Step Change Strategies
for Multistep Methods

Ole Osterby

DAIMI PB - 196
August 1985

ISSN 0105-8517

DATALOGISK AFDELING

Bygning 540 - Ny Munkegade - 8000 Aarhus C

t. (06) 12 83 55, telex 64767 aausci dk
Matematisk Institut ~ Aarhus Universitet

|

HH]

Step Change Strategies for Multistep Methods

Ole @Psterby
Datalogisk Afdeling
Arhus Universitet
Ny Munkegade
8000 Arhus C

Danmark

Abstract

When a system of ordinary differential equations is solved using
a step-by-step method it is often desirable to change the step
size during the course of the integration. We show that the com-
monly used formulas for calculating the new step sizes are not
correct for multistep methods and we derive correct formulas for

Adams methods.

1. Introduction

The two main reasons for adjusting the step size of an ODE-solver
are stability and error control. We shall focus our attention on
the latter. The main objective is to keep the local error (or an
estimate of it) below a certain tolerance, €, but not too much
below. The local truncation error for a multistep formula of
order p is usually written in the form

p+1 (p+1)

(1.1) local truncation error = C h ¥ [xn)+ O(hp+1

)

If the norm of the local error estimate, est, is larger than,
or much smaller than € then based on formula (1.1) a new step
size is calculated as

1/p+1

(1.2) hnew = hold + (g/est)

Formulas of type (1.2) are often used in existing ODE software
but they are not correct for multistep methods. Formula (1.1)
is based on the assumption that the step size, h, is the same
throughout the lastp steps and can therefore not be used when

we wish to change the step size.

The most serious effect of this is that when the step size must
be reduced it is not reduced enough when (1.2) is used. Or in

other words: the next step will give rise to a local error es-

timate which is bigger than expected and the step must be rejected.

Why hasn't this been noticed beforez

Well it has, and this has led some practitioners to relax the
error criterion for a couple of steps after a step change,
while others have circumvented the problem by introducing a
"safety factor" into (1.2) reducing the new step size by a
certain fraction. Such safety factors are needed anyway because

(p+1)

of variations in y and this might have obscured the true

nature of things.

2. Definitions

The task is to solve numerically the initial value problem

(2.1) v' = f(x,y), a <x <b,

(2.2) yla) = Ve

We shall assume that f is sufficiently smooth and that the
problem is non-stiff such that step size selection is governed

by accuracy rather than stability.

The problem will be solved by a multistep method, more specific-
ly by a predictor-correctcr method based on Adams formulae. In
this way we produce a set of approximate solution values {yn
corresponding to values of the independent wvariable {xn} satis-
fying a = xo < x1 < oo & Xn R Xy = b. The correspconding

values of the true solution to (2.1)-(2.2) are denoted %y{xn)f.

The global error at x = L is defined as

(2.3) global error = y(xn] = ¥y
This is the guantity which the user presumably is interested in
keeping track of. There exist varicus methods for estimating the
global error [9,14,15] but global error estimates are not easy

to utilize for step size selection [1].

Ordinary differential eguations have no "memory" in the sense
that if we have drifted away from the true solution curve be-
cause of errors due to rounding or truncation etc. then we have
no way of telling that we are not on the right track or how far
away we are from it. The accuracy of ODE solvers is therefcre

usually measured in terms of the local behaviour.

We define the local solution at %9 to be the solution of the

initial value problem

(2.4) u' = f(x,u),

(2::5) u(xn_w) =y

n=1"*

i.e. u (which could be given the subscript n-1) is that solution
of the differential equation which passes through the previcus
computed point (xn—T’yn—1)'

We can now define the local error at x = X, as

(2.6} local error = u(xn) e 250

A third concept is the local truncation error which is defined

as the discrepancy which appears when the true solution is
plugged into the numerical formula. For a fixed-step multistep

formula such as

k k
(2.7 Iy Yoy T Bz By BBpgi Vyeqd e 2= 14
j=o
We therefore have
k &
(2.8) local truncation error :jio {aj y(xn+j)—h3jy'(xn+j)}.

