TRYK: RECAU (06) 12 83 55

861 - dd

SOTIUEWAG [eosed Ipruyog og udsuaf

Pascal Semantics by a Combination
of Denotational Semantics and
High-level Petri Nets

Kurt Jensen
Erik Meineche Schmidt

DAIMI PB - 198
January 1986

This paper will appear in “Advances of Petri Nets 1986” in
Lecture Notes of Computer Science, Springer Verlag.

ISSN 0105-8517

PASCAL SEMANTICS BY A COMBINATION OF
DENOTATIONAL SEMANTICS AND HIGH-LEVEL PETRI NETS

Kurt Jensen and Erik Meineche Schmidt
Computer Science Department
Aarhus University, Ny Munkegade
DK-8000 Aarhus C, Denmark

Abstract

This paper describes the formal semantics of a subset of PASCAL,
by means of a semantic model based on a combination of denotational
semantics and high-level Petri nets. It is our intention that the paper
can be used as part of the written material for an introductory course

in computer science.

Contents
1 INTRODUCTION 1
2 ENVIRONMENT AND STORE 4
3 VARTABLE DECLARATIONS, ASSIGNMENT STATEMENTS,

BLOCKS AND PROGRAMS [

4 CONTROL STRUCTURES 8
5 PROCEDURES 10
6 POINTER VARIABLES 14
7 RECORD VARIABLES 15
8 INPUT AND OUTPUT 16
9 EXAMPLES 18
10 EXERCISES 28
11 CONCLUSION 30
REFERENCES 33

1. INTRODUCTION

This paper describes the semantics of a subset of PASCAL. Programs are
translated into high-level Petri nets, where the token-colours describe
environments and stores. The reader is assumed to be familiar with the
basic ideas behind high-level Petri nets. If not, one of the following

papers should be consulted: [1, 4, 5, 6].

The translation is syntax-directed, in the sense that each kind of
declaration or statement is mapped into a high-level Petri net. When a
statement is aggregated from. several other statements, the net is built
in the usual algebraic way by combining the subnets of the constituent
statements. As an example,the net of an if statement is built from the

two subnets describing the then-part and the else-part.

More formally we shall define a (recursive) function, net{...}, mapping
well-defined program-parts into high-level Petri nets. As an example we

represent a while-statement of the form
while exp do stmt

by the following net

B)e "
(E,S) N,S]

e

l§ ‘/

; ﬂualleulp}[E,S] | val{exp}(E,S)
i #l[,s]
() ()

: Gt

This example illustrates a number of properties, which apply to all

nets obtained by the function net{...}.

First of all we observe, from the arc-inscriptions, that each place has
token-colours, which are pairs. The first component, normally denoted

by E, is an environment describing the current binding of names to

their denotations (the name of a simple variable is bound to an address
(location)). The second component, normally denoted by 5, is a store

describing the current binding between addresses and their contents.

Environment and store are standard concepts from denotational semantics,

and they will be defined and explained more carefully in section 2.

Secondly, we shall, in our arc-inscriptions and transition-inscriptions,
use functions, such as val{exp}(E,S), to examine and update the envi-
ronment and store. This kind of notation is also borrowed from denota-

tional semantics and we shall return to it in section 2.

Thirdly, we observe that each net{...} has two distinguished

places, indicated by an inscribed B and E (for begin and end). When a

statement (or declaration) is ready for execution, its B-place is
marked and the token-colour describes the current environment and store
When execution of a statement finishes, the E-place is marked and the

token-colour describes the new environment and store obtained by the

statement.

Sequential execution of two statements (or declarations) is obtained
by "gluing" together the E-place of the first statement with the B-

place of the second:

® ~®

becomes

O ()

L S
Y
net{STMT1;STMT2}

To make this work, in a correct way, we require that E-places never
have outgoing arcs (before composition with the B-place of the suc-
ceeding statement/declaration). Without this restriction there could be

a choice, whether to resume exXecution of a statement or continue to the

next.

We define the semantics of an arbitrary PASCAL program, PROG (of the
subset considered), by the high-level pPetri net, net {PROG}. Initially,
this net has only a single token, which is positioned at the B-place.
Since a PASCAL program behaves in a deterministic way when input is
fixed, the net has only a single possible firing sequence.+) During
this firing sequence (representing the execution of the program) the
token moves from the B-place through the net in order to reach the E-
place. By its position the token represents the current progress of
execution (the program counter), while the colour represents the current
environment and store. In addition to this (E,S)-token, the net may have
other "auxiliary" tokens describing different items, like parameter-
values, environments to be preserved for later use, number of remaining

rounds in a for statement, etc.

) The treatment of I/0 is explained in section 8.

4
Having described the main ideas behind our semantic model, we now give
a brief description of the history of our approach together with the

purpose we want to achieve by it.

