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ABSTRACT

The definitions of many known properties of concurrent systems

(e.g. liveness, fairness, impartiality, justice) require every
action to satisfy some condition. Sometimes the level of actions

is too fine and one would like to consider the corresponding condi-

tions for sets of actions.

A framework for such treatment is proposed in this paper. The
known liveness and fairness properties are generalized and
investigated in accordance to the lattice structure of parti-
tions of a set of actions. Partitions are used in order to group

actions and form some cruder levels of abstraction.
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INTRODUCTION

A generalization of well known behavioural properties of con-
current systems, such as liveness [LAU], impartiality, fairness,

justice [LPS] is presented.

All the considered properties are defined in a similar way. It
is required that every action should satisfy some condition

(of liveness, impartiality etc.). But sometimes it is more
appropriate to consider groups of actions, instead of simple
actions. It may happen, that however the whole system does not
satisfy a given property, large parts of it do. It would be nice
then to carry this information in the behavioural analysis of

the system.

The generalization proposed in this paper is done in the following

way:

First of all we generalize the conditions defining properties
to make sense for sets of actions, and not only for individual

actions. This generalization is done in a natural way.

Secondly we check, whether for a given partition, all the
equivalence classes satisfy this generalized condition. If so,

then we say, that this partition satisfies the considered

property.
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Since partitions fornm lattice, a natural question to ask is
whether the structure of this lattice has any impact on satisfi-
ability of these Properties. Monotonicity results are proved in
chapter 2 for generalized liveness, impartiality and fairness

(making the partitions cruder preserve these properties).

A coordination relation on sets of actions is introduced in
chapter 3. Two sets of actions are coordinated iff none actions
of any of them can be exXecuted infinitely often without executing
infinitely often at least one of the actions of the other set,

It is shown that one can refine a partition along the linesg

that separate coordinated sets, without losing any of the four

considered properties (antimonotonicity result) .

The results of chapter 2 and 3 are applied then in the chapter 5,
where some subclasses of Petri Nets are considered, namely Marked

Graphs, State Machines and Free-Choice Petri Nets,

The whole paper is closed by chapter 6, in which some extensions

some actions (the ones which find themselves Outside the chosen
subset) and, secondly, they permit some actions to be shared
by several sets (sets of a cover May overlap). Most of the

results of the Paper seem to hold also for covers.



1. PRELIMINARY DEFINITIONS

N =0,1,2,...

=2
Il

NU {w}, where
VneEN: n < w,
n+w=w++n-= w,

wt+t w = Ww

For every set A we denote its cardinality by |A]. If A is

countable and finite, then we write [|A| = u.
Lemma 1.2 For any countable set A
|IA] = w e YneEN: |A| > n,
|A] < we dn€N : |A| = n.
If for n,msENm n +m = w then either n = ¢y or m = .

We shall frequently use lemma 1.2 without menhtioning it.

Let < denote a prefix order on T¥*, for some finite alphabet

Def. 1.3

Wc T* is an infinite word iff vw,6,w, € W:

1772

(1) wy < w, Or w, < w,
(ii) Vw3€T*: if W3 =< w.] then W3EW

(iii) W]l = w



ILemma 1.4 If W is an infinite word, then

(i) < is a total order on W
(ii) for every we& W there exists exactly one t€ T s.t.

wt € W.

Def. 1.5

The set of infinite words over T will be denoted by T,

We shall use the notation

W = t1t2t3 vu o FOT WEZT{U such that

{t1,t1t2,t1t2t3,...}.

=
|

Def. 1.6

A language over the alphabet T is any subset of T%*,

Def. 1.7

For any L g T*: L = -l B L

LUJ is called a language of inifinite words of L.

Def. 1.8

L c T* is called prefix-closed iff

VaeEL: VWET*: v<u = VEL.

Corollary 1.9

Any infinite word is prefix-closed.

w]



Def. 1.10
For L € T* :A(L) = {t€T | IweE T*: wt € L}.

A(L) is called an alphabet of L.

Def. 1.11

Vwe T*: w = €

i+1 i

By € we denote an empty word.

Def. 1.12
#: T x (T*LJTw) - Nw
[{fueT* | ut<w}| if we T*

#lt,w) =
|{fue T* | utew}l if weTv.

Lemma 1.13

For t€T, we T%

max (#(t,w)) if it exists

#(t,W) = WEW
w otherwise
" Lemma 1.14
If for some t€T, WEZTw, neEN: #(t,W) = n, then there
exists weW s.t. #(t,w) = n and for every uew

w=<u = #(t,u) = n



Lemma 1.15

TE v1,v2,...

language L such that for every i: Vi<V,

is an infinite sequence of words of some

17 and vy # Vi

then there exists an infinite word V from Lw such that

for every 1€ N: viEIV. o

Def. 1.16

A property is any family of languages.

Def. 1.17

For T' = T, VET*u T,

#(T" V) =

pef, 1.18

For any

YV(W;t)

Lemma 1.19

For every

L #(t,V). o
teT

Ve T* Wc T* and t€T

{wew | wtev} o

WeT*y T, terT: 1Y (W, E) | = #(t,W). =

Def. 1.20
G o= 1""’Tn} is called a partition of T iff
n
(i) \JT. =T
; i)
i=1
(1i) Vvi,jJ = 1,...,n: TiﬂTj = . o



Def. 1.21

Let m, = {Pyew-e,T 3y 7y = [P,004, T} be partitions of T.

