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LEARNABILITY

by
Gudmund Frandsen

Computer Science Department

Aarhus University

Abstract

Les Valiant has recently conceived a remarkable mathematical
model of learnability. The originality appears through several
facets of the model. Objects belonging to a specific concept
are given a measure of naturalness in the form of a probability
distribution. The learning of a concept takes place by means of
a protocol that among other tools allows the use of a source of
natural examples. A concept is learnable if a recognition
algorithm can be synthesized within a polynomial number of
steps. The recognition algorithm is allowed to be incorrect for
an adjustable fraction of inputs measured with respect to

naturalness.

Technically the model is based on the propositional logic over

a finite number of boolean variables. However, the underlying
ideas are quite universal and can be realised by means of an
almost arbitrary formal language, which we will demonstrate in
this note. A single concept may include infinitely many objects
within the formal language frame. Fortunately we can learn such
concepts from finite sets of examples only. We shall prove a specific
class of concepts to be learnable within the nontrivial formal

language of predicate logic.



1. Introduction

Much work has been done in order to establish a mathematical
theory of learning. Here we shall only recall a few results
that are seminal for the work reported in this paper. For a

broad survey of "inductive inference" one may consult [1].

Models of learnability for formal languages are described by
Gold [3] and Wharton [12]. Quite recently Valiant [10,11] has
come up with an interesting model of learnability for the
(narrow) universe of propositional functions. The aim of this
paper is to generalise Valiant's ideas to the universe of for-
mal languages. We give a brief description of the development
of ideas from Gold over Wharton to Valiant (Table 1 provides
a schematic overview). It should be stressed that this "line
of development" is crude in that important contributions have
been ignored. In addition the "line" does not necessarily
reflect an order of influence, e.g. Valiant seems not to know

Wharton's work.

In Gold's model, learnability is a quality attributed to
classes of languages rather than individual languages. The
pupil must identify an unknown language belonging to a known

class of possible languages using tools of two main types:

1) A source of positive examples, i.e. a complete enumera-

tion of words belonging to the unknown language.

2) An oracle (informant), i.e., a tool that can decide

whether a word belongs to the unknown language.

Gold's definition of learnability (identification in the limit)
is the following: Assume time is quantised and has a finite
starting time. At each time the pupil receives a unit of infor-

mation (from some tool) and is to make a guess as to the identi-



ty of the unknown language on the basis of the information
received so far. This process continues forever. A class of
languages will be considered learnable with respect to the
tool used if there is an algorithm that the learner can use
to make his guesses, the algorithm having the following
property: Given any language of the class, there is some
finite time after which the guesses will all be the same and

they will be correct.

According to this definition the pupil can not in general de-
cide, whether his present guess is correct. Gold mentions
other definitions that remedy this problem. Yet only the for-
mer definition is used to prove classes of languages to be or
not to be learnable. The achieved results are quite strong
(see [3]).

Many variations of Gold's model have been made. We consider

a specific variation constructed by Wharton [12]. He introduces
an interesting relaxation of the notion of learnability; exact
identification is replaced by approximate identification. He
gives every possible word a weight (the total sum of all
weights is 1) and defines a metric on the set of languages

by letting the distance between two languages equal the total
weight of the symmetric set difference. Wharton proves that

any language can be approximated arbitrarily well by a finite

language with respect to this metric.

When learnability is based on approximate identification, the
class of possible languages need not contain the unknown lan-
guage to be learned, or a simple language may be learned as

an approximation of a more complex one.

Wharton investigates approximate identification with respect
to finite and fixed time identification apart from identifica-

tion in the limit. When using finite identification the pupil



recognises a correct guess as such, although he may not know
how long time that has to pass before he makes a correct guess.
In contrast fixed time identification allows to estimate the

learning time in advance.

Wharton obtains some positive results that are considerably
stronger than those Gold achieved with respect to exact identi-

fication, which should be no surprise.