Our work with this type of high-level Petri nets as a semantic tool
started around 1980. The first author was involved in the definition of
a Concurrent Pascal like language [8] and a system description language,
Epsilon [7]. The second author used the nets for teaching semantics of
programming languages to first year computer science students, and the
material presented in the current paper builds heavily on this work,
although the net-notation has been rather heavily modified. Recently a

similar approach has been published for CSP in [2].

The main purpose of the approach is to use the semantic model as a
didactic tool in the teaching of programming languages. It has never
been the intention that programmers should verify the correctness of
even small or medium-size programs, by manually constructing the
appropriate high-level Petri nets. Instead the semantics is intended to
be an intuitive, easy-to-understand and yet precise description of
fundamental constructs in programming languages. The extent to which

this goal has been achieved will be discussed in the concluding chapter.

The remaining part of the paper is organized as follows. Sections 2-8
contain our semantic definition of a non-trivial part of the PASCAL
language. The reader is assumed to be familiar with the basic concepts
of PASCAL, and we shall use the terminology introduced in [3]. Section 9
gives three examples showing how nets are constructed for small PASCAL
programs. Section 10 contains a number of exercises. Section 11 is the
conclusion. It discusses the adequateness of the semantic model, and
how it is possible to extend the semantics to cover the remaining parts
of PASCAL. It also describes the experience, over the last 5 years,
with the use of this teaching material in the introductory computer

science course at Aarhus University.

2. ENVIRONMENT AND STORE

When a PASCAL program is executed on a computer, the memory contains a
word for each (simple) variable in the program. Each word is identified
by an address by means of which we can examine or update the current
contents of the word. As an example we show what the memory may look
like, immediately after execution of the statement b:=false, in the fol-

lowing simple program.

name table computer memory

PROGRAM P(INPUT,OUTPUT); 1 a' :
VAR] a" . :
1,d: INTEGER; : 8 !

: |0
B: BOOLEAN; : a :
B b nnl :

BN a"'| false
I:=1; J:=0; : A
B:=FALSE; H :

names addresses values
of of of

END (*P*). . :
variables variables variables

In the semantics of PASCAL we shall represent the name table and the

memory by two partial functions, E and S, known as environment and store.

names E addresses s values
of —Pp of —P> of
variables variables variables

In the example above we have

E(i) = a' S(a') = 1
E(j)y = a" S(a") = 0
E(b) = a' S(a"™) = false

The functions E and S will also be known as catalogues, and to mani-

pulate them we introduce the following notations where C is an arbitra-

ry catalogque.

o

Clx+«y]l

is the domain of C, i.e.
C = {x | 3y: c(x) = y}

is the catalogue which is obtained from C by relating
X to y, i.e.
C(z) if zeC-{x}

Clx<yl(2z} =
y 1f == x
and C[x<«y] = CU {x}

and as shorthands (C' is an arbitrary catalogue and A is the

empty catalogue (A

@)):

C[x1,x2,...,xn © Yqr¥oreeesy]l = C[x1+y1][x2+y2}...[xn+yn]

n
[X1;X2r---rxn * y1rY21'--ryn] = A[X1IX21""XH = Y1:y2;---;yn]
C[C'] = C[X11X2r---rxn fY‘]ryzr---ryn]
where [x1,x2,...,xn C Yqr¥yreeapy 1= CF
[1 = A

To make the PASCAL semantics more readable we shall use the notation
ref{v}(E,S) and val{v}(E,S)

to denote, respectively, the address and the value of a variable v,
Calculated with respect to the environment E and the store S. The spe-
cial brackets {...} surrounding v indicate that v is part of the pro-

gram text.

From the example above, it is easy to see that the following is a

reascnable definition of the functions ref and val

BE(v)
S(E(v))

ref{v} (E,S)

We will also have to calculate values for more complicated expressions,

such as (x+y-1)#*z or x#y. To do this we generalize the definition of

val in the following way:

val{c}(E,S) = ¢
val{exp1<9exp2}(E,S) = val{exp1}(E,S)® 'val{expz}(E,S)

where c is an arbitrary constant and e an arbitrary (dyadic) operator

applicable to the expressions exp1 and exp, - As an example we get

val{(x+y-1)*z}(E,S) = (val{x}(E,S)+val{y}(E,S)-1)*val{z}(E,S)
val{x#y}(E,S) = wval{x}(E,S)#val{y}(E,S)

The definition of ref and val will be extended in later chapters when
we include dynamic variables and record variables. Then it will also
become apparent that in general ref depends on both E and S, and environ-

ments can bind names to other kinds of objects than just addresses.

