ISSN 0105-8517

10g - dd

A Denotational Semantics
for Logic Programming

Gudmund Frandsen

4 21507 10} SONUBWIG [EUCHIEIOUI(V (UISPUEL I9

.

SurwmmeaSox

DAIMI PB - 201
November 1985

DATALOGISK AFDELING =
Bygning 540 - Ny Munkegade - 8000 Aarhus C

tif. (06) 12 83 55, telex 64767 aausci dk

Matematisk Institut ~ Aarhus Universitet

TRYK: RECAU (06) 12 83 55 ’ e

[]
1IE
HH.

A DENOTATIONAL SEMANTICS FOR LOGIC PROGRAMMING

by

Gudmund Frandsen
Computer Science Department
Aarhus University

Abstract

A fully abstract denotational semantics for logic programming has
not been constructed yet. In this paper we present a denotational
semantics that is almost fully abstract. We take the meaning of

a logic program to be an element in a Plotkin power domain of
substitutions. In this way our result shows that standard domain
constructions suffice, when giving a semantics for logic program-
ming. Using the well-known fixpoint semantics of logic programming,
we have to consider two different fixpoints in order to obtain
information about both successful and failed computations. In con-
trast, our semantics is uniform in that the (single) meaning of a
logic program contains information about both successful, failed and
infinite computations. Finally, based on the full abstractness
result, we argue that the detail level of substitutions is needed

in any denotational semantics for logic programming.

1. INTRODUCTION

One may view semantics as the compound problem of defining

proper universes of denotations and describe the meaning function
that assigns denotations to programs. The universe of denotations
should preferably be so fine-grained that it is possible to

answer all interesting questions about a program from considering
its denotation alone. Conversely, programs that we perceive to

be equivalent should be assigned identical denotations. In addition
the meaning function must be specified in a short comprehensible
way.

Operational semantics may be considered the canonical way
of defining semantics. Usually a program gives rise to. a computa-
tion, which may contain a lot of irrelevant details such as the
names of (locations assigned to) temporary variables. Therefore
the meaning of a program is taken to be some proper abstraction
of the corresponding computation.

Axiomatic and denotational semantics are techniques for
specifying the meaning of a program directly without bothering
about all the details contained in a computation. Yet, the correct-
ness of an axiomatic or denotational semantics is usually defined
with respect to a concrete operational semantics.

Denotational semantics is based on an abstract syntax
(defined by a context-free grammar) and the meaning function is
homomorphic in that the denotation of a compound syntactic phrase
is determined uniquely by the denotations of the component phrases.
In the most widely known form of denotational semantics, the
Scott-Strachey approach, denotations are taken to be elements of
Scott-domains.

Apart from correctness, it is considered a virtue of a deno-
tational semantics to be fully abstract with respect to an opera-
tionally given meaning function 0[] -] [8,71,14])s d:e: 4F Ewo
program components Sqr8, behave identically in all possible con-
texts C[-+1: O[C[si]ﬂ =(}[C£s2]ﬂ, then these program components
have identical denotations, 7[s#l; DI SZB.

It is the purpose of this paper to give an operational
semantics for logic programming and develop a corresponding
(almost) fully abstract denotational semantics. Such a task
has not been accomplished previously but we sketch some important
earlier ideas.

In the case of logic programming the original fixpoint
semantics by van Emden and Kowalski [4] specified the meaning
function in a very elegant way as the least fixpoint of an infer-
ence operator attributed to the program. However, the underlying
universe of sets of groundterms was rather coarse-grained. By
the time of origin, this was considered exclusively a virtue,
since all posed questions regarding successful computations could
be answered by means of this semantics. It could not be classi-
fied as neither operational, denotational nor axiomatic, but this
fact was not (and should not be) considered a defect either.

Later, there was a demand for finding a proper semantics for
negation as failure and infinite computations (cf. ex. 1).
Negation as failure became understood through a model theoretic
characterisation given by Clark [3], although completeness was
an open problem until a paper by Jaffar, Lassez and Lloyd [9].
Simultaneously, people tried to extend the nice fixpoint semantics
of van Emden and Kowalski to incorporate negation as failure. Apt
and van Emden [1] discovered a discontinuity of the underlying
inference operator in this connection. Recently van Emden, Lloyd
and Nait Abdallah [5,10,12] have introduced different universes
containing sets of infinite terms in order to preserve continuity
of the underlying operator. This approach has also resulted in
a characterization of infinite computations [10,12]. The ideas
behind infinite term semantics seem very similar to the topological
intuition behind Scott-domains and independently Frandsen [6,7]
has established a denotational semantics technically based on
the latter. In this case the universe of denotations consists

of a double continucus substitution domain.
There are several points to note, when viewing the various

semantics above separately and in comparison. Firstly, one must
consider two different meanings in order to deal with both success

and negation as failure. It seems that no work has yet explored

the possibility of making a uniform approach with only one
meaning of a logic program. Secondly, the mathematical bases

are all to some degree developed ad hoc. In particular the
denotational semantics of Frandsen [6,7] uses a double continuous
domain with a technically complicated construction without
giving a convincing argument for the insufficiency of ordinary
domain-constructions. Thirdly, the semantics vary with respect
to detail level in that a universe of substitutions is more fine-
grained than one of terms. This fact raises a natural question.
Is it possible to construct a result similar to [6,7] by the use
of terms alone? Or we may pose the question differently: Is the
denotational semantics of [6,7] fully abstract with respect to
some operational semantics? To avoid confusion, one should note
that the original paper [6] uses the term "full abstraction" in
the sense of Winskel [19], which is different from the sense in
which the term is used in this paper [11,14].