In all variants of the learning model (incl. fixed time identi-
fication) the actual learning time may be quite unfeasable.
This problem seems ignored until a recent paper by Valiant
[10,11]. He connects learnability with approximate identifica-
tion in probabilistic polynomial time. Valiant presents his
model in terms of boolean functions (propositional logic)
rather than formal language theory. He interprets classes of
these functions as concepts, thereby letting his theory be-
come one of "fast approximate concept identification". The
weight associated with an individual object belonging to a
concept is interpreted as a measure of naturalness for the
object in question. In this way Valiant almost provides a
mathematical model of Larsen's [4] fuzzy concepts organized
around prototypical instances in that fuzziness corresponds

to approximate identification whereas prototypes are instances

with a relatively high weight.

We generalise Valiants model to languages in general, of which
the language of Boolean functions is a specific instance. The
main problem in our generalisation is the transition from a
finite to a countable universe. However, there is a simple
solution: Infinite languages (concepts) can be learned from a
finite set of examples. Indeed, this seems to be the only type
of solution that can satisfy requirements of polynomial time

complexity.



Valiant's model uses fixed time identification, where the poly-
nomial time complexity is measured with respect to several
parameters, one of which is the size of the function to be
learned. In our model, it is assumed that the pupil does not
know the latter parameter, which appears to be a natural situa-
tion. Thus we obtain a model that uses finite time identifica-

tion rather than fixed time identification.

Before presenting our model, we want to stress the philosophical
basis for our use of probabilistic algorithms, which is important-
ly different from the traditional one. Probabilistic algorithms
have mostly been applied to problems that had a welldefined
unique solution, e.g., prime recognition, in which case a prime

is correctly identified with probability at least % based on

a random number source. Existing implementations of such al-
gorithms seem to work properly, although their correctness is

an open problem, since they use pseudorandom number generators

that are not truly random [2].

In contrast, we can prove a probabilistic algorithm to be
correct with respect to our formal model of learnability, be-
cause assumptions about true randomness are built into the
model, i.e., we suppose a concept to be fuzzy and probabilistic

describable rather than sharply defined.



TABLE 1

Gold

Wharton

Valiant

This paper

Universe of discourse:

- formal languages

- propositional logic

Learning tools:

1) output from example:
- complete enumeration

- natural distribution

2) input to oracle:
- single words

- certain languages

Lernability Criterium:

1) identification:
- exact

- approximate

2) success guarantee
- in the limit
- finite
- fixed time

(- prob. pol. time)

3) what is learned:
- recognizer

- generator

Results:

- learnable classes

-~ non-learnable classes




2. Learnability of abstract concepts

Our model is abstracted from Valiant's model by ignoring the
technical details of the boolean functions. In addition we
generalize the model to incorporate concepts with infinite
extension (infinite languages). In order to stress the concept-
view on our model we will use Larsen's [4] notion of fuzzy
concepts in the presentation. We start by sketching Larsen's
paradigm and continue by an informal description of our model

followed by a mathematical more precise definition.

According to classical logic a concept has an extension and
an intention. The extension is composed of those objects or
phenomena that are covered by the concept. The intension is
those properties that are shared by all instances of the con-

cept.

Larsen claims firstly that everyday concepts are fuzzy, e.g.,
it may be questioned, whether garlic is a vegetable. Secondly,
membership of a concept is not a guestion of either-or. Some
objects are more typical instances of a concept than others,
e.g., carrot is one of the most typical vegetables, while

garlic must be considered if at all vegetable very atypical.

In summary, the extension of a concept is characterized by

fuzzy bounds and by varying typicalness of the individual instances.

Let us now turn towards our model of learnability. We start

by introducing a context consisting of some objects, each of
which bear a probability, measuring the relative typicalness

of the bearer. A concept has an extension, which is a subset

of these objects. The intension is a fast recognition algorithm
for the extension. An individual is said to learn a specific
concept if he in short time synthesizes a fast approximate
recognition algorithm for the unknown concept. His only infor-
mation consists of typical objects from the context and

"oracle"-answers from another individual, who knows the concept.



Thus our model incorporates the varying typicalness of indivi-
dual instances, whereas fuzziness appears only indirectly as
"approximate identification" in connection with learning.
Technically, we let the set of objects be words over some

finite alphabet. A concept is then a language, which may be
described by its extension (a set of words) or by its intention
(a recognizer). The precise notions of concepts and learnability

are now introduced via a row of definitions.

