Problem-heap:

ISSN 0105-8517

A Paradigm for Multiprocessor Algorithms

Peter Mpller-Nielsen
Jergen Staunstrup

DAIMI PB - 200
October 1985

DATALOGISK AFDELING
Bygning 540 - Ny Munkegade - 8000 Aarhus C
tif. (06) 12 83 55, telex 64767 aausci dk
Matemnatisk Institut Aarhus Universitet

f_iw

Problem-heap: A Paradigm for Multiprocessor
Algorithms

Peter Moller-Nielsen and Jorgen Staunstrup !
Computer Science Department
Aarhus University
Ny Munkegade
DK-8000 Aarhus C
Denmark

October 8, 1985

Abstract:

The problem-heap paradigm has evolved through four years of experiments
with the Multi-Maren multiprocessor. Problem-heap algorithms have been
formulated for a number of different tasks such as numerical problems,
sorting, searching and optimization. Although these tasks are very different,
the analyses of the running times of all the problem-heap algorithms are very
similar. The problem-heap paradigm is illustrated by algorithms which have
been implemented and analyzed using the Multi-Maren multiprocessor.

1 Introduction

A multiprocessor is capable of simultaneously executing several parts of
an algorithm. Therefore, it has the potential of executing the algorithm
faster than a conventional (mono-)processor. This potential can be exploited
only if algorithms can be found which takes advantage of the multipro-
cessors ability to execute many parts simultaneously, such algorithms we
call multiprocessor algorithms. This paper describes a particular class of
such multiprocessor algorithms, called the problem-heap algorithms. Many
different multiprocessor architectures are currently being studied, a recent
overview of experimental multiprocessors is given in [Architecture 1984].
There are considerable differences between the architectures of these ma-
chines. Instead of centering on the architectural details of multiprocessors,

I This paper was written while Jargen Staunstrup was visiting The Computer Science Department
at The University of Washington, Seattle.

we want to focus on their algorithms. A multiprocessor algorithm is designed
explicitly for a machine with many processors. Other efforts are aimed at
automatically finding the potential concurrency in an algorithm. Although
this approach has advantages, we find it necessary to first get more knowl-
edge and experience with the (manual) design and analysis of multiprocessor
algorithms.

In this paper we assume a multiprocessor with a number of asynchronous
processors, each of which is capable of communicating with all other proces-
sors (maybe indirectly). Each processor is assumed to consist of a traditional
processing unit (e.g. a microprocessor) and a local store. The processors are
assumed to be almost identical, in particular they should run with roughly
the same speed. For multiprocessors where this is not the case, special
consideration must be given to allocating time consuming parts to the fast
processors. This may complicate the algorithms considerably.

There is already a quite extensive knowledge on two classes of multipro-
cessor algorithms: the vector algorithms and the pipeline algorithms. Both
of these classes were originaly intended for particular machine architectures
(vector and pipeline processors respectively). They are, however, also very
useful on an asynchronous multiprocessor. Vector algorithms simultaneously
execute a particular operation on a number of different data elements (a
vector). Pipeline algorithms work in the same ways as an assembly line;
the algorithm is split into a number of consecutive stages, each of which
does a different part of the algorithm. Data progress through these stages,
and is therefore gradually transformed into the result. This gives a speed
improvement only if many data sets are processed in succession.

Both the vector algorithms and the pipeline algorithms may be charac-
terized as static. With vector algorithms the data is statically divided into
a fixed number of vector elements, and in the pipeline algorithms there is
a fixed number of stages. Although there are many examples where such
static algorithms give very good results, there are also cases where they are
not appropriate. Consider the simple example of computing the quadrature
of a function F over some interval [a, b], see Figure 1. The quadrature can
be computed by making a static division of the interval into a number of
equally sized intervals, one for each processor. This may, however, be a very
inefficient approach, since some of the intervals (e.g. where F rises steeply)
require a lot of work to compute the quadrature with the desired accuracy,
whereas other intervals (e.g. where F is flat) require little work. Hence some
processors will finish very quickly and be idle, while the rest complete their

4 ‘_;‘!