1 n 2

m, is finer than Ty (Wz is cruder than w1) o S o

Vi = 1,...,n: 33 = 1,...,m : Ti = Tj.

and say also, that 7, is a

We denote it by T £ 1

2!’

refinement of Moo a]

Corollary 1.22

Partitions of T form a complete lattice with respect to

the order "=, o

Lemma 1.23

For two partitions TyeTs of T: 4f m éﬂz, then for every

P" € Ty there exists a set {P‘,...,PA} c my such that

n
\Jp! = p", u]
. i
i=1






2. GENERALIZATION OF LIVENESS AND FAIRNESS PROPERTIES

Assume for this section, that L is a prefix-closed language,

and A(L) = T. The elements of T will be called transitions.

Def. 2.1

For €€ T

t is live in L iff YVwe€ L: 3u € T*: wut € L.

t occurs impartially in L iff VWEZLw: #(t,W) = w.

t occurs fairly in L iff
VWEELw: IYL(W,t)I = m=>|YW(W,t)l= W
t occurs justly in L iff

VWELOJ: YVwEW: JueEW: w=<u and (Ut€L = ut€w). o

Def. 2.2
L s live iff every £ €T is liwe in L.
L is impartial iff every t € T occurs impartially in L.
L is fair iff every t €T occurs fairly in L.

L is just iff every t € T occurs justly in L. o

Def. 2.3
The class of live (resp. impartial, fair, just) languages

will be denoted by LIV (resp. IMP, FAIR, JUST). o



It is easy to observe, that the definitions (2.2) of properties
are built in a similar way: we require some condition to be

satisfied for every transition t € T.

Our aim will be to generalize these properties so that sets of
transitions instead of single transitions will be used in the

new definitions of properties.

There exists a natural way of extending the concatenation

operation to hold for sets of words:

Def. 2.4

*
For L1,L2 c T

w,E€EL,, W

172 Yo | Wy €Ly €L,}. o

2
When it does not lead to ambiguities, let us not distinguish
between a word which consists of one symbol and this symbol
itself. Similarly if L. = {w} for some wé&€ T*, we will omit the
brackets and write w to identify L, whenever it is clear from

the context,what is meant.

Now we can simply assign the meaning to the expression "wT'"

for some we T* and T' < T:

Def. 2.5

wT' = {wt' | t'€T'}. o



We need also a generalization of the relation "€". There

exist two natural ways to do this:

Def. 2.6

For V,L c T¥*:

VeEL iff 3IveV:

VEL iff VvEV:

veEL

vEL

weak generalization

strong generalization

Comment: V € L iff VNL # @, V€ L iff V c L.

Now we can easily generalize two other important notions:

Def. 2.7

For XV o T%:

#(X,V)

#(X,V)

{vev | vX € V}

{veVv | vX € V}

Note, that #(X,V) = #(X,V),

Def. 2.8

For X,V,L < T*:

¥, (V,X)

YL(V,X)

{vev | vX €

{vev | vX €

as defined in 1.17.
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We are almost ready to

The only thing left is

Let us choose the weak

possible, but it would

generalize all the considered properties.
the choice between "€" and "€".
The other choice is also

¥elation “g".

lead to less interesting results. The

discussion concerning this problem will be made at the end of

this section.

Def. 2.9
A generalized property is any set of pairs (L,m), where L
is some language and m is a partition of its alphabet. o
Def. 2.10
(L,m) € LIV iff VPe€n: VweL: 3Ju€T*: wuP € L
(L,7) € IMP iff VPE m: VW(ELw: #(P,W) = w
(L,m) € FAIR iff WPE 7: VWELM:
(Y, W,P) 1 = w) = (Y (W,P)| = w)
(L,7) € JUST iff VPE m: VWELw: YweE W: JuEW:
(w<u) & (uP € L = uP € W). o
Remark

We underline the names of generalized properties to mark, that

the relation "€" is used in the definitions. o

When (L,m) € ¢ for some generalized property {, we say that 7
satisfies Y, when it is clear from the context, which L we have

in mind.
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Def. 2.11

ek I = Ty Foomsme B8, 1

T = {T}

1l is the finest and T the crudest partition of the set T.

(]

Corollary 2.12

(L,L) €ELIV e LE€LIV
(L,L1) € IMP & L€ IMP
(L,L) € FAIR « L € FATR

(L,L) € JUST & L€ JUST o

So the generalized properties are really generalizations of

the normal ones.

Corollary 2.13

For any L€ T*:

(L, T) € IMPN FAIRN JUST. o

Corollary 2.14

IMP c FAIR c JUST. a

Digression

There is another definition of liveness, by Lautenbach [LAU]

called 1-liveness, by many others - deadlock-freeness (DFR).
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Def. 2.15

LEDFR iff VweEL: It€T: wte€L. o

As a matter of fact deadlock-freeness is a property, which

can be expressed in terms of generalized liveness:

Corollary 2.16

LE€DFR & (L,T) € LIV. u]

So generalized liveness LIV really generalizes the two kinds of
livenesses: deadlock-freeness and ordinary liveness. It is easy
to prove, that liveness implies deadlock-freeness [LAU]:

LIV < DFR

We shall generalize this result in theorem 2.19 (end of digression).