A context (R,D) consists of a countable set of objects R and

a probability distribution D defined on R. We assume a simple
structure on R in that R should be a recursive language over

a finite alphabet. A standard enumeration of R is given

R = {r1,r2,...} such that size(ri) < size(ri+1), where the size-
function counts the number of symbols in the argument word. The
distribution D: R » [0,1] fulfils X D(r) = 1. D measures the
typicalness or relative frequency g%Rthe individual objects.
The prototypes are those objects that have associated a high
relative frequency. Such objects are few (finite in number)

and they are represented by "short" words. Most of the words
are quite atypical, and it may happen that D(r) = 0 for an

object r. To verify these observations define

1, = min{leN| = D(r)21-h"'}.

size(r) =1
lh gives an upperbound on the length of words that represent the
most typical objects (as measured by the parameter h). In a
learning situation the context can only be accessed through a
routine example. When stimulated the routine outputs an object.
The probability that a specific object r is output on any

single call with input h is

D(r)/ )2 D(r')
sizdr')élh

for size(r)élh and 0 otherwise. If we do not take precautions
to bound the size of output from example, we can not bound the

time-complexity of an algorithm that uses this routine. There



should exist a polynomium p that is an upperbound of lh' This
restriction is trivially fulfilled when R is finite. In general
we say that the context (R,D) is bounded by a polynomium p,
when lh is bounded by p.

To sum up, a context consists of a countable set of objects R,
on which a probability distribution D, measuring typicalness is
defined. This context can only be accessed through the routine
example, which returns typical objects randomly according to
the probability distribution D. We proceed to define the notion

of concept.

A concept is given by its intension, i. The intension is some
procedure, which recursively distinguishes those objects that
are instances of the concept in question from those that are
not. This procedure should have polynomial time complexity. The
extension includes precisely those objects, which belong to the
concept according to the intension. The extension is denoted by
ext(i). In a learning situation a concept may only be accessed
through the routine oracle. This routine outputs 1 or 0 given
an arbitrary intension i' as input according to whether

ext(i') < ext(i) or ext(i') ¢ ext(i). Oracles task is truly in-
tractable, since oracle can not in general be based on a re-
cursive procedure (To see this, choose i to be a recognizer for

some appropriate contextfree language).

In summary, a concept is defined by its intension, a fast re-
cognition algorithm. From the intension, we form the extension
and the oracle routine. External information about the concept

can only be extracted through the oracle.

We proceed to define fuzziness followed by learnability. The
notion of fuzziness is connected to learnability. When a con-
cept is learned only a fuzzy or approximative description of
it is obtained. Let a context (R,D), a concept (i) and an

approximation parameter h >1 be given. Another concept (i') is



10

is said to be an h-approximation for (i), when

)3 D(r) < h_1,
réAext(i,i")
where

Aext(i,i') = (ext(i)~ext(i')) U (ext(i')~ext(i)).

This definition may be interpreted in the way that one con-
cept(i') is an approximation of another concept(i), if their
respective recognition algorithms do agree on a majority

(quantified by 1-h”') of the most typical objects.

We are now ready to define learnability: Given a set of objects
R and a polynomium p, a class of concepts C is learnable if
there exists an algorithm A that for any context (R,D) bounded
by p, any concept (i) €C and any parameter h > 1 outputs a

fuzzy description of (i) fast almost always, i.e., A deduces

an h-approximation for (i) with probability at least (T—h_1)
and A has polynomial time complexity with respect to

1) The degree of approximation as measured by h.

2) The difficulty of the concept to be learned as measured

by the size of the intention 1i.

The algorithm has full knowledge of R and p, but may only
access D, the measure of typicalness through "example".
Correspondingly only "oracle" provides information about the
unknown concept(i). So the algorithm has no knowledge of the

actual number of symbols in i.