Using Taylor expansions we can write the local truncation error

on the form ([6])

p+1 _(p+1)
h v (Xn)

(2.9) local truncation error = Cp+1
p+2 (p+2)
+Cp+2 h v (xn)+...
or
(2.10) local truncation error = - hp+1f%}p+1)(xn+eih)};

0 <96 < k.

The local truncation error is not the same thing as the local
error but if the local error is expanded in a way similar to
(2.9) then it can be shown that for Runge-Kutta methods and
multistep methods of Adams type the leading terms are identical.
We say that the local error and the local truncation error are
asymptotically equal where asymptotical refers to the limit h-> 0.

3. Errors and step sizes

Neither the local error nor the local truncation error can be
computed but there are various ways of estimating their size.
When using a pair of multistep formulas of the same order as a
predictor-corrector pair (e.g. an Adams-Bashforth-Moulton method)
then the local error can be estimated using Milne's device.

If a class of Runge-Kutta or multistep methods of different

orders is used then the local error of a lower order
formula can be estimated by ceomparing it with a higher order

formula.

In either case we can cbtain an asymptotically correct estimate
of the local truncation error (and for Adams and Runge-Kutta
methods therefore also of the local error), i.e. an estimate
which when expanded in a Taylor series has the same leading
term as (2.9) and tends to (2.9) as h= 0.

In practical computaticns the step size will usually not tend to
zero, but the underlying assumption is that h is small enough
for the leading term to dominate such that the local error es-
timate gives a fair picture of the size of the local (truncation)
error. This will usually be the case when operating with strict
error tolerances whereas the error estimates are often noted to
be poor when the accuracy regquired is low.

Whenever the numerical solution of the ODE is taken one step
further the local error estimate (est) is computed and compared
toe a tolerance (g). If est > £ then the step is rejected and we
must try again with a smaller step size. On the other hand if
est << € then we ought to increase the step size in order to

reduce the amount of computation.

When using a multistep method we shall not want to change the
step size too often, i.e. we should like to keep the same step
size for 5-10 steps or maybe even more. But more important is to
avoid large variations such as halving or doubling the step.

A special problem is how to choose the initial step size. This

has been considered in [5,12,17].

Once the integration has been started in a reasonable manner
and the local error can be expected to satisfy (2.10) then any
changes in the step size must be due to variations in y(p+1)

and if f is smooth then so are these variations.

A value of the local error estimate which would result in (more
than) halving or doubling the step size indicates a failure of
our assumptions about f and special measures should be taken.

A safe assumption might be that (some component of) f has a dis-
continuity and this should be treated in an appropriate way [4].

Early techniques in connection with step doubling amounted to
remembering and using information at every other point backwards
in time, and a similar strategy with step halving was to inter-
polate to the missing half-way points. Since we are considering
less dramatic step-variations we shall not use such techniques
but rather use the information from the last k steps whether it
be in the form of modified divided differences [13] or in a
Nordsieck representation [2,8] or anything equivalent, and
whether the last k steps have the same size or not.

4. Changing the step size

When calculating a new step size most existing codes have been
based on formulas such as (2.10) which suggest that the local
error varies with h roughly as hp+1 for a method of order p.
The formula for the new step size becomes

1/p+1

(4.1) h = h (e/est)

new old
Formula (4.1) does not take into account variations in y(p+1}
and would therefore lead to many step failures if used as it

stands.

Neormal practice is therefore to introduce a "safety factor”

into (4.1) either as

- — 1/p+1 .
(4.2) hnew = hOld {y-e/est) ' 0 < vy <1,
or as

_ . . 1/p+1 0 < & < 1.
(439 hnew = ¢ hOld (e/est) "

For fixed order methods these two approaches are equivalent

(with v = 6P+1}. For variable order methods (4.2) aims consis-
tently at a local error estimate of magnitude v - ¢ (rather than ¢)
whereas (4.3) aims at lower and lower values as the order in-
creases. This latter effect has been quite beneficial since, as
we shall see in the following, the error in (4.1) increases with

the order.