~ PAC [078] fig.1. A5

S V.

work. When the difficulty of the parts cannot be predicted, a static division
of the work is inadequate, therefore it is necessary to dynamically allocate
the processing power to the parts where it is most needed.

In this paper, we describe a class of dynamic multiprocessor algorithms
called the problem-heap algorithms. This class has evolved through our ex-
periments with the Multi-Maren multiprocessor. A number of multiprocessor
algorithms has been implemented on this machine. Many of these algorithms
exhibit a very good performance, but some do not. In the latter cases, we
have always found that shortcomings in the algorithms and not hardware
bottlenecks is what limits performance. The experimental results given in
this paper all stem from experiments on Multi-Maren.

2 Running time analysis

Most of our running time analyses have concentrated on finding the speed-
ups of problem-heap algorithms. Let T(/V) be the time it takes to perform a
certain algorithm using N processors (the interpretation of T(1) is discussed
further below). The speed-up is defined as follows:

This measure has been studied in a number of other multiprocessor projects
and although it is quite simple, it has two nice properties which are essential
to our analyses:

® it is processor and implementation independent. Our results are not
very sensitive to the particular processor and programming language
we are using.

® it directly answers the key question of our work: is the processing power
being utilized?

A speed-up which is proportional to N is called optimal. This is an
upper bound on the achievable speed-up, since any algorithm which can
be executed in time T on a N-processor machine, can be executed in time
N X T on a mono-processor. This is of course only true if the amount of
work done by the two machines is the same. Consider, for example, an
algorithm for finding any occurrence of a pattern in a string (if there are
several occurrences any one of them will do). When solving this problem, the
amount of work done can vary radically. Since any occurrence is a solution,
some executions will pick a substring containing an occurrence on the first
try and hence do very little work. Most executions will not be so fortunate,
and therefore need to search a large part of the string before an occurrence
is found. For this algorithm one can obtain almost arbitrarily large and
arbitrarily small speed-ups. Such results have been reported by [Wilkes 1977]
and [Lai and Sahni 1984]. To avoid these anomalies the speed-up analysis
should be done on the basis of executions, where the amount of work done
using /N processors and using one processor is the same, i.e. for the searching
problem, the same parts of the string should be searched.

Another subtle point in the definition of speed-up is the quantity T(1).
Usually the running time of a multiprocessor algorithm when executed on
a mono-processor T(1)* is not the same as the running time T(1) of a
sequential algorithm doing the same task. T(1)" is larger because of various
kinds of overhead. In the definition of speed-up used above, the running
time of the sequential algorithm, T'(1), is used.

When an algorithm does not achieve optimal speed-up, it is because some
processing power is lost. There can be two reasons for this: one is that the
algorithm does not manage to keep all processors busy with useful work, this
is a deficiency of the algorithm, let S, be the total time lost because of
this. The other possibility is hardware phenomenon such as bottlenecks or
communication delays, let H; denote the total time lost because of this.
These two should be distinguished and analyzed separately.

Q) + Sloss + Hloss
N
On the multiprocessor used for our experiments, no significant hardware

bottlenecks have been encountered. It is a 10 processor machine with a
common bus architecture. The major reason no hardware bottlenecks have

T'(N) =

been observed is that all programs (code) is kept in a store local to each
processor [Moller-Nielsen and Staunstrup 1983]. Therefore H,, is ignored
in the rest of this paper.

In a number of cases we have found a loss due to the algorithm, i.e. a
significant §; . By analyzing this in further detail, we have found that §;
can be broken into a small number of different components: starvation loss,
braking loss, separation loss, and saturation loss. Deviations from an optimal
speed-up are explained as a combination of these four kinds of loss, usually
only one or two of them is dominant.

There may of course be other sources of loss that we have not yet
identified. But even if one or two more sources are added to the list, it is still
quite short. This is important for analyzing the performance of problem-heap
algorithms, which we suggest is done by estimating each of the four kinds
of loss. It is our experience that this analysis is almost the same for each
new problem-heap algorithm. What may differ is the magnitude of each of
the sources and thereby its significance for the overall performance of that
algorithm.