3. VARIABLE DECLARATIONS, ASSIGNMENT STATEMENTS, BLOCKS AND PROGRAMS

A variable declaration of the form

v + t
wvhere t is a simple type (i.e. boolean, character, integer, real or

pointer) is represented by the following net

where a is a new address not appearing in S.

The variable name v is bound to an unused address which in turn is
bound to the special value ?, representing the fact that the initial
value of v is undefined. It should be obvious how to extend the seman-

tics above to the case where more variables, with the same type, are

declared simultaneously.

An assignment statement of the form

vV = exp

is represented by the following net

(E,S)

(E,S[ref{u}(E,S) <—val{exp}(E,S)D

The expression exp is evaluated, and its value is associated with the

address referenced by the variable v.

A block of the form

var
DEC1;...;DECm;

begin (mz0)
STMT1;...;STMTn (nz1)

end

is represented by the following net

(e} o0 v O e
om0 o

The net is obtained by "gluing" together the subnets which represent

the constituent parts of the block.

A program of the form
program name(...);

BLOCK

is represented by the following net
SN
net{PROG} : @*’(\"i“'_lgi'f})"@
(i)

([1,[1) where [T ds the empty catalogque. A1l other places are ini-

tially unmarked.

4. CONTROIL STRUCTURES

A while statement of the form

while exp do stmt

is represented by the following net

val{exp}(E,s)
‘[E,s]

(E$) @

S

An if statement of the form

if exp then stmt1 else stmt2

is represented by the following net

(E,S) (E,S)

|_vallenplE,S) | [-valienp)(E,S)]
‘[E.S]

net{stmti} net{stmt2}

It should be obvious how to modify this to the case where the else-

part is missing.

A for statement of the form

for i := expl to exp2 do stmt

where i, expl and exp2 are of the type integer, is represented by the

following net.

(E,S[ref{i}(E,Sk—val{i}(E,S)+1]) E J

The values of expl and exp2 are calculated only once, at the start of
the execution of the for-loop. The number of remaining rounds in the
loop is kept in the place with colour set Z. When execution finishes,
1 is assigned the value ?, to indicate that the value of the iteration-

variable is undefined upon exit from the loop.

10
We have ignored the requirement that inside the body of the loop, i may

not occur on the lefthandside of := or be passed as a var-parameter to

@ procedure. This can be handled by binding i directly to its value in

the environment E, and making the function ref{i} undefined in such
cases. (Names for constants, introduced in constant definitions,can be

handled analogously.)

It should be obvious how to modify the net to the case where i, expl
and exp2 have another type, and to the case where "to" is substituted
by "downto". It is also easy to define the semantics of a repeat state-

ment and of a case statement.

5. PROCEDURES

In order to treat recursion and procedures as parameters in a proper

way, we shall extend the standard Petri net formalism as follows.

Firstly, rather than considering a single net, we shall work with a
(dynamically varying) set of (uniquely) named nets. Secondly we shall

introduce so-called meta-transitions which are drawn as follows.

They take as input a net-name n and an ordinary token ¢, and deliver as
output an ordinary token c¢'. The firing rule of the transition is de-
fined by means of the firing sequence(s) of n. To calculate c¢' we con-
sider the net n, with the B-place marked by c. We construct the possible
firing sequence(s), and define ¢' to be the colour of a token which
eventually appears at the E-place (if such a token never appears, the

meta-transition cannot fire).

For the sake of simplicity we shall only consider procedures with
exactly one value-parameter, one var-parameter, and one procedure-

parameter. The syntax of call and declaration is as follows.

ORTT:e id(exp,z,q)
DEC : procedure id(fv:tv; var Ervtr: procedure fp(...)):

BLOCK

where BLOCK is a sequence of declarations followed by a seguence of

statements (see section 3) .

The semantics of the procedure call is represented by the following

net
1]
(E,S) (S, val{enp}(E,S) , ref{z}(E,S) , E(g))

[s,”l,r‘,p"
net {CALL}:

The upper transition calculates the value of the value-parameter, the
address of the var-parameter and the net-name of the procedure-
parameter. It also calculates the net-name of the net, which represents
the procedure id itself. This net is constructed when id is declared,
and it represents the actions which take place during the execution of

id.

When the parameters and E(id) have been calculated in the environment

of the call, this environment is put in a special place, where it is
preserved. Next the procedure is executed (represented by the meta-
transition) and finally the lower transition of net{CALL} re-establishes

the old environment E and discards the environment E' of the procedure.

As described above, the firing rule of the meta-transition is defined
by means of the firing sequence in the net n = E(id) . To calculate the
output (E',S') we mark the B-place by (S,v',r',p'), construct the
possible firing sequence of n, and define (E',S8') to be the token-

colour eventually appearing at the E-place.