Before we prove the main result of this section, we present two

elementary lemmas, which will be used in the proofs:

Lemma 2.17

For any A,B,L c T*, We T* y %

(1) ¥, (W,AUB) = ¥ (W,A)UY (W,B)

(i) A ¢ B » ¥ (W,A) ¢ Y, (W,B) D
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Lemma 2.18

VWET*UT, VA,B c T

(i)  #(AUB,W) < #(A,W) + #(B,W)
(ii) (A c B) = #(A,W) < #(B,W) |:1
Def. 2.19

A generalized property ¢ is monotonic (resp. antimonotonic)
iff for any language L and any pair of partitions TqrT, OR

A(L) such that m, &

1772

(L.Tr1) EYy = (Lmz) €Y

(resp.: (L,WZ)EZw = (L,ﬂ1)63w) u]

Theorem 2.20

(i) LIV

(ii) IMP

(iii) FAIR are monotonic.
Proof

Let us take any langqguage L and two partitions TqrTy ON A(L)

2
such that 1 < Moo

(i) (LIV is monotonic)
Assume, that (L,ﬂz) ¢ LIV.

Let P"€n, and w€ L be such that Yvu€ T*: Vt€ P": wut ¢ L.

2

Let P' € m, be such that P' < P". For this P' and for the

1

same WEL none of u€T* and t € P' satisfy wut € L. Hence

(L,m,) € LIV.
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(ii) (IMP is monotonic)
Assume, that (L,W2) ¢ IMP.
Let P"E T, and WE L, be such that #(P",W) < w. Let P'g T
be such that P' < P".
From Lemma 2.18 we get #(P',W) < #(P",W) <w, so #(P',W) < uw.

So (L,ﬂ1) ¢ IMP.

(iii) (FAIR is monotonic)
Assume, that (L,Wz) ¢ FAIR

Let P"€ 7, and WE LUU be such that IEL(W,P")[ = w and

2
IYW(W,P")I<fn.

n
Let {P!,...P!} ¢ m, be such, that Upi = P". (Lemma 1.23)
i=1

From Lemma 2.17 and definition of Y we deduce the following:

n
w = 1Y (W,P") | = |gL(w,.L“JP;L)| =
i=1
n n
J < 5= ’ i 1
I_L_}}E_L(W,Pi)l < Iy (W,pi)l.
i=1 i=1
Hence there must exist such i = 1,...,n that IXL(W'Pi)I = w.

But again from Lemma 2.17 (ii) we have
1 "4 " 1
IXW{W,Pi)I < ]XW(W,P )1 < w. So we have found such PiE T4
T — [l .
and WGELUJ , that IXL(W,Pi)I = w and IXW(W,Pii< w, which

means, that (L,w]) ¢ FAIR.

In order to complete the investigations on monotonicities, one

should remark, that JUST is not monotonic.
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Counterexample

Consider the following net (the definitions of net theory are

given in chapter 4):

a Lt W, = L
| m, = {{a},{b},{c,d}}
e ( d
[ W1 5 ﬂ2

Figure 1

Let L be a language generated by this net. The only infinite
word W can arise by firing alternately the transitions a and b.
(L,W1)EIJUST, because for every we€ W and P'€‘n1, the condition

uP' € L is false for some u €W such that w<u.

At the same time for P" = {c,d}E*Tr2 and for every u €W, the

condition uP" € L is true and uP" € W is false, so (L,ﬂz) ¢ JuST.

Since partitions of T form a lattice,we can deduce the following

facts:

Corollary 2.21

For every generalized property y € {IMP,FAIR} and every language
L there always exists a set of partitions 7 = {ﬂ1,...,ﬂk} such

that
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(i) Vi = 1,...,k: (L,Wj)ElP
(ii) for every partition m of A(L):
(L, M) €y e 3] = 1,...,k: 7.7 o

Proof is a consequence of Corollary 2.13 and the monotonocity

theorem. o

Corollary 2.22

For every L € DFR there exist a set of partitions

T = {ﬂ1, .,ﬂm} such that:
(1) vYi = 1,...,m: (L,Wi)€ZLIV
(ii) for every partition m of A(L)
(L,m) €ELIV & 3i = 1,...,m: WigTT u]

Proof is a.conseqguence of Corollary 2.16 and the monotonicity

theorem. O

The sets of partitions mentioned in the Corollaries 2.21 and 2.22
are the sets of minimal partitions satisfving the considered
properties. Each of them cuts the lattice of partitions of

T into two parts. In the upper part one can find all the parti-
tions, which satisfy the property. In the lower part - all that

do not satisfy it.
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partitions partitions partitions
satisfying satisfying satisfying
LIV IMp FAIR
% minimal X\minimal \minimal
» partitions partitions partitions
satisfying satisfying satisfying
LIV IMP FAIR

partitions that
do not satisfy
LIV

partitions
that do not
satisfy IMP

Figure 2

partitions
that do not
satisfy FAIR

For a given L one can find the sets of minimal partitions

satisfying LIV,

IMP and FAIR.