Other classifications of loss has been attempted, e.g. by explaining
the deviation from optimal speed-up as communication or synchronization
overhead|Oleinick 1982]. With such a coarse identification of the loss, it can
be very difficult to understand whether it is caused by the algorithm, the
hardware, or the systems software. By making a more thorough distinction
between different types of software loss we try to shed some light on the
behavior of the algorithm.

3 Problem-heap algorithms

To achieve fast execution, the task to be done must be split into a number
of subtasks which can be done simultaneously by different processors. Some
tasks can be split into a number of independent subtasks, one for each
processor, before the computation starts. Consider, for example, the task of
finding all occurrences of a particular pattern in a string. This task can be
done by splitting the string into a number of equally sized substrings and
then letting each processor search one of these. When such a static splitting
is possible, it is straightforward to get a simple multiprocessor algorithm. But
when a static splitting is not possible, or when it does not give a satisfactory
performance, a dynamic splitting must be considered. The quadrature
algorithm mentioned in the introduction is an example, where a dynamic

splitting is necessary. Further examples are given below.
The problem-heap algorithms described in this paper is a simple class of
such dynamic algorithms. The main characteristics of these algorithms are:

® a number of identical and asynchronous processes cooperate on doing
a certain task. These processes share one or more data structures that
represent partial results and those parts of the task that yet remain,
this data structure is called:

® a problem-heap describing the remaining subtasks called problems.
A process takes a problem from the problem-heap and tries to solve
it. This may generate new problems which are then put back in the
problem-heap, or the problem may be simple enough that it can be
solved immediately.

One major asset of the problem-heap algorithms is their simplicity: all
processes are asynchronous, identical, and an arbitrary number of them may
be used. The task is done (all problems solved) no matter how few or how
many processes that are used. What may vary is the speed with which the
task is done. Another major asset is that we have found a recurring pattern
in the analysis of the performance of problem-heap algorithms by estimating
the magnitude of the four sources of loss mentioned above.

3.1 Skeleton algorithm

All processors of a problem-heap algorithm execute the same process. Fur-
thermore, there is a common skeleton of this process which is found in all
problem-heap algorithms:

CYCLE
take a problem from the heap
IF the problem is simple
THEN solve the problem
include the result in the solution
ELSE
split the problem into other problems
put the new problems back in the heap
END

The primitives used in the skeleton will of course vary.

problem: p

Figure 2: Snapshot of array during a Quicksort

T R LT R
3.2 Example: Quicksort —

A well known example of a so-called divide and conquer algorithm is
Quicksort [Hoare 1962], which sorts a list of numbers represented in an
array. Often Quicksort is presented as a recursive procedure; but as all other
divide and conquer algorithms it can easily be formulated as a problem-heap

algorithm. The following algorithm describes the process executed by all
processors:

CYCLE
p:= a problem from the heap
IF size(p) = 1
THEN report p is sorted
ELSE split p into pl and p2 such that: p = pl p2 and
all x in pl are smaller than all y in p2
put pl and p2 in the heap
END

In this formulation, a problem, p, is an index range 7..j of the array, see
Figure 2. To solve p, all numbers in p must be sorted and put back in the
same index range 7..j of the array. Quicksort is chosen as an example because
it is a well known algorithm; it actually has a rather poor performance on a
multiprocessor, see section 4.1.

3.3 The problem-heap

The problem-heap is a data structure accessible by all processes. It can be
- viewed as a source of data which supply all processes in the problem-heap
algorithm with work. When the problem-heap is drained the processors
starve and their processing power is lost. The structure of the problem-heap
is not nearly as uniform as was the case with the processes. Sometimes it is
organized as a stack, sometimes the problems are sorted, sometimes solving

one problem requires deleting other problems in the heap etc. This all
depends on the task to be solved. The heap is initialized with one problem,
the znitial problem describing the task to be done.