After these definitions of concept and learnability, we present
a simple learning algorithm (adapted to our model from Valiants

paper [10]), but first a combinatorial definition:

Given a real number h > 1 and a positive integer S, let L(h,S)
denote the least integer so the following is true: In L(h,S)
independent Bernoulli-trials each with probability at least
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h™! of success, the probability of having fewer than S
1

successes is less than h .
The text of the learning algorithm is as follows:

Algorithm 1:

begin
i, =i, ( ext(ijg)=9 :)
T =0 (: no trials have been made yet :)
S =0 (: no successes have been registered :)
repeat
r = example(2h); T = T + 1
if oracle(r) and r‘¢ext(i1) then
i1 = improve(i1,r); S = 8 +1
until T 2 L(2h,5+1)
end

In algorithm 1, we start by an empty initial approximation,
which is stepwise improved by means of typical objects that are
instances of the concept to be learned, although they are not
accounted for by the present hypothesis. The "improve"-function
may use oracle, but need not be specified in detail to reason

about the partial correctness of algorithm 1:
Theorem 1: Let the following gquantities be given:

i) A set of objects and a polynomium p

id.) A context (R,D) bounded by p and a concept (i),

accessible through respectively example and oracle
iii) An approximation parameter h
iv) An initial approximation (the concept io)

v) A detail-specification of the "improve"-function
of algorithm 1 such that this function, when being
input an approximation (11) and an object r such that
rEAext(i,i1) outputs an improved approximation (iz) such
that r¢Aext(i,12) c Aext(i,i ).
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Then we may conclude: If algorithm 1 halts then i1 is an
h-approximation for (i) with probability at least (1-h"1).
Proof: Suppose the algorithm halts without finding an h-
approximation. In this situation we have made L(2h,S+1).
Bernoulli-trials (i.e., calls of example) each with probability
at least (2h)” ' (lower bounded by h - size%r}>lhD(r)) of
success (i.e., finding a "small" object r that is not explained
by the present approximation i1: r‘EAext(i,iT}) and obtained
fewer than S + 1 successes (namely S successes each resulting
in a call of the improve-function). The probability that this
situation may occur is (by def. of L(h,S)) less than
(2n) " T(sn™Ty.

g.e.d.

Theorem 1 establishes a paradigm for learning algorithms. To
fulfil the requirements of polynomial time complexity, we can

use an equality obtained by Valiant [10]:

Theorem 2: L(h,S) £ 2h(S+logh) for h > 1, S 2 1.

Thus to obtain a concrete result of learnability, we need only
specify the improve function of algorithm 1 in such a way that
at most SO successive calls are needed to obtain a perfect
identification of the unknown object, where Sg is polynomially
dependent on h and the number of symbols in the intension of
the unknown concept. In addition each call of "improve" should

have polynomial time complexity.

We have described our general model of learnability. As a
specific instance we might consider the language of Boolean
expressions and obtain a specific model similar to Valiant's
model albeit a bit different. Valiant proves 3 different classes
of concepts to be learnable, but only one of those may be
transferred into our setting, namely the result on monotone
DNF-expressions ([10],Th. B). Valiant allows polynomial time
complexity with respect to a third parameter, viz. the number

of propositional variables. This enables him to prove the class

of k-CNF-expressions to be learnable for any k.
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Our models inability to support the latter result is not
necessarily a weekness. One may dislike the underlying learning
algorithm, since the learner has to know k. Previously, we
transformed Valiant's basic fixed-time learning algorithm into
our finite time learning algorithm (Alg. 1), and hence allowed
the learner to be ignorant of the size of the intension of a
concept to be learned. Such a trick is not applicable to k,
however, since the time complexity of Valiant's learning al-

gorithm is exponential in k.

In addition Valiant considers more sophisticated oracles, as a
means of access to the unknown concept, and this leads to an-

other class of learnable expressions.

To sum up, our model has less expressive power than Valiant's
model. In return it is defined from more general notions.
Whether our model has a "good" structure can only be evaluated
by using it. First order logic is usually considered as the
language of formal (mathematical) reasoning, i.e., it is common-
ly believed that all apparantly extra logical assumptions can

be made explicit within first order logic. Therefore it would
appear a reasonable "test" for our model to find a learnability
result within predicate logic. This is the goal of the next

section.