Certainly for every L the cut line for IMP must lie above the

cut line for FAIR. since IMP c FAIR (Corollary 2.14).

With the help of generalized properties one can precisely spe-
cify "how much" a certain property is (or is not) satisfied,

for a given language. Informally speaking, the higher the cut
line is, the "less"

a given peoperty is satisfied. The strongest

level is of course the bottom cut, consisting of 1, in which

case a given language just belongs to an ungeneralized property.

In order to complete this section, we shall discuss our choice

of the "€" relation instead of "€".
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Lemma 2.23

For every WEELw, wE€W and T c T (ITI> 1) = wT £ W.

Proof
The thesis comes from lemma 1.4: for every weEW there exists

a unique t € T such that wt € W. o

We can easily observe, that for any interesting (different from
l) partition, the conditions defining IMP, FAIR and JUST, with
the help of the relation "€", degenerate a lot and give no
satisfactory results. As a matter of fact neither of them is

monotonic nor antimonotonic.
However the condition for LIV does not degenerate:

Def. 2.24

(L,m) €LIV iff VYweEL: YPEmw: JuE€T*: wuP € L. o

This is in some sense a dual notion to LIV and one can prove

the following antimonotonicity result for LIV:

Theorem 2.25

For every language L and a pair of partitions of A(L): My

and ﬁ2

(m, = Tr2) = ((L,'ITZ) € LIV = (L,W1) € LIV o

7 S

Proof omitted.
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One can assign some useful interpretation to this strong
generalization of liveness. With some additional restrictions
it could be interpreted, as a "liveness of concurrency" - which
would mean, that the transitions grouped in the classes by some
partition cannot lose the ability of concurrent occurrence (the

restriction should exclude conflicts between them).

We leave this subject, however, and due to uniformity concentrate

on weak generalization of liveness and fairness properties.

To illustrate the results of this section, let us present a
graphical representation of different situations in which none,

some or all the partitions satisfy the considered properties.
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LIV IMP FAIR JUST
NONE non existing
L.
N
N
N
N
N\ non
ﬁ monotonic
SOME ¥
\
% w
5 %
o N
. b
=N
ALL p SR IE o]
) / \
= N \
’ \
, live impartial fair just )
" !

" ]

L]

v |
this is an impossible \
combination of situations, this is a possible
since if every m satisfies combination of
IMP, then also every 7T must situations
satisfy FAIR and JUST

Figure 3

Only 12 out of 24 combinations can reflect a real situation.
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3. ANTIMONOTONICITIES OF LIVENESS AND FAIRNESS PROPERTIES

WITH RESPECT TO THE COORDINATION RELATION

In the previous chapter we have proved that three of the four

considered properties are monotonic.

The following question arises: under which conditions do these
properties become antimonotonic? It is rather clear, that

at least the monotonic ones cannot be just antimonotonic without
any additional conditions. If a property is monotonic and anti-
monotonic at the same time, then varying the partitions does not
change anything - all of them are equivalent with respect to the
answer to the question whether (L,l) belongs to this property

oL hok.

We introduce first the coordination relation on sets of transitions
(which is in fact an equivalence relation), and then show, that
one can safely make refinements along the lines that separate

coordinated sets, without losing the considered properties.

Def. 3.1

UL = w0

(tyrty) €op  1fE VWEL :(#(t,,W) = w) & (#(t,,W) = w).

or, is called a coordination relation. o

We extend this relation to hold for sets of transitions.
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Def. 3.2
ZL c 2T x 2T
(T1,T2)EEZL £ E VWE:Lw:(ﬁ(T1,W) = ) e (E(TZ,W) = w).
When (T],TZ)EZZL, we call them coordinated. u]

Due to the result of Lemma 2.23 we shall not consider the dual
definition with the function "#" - it does not look very

appealing.

Def. 3.3

For the two partitions of A(L): m, and Tor Ty is called a co-

ordinated refinement of ™, with respect to L iff

(i) ™ is a refinment of o (w1 < ﬂz)
(ii) VP"E‘H2 VPi,Pé€TrT
(P; c P" & Pé c P") = (P%,Pé)E I
U is called a split of U iff 3P',Pé€iﬂ1:
My = (my >~ {P3,P3H) U{PJUPS}.
Obviously every split is a refinement. o

Lemma 3.4
For m,,m, being partitions of T: T4 is a coordinated

refinement of Ty iff there exists a sequence of partitions

of ‘T FO,F1,...,Wn such that
(i) WO = Wz, = U
(ii) ﬂl+1 is a coordinated split of mt for i = 045w shi=1

We omit an easy and tedious proof here. o
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Def. 3.5

A generalized property ¥ is antimonotonic with respect to

coordination relation, or simply EL—antimonotonic iff

for every language L and two partitions T and T On

A (L) such that T is a coordinated refinement of Ty

Welste Lg

(Lymy) €9 = (L,m,) €Y o

We present here one technical lemma, which will be used in

the proof of the main theorem of this section (3.7).

Lemma 3.6

If (L,m) € JUST, then for every PE€ 7, WEELw: if there exist

infinitely many u € W such that (w<u and uP € L) then

E(PIW) = We
Proof straight from the definitions. o
Theorem 3.7 (ZL-antimonoticities)

(i) LIV

(ii) IMP

(iii) FAIR

(iv) JUST are ZL—antimonotonic.

