T 1 NVYI3H/INIVA NAHL
| === S5 €8 21 - 90 ‘auoydepey

NEVIWNIA —- O snuiey 0008 M(1 — epeBaxuniy AN
ALISHIAIND SNHYYY
~ Wwewyedsq aousog Jandwon

6861 [dy
261 - 9d TNIVA

UIsWIoY |, pIESNOoIg Junsiry
uaspnuyy aoyspury usSie[

sadenduey SurmwrerSorg xoy
yromaswrery remadaduor) vy

Knudsen & Thomsen: Conceptual Framework for Prog. Lang.

L198-G010 NSSI

PB - 192

A Conceptual Framework
for Programming Languages

Jorgen Lindskov Knudsen
Kristine Stougard Thomsen

DAIMI PB - 192
April 1985

ISSN 0105-8517

Computer Science Department
AARHUS UNIVERSITY

Ny Munkegade — DK 8000 Aarhus C — DENMARK .
Tedephone: 06 — 12 83 55]

3

CONTENTS

INTRODUCTION

CHARACTERIZATION OF THE PROGRAMMING PROCESS

1.1
1.2

Structures Related to the Programming Process
Functions Related to the Programming Process

CONCEPT UNDERSTANDING AND ABSTRACTION

2.1

Two Different Views of Concepts.

2.1.1 The Aristotelian View of Concepts
2.1.2 The Fuzzy View of Concepts

2.1.3 The Modelling Function, Reconsidered
Abstraction

2.2.1 Classification and Exemplification
2.2.2 Generalization and Specialization
2.2.3 Aggregation and Decomposition

2.2.4 Analogies to Mathematical Set Operations
2.2.5 Hierarchical Concept Structures

2.2.6 The Abstraction Function, Reconsidered

FUNDAMENTALS OF PROGRAMMING LANGUAGES

3l
3.2

Descriptors

Entities

3.2.1 Data- and Process=-entities

3.2.2 1Interaction of Data and Process

Values

3.3.1 Value Domains

3.3.2 Applicative Versus Imperative Programming
Processes

Names

10

12
14
14
16
17
19
20
21
23
24
25
27

28
30
31
32
34
35
35

39
40

3.6 Parameterization

3.6.1
3.6.2
3.6.3

Parameterization by Values
Parameterization by Entities
Parameterization by Descriptors

4 ABSTRACTION IN PROGRAMMING ILANGUAGES
4.1 Classification and Exemplification

4.1.1
4.1.2

Classification of Data
Classification of Process

4.2 Aggregation and Decomposition

4.2.1
4.2.2
4.2.3

Different Kinds of Aggregation Components
Constraints
The Control Aspect of Process Aggregation

4.3 Specialization and Generalization

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7

5 CONCLUSION

6 REFERENCES

Advantages of Specialization

Simulation of Generalization by Aggregation
Use of Aggregation in Specialization
Specialization of Process-descriptors
Single Versus Multiple Inheritance

Summary Concerning Specialization

Analysis of Some Language Constructs

43
46
46
47

52
b3
54
55
56
58
61
62
66
68
74
76
79
82
83
83

90

92

A CONCEPTUAL FRAMEWORK FOR PROGRAMMING LANGUAGES

by
Jgrgen Lindskov Knudsen
Kristine Stougaard Thomsen

Abstract

The conceptual framework presented in this paper contains
language independent concepts that enable discussions of program-
ming languages in general, independently of the premises of
specific languages. Within the framework, special emphasis is
put on analysis of the abstraction techniques: Classification,
aggregation and generalization.

The discussion of the various aspects of programming languages is
based on a model for program executions - the descriptor-entity
model.

The conceptual framework can serve as an aid in gaining a
coherent understanding of the programming language area, and in
the process of language description and standardization.

The approach to the development of the framework is to attack the
programming language area from two different perspectives. Fir-
stly, programming languages are seen as tools for conceptual
modelling, and secondly, as tools for instructing the computer.

INTRODUCTION

Aim and Approach

The main goal of this paper is to develop a conceptual framework
for the study and design of programming languages. It is our hope
that the framework will prove valuable as an aid in gaining a
coherent wunderstanding of the programming language area and as a
source of inspiration when evaluating and designing programming
languages.

Our conceptual framework is concerned with language independent

concepts. Instead of developing the framework based on a
detailed examination of various existing languages features, we
focus on conceptual aspects that are interesting regardless of
the kind of programming language in question. This means that the
framework enables language independent discussions instead of
discussions based on the premises of specific languages, or
families of languages.

Our approach to the development of the conceptual framework is to
focus on the programming language as a tool for a human program-
mer in a programming process. We discuss in detail the charac-
teristics of the programming process and observe that programming
is an activity in which modelling and abstraction are central
parts. When we create a program, we create a model of a structure
of concepts related to our problem area.