The semantics of the procedure declaration is represented by the

(E,S)

following net

net{DEC}:
(Elid <—-niD],S)

where nID is a (new) net-name for the following net

1.2

r(s,u,r,p)

\/IL’J—iﬁ
| (E'[fv,fr,fp <—a,r,p'l, Sla <—v'D)

niD: ¢ Cf)

o~ —
\\

;
[net{block} j
N y

*)

*

a is a new address not appearing in S and the upper leftmost place is
marked by a token representing the environment E*, which existed imme-
diately after the procedure declaration (i.e. E* = E[id+ nID], created

by the transition in net{DEC}).

The net nID remembers, by means of E*, the environment in which it was

declared. In particular,this environment contains the name of the pro-

cedure itself, and this makes it possible to handle recursive calls.

The upper transition of nID receives the actual parameters (which were
calculated by the procedure call) and it binds them to the formal

parameters in the environment E*. The value-parameter is bound to a new

address, which is bound to the value of the corresponding actual para-
meter. The var-parameter is bound to the address of the corresponding
actual parameter. The procedure-parameter is bound to the net-name of
the corresponding actual parameter. Next the procedure block is exe-

cuted, represented by net{BLOCK}.

Fach execution of a procedure declaration introduces a new named net,
representing that procedure. As mentioned above, we shall assume that

all net-names are distinct.

It should be obvious how to modify the nets above to the cases where

id has a different number of parameters.

We now explain more carefully why we have extended the Petri net for-
malism by introducing meta-transitions. There are two reasons. First

of all id may be a recursive procedure.Ihen,net{BLOCK} contains a copy
of net{CALL} and (if we here insert nID from the very start) this net {CALL}
contains a new copy of net{BLOCK). In other words net {BLOCK} contains

a copy of itself, which contains another copy, and so on, i1.e. we get

an infinite net. The other reason for introducing meta-transitions is
that the name id appearing in the procedure call is not necessarily

declared as a procedure. Instead it may be a formal parameter inside

another procedure id'. In that case E(id) must represent the corres-
ponding actual parameter. E(id) may change from one execution of id' to

the next. Thus it cannot be calculated and inserted until the actual

call is performed.

Technical remark: We have considered at least two alternative ways of

handling recursion and procedures—as—-parameters., The first is to define
the nets recursively, i.e. to define the net corresponding to a program
as a component of the minimal fixed point of a set of net-equations.

As mentioned above this would imply that the nets become infinite, but
the real problem is that because of the way we treat the static scope
rules, the set of equations would either be infinite (recursive proce-
dures can have local procedures) or the net would contain tokens in
which names were bound to nets which are isomorphic to (parts of) the
whole net. In either case the machinery becomes quite involved and it is
even doubtful that the mathematics, in terms of the underlying domain
theory, works out. The second alternative is to produce one net for
every static procedure declaration and then handle all dynamic aspects
via tokens whose colours represent stacks, dynamic and static chains
etc. This would however make the approach much more implementation-
oriented and would represent a definite drawback in terms of the general

goal, to teach semantics.

14

6. POINTER VARIABLES

When a pointer variable has been declared as+
p: Ak

we can speak of the dynamic variable pt, which is of type t.

The value of p is an address a", and the word identified by a" contains

the value of pt.

a' a"

value of pt

This calls for a generalization of the functions ref and val (defined
in section 2) so they can also be used to calculate the address

and value for a dynamic variable p 4

S(ref{p}(E,s))
S(val{p}(E,S}))

ref{p+}(E,S)
val {p+}(E,S)

H

These recursive definitions also work in the case where t is itself a

pointer type.

A dynamic variable is created by means of the statement

new(p)

which we shall handle as a special kind of statement, even though it
is a call of a standard procedure. The semantics is defined by the

following net

(E,S[ref{p}(E,S),a <—a,?])

where a is a new address not appearing in S. The address of p is bound

to a new unused address, which in turn is bound to the ?-value.

t for the sake of simplicity we only consider the case where t is a
simple type, i.e. boolean, character, integer, real or pointer.

new is a standard procedure in PASCAL, and thus it is considered to be

implicitly defined prior to the program-text. We could handle standard

procedures in exactly the same way as programmer defined procedures

(using nets of the form net{CALL} and nID from section 5). Then we
would have to modify the net of a program (see section 3), so that the
B-place contained a token with colour (EO,[1) , where EO is an environ-

ment relating the name of each standard procedure to the corresponding
net. This approach would however yield unnecessarily complicated nets,
due to the parameter passing mechanism in net{CALL} and nTD (see
section 5). Thus we shall instead use the more succint net-representation
given above. Similar remarks will apply to the semantics of the stan-

dard procedures read and write (see section 8).

Notice that now we cannot allow a program to contain redefinitions of
standard procedures. If one wants to preserve this ability, the standard

procedures should be treated in the same way as programmer defined proce-

dures.