Proof

According to Lemma 3.4 it is sufficient to prove that the impli-

cation holds for T being a coordinated split of Mo
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Let L be any language, Ty = {P1,P2,P3,...,P " T, = {P12,P3,...,P

n n

be partitions on A(L) = T such that ue is a coordinated split

of wz.

Obviously (P1,P2)EIZL 3

(i) (LIV is ZL—antomonotonic).
Assume that {L,ﬂz)E.LIV.
(*) Vw€E L :VP" €T, : Ju€ T* :wuP" € L.

Assume that (L,W1) ¢ LIV.

Let P'ET w' € L be such that

1’
(**) VYu€ T* :wuP' ¢ L.
P' must be either P1 or P,, otherwise (*) would be immediately

vioclated. Let us assume, for symmetry, that P' = P1.

Let us construct the following sequence of words:

Vg =W
= L3 ] . . = . * -
Vi vlultl for some tl&.P12 and ulEZT
The existence of such a sequence is assured by (*) - at
each step we take w = Vi P" = P12.

For every 1€ N: tj_EP1lJP2 and ti ¢ P1 (according to our
choice of w' and P'), so tiEjP2 for every 1 = 0,1,...
Due to Lemma 1.15 there exists an infinite word WE:Lw such

that viGEW for every i = 0,1,... .

A
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Clearly E(P2'vi+1) > E(Pz,vi) for every i, so (Lemma 1.13)

#(P,, W) = w.

At the same time w' was chosen in such a way that E(P1,vi)
E(P1,vi+1), o) E(PT,W) < w, which contradicts the assumption

that (P,l ,P2) € ZL.

(ii) (IMP is 3 -antimonotonic).
Let (L,WZ)E_LME:
(*) VWEL : VP"EWZ: #(P", W) = w.
Assume that (L,ﬂ1) ¢ IMP. Let P' € U and W'ELUJ be such

that #(P',W) < w. P' can be only one of the sets PT or P2

(otherwise (*) is immediately violated).

Assume for symmetry, that P' = P1.
For W = W' and P" = P12 we have, from (%),
#(P",W) = w.
But #(P",W) = ﬁ(P1lJP2fW)25ﬁ(P1:W) + ﬁ(PE,W), (we have used

Lemma 2.18) so ﬁ(Pz,W) = w, since ﬁ(P1,W) < w, which is

a contradiction to the assumption (P1,P2)EZZL.

(iii) (FAIR is ZL—antimonotonic)
Let (L,TTZ) € FATIR:
(*) VWE?Lw: VP"€'W2: (IXL(W,P")I = @) = (IXW(W,P")i = w).
Assume that (L,W1) ¢ FAIR:

Let W'EILw: P'E‘W1 be such that
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(iv)

1Y, (W',P') | = w and IY  (W,P")]| < w.
Again P'€ {P1,P2}. Assume that P' = P,. From Lemma 2.17
we get
] ] — ]
Y (W',Py) ¢ Y (W,P,UP,)) = ¥ (W,B).
But IXL(W ,P1)I= w, SO IXL(W ,%211 = w. Using Lemma 1.19
* ' ' = ' -
and (*) we deduce that ﬁ(%z,w ) IXW,(W lrP12)| W

So E(PZ,W') = w, since P P. UP, and ﬁ(P1,W') < w, which

12— &9 253

is a contradiction to the assumption (P1,P2)EZZL.
(JUST 1is ZL—antimonotonic)

Let (L,ﬂ2)€ JUST:

(*) VP"E'J'T2: VWELw: VwE W: Ju € W

(w<u) & (uP" € L = uP" € W)

Assume that (L,w1) ¢ JUST:

Let P'€En W'EﬁLw, w' € W' be such, that for every u'e wW':

1
(**) (w'<u') = (u'P' €L & u'P' ¢ W')

Again P' € {P1,P2} - otherwise (*) is violated.
Let P' = P1.
W' is infinite, so there is infinitely many u'€ W' such
that (**) is satisfied. This implies, that for infinitely

many u€ W': uP' € L. Moreover for none of u€ W' such that

w'<u: u'P' € W'. Hence #(P,,W') < w.
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Clearly for Piy €Ty which includes P,, there also exist
infinitely many u€ W' such that ubP,, € L, and, according
to Lemma 3.6, ﬁ(P12,W'} = w. SO ﬁ(PZ,W') = w, since

P,y = Py EP, and E(P1,W') < w. Again we have got a contra-
diction to the assumption (P1,P2)€ ZL. u]

The above theorem can be applied in a nontrivial way only when
there exist coordinated pairs of transitions in the language L.
The greater the coordination relation is, the more useful is

this theorem.

Let us close this section with some conclusions for the case when

the coordination: - relation is the full relation on T.

Def. 3.8

L is totally coordinated iff or, = T7. o

corollary 3.9

o1, = T iff ZL = (27)

So L is totally coordinated iff any pair of subsets of A(L)

is coordinated. .

Corollary 3.10

Ty & T2 iEf (Lo,L) € IMP.