We shall treat all three points above. Firstly, we build a
universe of denotations by means of the usual Plotkin power domain
construction [13,18,20], thus demonstrating the sufficiency of
using ordinary constructions. Secondly, we give a uniform deno-
tational semantics, i.e. there is just one meaning of a program
and from this meaning information concerning both success, negation
as failure and infinite computations can be extracted. Thirdly,
we prove a weak form of full abstractness with respect to a spe-
cific operational semantics. Based on this "weak abstractness"
result we provide an argument that the present substitution level
of detail is necessary for any denotational semantics that has
an expressive power at least equalling the fixpoint semantics
of van Emden and Kowalski [4].

This paper may without reference presuppose acquaintance
with some of the author's previous work [6,7]. The outline is as
follows. We start by defining the possible computations for every
possible logic program by means of non-deterministic, synchronic
transition rules. Here non-deterministic means that program rules
(definite clauses) are chosen non-deterministically and synchronic
means that the subgoals contained in the righthandside of a
program rule are pursued concurrently. In a later work we hope to

investigate alternative choices. Our use of transition rules is

inspired by the structural approach to operational semantics
recommended by Plotkin [15,16]. From the non-deterministic
computations we abstract denotations in the form of substitutions.
We form a modal language of substitution elements by use of
Winskel's ideas [20] and a modified version of substitution data
objects [6,7]. We associate a denotation to a logic program by
considering those words of the modal language, which are true for
the corresponding non-deterministic computation. In this way our
universe of denotations actually becomes a Plotkin power domain.
We continue to give a denotational semantics. It is very similar
to the ones reported earlier [6,7] although a few deficiencies
have been corrected. We prove the operational and denotational
semantics to be equivalent and we prove that all syntactic cate-
gories apart from program rules (definite clauses) have a fully
abstract denotation.

Example 1
We illustrate the different types of computation that a logic

program may give rise to. The program rules used in this example

are widespread in the literature [10,12].

program rules, r: sum(0,X,X) « ¢.
sum(s(X) ,Y,s(2)) « sum(X,Y,2)
lsum(A.X,B.Y,C.Z) < sum(A,B,C), lsum(X,Y,Z)

gueries: dq,: « sum(s(0),U,V)
4, <« sum(s(0),w,0)
d3: <« lsum(0.0.F,s(0).F,F)

computations: We use a simplified version of the syntax

defined later for specifying computations such that bindings

to temporary variables are not seen.

1) a successfull computation:
r b (g0 1) 5P IV s 5]

2) failed computation:

= (a,l 1) -» fail

o]

H

3) an infinite computation
€ b Gl P (sum(art,BY,C'), lsum(x',Y',2'),
[F 1 16208580 wes »E1BY]T & oony
where we have abbreviated Sj(O) to simply j.

[}

2. NON-DETERMINISTIC COMPUTATIONS

We will adopt Plotkin's general method for specifying compu-
tations [15,16]. To do this we must fix a set of possible
programs by giving an abstract syntax, and we must specify the
set of configurations each of which may be thought of as an
instantaneous snapshot of a single computation branch. Every
program phrase induces a set of possible transitions between
configurations. In Plotkin's approach these transitions are
defined by structural induction on the program phrases. Given
a program and an initial configuration, Cpr We may perform a(n)
(in) finite computation by composing transitions: Cp=2Cy2Ch .nnn
All such possible computation branches can be collected into a
non-deterministic computation that constitutes the concrete
meaning of a program as opposed to the abstract meaning, which
we are going to extract later.

We start by defining the abstract syntax. It is slightly
changed compared to [6,7] in that we use binary trees instead of
lists. However, we still ignore arities and mix predicate identi-
fiers with function identifiers for reasons of technical simpli-
city. We use countable sets of variables (V) and identifiers (I).
The class of literals or terms over V,I is the basic syntactic
unit: Lit = T = IT*|V. The total set of syntactic phrases are

given by the following grammar rules:

Prog Rules Query

Rules ::= Rules or Rules | Head Tail

Query Query co Query | Lit
Head ::= Lit

Tail ::= Query | €

Our next concern is the structure of a configuration.
Basically every configuration consists of a query and a substi-
tution. An exception is made by terminal configurations that
consist of a substitution or "fail" exclusively. In order to
avoid name confusion by repeated use of the same rule we allow