The divide and conquer approach is an obvious way of breaking a task
into subtasks, which can then be done by the independent processors of a
multiprocessor. Several such algorithms were implemented on Cm*[Jones
and Gehringer 1980]. More recently the Crystal multicomputer [DeWitt,
Finkel and Solomon 1984] has been used to experiment with problem-
heap algorithms where the heap is distributed over many processors [Finkel
and Manber 1985]. The problem-heap is similar to the so-called ask for
monitors[Lusk and Overbeek 1983].

4 Software loss

In this section we describe the four sources of loss that has been identified in
our experiments.

4,1 Starvation loss

The problem-heap must constantly supply all processes with problems. When
there are too few problems in the heap the workless processes starve and
processing power is lost, this is illustrated in Figure 3. In most problem-heap
algorithms there is some starvation in the initial phase until all processes
have gotten their first problem to work on. Usually the loss caused by this is
negligible, but in other cases e.g. Quicksort, the loss caused by starvation in
the initial phase is the bottleneck of the algorithm.

Although starvation is usually found in the beginning and in the end of
a computation, it may of course happen at any point in between. Let T, be
the times defined by the diagram shown in Figure 3. The loss caused by this
starvation phase is:

SthSS = E X T

H

So k-1 processes each lose T,_,, k-2 processes each lose T)_, etc. As
mentioned above, starvation may happen at any point of the computation
because there can be several starvation phases during one execution. If this is
the case each of the starvation phases cause a loss as the one described above.

%

] 1

| i

|]]
L 'l ! R ——

=3 o]
. L 1 i 3 o

Pyt [! ' i
S N S R

k \-—-.._’——-‘l'_w-fl k‘*v‘-“"

i Trep T

Figure 3: Starvation phase ? }'/

W
The problem-heap implementation of Quicksort exhibits a very clear

example of starvation loss. The first step of a Quicksort consists of splitting

the data into two (problems) such that all elements in one list are less than

all elements in the other. This splitting requires an inspection of all data

elements so the time to split is proportional to the number of elements in the

list, M. During this period one processor only is working. After this, two can

get to work on splitting the two problems into four, etc., see Figure 4. The

magnitude of the starvation loss is (assuming /N is a power of two):

logN —1 . M
Stloss = z (N = 2]) X g
=0

J

For moderate values of M, this is the dominant source of loss. Even if the
array to be sorted is copied back and forth between the local stores, the loss
caused by this copying is negligible compared with the starvation loss. The
speed-up we have observed is shown below. If the expression given for St

above was exact we would expect:

T(1) o St!ass

T(N) = =

which may be rewritten as:

s
N = §(N) + loss
T(N)

g
—
-
e
=
-l
1
'
I

P,: ¢
py:] -~
Pyt by ===
Py’
L g - o LI
M M/2 M/4
- Figure 4: Starvation in Quicksort .

Y) Lot b (
9’ oI PA'{J & - "'\%' : ¥
7 EELs
St " . .
Our measurements of T(lﬂzﬁ has been very crude, so this number is given with

one significant digit only in the table below. The numbers stem from an
experiment where 1000 integers placed in the common store were sorted.

St

N | S(N) | 78S
2| 1.8 | 0.2
4| 2.8 1
8 | 3.6 4

This table confirms that the starvation loss explains the speed-up observed
for Quicksort. The Quicksort algorithm has also been studied on the Ccm*
[Jones 1980] with essentially the same conclusions.

4.2 Braking loss

When a process receives a problem to solve, it either solves it completely or
splits it before consulting the problem-heap again. In both cases there is
a period when it works in isolation on a particular subproblem (solving or
splitting); if during this period the entire task is completed, the process is
not stopped until it again consults the problem-heap. Hence the process does
some superfluous work; the loss caused by this is called braking loss .

10

W

2 AN i ‘.i__ i Vi i {f"

S

T T
Tb s f

Figure 5: Time diagram showing braking loss //'/
_—/

To be more precise, consider the diagram in Figure 5 illustrating the final
phase of a computation. The three time instances introduced in Figure 5 are
defined as follows:

Ty: The first potential solution to the complete task is found by process
p;- Other processes working on other subproblems finishing later
might find other improved solutions. But no process is given any new
subproblems to solve after T .