Proof - direct from the definitions. o
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Lemma 3.11
If L is totally coordinated, then for every partition 1 on
A(L):
(i) (L, m) € IMP
(ii) (L,w) € FAIR
(iii) (L,m) € JUST

(iv) (L,m) e LIV iff (L,T) € LIV

Proof
(i) is a consequence of 3.10 and 2.20.
(ii) & (iii) are consequences of (i) and 2.174.

(iii) is a consequence of 2.20 and 3.7. O

From Lemma 3.11 one can easily deduce, that in the case of totally
coordinated languages- all the considered fairness properties
collapse, (and hold), and all the partitions are equivalent

with respect to liveness (in particular deadlock-freeness 1is

equivalent to liveness).
The following corollary forms a bridge between the coordination
relation and sets of minimal partitions satisfying LIV, IMP

and FAIR.

Corollary 3.12

If m is a minimal partition (Corollary 2.20) satisfying
LIV or IMP or FAIR then for every P€ 7, and for every partition

{91,P2} of P

(ByaBs) € X



Proof

immediate from 3.7.
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4. DEFINITIONS FROM THE PETRI NET THEORY

Def. 4.1
A net is a triple PN = <§5,T,F> where S and T are disjoint,
nonempty and finite sets, called sets of places and transi-

tions respectively, F < (SxT) U (TxS) is a flow relation

such that ¥vx€ SUT: Iy€SUT: (x,y) €F .

Let PN = <S,T,F> be an arbitrary, but fixed net. Let X = SUT.

Def. 4.2

{yvex | (y,x) €eF}

<
bt
m
i
b

I

ba
I

: {yeX | (x,y) €F}

For X, ¢ X X, = U x

_‘N
:
C
N.
.

Def. 4.3

An underlying graph of PN is a directed graph <V,E>, where

v = X

e}
1

{(x,y) €XxX | (x,y) €F} o

Def. 4.4
PN is strongly connected iff its underlying graph is

strongly connected. o



Def.

Def.

Let

Def.

Def.

Def.

Def.

4«5
PN is a T-graph iff Vvs€S: ["s| = [|s"| = 1
PN is a S-graph iff vteT: |"t| = |t°| = 1
4.6
PN1 = <S1,T1,F1> is a subnet of N iff S1 c S, TT c T,
F1 = FnN (S1 X T1 u T1 X S1).
PN1 = <S1,T1,F1> be a subnet of PN.
4.7

Let ¥ c K.

PN1 is said to be a subnet generated by Y iff
S1 =5n('Yuy uy), T1 =Tn ("YuY UuY)
F1 = Frl(51x T1 U T1x ST)'
4.8
PN, is a T-component (S-component) of PN iff it is a

1

strongly connected T-graph (S-graph) generated by T1
(S1).

4.9

A marking of PN is a function M: S - N.

4.10
Given a net PN and its marking MO’ we call a pair <PN,MO

a marked Petri net.

31
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Def.

Def.

Let

Def.

Def.

4.11

By a marked graph we mean any marked net <S,T,F;MO>,
where <S,T,F> is a T-graph.
By a state-machine we mean any marked net <S,T,F;MO>,
where <5,T,F> is an S-graph, and z Mo(s) = 1. o
SES
4.12
PN is a free-choice net iff
Vs€S Is"| > 1= "(s") = {s} o

MN = <PN,MO> be a marked Petri net.

4.13

A transition t €T is active at the marking M iff
Vs € “t: M(s) 21

4.14
Next < Nsx T & NS is a relation satisfying (M1,t,M2)€ENext
1£€

(i) t is active at M1

(ii) : M, (s) - 1 if s € "£~te
VSES My(s) = Mo (s) + 1 if SE£°~N"t

M1(s) otherwise
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If (M1,t,M2)€ZNext, then we denote it by

MT[t>M2,
and say that M2 is reachable from M1 by firing a transition t.

m}

Def. 4.15
Next* c NSx T* x N° is the least relation satisfying
(i) (MT,E,M1)E€Next*
(ii) 4if (M1,t,M2)ENext and (Mz,w,MBJENext*, then (M1,tw,M3)ENext*.

if (M1,W,M2)€5Next*, then we denote it by Mq[w>M2 and say

that M2 is reachable from M1 by firing w. o
Def. 4.16
S = _ :
The word we€ (2" UT)*, w = M0t1M1t2 - tnMn is called an
augmented firing sequence of MN iff vi = 1,...,n-1
Mi[ti>Mi+1'

Let the set of augmented firing sequences of MN be denoted

by AFSMN. o

Def. 4.17
IaFs. . = 22FSMN g (M1 U,

MN

IAFSMN is the set of infinite augmented firing sequences of

MN. o

Def. 4.18

{MeN®

ﬁ,
=
o
I

| 3weE T*: MO[W>M}.

[MO] is called the reachability set of MN, o
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Def. 4.19
S
= * - .
Ly {weT* | 3MeN": M, [w>M].
LMN is called a language of MN.

Corollary 4.20

For every marked Petri net MN the language LMN is

prefix—-closed.

Def. 4.21

MN is safe iff VM€ [MO]: Vs €S: M(s) £1.

Def. 4.22

PN is called pure iff FnF-1 = @.
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5. GENERALIZED LIVENESS AND FAIRNESS PROPERTIES IN MARKED GRAPHS,

STATE MACHINES AND IN LIVE AND SAFE FREE-CHOICE NETS (LSFC NETS)

However, it is difficult to get some significant results concerning
behavioural properties of Petri nets in general, many of them
can be achieved, when we concentrate on some subclasses of Petri

nets.