7. RECORD VARIABLES

In this section we shall discuss how to modify variable declarations

(from section 3) to the case of record types.

A record declaration of the form (where t1,...,tn are assumed to be

simple)

r: record

sl: t1;
x (n 2 1)
sn: tn
end

is represented by the following net
®

(E,S)
<§§h1—1slmusn(—al,man]].ﬂnlmqan<—?pm?n
E

where al,...,an are new addresses not appearing in S. The notation
[s1,...,sn = al,...,an]

represents a catalogue in which each selector-name si is bound to the

16

address ai. The variable name r is bound not to an address, but to an
environment, and this environment binds each selector name to the

address associated with its value.

Once more we have to generalize the functions ref and val (defined in
section 2 and modified in section 6) such that they can take "names"

of the form r.s as arguments.

ref{r.s}(E,8) = ref{s} (ref{r}(E,S),S)
val{r.s}(E,S) = val{s}(ref{r}(E,S),S)

To calculate the address and value of a "selector variable", we do not
use the normal environment E, but the special environment ref{r}(g,S)

binding selector names to addresses.

The semantics of a with statement of the form

with r do stmt
can now be defined by the following net
;iﬁ
(E,S).
— ¥ (Elrefir(E,LS)

Ev I
ph.d (X

4 net{stmt}
E\\‘) "“‘——;—_ﬁ—f[
! < —{)
T
(&)
where the notation E[ref{r}(E,S)] represents the catalogue obtained

from E by "adding" the bindings of ref{r}(E,S) (see section 2).

8. INPUT AND OUTPUT

In this paper we shall deal with input and output in a very simplified
(and admittedly unsatisfactory) manner. We only consider communication
with the standard files input and output by means of the standard pro-
cedures read and write. Moreover we shall assume that the input file

always has sufficiently many input values of correct types.

To handle input and output we shall assume the store S to have two
special "addresses", input and output, each containing a sequence (of

integers, booleans, reals, etc.). The B-place of net{PROG} (see sec-

tion 3) now contains a token with colour ([1], [input,output+INPUT,®])

where INPUT is the contents of the input file when pProgram execution

starts, while @ is the enpty sequence.

A read command of the form

read (1)

is represented by the following net.

®

(E,S)

(E,SIref{i{E,S),input <—head(S(input)),tail(Slinput)])

The first element of the input file is removed and its value bound to

the address of i.

A write command of the form

write (exp)
is represented by the following net.

B

.
G

(&f[ﬁ[nutput(—cnncatlS[outputLuaHerHEJ)lH
E

B)

The value of exp is concatenated to the contents of the output file.

It should be obvious how to extend the semantics above to the case

'

17

where more variables/expressions are input/output by the same read/write

command. It is also straightforward to describe the semantics of readln

and writeln.

18
9. EXAMPLES

This section contains three examples showing how nets are constructed

for small Pascal programs.

Example 1

This example illustrates the semantics of variable declarations and

assignment statements.

1 PROGRAM CONFLICT(INPUT,OUTPUT);
2 VAR

3 P,Q: TINTEGER;

4 B: BOOLEAN;

5 BEGIN

6 NEW(P);

pra Q:=P;

8 Pt:=1;

9 Qt:=2;

0 B:=(Pt=Qf)

1

1
1 END (*CONFLICT*).

The program is represented by the following net, where transition ti

represents program line no. i.

B
(E,S)
t3

(Elp,q <- al,a2], S[a1,a2 <— 2,?])

(E,$)
14

(EIb <-a3], S[a3 <-7])
(E,S)
i

[t6

(E,5[ref{p}(E,$),a4 <— a4,?])

(E£,$)

F&

(E,S[ref{q}(E,$) <— val{p}(E,S)])
L
(E,S)

t8
L(E,S[ref{pt}(E,5) <—1])

(E,S)

19 |
| (E,S[ref{gt}(E,S) <—2])

g,s[ref{b}(t,s) <—pal{pt=qt}(E,S5)])
E

19

The firing sequence of the net can be represented by the following

state-schemata, where each column describes the changes in E and S made

by a transition:

t3 14 t6 t7 t8 t9 ti0

E p al
q a2
b 03
S| at 1 a4
a2 ? a4
al ? true
a4 ? 1 |2
input B
output | &

Variable names/addresses enter the catalogue when they are given their

first address/value. As an example,

transition t4 fires.

Example 2

b enters E and a3 enters S when

This example illustrates the semantics of var-parameters.

1 PR
2
3
4
5
6
7
8

ol
10
"
12

OGRAM SHARING(INPUT,OUTPUT);

VAR

1: INTEGER;
PROCEDURE CLASH{VAR R: INTEGER);
BEGIN
1:=1+1;
Rz=R+1
END (*CLASH*);
BEGIN
1:=1;
CLASH(I)
END (*SHARING*).