We consider the programming language as playing a dual role in
the programming process: Firstly, as a tool for modelling and ab-
straction, and secondly, as a way of instructing the computer in
what to do.

Introduction

This analysis of the role of the programming language in the
programming process inspires us to attack programming languages
from two different perspectives: A conceptual modelling perspec-
tive, and a computer instruction perspective. Both perspectives
contribute to our conceptual framework by showing important
aspects of programming languages and by demonstrating basic re-
quirements that must be met by programming languages.

The conceptual modelling perspective leads us into an examination

of how to discuss and describe phenomena, concepts, and their in-
terrelations. We discuss in depth some different abstraction
techniques that are of primary importance to concept understan-
ding and concept structuring. This approach reveals two kinds of
requirements to programming languages: Requirements concerned
with concept description, and requirements concerned with support
of abstraction.

We discuss how concepts can be described in programming languages
and discuss the problems due to the fact that formalized language
is to be used.

The majority of existing programming languages take only limited
advantage of the power of the different abstraction techniques,
although most languages do support some kind of abstrac-
tion - e.g. in the form of abstract datatypes or procedures.
Therefore, we discuss in detail the advantages of supporting the
different abstraction techniques and we show how they can be
realized in programming languages. In particular, we give a
thorough analysis of the abstraction technique called
generalization/specialization which has many important advantages
but 1is supported only by very few languages. We consider our
analysis of this abstraction technique as one of the major con-

tributions of our work.

The computer instruction perspective leads us to develop a model

of program executions that at the same time expresses the fun-
damental properties of the computer and acts as a basis for our
further discussion of programming languages. Instead of a
traditional model that takes its starting peoint in storage and

Introduction

manipulations of storage, we choose a descriptor-entity model
that is better suited as a basis for the discussion of the
relation between the concepts from the problem area to be model-
led, the programming language, and the program executions on the
computer. With this model as a starting point, we discuss some
fundamental aspects of programming languages. In particular, we
relate our discussion of abstraction in programming languages to
our model of program executions.

Applications

As already mentioned, the language framework is intended as an
aid in gaining a coherent understanding of the programming
language area and as a source of inspiration when designing new
programming languages. One of the most important parts of the
design process is the language report and/or the language stan-
dard. The standards are usually written in a kind of formalized
english that differs from language standard to language standard.
That 1is, the language standard both seeks to define the language
and the terminology in which to define the language. This
manifold of language terminologies makes it very difficult to
learn a new language since one is forced to learn both a new ter-
minology and a new programming language.

Using the conceptual framework presented in this paper in
language standards will be a step towards more uniform and com-
prehensible standards. The languages can be described within the
same framework implying that similarities and differences between
the languages can be more easily extracted.

We do not claim that a language standard can be based on this
framework alone. In order to be precise, a formal method for
definition of the details of the semantics must supplement the
conceptual presentation of the language.

Organization of the Paper

Chapter 1 contains an analysis of the programming process. The
analysis is inspired by the referent/model system approach from

Introduction

the DELTA-project /Hanssen et al./ and the discussion of central
aspects of the programming process in /Jgrgensen et al./. The
process-structure-function terminology from /Mathiassen/ is used
throughout the analysis.

Chapter 2 discusses human concept understanding and abstraction
with only little reference to the computer. The discussion of the
Aristotelian and the fuzzy view of concepts is inspired by
/Larsen/ whereas the main source concerning the different ab-
straction techniques is /Smith et al./.

In chapter 3 we present our model of program executions and
discuss some fundamental aspects of programming languages. Our
model is inspired by the Beta-project /Madsen et al./.

Chapter 4 represents the synthesis of chapter 2 and chapter 3.
Here we give a detailed analysis of programming language support
of the different abstraction techniques, based on our discussion
of abstraction in chapter 2 and program execution model in chap-
ter 3.

Throughout the paper we give numerous examples from existing
programming languages. We give no explicit references to the in-
dividual languages when we discuss them, but references can be
found in chapter 6.

CHAPTER 1

CHARACTERIZATION OF THE PROGRAMMING PROCESS

Let us start by emphasizing that programming is an intellectual
human activity that can be characterized as a modelling process.
By this we mean that a programming process takes its starting
point in a referent system, which is usually a part of the real

world or an abstraction of it, and seeks to create a
model system, which is a program execution simulating a part of

the referent system on a computer.
Let us picture this in the following way:

modelling

realized
concepts

problenm
specific
concepts

abstraction

Referent System Model System

Chapter 1

Let us introduce the terms structure, process and function:

A structure 1is a collection of phenomena and/or con-
cepts that we choose to consider as stable during some
period of time.

A process is an activity that alters the state of some
structures as time passes.

A function expresses the purpose of one or more proces-
ses - detached from their actual implementation and
fulfillment.