The main theorem of this chapter will be strongly based on the
results obtained in [ThV], where the reader can find a concise

and clear presentation of LSFC nets.

We start our investigation from the class of marked graphs. Since
they allow no nondeterminacy, the infinite words, they produce,are

very similar to each other.

Theorem 5.1

Marked graph languages are totally synchronized.

Proof - based on results of [CHEP], omitted. o

Coreollary 5.2

If L is a language of a marked graph, then it is impartial,
fair and just,and, moreover, deadlock-freeness is equivalent

to liveness of L.



36

State machines are dual in some sense to marked graphs. They

provide nondeterministic and sequential behaviour.

Corollary 5.3

If L is a state machine language, then for every 7 being

a partition of A(L):

(1)  (L,m) € LIV
(ii) (L,7) € IMPes (L,m) € FAIR

(iii) (L, m) € JUST if the net is pure.
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Proof
(i) State machine languages are live, go the thesis comes from

the monotonicity theorem.

(ii) The proof can follow the proof of Theorem 6.2 from [ThV]
with some minor changes: first of all relativization to
partitions is needed, and secondly an observation, that
fairness, as defined in this paper, implies local fairness

defined in [ThvV].

(iii) comes from the observation, that there is only one token

flowing in state machines. o

We now turn to LSFC nets. From the definition, LSFC nets are
live, so if L is an LSFC net language, then, obviously, for

every partition n of A(L), (L,n) € LIV (monotonicity).

The main result of this chapter will be a structural characteri-
zation of rn-impartiality in LSFC nets. As in the case of state

machines (L,7) € IMP iff (L,w) € FAIR in LSFC nets.

Lemma 5.4

If PN = <S,T,F;M,> is an LSFC net, Me [M,], ¢ €T such that

M[o>M

then there exists a T-component PNi = <Si,Ti,Fi;MO > such
i

that vt e Ti: #(t,a) > 0. o
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The following result, however, proved for LSFC nets is valid
as well for state machines, since every state machine is also

an LSFC net.

Theorem 5.5

Let PN = <S,T,F;MO> be an LSFC net, L be a language of PN,
I = {TC1,...,TCm} be a set of T-components of PN,

TCi = <S.,Ti,Fi;M >

i 0.

i
i {P1""'Pn} be a partition of T.

Then
(L,m) € IMP iff vi = 1,...,m; Vj = 1,...,n
T, NP, # @.

1 J

Proof (outline)
ll=l|

Assume that Ti[1Pj = @ for some i and j. A subnet generated

by Ti is a strongly connected T-component, so Vs € Si

s'F]Ti # 0.

From Lemma 3.2 of [ThV] we deduce the existence of such
weE L, GETi+, and M€ [MO], that M[o> M.

It is easy to see now that vke N: v = wakEIL.

Let V¢ Lw be such that Vi€V for every i€ N (existence of
such V is assured by Lemma 1.18).

— + —
E(Pj,V) i(Pj,w) < w, because o€ Ti and Tin Pj D.

So (L,m) ¢ IMP.
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=

Assume that for every i = 1,...,mand j = 1,...,n

TiﬂPj # 0.

Let us take any WEL , W = ti ti ....and a corresponding
1 i, )

infinite augmented firing sequence

Tk IAFSMN

PN is safe, so the number of reachable markings is finite.
From Kdnig's lemma we conclude that there exists MEE[MO]
such that #(M,1) = w.

From Lemma 5.4 we conclude that for every word

-

T, = M, t s ti Mi such that Mi = M = M,
K+1 e T k et ]

1 > 0, there exists a T-component TCie TC such that VtE‘Pi

#(t, Tk) > 0.

The number of such Ty is infinite, so there must exist a

T-component TCi such that for infinitely many k€N
0

#(t,Tk) > 0 for every te€ Ti

0
Hence Yte€ T, :#(t,1) = w.
1o
Let t, .€T, NP. for every j = 1,...,n.
i3 i J
#(P.,W) = #(P.,T) = TOF(EyT) 2 #EE ) B B,
== - tep igd’

So (L,mw) € IMP, since ijand.w were chosen arbitrarily.
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Till now no satisfactory results concerning justice of LSFC nets
can be presented. There is a conjecture [Thi] that fairness and
justice coincide, iff every al-reduction [Hack], [ThV] contains

one T-component.
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6. FURTHER EXTENSIONS

According to the aim of greater clarity and simplicity of
presentation, the whole theory was based on the idea of sets

of transitions defined by some partition of A(L).
This brings two limitations: first of all we require every
transition to belong somewhere, secondly the number of sets in

which a transition is included cannot be greater than one.

To illustrate that such limitations can be awkward, let us con-

sider the following situation:

Example 6.1

Assume that we use Petri nets to model some system, which

posesses an "abort" action. If we want to model this action by

a separate transition, then if an infinite execution is possible,
then by no means the net can be impartial (in the classical sense).
The "abort" action stops every execution and it should not occur

even twice in any word, especially infinite.

However the rest of the net can be "impartial". We would like to

express this fact, and carry this information.