variables to be indexed by a string over {0,1,2}. The number of

zero's in an index represents the number of computation steps
performed, when the corresponding indexed variable was created,
and the sequence of 1's and 2's in an index represents a posi
in the Dbinaryco-tree of a query. We define the set of indexed
variables V' = Vx {0,1,2}*. We will use the notation Vj for all
variables with index j. In particular V€ = V. Correspondingly
the notions of literal and query is extended: Lit' = T' = IT' *| V'
and Q' = Q' co Q'i Lit'x {0,1,2}*. Queries on Q'-form are to be
used as components of configurations. Each literal contained in
a co-tree of Q' has attached a position index to insure the
assignment of unique variable indexes in case of further computa-
tion. The following inductive assertion should hold for position
indexes: For every co-tree g€ Q' it is possible to find a position
index k such that (i) if g is a literal, (1,3j), then k = j and
otherwise (ii) if g is a compound query, q; co g,, then the
position indexes assigned to q, and q, equals k+1 and k.2 respec-
tively. In order to assure this requirement, we define a special
operator that assigns indices to queries: For any queries
q4 CO gy, 1l € Query and indices j,k: g4 co q2[j,k] =
q1[j,k-1] co q2[j,k-2] and 1[j,k] = (1[j],k) where 1[j] is 1 with
all variables indexed j.

The second component of a configuration is a substitution,
@ = V'>T'. A particular substitution has only non-trivial values
for finitely many variables and contains no cycles. When applying
a substitution to a term, we assume implicitly the substitution
to be of idempotent form (e.g. g(X)[X-£f(Y),Y-»a] =
g(X)[X-f(a),Y-»al] = g(f(a))). Substitutions arise as a result
of unification. We do not bother about the exact unification
procedure in use, but we simply assume the existence of an algo-
rithm mgu: T' xT' x ... xT'> 0 U {fail}, which computes the most
general unifier of two or more terms if possible and otherwise
returns "fail" [17].

We are going to specify a synchronic transition function,
i.e. sub-goals in a query are pursued in parallel. Consequently
a need arises to combine independently computed substitutions.
We define :: ©x0 - O U {fail} as follows. Let p be any identi-

fier and let {X ,Xn} be all variables for which 81 or 82

1,---

has non-trivial values. Then 81- 82 = mgu(p(x1,...,xn),
p(X1[91],...,Xn[61]),p(XT[Gz],...,Xn[GZ])). We will use the
--operator even if one of the arguments is fail. In such a case
the result is always fail.

We now define the set of configurations C = (Q'x S)uSu{fail}.
The configurations without a gquery component are the terminal ones.
The transition relation is specified by structural induction
[15,16] and we start by considering the transition caused by a
single rule from a single-query state. In this case we simply

perform one resolution step:

1) 0.3 = 3', h[3'] = h', 6 .mgu(l,h') = 6' | fail
hq = ((1,9)8) > (g[3',3'1,06") | fail, he ((1,5),8) » 0" | fail

We should here make a comment on notation. The vertical bar is

a shorthand for writing two different transition rules in one:
E - a] D abbreviates -GN and X =b
rl—c-—>c1 rl—c->c2

rkcoc,|c

1 2

For composite program rules, we introduce non-determinism:

r1hc»c' rzkc+c'
2) and 3)

)
r1 or r2 Fc-c r

v
g or T, - c«c

For composite query states, we define synchronic transitions:

. r b (qy08) > (a3,0,) | 8, | fail, r b (q,,8) > (35,0,) [0, | fail

r F—(q1 co qz,e)—>(q% co qé,81-82)| (qi,81-82)| fail
| (qé,91-92)| 91-92| fail
| fail | fail | fail

Given a logic program p = rqg the corresponding non-deterministic
computation is (Tp,»}, where Tp = {e|® ¢, »* c} given the
initial configuration cy = (gle,el,[1).

The next step consists in constructing a suitable universe
of denotations. Preferably, it should be coarse-grained. However,

a full abstractness result will later indicate that the deno-

tation of a query (in a denotational semantics) must have the
detail level of substitutions. In order to avoid constructing
both a coarse-grained domain (e.g. based on terms) and a more
fine-grained of substitutions, we simply let the universe of

denotations be a domain of substitutions.

10

3., FINITE SUBSTITUTION ELEMENTS

We choose a power domain of substitutions for our universe of
denotations. As a basis of the power domain construction, we

need a preorder of finite substitution elements. The construction
of such preorder is the goal of this section. In a previous paper
[7] we have introduced the notion of information content. Actually,
this notion was too poor, and led us to demand a double continuous
domain. Here we use a richer notion of information content, which
distinguishes substitutions occurring in non-terminal state of a
configuration from substitutions that are the result of a

successful computation. Consider the following example:

Example 2
program rules: r,: d(X) « d(f (X))
ry: d(X) «
query: o 8- < d(Y)
computations: T : r, F—((d(Y),e),[])a((d(f(xo)),O),[Yexo])»...

We notice that the substitution [Y—aXO] occurs in both computations,
but in different senses. In T, we can only say that [Y—»XO]
delimits the possible results of successful computation branches

(if any exist). In the case of T2 we know in addition that the

substitution itself represents a successful result. o

This example and the discussion of anonymous variables in
[7] lead us to choose the following definition of substitution
data elements: D = ({L,s} x P(V') x 0) U {fail}. The first component
x of a data element d expresses whether d denotes a possible
result (x = 1) or a certain result (x = s). The second component
is a set of named (as opposed to anonymous) variables and the
third component consists of a finite cyclefree substitution.