T.: The final solution is found. There might still be some processes
working on subproblems not contributing to this final solution.

T.: All processes are stopped, so no more subproblems are solved.
f P PP P

These three time instances are not always distinct. Consider the problem of
finding the leftmost occurrence of a pattern in a string. In this example,
T, is the time instance where some process finds the first occurrence of the
pattern. Other processes might, however, find other occurrences farther to
the left. So T is the time instance where an occurrence is found and all parts
of the string to the left of the occurrence have been searched without success.
At time T, there might still be processes working on (irrelevant) substrings
to the right of the occurrence. T is the time instance when all these have
stopped. If instead the task is to find not the leftmost, but any occurrence of
the pattern, T, is the same as T, while T, is still distinct from Tf.

Braking loss is defined as the processing power lost between T and Tf.
This is indicated by the crossed periods in the time diagram shown in Figure
6. Although braking loss is most frequently found at the end of the execution
of an algorithm, there are also examples of algorithms where the solution
of one problem suddenly makes other problems in the heap superfluous.

11

i Lisstsssl
777rrim

|
LALLLL L L LA

_—— | Al

|
I
1
I
I
I
|
|
|
|
1
1
1
i

We have observed this in a root-searching algorithm based on the same
principle as the well-known bisection algorithm. When one process locates
an interval containing the root, all other problems (intervals) in the heap
becomes irrelevant. All processes should brake and turn their attention to
the interval now known to contain the root.

Consider again the string searching algorithm where the leftmost occur-
rence of a pattern must be found. Figure 6 illustrates the braking phase of
this algorithm. To estimate the magnitude of the braking loss, the hatched
periods must be estimated. We have done this both analytically and ex-
perimentally, the analytical estimate is based on a simple application of
order statistics [Feller 1970], for further details please see [Maller-Nielsen
and Staunstrup 1984]. The experimental results are shown in section 4.3.

4.2.1 On interrupts

The loss caused by braking is analogous to the reduced response time found
when an external device is not polled frequently enough. In both cases
the occurrence of an event is discovered by regularly inspecting some status
information. The loss may sometimes be reduced by making the cycle shorter,
i.e. inspecting the status more frequently. The most common way of making
this reduction is by moving the inspection cycle to an underlying level of
software or hardware. At the higher level the inspection can now be replaced
by an interrupt.

Interrupts could also be a way of reducing the braking loss in problem-
heap algorithms. An interrupt should force a process to consult the problem-
heap immediately. We have not tried to use interrupts in any of our

12

w0
|
I
I
I
|
I
1

5 O —

Figure 7: Separation loss in string searching algorithm

PAC [+ ¢

algorithms, since this would complicate them significantly.

4.3 Separation loss

All problem-heap algorithms are iterative (see the skeleton in section 5.1). In
each iteration a problem is either solved or split into simpler subproblems.
But only in a very few cases is there an obvious limit on the problem size above
which problems should be split and under which they can be solved without
further splittings, this size is sometimes referred to as the granularity of the
problem. With a larger granularity one may risk starvation loss as described
in section 4.1, see also section 5. On the other hand, there is an overhead
associated with splitting a problem. Solving two subproblems separately may
require more work than solving them together as one problem. This overhead
is called separation loss .

Consider again the task of finding the leftmost occurrence of a pattern
in a string. By splitting the string s in two 5; and s,, a little extra work is
introduced since the first characters of s, might be inspected twice, see Figure
7. Once to check for an occurrence towards the end of s5;, and the second
time to check for an occurrence in the beginning of Sy. So, the separation loss
is the extra work introduced by breaking the task into subproblems. A small
fraction of this may be overhead associated with administering the heap, but
the significant part is the extra work introduced, e.g. the characters that
have to be inspected twice.

The separation loss grows with the number of iterations of the algorithm.
When the loss in each iteration is the same; it is quite easy to estimate
the total separation loss, but when this is not the case, it may be more
difficult. The algorithm for finding the leftmost occurrence of a pattern in
a string has some separation loss which we have estimated both analytically

13

and experimentally. It can be expressed as follows:

s e

€Ploss = ¢ X B

C is a constant which depends on details of the implementation, D is the

number of characters in a substring(problem), and ¢ is the position of the

first character of the occurrence, which in this case is proportional to the
number of iterations.