3. Learnability within predicate logic

A specialisation of our model to predicate logic could possibly
be done in several ways. In our approach a concept is defined
by some properly restricted set of axioms (the intension) and
the extension consists of all ground atomic formulae provable
from this axiom system. We present the necessary formal defini-

tions:
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Context: To fill our model, we need only define the set of
objects as some language over a finite alphabet. In order to
obtain countably infinite sets of function, predicate and
variable symbols (F, P and V! respectively), we choose the
following alphabet {F,P,V,0,1} (ex.: the 11tP function symbol
(f11) is represented by the sting "F1011"). We assume that each
function and predicate symbol has a specific arity. The set of

groundterms TO is defined inductively:

i) Basis: if f € F has arity 0 then f ETO.

€T

ii) Induction step: if f€F has arity k 2 1 and t k€Ty

then f(t1,...,tk) ET

ok

1;..
0.

The set of objects, which coincide with the set of ground
atomic formulae is R ='{p(t1,...,tn)|p€EP has arity n and
t1,...,tn€TO}.

Concept: We need only specify the set of possible intensions.
An intension is some axiomatization of the objects included in
the concept. In addition we must insist that such axiomatization
can form the basis of a recognition algorithm with polynomial

time complexity.

We have now specified a model of learnability for predicate
logic. Within this model, we shall prove a class of concepts
to be learnable. This class consists of those concepts that
have an intension in the form of a finite set of unit classes.
In order to describe this class we need a definition of atomic
formula, i.e., the above ground atomic formulae with variables

allowed. The set of terms is defined inductively:

i) Basis: every variable v €V belong to T, and if
f € F has arity 0 then f€T.

ii) Induction step: If f € F has arity k 2 1 and tyree. st €T
then f(t1,...,tk) SN
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The set of atomic formulae is now AF = {p(t1,...,tn)!p€P has

arity n and t ,tnET}. There is a natural quasiorder on

§ woin =
AF: a, & a, @13 O € substitutions. a, 0= a,. This order reflects
specialisation/generalisation: p(X1,X2) = p(x1,x1) means that
p(xT,xz) is a proper generalisation of p(x1,x1). In predicate
logic the individual undefined values are labelled. This pre-
caution enables us to express relation between undefined values
(e.g., equivalence: p(x1,x1)). This is the only reason for
naming undefined values. Hence the individual names of wvariables

may be chosen arbitrarily.

Let us define a positive unit clause as a universally quantified

atomic formula: UC = {Vx1,...,xkala€AF, {x1,...,xk} is precisely
those variables that occur in al}. We form the class of unit
clause concepts: C, = {UlU is a finite set of unit clauses:

U g Bk

Let us first see that a recognition algorithm exists for any
member of C1 and thereby verify that CT is a class of concepts.
Observe that an object r belong to the set of theorems derivable

from the axiomset given by i = {Vx1...xk a1,...,Vy1,...,yk an}
if and only if a, E r for some 1=i:sn (This follows from

the resolution theorem [7]). Furthermore a recognition algorithm
for ext(i) can be based on Robinson's resolution principle [7]

and consequently is of polynomial time complexity.
We may now state

Theorem 3: Given the above set of objects R and a poly-

nomium p, then C1 is learnable via algorithm 1.
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Proof: We are going to specify the improve-function of al-

gorithm 1 such that

a) we obtain a perfect identification of the unknown concept
within at most SO = d + 1 successive calls of improve, where
d is the number of unit clauses in the intension of the

concept to be learned and 1 = p(2h).

b) each call of improve fulfil the requirements of polynomial

time complexity.

According to Th. 1 and 2, a) and b) will suffice for a proof.
We represent a unit clause by the corresponding atomic formula
and consequently we represent an intension (and an approxima-
tion) by a set of atomic formulae. The initial approximation
is the empty set. Every approximation is represented without

redundancy because we obey the following rule:

(*) Every pair of atomic formulae ryr I, in an approximation
fulfil: No common generalization of r, and r, is included

in the extension of the concept to be learned.