The information content of a substitution element is
expressed by two functions hl,hs: D~ 280, where S, = V'>T_ is

0 0

the set of ground substitutions and T0 = ITS is the set of ground

11

terms: hl(fail) = hs(fail) = hS(L,W,e) = ¢ and
h (L,W,8) = h (s,W,8) = h_(s,W,8) = h(e}]w,
h(8) = {s€s5,[vveV'. 8(v)[s] = s(v)} and
S|,y = {s'€8,]3s€s. vveW. s(v) = s'(v)]. h(e) |, selects all
the. s € SO that agree with 8 on the named variables W.

Hence hL induces a filter ordering on D: hl(d1) < hl(d2) means
that d1

conclude that d1 therefore contains more information (i.e. is

where

allows less possibilities than d2. However, we cannot

better determined) than d.. It may be that d2 in addition contains
information about certainty (success): hs(dz):hl(dz) and in this
case the information content of the two substitution elements are
incomparable independently of the value of hs(dT)' since

hs(d1) c hl(d1)'

We define a preorder on D: d, £ d, iff hl(d1) 2 h (d;) &
hs(d1) c hs(d2). It is easily verified that 1 = (L,8,[]) is a
minimal element in this preorder. Returning to example 2, we can
denote the two versions of the substitution {Y—aXO] occurring in

T, and T, by respectively d1 = (L,{Y},[Y-»XO]) and

1 2
d2 E (s,{Y},[Yuéxo]), which have different information contents:
d.l E d2.

For later use we define some operators on the preorder

(D,C). Restriction -iW: D-7D is a monotone idempotent function:

(x,W1,8)|W2 = (x,W, NW,,0) and fall]W = fail,
Reindexing Rij: D-70 is a monotone function: Rij(fail) = fail
¥ 1] =]] | LIS B T
and if WN (ViUVY) =@, Vi gV, Vic vy then Rij(x,WL,viL,vj,e)

= (x,WWJViLiV;,G'), where 8' is a reindexed version of 6: wvariables
in Vi\~Vi and Vj*~V5 have indices changed to some k respectively
1 that does not occur in 6 or in W%JVilJVj. Moreover variables in
Vi and Vj have indices switched to j and i respectively. W' con-
sists of precisely those variables in W that do occur in 6.

The composition operator that we have defined on © can be
extended to a monotone, associative, commutative and absorptive
function -:0x D -0 (if we define associativity etc. modulo the

equivalence ¢ N3): fail -d = d . fail = fail and

12

(x1-x2,W1UW2,81-82), 61-62 # fail

(x,,W B,) (= WL, 0,) =
1 L 2"72t 2 fail , otherwise

where

1l , otherwise

and where the anonymous variablés of 81 and 82 have been renamed
to avoid unwanted common variables: ei is ei with all variables
in Gwi renamed away from Witjw3_i (cfr. [6], p. 40). The
renaming must preserve indices of variables. One may easily
verify that 1 = (s,8,[1) is a neutral element for the combina-
tion function.

Simple distributive rules relate these operators pairwise:

Theorem 1 (The equivalence ~ abbreviates & n 1)
i] ; if W, NW, ¢ W then ((x1,W1,61)-(x2,W2,62))[W

= g Wy 00 Ly e (g Wy, 85) [

ii) if index i ¢ {j,k} then Rjk(d)lv.zdlv.’ and Rjk(dlv.)aﬂRjk(d)IV
1 1z] k

iii) Rij(d1'd2)czRij(dT)‘ Rij(dz)'

Proof We only consider (i). Here the equivalence

(xi,Wi,Gi)az(xi,Wi,ei) should be used repeatedly (ei refers to

the definition of the -:-operator). o

We will now define an operational meaning of a logic program
based on computations, finite substitution elements and modal

operators.

13

4. OPERATIONAL SEMANTICS

We have previously defined the non-deterministic computation
induced by a given logic program. The abstract meaning of a
logic program is now abstracted from the corresponding non-
deterministic computation. So we define the denotation of single
programs before we construct the entire universe of denotations
(in the next section). However, this sequence of affairs helps
us to select the proper ordering of subsets of 0, namely the
Egli-Milner ordering, which is used in the power domain-construction.
The abstract meaning is defined using Winskel's modal
characterisation of non-deterministic computations [20]. We start
by formalizing an earlier observation. Every configuration in a
computation can naturally be assigned a finite substitution ele-
ment (cfr. the reference to ex. 2 on page 11). Given a computation

(Tp,»), define val:Tp-eﬂ by

(J-Ivgfe) ’ c = (q;e)
fail , ¢ = fail

Here all named variables in val(c) are index-free and correspond
to the variables occurring in the initial query of the computa-
tion. We use the term non-deterministic D-computation for the
tuple (Tp,a,val). It should be noted that c-c¢' implies

val(c) € val(c') (since h(61-62) (o h(eq)).

Winskel discusses three different modal languages for
talking about non-deterministic computations.Only one of these
languages uses both the operator o (necessary) and the operator
¢ (possible). We need both of them in that ¢ is used to describe
success (there exists a computation branch such that) whereas
o is used to describe failure (for all computation branches it is
the case that ...). Consequently we define the following modal

language (L) :

14

Syntax: The words of L are defined inductively: L is the least
language such that

basis D is a subset of L
step if s,s' €L then i) svec'€L,
ii) os €L and

iii) ¢s€ L.