The table given below shows the running time of the string searching

algorithm (for finding the leftmost occurrence). The measured running time

is compared with the predicted running time obtained by using the formula:

T(1) + Sepy,,, + Bry,

T(N) = N

Where Br,,, is the braking loss and Sep,,,. the separation loss. The numbers
stemn from an experiment where a string of 10000 characters were searched
for an occurence of a pattern 10 characters long.

N | Sepy,, | Bry,, | Predicted T(N) | Measured T(N) | S(NV)
4 100 216 978 981 8.7
8 200 248 506 516 7.0

4.4 Saturation loss

In our experiments the problem-heap was a global data structure which all
the processes could reference, but only one at a time (mutual exclusion).
When two processes try to reference the problem-heap at the same time,
one of them must wait which introduces saturation loss. Let G, and G,
be the times it takes for the two processes to complete their references to
the problem-heap, the diagram in Figure 8 illustrates the loss they can
experience. This kind of loss may happen at each reference to the problem-
heap, i.e. once in each iteration of all the processes, see the skeleton
in section 3.1. Furthermore, the saturation loss usually grows with the
number of processes. To analyze the saturation loss we have used traditional
techniques from queueing theory. Although the emphasis there has been on

2 A different value of D was used to obtain T'(4) and T(8).

14

G

1
!_/\-j
p,: ——- —,_____| Lesiisia A——
1. rrrrreal
D —mm A A — ~——-
\—"—‘-\f—"’"—"‘ \'"_'”V"—-‘J
% 8

-== —— --— working outside monitor

——— MHH## -—- working inside monitor
---— |—-- waiting to enter the monitor
, Figure 8: Time diagram illustrating saturation loss } f /

hardware saturation, which is not significant in any of our experiments, the
same techniques and results can be applied to software saturation (saturation
loss).

Note, that there is a distinction between starvation loss and saturation
loss. When processes atternpt to get problems in or out of the heap, there
may be some loss because they need mutually exclusive access to the heap,
and therefore need to wait for each other. In contrast, the starvation loss
occurs when there are no problems in the heap. Consider, for example,
what happens while the initial problem is split in two or more subproblems.
During such a splitting the problem-heap is free for all processes to inspect,
so there is no saturation loss. But if the splitting takes a long time there is a
considerable starvation loss.

By subdividing the heap one can reduce the saturation loss, but usually
at the expense of increasing one or more of the other sources of loss, e.g.
starvation loss [Mgller-Nielsen and Staunstrup 1983].

5 Granularity

An important issue to consider when designing a multiprocessor algorithm
is its granularity, i.e. what is the proper size of the subtasks which are
performed in parallel. If too fine a granularity is used there might be a
significant separation or saturation loss. On the other hand a very coarse
division can give starvation or braking loss. We cannot offer any general
rule for making the compromise between the two. But an analysis of the
four sources of loss will show which is the dominant kind. If it is separation

15

00

600

500

N =28
- max T

o average T
300) o s

200}

T T T T 1000

T
100 200 300 400 500

Figure 9: Loss as a function of the subproblem size D

)
loss a larger granularity should be attempted and conversely if braking or
starvation loss dominates.

As an example, consider again the string searching algorithm. Here the
granularity is determined by the size, D, of the substrings in the problem-
heap. The braking loss decreases with D, whereas the separation loss grows.
In Figure 9 it is shown how very small and very large values of D increases the
total loss. Fortunately there is a very wide range of D values where the loss is
close to its optimal value. The diagram in Figure 9 stem from an experiment
where a string of 10000 characters where searched for an occurence of a 10
character pattern. The size of D (x-axis) is given in characters.