The program is represented by the following two

nets:

20

nC:

[

(E,SIref(i}E,S) <—vali+1 }E,S)D
(E,)

(E,SIref(r}(E,S) <—val{r+1}{(E,S))

where E* = [i,clash <— a1,nC]

The leftmost net represents the main program, while the rightmost net

(with the net-name nC) represents the procedure clash.

When transition t4-8 fires, the net-name nC is bound to the name
clash and when transition t11a fires, the net-name nC is put on one of
the input places of the meta-transition. This means that the effect of
the meta-transition is determined by a firing sequence in the net

named by nC. We shall indicate this by the following graphical notation:

21

B
(E,S)

(E,SIref{i}(E,$) <—1))

(£,$) P

fita (5, ref{i}(E,S)
E E(clash) 15
O "

7 (16
E E[,s) (SE.S[reﬂl}(E,S] <—pal{l*1E,S)]

(E,S)

(E,S)
dé) T Efi:

where E* = [i,clash <— ai,nC}

The firing sequence of the net can be represented by the following

state-schemata.
t3 t4-8 t10 tila t5 t6 t? tiib

B T ; -
clash nC t _________ J[—b nC
E2] | atl
| .clash | 1195 S N
r al
S [at ? 1 2 |3
input a
output | 8

When procedure clash is evoked by transition t11a a new environment E2
is created. It consists of the environment E* which existed when clash
was declared, augmented by the bindings for the formal parameters of
clash. In the state-schemata, the two parts of E2 are separated by a
horizontal dotted line. The environment E1 of the call is preserved by
transition t11a and re-established by t11b. The position of the two
bending arcs of the state-schemata indicate that clash is being called,
and the inscription on the leftmost arc indicates that al is passed as

actual parameter.

22
Example 3
This example illustrates the semantics of standard procedures, recur-
sive calls, and procedure-parameters. It shows how the combination of
static scope rules and procedures-as-parameters can be used to traverse

the runtime stack. The example is considerably more complicated than

the two earlier ones:

1 PROGRAM ADD(INPUT,OUTPUT);

2 PROCEDURE QUTINT(N: INTEGER);
5 BEGIN

4 WRITE(N)

5 END (*OUTINT*);

6 PROCEDURE NEXT(PROCEDURE PAR(F: INTEGER));
7 VAR

8 I: -INTEGER;

9 PROCEDURE LOC(F: INTEGER);
10 BEGIN

11 1:=I+F

12 END (*LOC*);

13 BEGIN

14 READ(I);

15 IF I<>13 THEN NEXT(LOC);
16 PAR(I)

17 END (*NEXT*);
18 BEGIN

19 NEXT(OUTINT)
20 END (*ADD*).

The program is represented by the following net.

where nN, nO and nL are net-names for the following nets (representing

next, outint and loc).

nN:

~valfi=1 S}IE,SIE@

(E,Slref{i}(f.sl.inpuk—hend(S(inpum,
(E,S) tail(S(input))])

val{i=13}(E,S)

(E,S)

where E* = [outint,nent <—n0,nN]

23

24

where E* = [outint <—n0]

nL:

(E,SEref{i}(E,S) <—valli+f}(E,S)])

where E* = [outint,nent <—n0,nN] [par,i,loc <-n0,al,nl]

25

We now consider an execution of the program add, in which the input

file contains the following numbers
7, 9, 13

Immediately after the reading of 7, represented by transition t14, we

have the following net

where the token-colours E1* and (E2%,S*) are defined by the following

state-schemata.
2-5 6-17 19a 6 8 9-12 14

El |outint no
nent nN '-'1“
L 4
E2] outint [no
.Mext InN
par no
I al
loc nL
$|at ? ?
input | 7,913 9,13
output J |

E1* (E2*,5%)

26

The first incarnation of next has read 7 from the input file,

7 <> 13 transition t15b is chosen. This means that we get a recursive

call of next. The second incarnation of next reads 9,

we get a third incarnation, which reads 13. Now transition t15a is

chosen and we have the net shown on the next page. The token-colours are

determined by column A in the following (condensed)

The nets nL, nL', and nL" represent the three different incarnations of

the loc procedure, defined in the three different incarnations of next.

and since 9 <> 13

state-schemata.

These three nets are identical except for the E* catalogue,

E2, E3 and E4, respectively.

