binding is that it is impossible to nullify the binding of E in § and replace it with
another totally different binding. (As a remark, in Simula67 it is possible to nullify the
initial virtual binding which makes virtual binding in Simula67 resemble dynamic binding.)
Virtual bindings allow rebindings of the original binding — rebindings that augment the
original binding by prefixing. We say that the original virtual binding has been specialized.

As indicated above, this presentation of virtual binding is mostly inspired by the
definition of virtual binding used in the Beta programming language. In reference 11, a
detailed discussion of virtual binding is given.

C A Terminology for Exception Handling

The purpose of this section is to describe a taxonomy for exception handling in order to
establish a unified terminology within the domain of exception handling.
The domain of exception handling is characterized by the definition of what to classify

*Note that we assume static scoping.

27

as exception occurrences.

We define an exception occurrence as being "a computational state that requires an
extraordinary computation”. Exceptions are associated with classes of exception occur-
rences. We say that an exception is raised if the corresponding exception occurrence has
been reached. We say that an exception is handled when the extraordinary computation
is initiated. An exception handler is the specification of an extraordinary computation. If
an exception is raised but not handled at the same level of the program, we say that the
exception is propagated to an outer level. If the exception is handled, and that handler
raises the same exception, we say that the exception is reraised. Finally, we say that a
specific exception is associated with a specific handler when raising the exception results in
invocation of the handler.

The taxonomy for exception handling is divided into six categories to be discussed in
the following. The most important category with respect to this paper is the identification
of the two different termination processes: Abrupt termination and smooth termination.

C.1 Exception Occurrences

The overall spirit of an exception handling mechanism can be identified by considering
the way in which the proposal characterizes exception occurrences. In most cases this
classification will have a major impact on the proposal.

In PL/I, exception occurrences are ’computational states where hardware limitations have
been exceeded”'”. In a proposal for exception handling in C, exception occurrences are
"computational states where something unusual has happened’*®. In reference 5, exception
occurrences are ’znvocation of an operation in a computational state that is outside the
standard domain of the operation”. Finally, in the static approach'?, exception occurrences
are “computational states where an alternative computation must be initiated”.

C.2 Exception Handling Model

Perhaps the most important aspect of exception handling is the exception handling model.
The exception handling model is concerned with the control pattern that will be the
result of raising an exception. There are three major models: The resumption model, the
signalling model, and the termination model.

C.2.1 The Resumption Model

In the resumption model the control pattern in the case of an exception occurrence is
very similar to an interrupt. That is, raising an exception will result in suspension of the
present computation, invocation and execution of the handler, and then resumption of the
suspended computation.

Examples are Goodenough’s Notify exceptions’ and PL/I's condition'.

C.2.2 The Signalling Model

The control pattern of the signalling model is similar to the resumption model. The
difference is that the handler might specify that resumption should be abandoned and
termination initiated; That is, specify a change to the termination model.

The Signal exceptions in Goodenough’s proposal are examples of exception handling
following the signalling model.

28

C.2.3 The Termination Model

In the termination model raising an exception will result in invocation of a handler and
termination of at least the syntactic entity in which the exception is raised. The control
pattern of the termination model can be characterized by the termination level and the
termination process:

® Termination Level
The termination level may be either single-level or multi-level:

1. Single-level Termination
in which only the syntactic entity in which the exception is raised, is terminated
(e.g. Clu'f).

2. Multi-level Termination
in which termination of several levels of syntactical units is possible (e.g. Ada).
In multi-level termination, the termination level must be defined somehow.
There are at least two possibilities:

(a) to the level of the declaration of the exception (e.g. sequels'®26).

(b) to the level of the handler (e.g. Ada'®)

® Termination Process
In terms of figure 6: Let us assume that an exception is raised at level 7 and the
termination level is level 7. The termination of levels 7,¢-1,...,7+ 1,7 can then follow
two main patterns: Abrupt termination or smooth termination.

1. Abrupt Termination
By abrupt termination is meant that levels ¢,¢-1,...,7+1 are all terminated
immediately, after which the handler is executed, and then level j is terminated
(e.g. Ada).

2. Smooth Termination
By smooth termination is meant that the levels ¢,i-1,...,57 are each given the
opportunity to do some local clean-up actions before they are terminated. The
role of the handler(s) in this case may differ from proposal to proposal. Prefixed
sequels is an example of an exception handling mechanism that supports smooth
termination directly. Languages like Clu and Ada contain mechanisms that
make it possible to implement smooth termination to some degree.

C.3 Association of Handlers

There are three major approaches to handler association: Computed association, dynamic
association and static association.

1. Computed association

Here the association is done by means of binding imperatives (e.g. the ON
CONDITION-statement in PL/I).

2. Dynamic Association
Here the handler is associated with the exception using dynamic binding of exception
handlers to exception names. That is, the handler is found in the dynamic context of
the raising statement (e.g. Ada, Clu and many others).

29

3. Static Association
Here the handler is associated with the exception using static binding. That is, the
handler is found in the static context of the raising statement (e.g. sequels).

C.4 Handler Types

The handlers associated with an exception may be of several different types. Some of the
possibilities are:

® routines or routine-like (e.g. sequels, AML/X)
® statements or blocks (e.g. Ada, Clu)

® expressions (e.g. Goodenough’s proposal, AML/X)

labels (e.g. AML/X)

booleans (e.g. AML/X)

C.5 Parameterization of Exceptions and Handlers

The expressive power of the different proposals depends moreover on whether it is allowed
to parameterize the exceptions and their handlers, making it possible to communicate
information to the handler when raising an exception.

C.6 Default Exception Handling

Default exception handling can follow two different paths:

1. Default Exception Handler
By a default exception handler is meant that a specific handler is invoked if an
exception is raised and not handled by another handler. The default handler might
be a pre-defined handler (e.g. the implicit except statement attached to any routine
body in a Clu program), or it might be user-definable (e.g. the default handler
mechanism of Taxis).

2. Default Smooth Termination
By default smooth termination is means that a specific level may specify a handler
to be invoked if the level is terminated as a consequence of an exception being
propagated through the level and not otherwise handled in that level. E.g. default
sequels, or the Others-clause in Clu and Ada.

C.7 Equivalence of User- and Language-defined Exceptions

Since we are examining language constructs for user-specified exception handling, it is
important to observe whether user-defined exceptions and handlers are allowed, and
whether these are treated in the same way as the language-defined exceptions.

30