Semantics: Given a non-deterministic D-computation (T,-,val),
we define the satisfaction relation F on Tx L as the least

relation, which satisfies

basis let d€?P, if A& val(c) then c E d
gtep let s,8' €L
i) if cF s or c F s' then ¢ E svs'
ii) if ¢ F s or [3c'€T.coac' A (Vc'€ET.c»c'"=c' F os)]
then ¢ F os
iii) if ¢cEF s or [3c'"€T.ca»c'Aac' E&s] thenc | & s
IE o is the initial configuration in T, we define T F s iff
S F s. Let us comment on this definition. If d is on the form
(s,VE,e) then Tp F <¢d means that it is possible non-
deterministically to choose program rules from p such that the
initial query of p gives rise to a successful computation
resulting in the substitution 6. Conversely, Tp F o fail means
that every non-deterministic choice of rules from p results in
a failed computation.

The characterisation of an infinite computation is a bit
more complicated: If p = rq, (with rq, as defined in example 1)
then p computes the Fibonacci-sequence and in fact
TP F o(L,{F},[F-+1.1.2.3.5.8.fib(n)]) for all n (but
Tp # o fail).

We now define the operational meaning of a logic program p:
Olpll = {{d1,...,dn}\ Tp F D(d1 Vieeovdy), Tp h'Odq,...,Tp |= Odn}.
We proceed to define the universe of denotations alias the Plotkin-
power domain over D. We shall later see that O[pl] is an element

in this universe.

15

5. DOMAIN OF DENOTATIONS

We will now construct a power domain of substitutions using
ideals as described by Winskel [20]. We choose the Plotkin-
power domain that is based on the Egli-Milner ordering, because
this power domain has the same expressive power as the modal
language we have just considered [20]. By using one of the two
weaker (Hoare- or Smyth-) power domains with correspondingly
weaker orderings we would exclude ourselves from speaking about
either failure or success respectively.

Winskel's construction is actually based on a domain (w-
algebraic complete partial order). However, only finite elements
of this domain areused and the construction works for the preorder
(D,C) as well. We start by forming M[D], the finite subsets of
D. M[D] is a preorder, ordered by the Egli-Milner ordering =£:

< 1 . "y =
m1=m2 iff Vd1€m Eid2€m d t_dzAVdZCm .Jd16m1 dt:d2.

1 27 71 2

Intuitively, an me€ M[D] represents information about some cross
section of a non-deterministic D-computation. We now use comple-

tion by ideals to form the power domain P[D] from M[D]

P[D] = {X < M[D]| X # @, (i) vmqy,m, € M[D]. m; <m, € X=m, €X,

(id) qu,m2€x. 3reX. m, Ssram, <r},

i.e. P[D] consists of leftclosed (i) and directed (ii) non-empty
subsets of M[D]; and the power domain is ordered by setinclusion.
There is a natural monotone insertion operator i:0->F[D],
i(d) = {m|ms<{d}}. i(L), i(1) and i(fail) is simply denoted
1, 1 and fail respectively. In addition there is a natural con-
tinuous union operator W: P[D] x P[D] » P[D], which is associative,
commutative and absorptive:p1 6] Py = {m1 U m2[m1€Ep1, m2€Zp2}.
We would like to define restriction, reindexing and com-
bination operators on P[D], generalising the operators on 7.

For this purpose we state a general theorem:

16

Theorem 2 Given a monotone function f: vn-»v, there exists
a unique extension of f, denoted f: P[D]™ -» P[D] such that f is
continuous and linear, which latter property means that f(f) is

a homomorphism with respect to U and i. Moreover
i) For unary f: The extension preserves idempotency.

ii) For binary f: The extension preserves associativity

and commutativity but not necessarily absorptivity.

Proof We only sketch a proof in the case of a unary f:
Given p € P[D], we know that p =[] P, for a sequence of finite
elements {pn} c P[D]. Each P, % is of the form P, ={m | mzé{mn}}

for some m_ € M[D], i.e. m = {dn1,...,dnjn} c D. This means

that p_ = i(d‘n) U ... U i(dnj) and because we have required
1 n

f to be continuous and linear, there is only one possible

extension of f: f(p) =U (1(f(@ MY ... © i(f(dnj))). Conversely,
n 1 n

this extension does exist as it fulfils
f(p) = {{f(d1);---,f(dn)}| {d1,...,dn}EEP}, where the horizontal

bar denotes leftclosure, i.e. X = {m€ M[D]|3m' €X. m<m'}. o

Theorem 2 means that we have a continuous linear combination
operator, -: P[D] x P[D] » P[D], which is associative and commuta-
tive. Given W < V' we have a continuous linear restriction operator
-[W: P[D] - P[D], which is idempotent and given two indices
i,7€1{0,1,2}* we have a continuous linear reindexing operator
Ri,j: P[D] » P[D].

Furthermore Theorem 1 extends to P[D] by using continuity
and linearity of the involved operators.

The universe of denotations will now be used by a denota-

tional semantics.

17

6. A DENOTATIONAL SEMANTICS

We regard the synchronic operational semantics (0[:]) as

the fundamental meaning of a logic program. We will now specify
this meaning without talking about computations, but using the
denotational method due to Scott and Strachey.