It should be mentioned here that we have in mind an error-per-
step (EPS} strategy [10,12] requiring the local error estimate

to be less than e at each step. Straightforward modifications

in the following formulas will enable the reader to derive for-
mulas for the error-per-unit-step (EPUS) strategy where the local

error estimate is required to be less than ¢ times the step size.

Formula (4.1) is based on (2.10) which is derived under the
assumption of a fixed step size. Since we have in mind changing
the step from hold to hnew in the next step we are not in the
fixed step situation any longer and (2.10) does not hold for the
next step(s). The new step size as calculated from (4.1) will
therefore not lead to a local error (estimate) of size ¢ as

intended.

What we need is therefore formulas for the local truncation error
to replace (2.10) and based on which a sounder step size calcu-

lation can be made.

5. Variable step formulas

In order to derive the Adams formulas with variable step size

we integrate Newton's interpolation formula
(5:1) fx) = fx,) + (X—xn)f[xn.xn_1]+

(X—Xn,(X_xn—?)f[xn'xn—1'xn—21+

f[xn'xn—1"-

at the points X 0%

-,xn_j] denotes the j-th divided difference of f
n-1'"""+¥,_ 5. The remainder term for a k-step
formula is the k+1-st term of (5.1) with Koo in the divided

difference replaced by x:
(5.2) Ry = (x=x_) «-- (x=x) -+ f[xn,"'.xn_k.x]

We now get an integration formula for the interval [a,b] by
integrating (5.1) and (5.2)z%

b b
(5.3) £ £(x)ax = f(x)+ (b-a) + Elx_,x 1. {i(x—xn}dx 4o
and the error term is
4 = P :
{(5.4) E, = é Lo ML (x—xn_k}-ffxn, X goex] dx.

For an Adams-Bashforth explicit formula we should choose

[a,b] = [xn,xn+1] and for an Adams-Moulton implicit formula

[a,b] = [Xn—1'xn]' In both cases the product (x=x) = (x=x
is of constant sign in (a,b) and we can use the mean wvalue

theorem on (5.4):

b
(5.5) Ek = f[an.'.rxn_krE] = g (X_Xn) e (X—Xn_k) dx

where £ € (x b). Again there is a close correspondence

n-k’
between the error term and the k+1-st term in (5.3).

)

In order to find formulas for the integrals in (5.3) and (5.5),

we introduce the following

Definition Let Pi(x;xn_l,xn_z,"‘,xn_k) be the sum of all
products of i factors out of (x=x__4), {x-xn_2),---,(x—xn_k).
Examples (e -
k
(5.6) Pk(x;xn_l,xn_z,---,xn_k) =i£l(x~xn_i)
k
(5.7} P (Rex_ 10X 3% "ex_) = I T (x-x__.)
k-1 n-1'""n-2 n-k bed, e n-j
k
(5.8) N T PR SR I iil(x_xn_l)
(5.9) PO(x;xn_l,xn_z,---,xn_k) = 1 (k>0)

The following properties of Pi will be useful:

1 if 4 2k =0
(5. 190) Pi{xn_l;xn_l,xn_z,---,xn_k) = 0 if i =k # 0
B R PR ¥ 50X)
if i < k

(5.11) Pylxix, oy il = (X_Xn—k)'Pi-ltx;xn—z"'°'xn—k+1)
+Pi(X;xn-2'.."xn—k+1) (i>0)
g A = -1 . . [i
(5.12) 5 Py R q. fXo b= (k-i+1) Py xix, 1, X g (i>0)
b
(5.13) _ s _
i (xeae,) e soiloiox, . Vas
= j(x'xn)j+2 B
jzo[(-l) TE:ETTE:IT Pk_j(X:xn—l'-"'xn—k) N

The last relation is proved by differentiating the expression on
the right-hand side, using (5.12) and (5.9} and observing that all

but the first term in the summations cancel.