Within our framework one should define a partition in which
the "abort" action could be found in an equivalence class
together with some other action which occurs impartially. But
then we would be forced to choose one of the equally important

actions, from the impartiality point of view, making it an
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unhappy host forced to be a companicn of an ugly guest.

It would break down the symmetry of the system. There exist

at least two ways to solve this problem.

One of them is to allow overlapping of sets, in which case we
should consider covers rather than partitions, so that we would
be allowed for instance to attach an "abort" action to every

transition.

The other possibility is just to forget about the "abort" action,
and concentrate only on some subset of transitions which

interests us.

From the mathematical point of view the first situation requires
covers instead of partitions, to be considered; the second one
- partitions on a subset of T. We can also allow both of them

at the same time (i.e. covers on a subset of T).

In order to make it more precise, let us assume that a
symmetrical relation R is given on T. This relation will indi-
cate, which elements we want to join in groups. For instance
if T =:{a,b,c,d}, R = {(a,b),(b,a),(a,c),(c,a)}, then we
precisely want a and b to be joined, as well as a and ¢, but

no others
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As a matter of fact, we should also add pairs (a,a), (b,b) and
(c,c) but not necessarily (d,d), in order to leave us a chance to
express that we would like to "forget" about d. Hence we shall

require that R is also reflexive on dom(R). (dom(R) =

{teT | 3t €T: (t,t') €R}.)

Def. 6.2

Aset T £ T is a ecligue of R 1ff

4 ' .
(1) Vt1,tzE'T : (tq,tz)E.R

(ii) Vt3€’T\~T': JtET': (t,t3) £ R. o

So every clique is a set of transitions, each two of them are
in the relation R (condition (i)), and it is maximal such a

set (condition (ii)).
e \.
/

Figure 4

The relation presented by the above graph

determinates three cliques.
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Def, 6.3

Let R be a set of relations on T, which are symmetric

and reflexive on their domains.

Let Rp c R be a setof these relations of R, which are

reflexive on T.

RT © R is a setof these relations of R which are transitive.

R =R NR_. u]
T o T

Def. 6.4

For Re R, R' < R.

C(R) = {T' T | T is a clique of R}.
C(R') = {C(R) | ReR'}. o
Def. 6.5

Let II be a set of partitions of T
P be a set of covers of T
HS be a set of partitions of subsets of T

PS be a set of covers of subsets of T. u]

Theorem 6.6

I = C(RDT)

P = C(Rp)

n; = C(Rr)

P, = C(R) o
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Proof - omitted. o

To illustrate Theorem 6.6 we present the following diagram:

reflexive

symmetric

transitive partitions

/////// \\\\\\ reflexive /////// \\\\\\
Rp covers

reflexive SYTmSRe
o lFS partitions
domalz . of subsets
symmetric of T
transitive covers of subsets of T

reflexive on its domain
symmetric

Figure 5

Vertices of these two graphs correspond to each other.

Hence every

- symmetrictreflexive+ transitive relation determines a
unique partition

- symmetric + transitive relation determines a unique par-
tition on a subset of T (reflexivity on the domain is

implied by symmetry and transitivity)

- symmetric + reflexive relation determines a unique cover

on a subset of T

- symmetric + reflexive on its domain relation determines

a unique cover of a subset of T.
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and vice versa (i.e. every partition determines a unique

symmetric, reflexive and transitive relation etc.)

Remark 6.7

When we want to talk about the considered properties related
to some cover p of some T' < A(L), we should consider this gene-

ralized property to be a set of pairs
(L,p)

where L is a language, p is a cover of some T' c A(L).
For example generalized in this way the definition of Liveness

looks like the following :

(L,p) € LIV iff VPEp YWWEL Jue T*: wut € L o
In order to consider the monotonicities of properties one should
first of all define an ordering on covers. In order to obtain the
wanted results it is necessary to allow ordering only between
covers which cover the same subset of T. So if we say that cover

p' is greater than P, then we certainly mean that

U s = U »

Pl€pl Puepn

Now, when we have two covers that cover the same subset of T,
we must make a choice between one of the three known orderings

of covers:
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Def. 6.8

Let p', p" be two covers of the same set.

p'’ 21 p" IEf WVWB' E-p's IP"E€ p"y B c P" (Smyth ordering)
p! = p" iff VP"€p": IP'€p': P’ c P" (Hoare ordering)
p' §3 p" iff (p' §1 p" and p' 22 ") (Egli-Milner ordering)

All three orderings differ from each other and build up
three different lattices of covers. However for the lattice

of partitions all three of them coincide.

For the monotonicity results we need §2 or §3 to be used

(£, is not sufficient). o

1
The ZL—antimonotonicity results do not look very nice
for covers, since the notion of split is violated. But certainly

some further work can be done in this direction.



48

7. CONCLUSIONS

A generalization of liveness and fairness properties has been
done. Liveness, impartiality, fairness and justice of sets of
actions has been considered. The first three properties has
turned out to be monotonic (they are preserved when the sets

are being enlarged).

A coordination relation on sets of actions has been introduced
and its relevance to the antimonotonicity results has been
shown (all the considered properties are antimonotonic with

respect to this relation).

The theory has been illustrated on some simple subclasses of
Petri nets, however, the formalism is suited for much larger

class of models.
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