In this section we present a denotational semantics, and
we prove its correctness with respect to the operational seman-
tics. In the next section, we discuss to what degree the present
denotational semantics is fully abstract. We have already
defined an abstract syntax so we simply describe the semantic

functions that use the domain K = Lit- P[D] apart from P[D].

Prog - P[D]
Rules - K- K
Query -» K- P[D]
Head » Lit' » P[D]
: Tail - K- P[D]

= = /o "R O

Plrgl = Qlql (1fp(RIxl))
Rﬁr1 or rzﬂkl = R1r1ﬂkl URErzﬂkl

R[ht]kl = [H[h]I - %hO(TEtﬂk)]|v
0la, co a,lk = Qlq Ik - Qlq, Ik ©
oI 11k = k(1)

H[hI1 = i(s,VyUV_,mgu(h[0],1))
Thalk = Q[glk

Tlelk = 1.

The rest of this section is devoted to proving

Theorem 3 vp Olpl = Plgl.

The main line in the proof is borrowed from Hennessy & Plotkin
[8]. They characterize both the operational and the denotational
meanings as fixpoints of suitably defined operators. We apply
this strategy. Let r€ Rule be a rule and define wr: (Q'" - P[D]) -
(G' - P[D]) by

18

v (&) (q) = (U{[i(S,Ve,el-E(q')]lv |t —(a,[1) > (q',8)})
q

|l" = (g,l 1) »8})

w(uli(s,v,,0) |
q

ef
v(v{fail | r + (g,[1) - faill),
where Vg and Vq denote the set of variables occurring in & and

g respectively. Furthermore define Q.: (Q' -8 ->P[D]) » (Q">8->P[D])
by

e (E) (q) (8) = ({g(g")(6") | r (q,08) = (g',06")})
v (U{i(s,V,,,8"') | £ = (q,0) »6'})
Vv (U{fail | r (q,8) > fail}).
Finally let id: Q' -0 - P[D] be defined by id(qg) (8) = i(L,Ve,e).

Theorem 3 is a simple consequence of the following three lemmas:

Lemma 1: If p = rq, then Pmpﬂ==lfp(wr)(q0[a,s]r.
Lemma 2: If p = rq, then O[p]2:H w?(id)(qo[a,ell([])|VE
Lemma 3: If rec Rules, g€ Q' then lfp(wr)(q) = H m?(id)(q)([])|v

We sketch the proofs of all three lemmas, but leave out details

that could obscure the simple basic structure of the proofs.

Proof of lemma 1 Consider the following two assertions:
(i) Given j,k€ {0,1,2}* such that j is a subsequence of k and
given g € Query it is the case that
vn.R_ S (Q[al (REX1™L)) = $1(L) (al3.k]1).
2o . [] n . n =
(ii) Given g, €0 g, € Q"' then vn. wr(L)(q1) wr(L)(qz)

wﬁ(L)(q1 co q2).

Observe that lemma 1 follows from (i), which is itself proved
by induction ‘on n. The induction step is proved by structural

induction on g. Here the basis step (g€ Lit) uses Theorem 1

19

in the P[D]-version and the induction step (q = 4, €0 q,) uses
(ii) above in addition. For the proof of (ii) we also use induc-

tion on n. In this case the induction step uses Theorem 1 in

the P[D]-version.

Proof of lemma 2 Define the computation tree T? o’ 1.8
r

the collection of configurations obtainable fromc in at most

n steps, inductively as follows: Tg g = {c} and
n+l1 _ n y i
Tr,c = {c}lJ{c1I BCZEITr’c. r F-02—>c1}, and define the natural

meaning correspondingly:

n B n
Mr,c =5 {{d1,...,dm} 'Tr,c = D(d1 Vieeovd),
n
T
7

— n —
’c i_ qdo]l"'fTr'C I_ 0%}'

Now consider the statement

(iii) Given Tp let (g,9) be a configuration that satisfy

: o n .
36'. (g,00'") € Ty then vn. Mr,(q,e) wr(ld)(q)(e)lve

Observe that lemma 2 is a simple consequence of (iii), which is

easily proved by induction on n.

Proof of lemma 3 Consider the following two assertions

(iv) vn. $2(1) (@) = o (id) (@) ([1)]|, for geqQ'
q
(v) Let (g,9) be given such that 0 only refers variables
that have indices, which are subsequences of one or more
of the position indices occurring in g, then

vn. i(s,Vg,8) - ep(id) (@) ([1) = ©2(1d) (q) (8).

Lemma 3 follows immediately from (iv). Both (iv) and (v) are
proved by induction on n. In the case of (iv) the induction
step uses (v) and in the case of (v) one must use the induction
assumption twice. o
Following this briefing of a complex proof, we proceed to

discuss full abstractness.