Using (5.13) with (a,b) = (xn,x 1) we get
*n+l
(5.14) Xf (x=x) -o(x=x__ }dx =
n
k) J+2
r (-1 30na1 %) —
3=0 (3+2)Y (3+D) Pr- J n+1¥pn-1" "“n-k
Similarly with (a,b) = (xn_l,xn) and using (5.10):
X
n
{5415 J (x=x) oo (x-x__,)dx =
x
n-1
K - i+2
i {Xn Xn"l) Pk_.(x _l;x _2,-",X)
1= (j+2) (§+1) i n n n-k
Combining (5.3) and (5.14) and introducing the last step size
h = Hop17X, we have the following variable step form of the
Adams-Bashforth formula:
Xn+].
(5.16) Xj fix)dx = f(xn)-(xn+l—xn}+
n

+

kéo ElRaik, g %, Ly gls
e T2
k j(xn+l xn)
z (-1)"———— k_.(x +l;x _l,---,x
3=0 (3+2) (3+1) Jon n
f(xn)-h

Ts:2
f[xn'xn—l] 27 Ry

1

Elx ox_1r% 5l i h P —6h e
. 14,3 1.
f[xn,-- x4l {ﬁh P,-zh Pl+12h Py }
. T Tyl 145
flx . g {zh"P 37gh Pyt h Py = 5ph’F

0

n-k

}

sX) in the term con-

taining a divided difference of order k+l. If we further assume

The parameters of Pi are (xn+l;xn_1,"'

that the k previous steps have the same size, i.e.

{5:17) Ryl Bpen = Mo “Bag =wsd =g
then
Xn+l
(5.18) [f(x)dx = f(xn)-h
X
n
1:2
R S
+ flx ,x X] lh2[3c+2h)
n'“n-1'""n-2"" 6
1.2 2
¥ 5., ,xn_3] -1311 3(2c+h)
e c 12 g, 3 2
+ flx, .) ¢ gph” -2-190c74110he"+45h
¥ 5iw

We have similar expressions for the integrals in the implicit

Adams-Moulton formula. In this case (a,b) = (xn_l,xn] and we set

- = x 2'X = waes

(5.19) h=x-x , and ¢ =x =2 =

n—-1

2

ci6R>Y

12

*n

[fix)ax

xn—l

(5.20)

f(xn)‘(xnfxn_l)

Zf[x ’-.'.]

lx o o
K30 n n-k-1
k (xn-x)j+2
TP o S - W
3=0 (j+2) (3+1)

n-1
Py s

= f(xn)-h - f[xn

= Elx, e i®y s

- f[xn""'xn—Bl

EER 47 S (]

- f[xn’---’xn-S]

.
Eh{f(xn)+f(x
- fJ:}‘:n'xn—l'xn-Z

- Elx et ax,)

- fEXn"."xn—4

= f[xnf' . ’xn_s] N

n-—

].

(xn—l;xn-z’ 'Xnuk)

1,2
'Xn-l]'fh

1.3
Le 5% Eg

153 1. 4
'{gh P1+1—2h PO}

1.3 .1.4_ 1.5
{E-h Pyl B toh po}

1:.3 1 4 1.5
{gh Pyt h P2+2—0h Py

1.6
+ it PO}

)}

l-2h

13
»h {2c + h}

L n3-{20c2+15hc+3n?}
60 ’

61—0 h3.{60c3+55nc2+18n%c+2h°)

Because of formula (5.5) we can directly read the camponentwise
error terms after the new step for the Adams formulas from for-
mulas (5.16), (5.18) and (5.20). For a formula or order p we

just have to replace o in the p-th order divided difference

by £ and disregard the other terms.

The traditional error terms for the fixed step size case are
cbtained by setting ¢ = h and are perhaps easier recognized when
we note that a p-th order divided difference can be written as

f{p)(n)/p! where n is an intermediate point.
The formulas in this chapter were first derived in [3].

If h is much smaller than ¢ then formulas (5.18) and (5.20)

show that the local truncation error for Adams-Bashforth formu-
las is O(hz) and for Adams-Moulton formulas is O(h3) irrespective
of the order as pointed out by Shampine [11]. But as already
mentioned we are more interested in the case where h and c are
comparable and we would therefore like to investigate the be-

havicur more closely in this region.