6 Summary

During the four years we have experimented with the Multi-Maren mul-
tiprocessor a number of algorithms have been tried. Initially, we picked
algorithms more or less at random, but after a period the problem-heap algo-
rithms emerged. After this a majority of the algorithms we have implemented
has been problem-heap algorithms. So far, problem-heap algorithms have
been written for the following tasks: quadrature, root-searching, fixpoint
calculation, string searching, sorting, optimization (branch and bound), in-

16

D

ey / /ﬁ/
/ + & \ y

terpretation (Prolog and SASL). There is no reason to believe that this list
cannot be extended, it is given here to indicate the variety of the tasks we
have experimented with.

The four kinds of loss identified through our experiments give a plat-
form for predicting and analyzing new problem-heap algorithms. There is,
however, no reason to believe that we have found the ultimate classification.
New experiments and further work might uncover other kinds of loss or may
lead to a refinement of the four proposed by us. This would certainly be
welcomed.

We do not claim that the class of problem-heap algorithms is universal.
There are other clearly distinct classes of multiprocessor algorithms, e.g. the
vector and pipeline algorithms. But the problem-heap algorithms have some
nice properties as they can be performed by:

® an arbitrary number of processes. The algorithm does not have to be
rewritten when the number of processes is increased or decreased. This
means that extra processing power can be added without changing the
algorithm (the program text).

® asynchronous processes. The algorithm can be executed by processes
running with different and varying speeds.

® symmetric processes. All processors execute the same algorithm (code).
This is much easier to handle than writing a different algorithm for
each processor.

Note, that the pipeline algorithm does not have any of these properties, since
each processor in the pipeline runs a different algorithm, and the work done
by the processors must be in balance, otherwise the slowest process creates a
bottleneck.

Acknowledgments

Many of our colleagues and students at the Computer Science Department at
Aarhus University contributed to the Multi-Maren laboratory. Brian Koblenz
and Eric Jul made many corrections to the Danglish of earlier version of
this paper. We are grateful to Paul Frederickson, Los Alamos National
Laboratory for his encouragement in preparing this paper.

17

References

[Architecture 1984:] Computer Architecture Technical Committee
Newsletter IEEE Technical Committee on Computer Architecture,
February 1984.

[DeWitt, Finkel and Solomon 1984:] The CRYSTAL Multicom-
puter: Design and Implementation Experience, Technical Report
553, Dept. of Computer Science, University of Wisconsin-Madison,
September 1984.

[Finkel and Manber 1985:] DIB- A Distributed Implementation of
Backtracking, Proceedings from Fifth International Conference
on Distributed Computing Systems, Denver, May 1985,

[Feller 1970] An Introduction to Probability Theory and its Ap-
plications IT, W. Feller, Wiley, New York 1970.

[Hoare 1962:] Quicksort, Computer Journal 5, 1, 1962,

[Jones and Gehringer 1980:] The CM* Multiprocessor Project: a
Research Review , A. K. Jones and E. F. Gehringer (editors), Com-
puter Science Department, Carnegie-Mellon University, July 1980,

[Lai and Sahni 1984:] Anomalies in parallel Branch and Bound
Algorithms, T. H. Lai and S. Sahni, Comm. ACM 27, 6, 1984.

[Lusk and Overbeek 1983] Implementation of Monitors with Macros:
A Programming Aid for the Hep and other Parallel Processors,
E. L. Lusk and R. A. Overbeek, ANL-83-97, Argonne National
Laboratory, Argonne, Illinois, 1983.

[Moller-Nielsen and Staunstrup 1983:] Saturation in a Multiprocessor,
P. Moller-Nielsen and J. Staunstrup, Proceedings from IFIP 83,
North Holland 1988.

[Meller-Nielsen and Staunstrup 1984:] Experiments with a Fast String
Searching Algorithm, P. Mgller Nielsen and J. Staunstrup, Inf. Proc.
Letters 18, March 1984.

[Oleinick 1982], Parallel Algorithms on a Multiprocessor, P. N.

18

Oleinick, UMI Research Press, Ann Arbor, MI, 1982.

[Wilkes 1977:] Beyond today’s Computers, M. Wilkes, Proceedings
from IFIP 77, North Holland 1977.

19