20

7. FULL ABSTRACTNESS

It appears that the denotational semantics described in the
last section toc a large extent is fully abstract in that the
semantic functions f, Q@ and T all are non-redundant in the
sense required for full abstractness. In one way it should be
no surprise that Q is fully abstract. In the definition of @
we have carefully sought to eliminate all names of temporary
variables that have to appear in an actual computation. This
means that QIIq1 co q2D = Qqu co q1ﬂ for arbitrary 94095 although
q, €0 g, and q, co g, in general generate different computations.
However, the full abstractness result for Q is non-trivial:
One may draw an analogue to Algol-like languages [2]. Consider
the two program phrases "new x=0; new y=1" and "new y=1; new x=0".
In a concrete operational semantics, the assignment of location
to x and y would differ for the two phrases. However, the abstract
behaviour of a program is unaffected by changing one phrase to
the other. The construction of fully abstract semantics that re-
flected the irrelevancy of exact location assignment has appeared
diftficult [2].

Unfortunately, the R-semantic function is not fully abstract.
We later present a counter example and suggest alternative defi-

nitions of R. We start by proving H, Q, T to be fully abstract:

Theorem 4 Let S denote one of the semantic functions H, §Q or
T and let S48, be program phrases of proper syntactic category.
If Sﬂs1l # Sﬁszﬂ then we may find a context C[.] such that

oICls,11 # 0IC[s,]]

Proof S = H: Assume H[h1ﬂ # Hﬂhzﬂ, in which case h1 #.hz.

Let {X1""’Xn} be the set of all variables occurring in h1 or

h2 and let 8§ = [X1—>c1,...,Xn—>cn], where none of the identifiers
Cqr.-.sC, OCCUr in h1 or h2' Define C[.] = (-¢=p(XT,...,Xn) or
p(cT,...,cn)¢=e) (= h1[8]), where the identifier p does not
occur in h1, then OEC[h1]ﬂ » 1 & fail = O[C[hz]], where

By & Bg A5 Py Y By = By

21

S = Q: Assume Q[q,l # Q[g,l, in which case q, and g, cannot be
identical when considered as multisets of literals (by the
associativity and commutativity of :). Furthermore

O[1] € {L,1,fail} for a variablefree literal 1, which implies
absorptivity: Q[1] - QI 1] = QIL1] for such 1. Using these obser-

vations we need only consider two cases:

L) q, and q, are not identical, when considered as sets of
literals, i.e. Hleiqz. 1¢ q,-

ii) q4 and q, are identical, when considered as sets of literals,
but they are not identical when considered as multisets

and their "multiset-difference" contains a literal with
variables, i.e. q15££:q2, ﬂlEIq1. 1 has variable X,

#1 in q, =a> b = #1 in qy-

First consider case (i): Let {X .,Xn} be all variables occurring

gE™s
in g, or q, and let 8 = [X1—>c1,...,Xn~>Cn], where none of the
i
r

identifiers c rC occur in dq, Or g,. Moreover let 1

g qree
be all literals belonging to q, viewed as a set. Define the

k

context C[-] = (p(Xy,..,X)=+ or 1,[6lee or ... or L [0]«¢)
= p(c1,...,cn)), where the identifier p does not occur in qq-

Then OEC[q1]H » 1 ¢ fail = UEC[qZ]D, where P € Py 1EE Pq1¥Py = Py

Next consider case (ii): let {X,X1,...,Xn} be all wvariables
occurring in q4 (or qz) and let 9 = [X1—fc1,...,xn-acn], where
none of the identifiers Cqr--.sC, OcCCUr in q, (or q1). Moreover
let ei = [X->f(Y1,...,Yi_1,ci,Yi+1,...,Ya)}, 1£1i¢<a, where
neither the identifier f, nor the variables W = {Y1,...,Ya} occur

in q4 (or q2) and let 1’11""’lk be all literals occurring in

q, (or q2). Define the context C[-] = (p(X,X1,...,Xn)F=- or
1{66,]« € or ... or 1[88_lee or 1,[6]lege or ... or L[0]l«€)

(< P(f(Yq""'Ya)'01""'Cn))' where the identifier p does not
occur in g, (or g,). Then OEC[q1]H ® i(s,W,[Y1—>c1,...,Ya-+ca]) &

0[Clq,]] -

22

S = T: Assume Tﬂt1] # TEt2ﬂ. If t1,t2€ZQuery then we may use the
contexts constructed above. Otherwise we may assume t1 = ¢ and
tZE Query. In this case define the context C[:]= (pe«:) (« p)
where p is an identifier not occurring in t2. Then

OEC[t1]B = 1 # fail = OEC[tz]ﬂ. o

It would be pleasant to argue for the necessity of using substi-
tutions basedon this full abstractness result. However, it is

not directly possible to do so, since we have introduced substi-
tutions in the abstract operational meaning. Suppose we had
defined a Plotkin-power domain of terms similar to the present

one of substitutions (i.e. the finite elements should be

{1L,s} x T, and the preordering comes from taking all variables

of a term to be anonymous), and suppose moreover that the abstract
operational meaning was defined as an element of this power domain
of terms in the natural way. In this case, we claim that a denota-
tional semantics would still need a power domain of substitutions
in order to give meaning to a query. We base our claim on the
proof of Theorem 4 (iii). Consider case (i) of the proof. Only

the elements "1" and "fail" of the power domain are referred to.
These elements should translate to "i(s,p(c1,...,cn))" and "fail"
respectively in a power domain of terms. In case (ii) the element
"i(s,W,[y1-»c1,...,ya->ca]) translates to "i(s,p(f(c1,...,ca),
c1,...,ca))". So the basic construction in the full abstractness
proof for (seems to work also when the operational meaning is
taken to be an element in a Plotkin-power domain of terms.