If a predictor-corrector method is composed of an Adams-Bashforth
predictor and an Adams-Moulton corrector of the same order in

say PECE mode then in the fixed step case the leading term of

the local truncation error is equal to that of the corrector
alone. In the variable step case this is not true if we define
"leading term" as the term containing the lowest power of h;

but since h and ¢ are supposed to be comparable in magnitude it
is more reasonable to define "leading term" as the sum of the
terms containing the lowest collective power of h and ¢ (which

is p+1) and with this definition the statement retains its truth.

Our results for the Adams-Moulton formulas thus carry over to

Adams predictor—ccrrectdr methods (in any mode) and it is there-

fore important to be able to extend (5.20) to arbitrary orders.
k-3

Noting that Pk—j(xn-1;xn-2""’xn—k) is a constant times c

and using (5.11) we can write (5.20) as

14

X
n =1
(5.21) SR E(x) dx = gh {£(x)) + Elx)}
*n-1 j+2 k-]
k hJ c
m & Bl R e e B e
kx»1 B nok=TT 500 (3+2) (5+1)
where
Qg = Vs P = Fgere = P -
{5.22)
By = (k=10 @y g % A5 g0 (13 SR,

The error term for a p-th crder Adams-Moulton method can now be
written as

k - .

+1 +2 k-

g1y 3 pd*e KD

P st 2 . ’
{155:28) E, = 521 (3+2) G#1) jk

(k = p-1)

A table of djk is given on the next page:

jk

Table of 4.
ik

11

10

11

10

35

50

24

15

85

225

274

120

1764 1624 735 115 21

720

5040 13068 13132 6769 1960 322 28

8

109584 118124 67284 22449 4536 546 36

40320

92

45

362880 1026576 1172700 723680 269325 63273 9450 870

10

15

1320 55

18150

10628640 12753576 8409500 3416930 902055 157773

3628800

11

156

110 132

g0

20 30 42 56 72

12

6

(3+1) (3+2)

18
W
/
% p=3
c
=
«
7
ﬁs::h correct poly

Epsratio

g v T
0.4 0.6 0.8 1.0
Stepratio

Fig.1. Graph of Q3(z},z3 and 24.

L5

1.0

correct poly

19

. . ,
0.6 0.8 1.0
Stepratio
Fig.2. Graph of QS(Z)'23’24’25 and 26.

m

20

1:5

1.0

Epsratio

0.8 1.0
] Stepratio

Fig.2. Graph of ;}11(2),23,24,2S and 212

Epsratio

21

Fig.4,

0.8 ' 1.0
Stepratio

Graph of Q5(z} ("one h") and the polynomials corresponding

to the last 2 and 3 Step sizes being h, together with z:3

and z

6

22

7. Practical suggestions

Based on the behaviour of Qp(z) as illustrated in Fig. 1-4 and
the preceding example we can now offer the following practical

suggestions:

a. If est << ¢ then compute a new step size by

_ 1/p+1
(7.1 hnew = hOld - (ﬂ-e/est)

¥4 can be chosen close to 1, e.g. 0.8 or 0.9, and the <<

should mean that the step increase should be at least 10%.
If the increase, however, is too large (say meore than 100%)
then this might be due to spuricus variations in the local

error (estimate) and we should limit the increase to 100%.

b. If est > £ then the last step must be rejected and another
step should be computed as the positive root of

(7.2) Qp(z) =Y, ot c/est, z = hnew/hold.

Yy should be smaller than ¥4 since there is reason to believe
that Hy(p+”||is increasing, e.g. Y, = 0.6 or 0.7.

L hnew < hol
Possibly weare in the neighbourhecod of a discontinuity which

must be found by a special technique [4].

Finding the root of (7.2) is not much worse than the traditional

problem of finding a root of
(7.3) zp+1 = Y2 - £/est.

In practice the difficulty lies in determining Qp(z) e.g. using
the recurrence relations (5.22) or storing the various polynomials
in questiocn. The first alternative takes time and the second one

takes computer memory.

d/Z then f is probably not as smooth as we thought.