19a 15¢ 15¢
6 6 6 16a 16a 16a
: gk 9 9 2
2-3 6-17 15b 15b 158 11 16b 15d 11 16b 15d 4 16b 19b
£l outint no n0 |) no
next nN nN
k28 O SR S Y S
E2 Foutint [no al] T The no0
next nN nN nN
par no | rbnu 29 oo |
i al al r al
loc nL nL nL
E3 [outint [no L’ o |
newt | nN nN AN
‘par oL L .2.2F. nl
i al’ atl’ al’
loc nL’) nL' nL’
E4 [outint [no no
nent nN iz AN
par nL' = F’ nL'
i al” al"
loc nL" nL"
> E6 E? s
E5[outint [no | [outint Tno butint [n0
next nN | Inext nN E a’l
par nL | |per nd
i al’ | i al
o . joufliec fnt
f a3] ay
$|al ? 29
al’ 9 22
al" 13
a3 13
a3 22
a2 29
input ~ 13/ 131 8
output | 8§ \ 29
29,13 R B C D

We are now ready to perform the procedure-call par (i)

incarnation of next. The net of the procedure is evaluated in E4,

in the third

and since

which is

27

Pl ' ZI-61)
81 ‘ 9}

bllZ1-61)
810}

28
par is bound to nL' (the loc procedure declared in the second incarna-

tion of next; this is declared in E3 and thus E5 (upper part) becomes
equal to E3). The actual parameter i is also evaluated in E4. It has
the value 13, which is bound to the formal parameter f, via the address
a3. The statement i := i+f is executed in E5, where i is bound to a1’
(with value 9) while f is bound to a3 (with value 13). Thus i gets the
value 22 (via the address al'), and we have the situation depicted by

column B.

We now return from the call par(i) and then from the third incarnation
of next to the second, which is ready to perform the procedure call
par(i). The net of the procedure is evaluated in E3, where par is bound
to nL (the loc procedure in the first incarnation of next; this is
declared in E2, and thus E6 (upper part) becomes equal to E2). This
procedure is called with 22 as parameter-value. The statement i := i+f
now involves the addresses al and a3', and the former gets the value 29.

This is depicted by column C.

Once more we return from the call par(i) and then from the second in-
carnation of next to the first, which is ready to perform the procedure
call par(i). The net of the procedure is evaluated in E2, where par is

bound to nO (the outint procedure; this is declared in E1, and thus E7

(upper part) becomes equal to E1 (as it was when outint was declared)).
This procedure is called with 29 as parameter-value and thus the output
file receives this value, via the write statement (transition t4).

This is depicted by column D.

Again we return from the call par(i) and then from the first incarna-

tion of next to the main program, which finishes the execution.

10. EXERCISES

This section contains typical examples of exercises.

1s Construct a net, which defines the semantics of a repeat statement

of the form

repeat stmt until exp

2. Construct a net, which defines the semantics of a case statement

of the form

29
case exp of

const1 : stmt1;
: . (n z 1)
const_ : stmt
n n
end
Bl Construct the two nets defining the semantics of the following

program, which calculates the n'th Fibonacci-number by means of a

recursive procedure.

program fibonacci(input ,output);
var
i,r:integer;
procedure fib(n:integer; var r:integer);
var
k:integer;
begin
if n<=2 then
ri=1
else
begin
fib(n-hr‘);
fib(n-2,k);
r:=r+k
end
end (#fib#);
begin
readln;
read(i);
flb(l!i"};
writeln(r)
end (#*fibonacci®),

What does the program-net look like just before statement "r:=r+k"

in the body of fib is executed for the first time? What is the

marking?

4, The Pascal program program test(input ,output) ;

var
X:integer;
r:record
X:integer;
y:integer
end;
begin
X205
with r do
begin
x:=1;
r.y:=2
end
end (¥test#),

is represented by the following net where the marking represents
the state immediately after the execution of the statement

"r.y:=2".

30

11

T

l

O

®) (E2,9)

What are the arc-inscriptions which surround transitions a, b,

and c¢? What are the contents of the catalogues E1, E2 and s>?

Assume that Pascal is modified in such a way that procedures in
addition to value-parameters, var-parameters, and procedure-
parameters, also may have result-parameters (i.e. parameters where
the actual parameter is assigned the value of the formal parameter
when the procedure returns). Discuss how net{CALL} and nID in
section 5 must be modified if the procedure ID also has a result
parameter. It is only necessary to change the arc-inscriptions,

while the net-structure is unaltered.

Discuss how the semantics of arrays, sets and scalar types can be
defined. There are several possible ways to do this, and the pur-
pose of this exercise is to sketch and compare some of these alter-

natives.

CONCLUSION

The material presented in this paper has been used, with only small

modifications, as part of the teaching material for the introductory

computer science course at Aarhus University since 1980.

The starting point of its development was a decision that time had come

where not only syntax, but also semantics, should be taught in a system-

atic and precise way to first year students.