Let us see, why R is not fully abstract. Take r1 to be
P(£(X)) «p(X) or p(0) «¢ and let r, = r, or p(£'°0(0))e e. It
should be clear that Rﬂr1ﬂ # Rﬂrzﬂ, but OEC[rW]E = OEC[rzjﬂ for
any context C[.]. The impossibility of distinguishing r, and r,
operationally seems to rely on the fact that lfp(Rﬂr1ﬂ) = lfp(Rﬂr2ﬂ),
i.e. operationally two sets of rules are only distinguished, if
their behaviours "in infinity" differ. A natural solution to the
full abstractness problem consists in defining a new semantic
function R' by R'[r] = 1fp(RIr]) (and P'[rql = QIql (R'Ixr]). R' is
easily seen to be correct and fully abstract, but a non-trivial

problem remains: How do we specify R'Er1 or rzﬂ as a function of

23

R'Er1] andl?Erzﬂ? A more complicated solution may arise from

the following semantic function: R"[hg]l = G(R[hgl) and

R"[r, or r,l = G(R"Hr1ﬂidR"Er2H), where G = 1lfp(G'),

G'(g) (L)k = L(k) ¥L(g(L)k). R" certainly is homomorhpic. In
return it seems non-trivial to prove correctness and full
abstractness. A third method for obtaining full abstractness
consists in augmenting our language with a construct that makes
use of the detailed information delivered by the present semantic
function R. Such a construct could take the form of a flag,

which attached to a program rule indicated that the rule concerned
could be used no more than once in a single (branch of) computa-

tion .

24

8. FUTURE WORK

We gave a non-deterministic, synchronic operational semantics
without arguing for the reasonableness of this choice. We
intend to compare the present choice with mixed synchronic/

sequential and pure sequential semantics in the future.

25

References

(1] Apt. K.R. and van Emden, M.H.: "Contributions to the
theory of logic programming", Journal of the ACM, Vol. 29,
1982, pp. 841-862.

[2] Brookes, S.D.: "A fully abstract semantics and a proof
system for an Algol-like language with sharing", Carnegie
Mellon University, 1985, CMU-CS-84-118A.

[3] Clark, K.L.: "Negation as failure". In "Logic and databases"
(eds.: Gallaire, H. and Minker, J., Plenum Press, New York),
1978 pp. 293-322.

[4] van Emden, M.H. and Kowalski, R.A.: "The semantics of
predicate logic as a programming language", Journal of the
ACM, Vol. 23, 1976, pp. 733-742.

[5] van Emden, M.H. and Nait Abdallah, M.A.: "Top down semantics
of fair computations of logic programs", Journal of Logic

Programming, Vol. 2, 1985, pp. 67-75.

[6] Frandsen, G.S.: "Logic Programming, Substitutions and
Finite Computability", Aarhus University, 1985, DAIMI PB-186.

[7] Frandsen, G.S.: "Logic Programming and Substitutions".
In proceedings of FCT '85 (Cottbus, GDR), LNCS 199, 1985,
pp. 146-158.

[8] Hennessy, M.C.B. and Plotkin, G.D.: "Full abstraction for
a simple parallel programming language". In proceedings of
MFCS '79 (Olomouc, Czechoslovakia), LNCS 74, 1979, pp. 108-120.

[9] Jaffar,J., Lassez, J.L. and Lloyd, J.: "Completeness of
the negation as failure rule". In proceedings of the 8th
IJCATI (KRarlsruhe, FRG), 1983, pp. 500-506.

26

[10]

(111

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Lloyd, J.W.: "Foundations of logic programming",

Springer Verlag, 1984.

Milner, R.: "Fully abstract models of typed A-calculi",
Theoretical Computer Science, Vol. 4, 1977, pp. 1-22.

Nait Abdallah, M.A.: "On the interpretation of infinite
computations in logic programming". In proceedings of
ICALF '84 (Antwerp, Belgium), LNCS 172, 1984, pp. 358-370.

Plotkin, G.D.: "A power domain construction", SIAM Journal
of Computation, Vol. 5, 1976, pp. 452-487.

Plotkin, G.D.: "LCF considered as a programming language",
Theoretical Computer Science, Vol. ‘5, 1977, pp. 223-255.

Plotkin, G.D.: "A structural approach to operational
semantics", Aarhus University, 1981, DAIMI FN-19.

Plotkin, G.D.: "Structural view of operational semantics",
1981. Unpublished supplement to [15].

Robinson, J.A.: "A machine oriented logic based on the
resolution principle", Journal of the ACM, Vol. 12,
1985, pp. 23-41.

Smyth, M.B.: "Powerdomains", Journal of Computer and

System Sciences, Vol. 16., 1978, pp. 23-36.

Winskel, G.: "Modelling with theories - an overview".

Unpublished lecture notes, Aarhus University, 1980.

Winskel, G.: "On powerdomains and modality". Theoretical
Computer Science, Vol. 36, 1985, pp. 127-137.

o