23

If one is not willing to pay either of these prices a third alter-
native can be mentioned. As shown in the following lemma the posi-
tive root of

(7.4) 23 2 Ny ® c/est

will always provide an underestimate of hnew =2 - hOld when
¢ < est such that using (7.4) will bring us on the safe side of
the error tolerance. This will result in slightly smaller local

errors and slightly more work but might be considered a reasonable

alternative to (7.2). For p 2 9 (7.4) can even be replaced by

(7.5) 2t = Yy = e/est

but this is more a practical cbservation than a mathematically

provable statement.

Lemma If 0 < » < 1 then A1/3 is smaller than the positive

root of Qp(z) = x for p > 3.

Proof Since Qp(z) is increasing for z > 0 the statement is

equivalent to

qu”3) <y, (23

but

so for 0 < A <1

o W13y = - -
B =

24

8. Concluding remarks

The preceding ideas and suggestions have been tried on a few
simple test eguations and using an experimental fixed order code.
These experiments have confirmed the relevance of the theory and
we believe that implementation in existing ODE software will make

this more efficient.

We believe that the present techniques will enable ODE solvers

to stick rather closely to a given local error tolerance thereby pos-
sibly improving on the proportionality between the error tolerance
and the global error which has been emphasized as a desirable

property [16].

9. Acknowledgements

Part of this work has been carried out during a stay at University
of Illinois at Urbana-Champaign supported in part by the Danish

Science Research Council.

The author wishes to thank his colleagues, in particular C.W. Gear
at Illinois and J. Sand at Aarhus for valuable discussions and con-

structive criticism.

295

References

[11] G. Dahlguist: On the control of the global error in stiff
initial value problems, TRITA-NA-8106, Stockholm, 1981.

[2] C.W. Gear: Numerical Initial Value Problems in Ordinary

Differential Equations, Prentice-Hall, 1971.

[3] C.W. Gear and 0. @sterby: Seolving ordinary differential
equations with discontinuities,
UIUCDCS-R-81-1064, Urbana, 1981.

[4] C.W. Gear and 0. @sterby: Solving ordinary differential
equations with discontinuities,
ACM Trans. Math. Software 10 (1984) 23-44.

[51] I. Gladwell: Initial value routines in the NAG library,
ACM Trans. Math. Software 5 (1979) 386-400.

[6] J.D. Lambert: Computational Methods in Ordinary Differential
Eguations, John Wiley, 1973.

[7] B. Lindberg: Characterization of optimal stepsize sequences
for methods for stiff differential equations,
SIAM J. Numer. Anal. 14 (1977) 859-887.

[8] A. Nordsieck: On numerical integration of ordinary diffe-
rential equations, Math. Comp. 16 (1962) 22-49.

[9] A. Prothero: Estimating the accuracy of numerical solutions
to ordinary differential equations.
I. Gladwell and D.K. Sayers (eds) Computational Techniques
for Ordinary Differential Equations, Academic Press (1980)
103-128.

[10] L.F. Shampine: Local error control in codes for ordinary
differential equations,
Appl. Math. Comput. 3 (1977) 189-210.

[11] L.F. Shampine: The effect of changing step size on the
accuracy of multistep formulas,

SAND82-1584, Albuquerque, 1982.

[12] L.F. Shampine: The step sizes used by one-step cocdes for
ODEs, Appl. Numer. Math. 1 (1985) 95-106.

26

[13]

{14]

[15]

[16]

[171]

L.F. Shampine and M.K. Gordon: Computer Solution of Ordinary
Differential Equations, W.H. Freeman, 1975.

L.F. Shampine and H.A. Watts: Global error estimation for
ordinary differential equations,
ACM Trans. Math. Software 2 (1976) 172-186.

H.J. Stetter: Global error estimation in ODE-solvers.
G.A. Watson (ed) Numerical Analysis Dundee 1977,
Springer Lecture Notes in Mathematics 630 (1978) 179-189.

H.J. Stetter: Tolerance proportionality in ODE codes.
R.D. Skeel (ed) Numerical Ordinary Differential Equations,
SIGNUM, UIUCDCS~R-79-963, Urbana (1979) 10. 1-6.

H.A. Watts: Starting step size for an ODE-solver,
J. Comput. Appl. Math. 9 (1983) 177-191.