31
Given this decision, the question was what semantic tool to use. The

main reason for choosing a Petri net based formalism were the following.

- Petri nets are also (even better) suited for describing
languages with concurrency. Thus the approach generalizes
to such languages, and the students don't have to learn

too many formalisms.

- It was believed that the graphical representation of the nets,
together with their operational flavour, would support
intuition and thereby make the semantics relatively easy to

understand.

These expectations have essentially been met. The details of the teaching

approach are as follows.

First the students are given an informal explanation of the different
language constructs in PASCAL, and they get some experience using the
language to create small programs. Then the semantics is introduced

and used to explain the more complicated language features such as var-

parameters, procedure-parameters, scope rules, dynamic variables, etc.

Earlier in the same course the students are given an informal introduc-
tion to high-level Petri nets, which is used to describe the semantics
of a small system description language. Thus the students already know
the basic ideas of this type of semantic description and it is rather

easy for them to learn the PASCAL semantics.

Altogether 8 lectures of 2x45 min. are used: one lecture to introduce
high-level Petri nets, two lectures for our semantic model and the
semantics of the small system description language, three lectures for
the informal explanation of PASCAL, and then only two lectures for the
PASCAL semantics itself. It is our opinion that this approach has not
required more lecturing time than needed for an equally detailed infor-

mal explanation of the PASCAL semantics.

Our experience tells us that indeed it is quite easy for the students
to learn the semantics in this way. In particular the semantics of
declarations, control structures, parameter mechanisms, recursion and
scope rules come across very nicely. If the students have difficulties,
it is because of the rather compact notation for inscriptions which has

been borrowed from denotational semantics. In fact it turns out that

32
some students understand the main ideas of the semantics from its gra-

phical representation, even though they fail to understand the formal
firing rules of Petri nets and the formal rules for manipulating en-

vironment and store in denotational semantics.

It might be argued that we have only treated a modest subset of PASCAL,
without considering type definitions and functions, and without covering
the file-, array- and set-types. It is however (with one exception)

quite straightforward to extend the semantics to include these aspects.

The meaning of a type definition can be defined by binding an allocation

function to the type name (in the environment E). The allocation func-

tion is invoked when the type name appears on the righthandside of ':

in variable declarations and parameter lists.

Function declarations are treated in essentially the same way as proce-

dure declarations. Function calls are syntactically (part of) expressions,
and in order to handle this, it is convenient to introduce explicit ex-
pression evaluating nets everywhere in the semantics. For an expression,
exp, without function calls, this net is just a simple transition which
evaluates val{exp!} (E,S). For an expression with function calls, the net
is built from nets representing the functions. The way these nets are

composed is determined by the structure of the expression in the usual

way.

The handling of arrays, sets and scalar types is more or less an exer-
cige in denotational semantics, and files can be treated in much the

same way as input/output in section 8.

There remains however one problem: to treat communication, including
external files, in a satisfactory way. The inclusion of external files
as special entries in the store comes very close to cheating, and it

certainly does not explain the notion of interactive programs. This

type of counter-intuitive "trick" 1is not to be recommended, particu-

larly not for beginners, and a nice way of handling this problem would

be very welcome.

33

Acknowledgements

Horst Oberquelle provided lots of helpful suggestions. The remarks of

4 anonymous referees are also acknowledged.

References

(1]

[2]

[3]

[4]

[5]

[6]

(7]

(8]

H.J. Genrich and K. Lautenbach: System modelling with high-level
Petri nets, Theoretical Computer Science 13 (1981), 109-136.

U. Goltz and W. Reisig: CSP-programs as nets with individual
tokens. G. Rozenberg (ed.): Advances in Petri Nets 1984, Lecture

Notes in Computer Science 188, Springer-Verlag 1985, 169-196.

Ka. Jensen and N. Wirth: Pascal user manual and report. Springer-

Verlag 1975.

K. Jensen: Coloured Petri nets and the invariant-method.

Theoretical Computer Science 14 (1981) 317-336.

K. Jensen: High-level Petri nets. A. Pagnoni and G. Rozenberg
(eds.): Applications and Theory of Petri Nets, Informatik-
Fachberichte 66, Springer-Verlag 1983, 166-180.

K. Jensen: An introduction to high-level Petri nets. Proceedings
of the ISCAS 85 Conference, Kyoto, Japan 1985, IEEE, 723-726.

K. Jensen, M. Kyng: Epsilon. A system description language.
Computer Science Department, Aarhus University, DAIMI EB=150,,
1982.

N.D. Hansen and K.H. Madsen: Formal semantics by a combination of
denotational semantics and high-level Petri nets. A. Pagnoni

and G. Rozenberg (eds.): Applications and Theory of Petri Nets,
Informatik-Fachberichte 66, Springer-Verlag 1983, 132-148.