Improve works as follows: A new typical object (ground atomic
formula) is added to the present approximation, if (*) is not
violated. Otherwise some atomic formula in the present approxi-
mation is replaced by the least general generalisation (lgg) of
this atomic formula and the new typical object. The lgg of two
objects is another name for the greatest lower bound (glb) of
these with respect to the C-order that we have defined on the
set of atomic formulae. Since E is a quasiorder, glb is only
defined modulo the equivalence (C N1). This amounts to saying
that the individual names of variables in an atomic formulae
may be chosen arbitrarily. The lgg is computed by a simple
algorithm, which was discovered independently by Reynolds [6]
and Plotkin [5].
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The details of improve are the following:

function improve (35111: approximation;.r:objectout:i2 approximation)
begin
improved = false

for r, €1 do

i ——— o — o —— T s oy o T i —————

predicate symbol" then
r, :=r1ﬂ i
if oracle (r,) then

i, = (11\{r1})U{r2}

improved := true

if not improved then
i, = i, W 1Ed

end

Let us estimate the maximal number of successive calls of "improve"
that are needed to cobtain a perfect approximation. There are two

sorts of improvements:

(1) An atomic formula a belonging to the approximation is genera-
lised. Suppose a can be generalised k times, i.e., there
exists a sequence of atomic formulae Aqreeerdy such that
a,Ca, ... E a, = a. Reynolds [6] has proved that
k £ length(a) - #{x€V|x occur in al. Here length(a) £ size(a)
denotes the number of symbols in a with respect to the in-
finite alphabet FUPUV., We know size(a) is bounded by
1 = p(2h). Hence the maximal number of successive generalisa-
tions of a single atomic formula in an approximation is

also bounded by 1.

(2) An object is added to the approximation. Observe that every
atomic formula a, in an approximation must be a specialisa-
tion instance of some atomic formula a., in the intension of

L a

2

the concept to be learned, a (This follows from the

2 1
resolution theorem [7], since the approximation is a sound
although possibly incomplete axiomatization of the extension

of the concept to be learned).
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Furthermore, two different atomic formulae belonging to

a single approximation can not be specialisation instances
of a single atomic formula in the intension of the con-
cept to be learned (this is assured by (*)). The number
of atomic formulae in this intension is d. Hence the
maximal number of additions of an object to a specific

approximation is bounded by d.

In summary a perfect identification is obtained within

S0 = d -1 successive calls of improve.

Finally, we must verify the polynomial time complexity

of "improve". 1lgg([]) is the only potentially time con-
suming operation. By examining the algorithms of Reynolds
and Plotkin, we obtain a quadratic upperbound on the time
complexity of this procedure: 0(12) s O(pz(h)).

4, Further work

It might be interesting to take some existing learning algorithm
and describe its power in terms of our model, i.e., we should
prove a specific class of concepts to be learnable by means of

one such algorithm. Shapiro [8] and Summers [9] have described
algorithms for inferring PROLOG-programs and LISP-programs
respectively. However, our naturally distributed examples may

be a too week learning tool for these algorithms: Shapiro men-
tions some results that he has achieved by running his algorithm.
One gets the impression that these results are due to intelligent-

ly chosen (by Shapiro) examples, since he does not describe what
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examples the algorithm needs in order to succeed fastly. In
contrast Summers' algorithm needs a clearly described set of
examples in order to succeed. Yet, this latter set of examples
is not directly describable by the notion of typicalness
provided by our model. In summary, there seems to be no simple
relation between our model of learnability and the assumptions
underlying Shapiro's and Summers' algorithms. Still it might
be worth the effort to investigate the nature of a possible

relation, since especially Summers' results are quite elegant.

We have formed one class of learnable concepts and the above
discussion indicates a possible way to find more classes. This
is, however, a week result that does not tell us much about
the limits of learnability according to our model. It would be
interesting to achieve a completeness result, i.e., we should
give a simple characterisation of all learnable classes of
concepts. Yet, this could be a difficult task, since a non-
trivial result would allow us to exhibit an unlearnable class
of concepts, which implies a lowerbound on the probabilistic
time complexity of any learning algorithm for this particular
unlearnable class of concepts. Traditionally, it has been
difficult to establish non trivial lowerbounds on the time
complexity of specific (natural) problems [2]. Hence, a com-

pleteness result may be difficult to obtain.
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