A function can be fulfilled by one or more processes,
and the same process can contribute to the fulfillment

of several functions.

As stated above, the programming process is an intellectual human
activity, and as such it has a purpose. That is, the programming
process can be characterized by the functions that it must ful-
£ill.

The previous figure identifies three important functions: ab-
straction in the referent system, abstraction in the model system

and modelling.

Any process has some structures related to it. Some of these
structures are altered by the process, whereas others represent
the environment of the process. The environment influences and

restricts the process.

In the first section of this chapter we will describe some struc-
tures related to the programming process. In the second section,
the functions fulfilled by the programming process will be given
a detailed description, based on the structures described in the

first section.

Chapter 1

1.1 Structures Related to the Programming Process

Let us start by considering some referent system structures
related to the programming process:

In the referent system, a vision is formulated in relation to a
problem area by means of problem specific concepts.

The Problem Specific Concepts

The problem specific concepts are concepts that are necessary to
know in order to understand the problem area and the vision.

The problem specific concepts are not always well-understood and
precisely defined.

The Problem Area

The problem area represents the domain of the programming process
(e.qg. "chess", "text processing", "process control", etc.). The
problem area is understood through some problem specific con-

cepts.

Example: the problem area "text processing"™ is understood in
terms of the problem specific concepts "line", '"page",
"typographical quality", etc.

The Vision

The vision is a mental model of the program executions that are
wanted as a product of the programming process. The vision is un-
derstood through the problem specific concepts.

Example: one vision could be to design and implement a screen-

oriented text editor.

The first ideas of the program executions are denoted the

initial wvision.

Chapter 1

Some important characteristics of a vision are:

- Precision
The degree of precision is determined by the degree of for-
malization and the level of detail.
The degree of formalization depends on the extent in which

artificial, wunambiguous language is used for description of
the vision. The level of detail depends on the amount of
non-redundant information.

- Conceptual Distance to the Machine

The vision is formulated in relation to a given problem area
and is intended to be realized on a given machine (for a
characterization of machine, see later). Between the problem
specific concepts and the realized concepts of the machine,
there 1is a "conceptual distance". This distance can be used
as an indication of the difficulties in modelling the vision
in terms of the realized concepts. Note that we use the term
"distance" in its abstract meaning - that is, not expressing
any exact, measurable quantity.

An example showing two initial visions with different level of
precision due to different level of detail:
1) A vision of a program execution that implements a text
editor.
2) A vision of a program execution that implements a syntax-
directed editor utilizing the graphic facilities of the PERQ
computer.

An example showing two initial visions with different conceptual
distance to a Pascal machine:
1) A vision of a program execution that converts a text in
ASCII character code to a text in CDC character code.
2) A vision of a program execution that translates a text in
some language (e.g. Pascal) into a text in another language
(e.g. machine-language).

Chapter 1

The problem area and the vision are structures in the referent
system. The model system also contains some structures related
to the programming process:

The model system is generated by a machine through a program
written in a programming language.

The Machine

The machine is understood through the concepts that are made
available by the programming language(s) used by the programmers
during the programming process.

Any concept that has an interpretation that makes it contribute
to program execution is called a realized concept. In addition,

the realized concepts include those concepts in the programming
language(s) that support abstraction - i.e. generation of new

realized concepts.

As an example of a machine, we can talk about a "Pascal machine",
i.e. a machine that can be programmed in Pascal. A "Pascal
machine" 1is characterized by realized concepts like "integer",
"array", '"variable", "type" and "procedure". "Type" and
"procedure" are realized concepts that support abstraction.

The Programming Language

The programming language is used by the programmers as a tool for
writing programs.
A program is a specification used by the machine in order to

generate some program executions.

The realized concepts that are available when the programming
process is initiated are called the language defined realized

concepts.

The programming language has special importance because it gives
access to the language defined realized concepts and thereby
determines the conceptual distance between the initial vision and

the machine.

Chapter 1

The difficulties in realizing the vision on the machine is partly
determined by this distance, but equally much by the support of
abstraction provided by the language. The abstraction mechanisms
in the language are used to create new realized concepts with a
"minor" conceptual distance to the problem specific concepts by
means of which the vision is understood.

1.2 Functions Related to the Programming Process

Now that we have described the structures involved, it is pos-
sible to give a description of the functions mentioned in the
beginning of this chapter.

Abstraction in the Referent System

Abstraction in the referent system has the purpose of increasing
the precision of the vision. This is done by establishing and
modifying the cognitive structure of problem specific concepts.

The cognitive structure is developed in two directions. The first
concentrates on the functional aspects of the vision - i.e. what

the program is supposed to do. The other concentrates on the
structural aspects of the vision - i.e. how the program is sup-

posed to do it; the structure of algorithms and data. In both
cases, new problem specific concepts may be developed by abstrac-
tion.

Example of abstraction in the referent system: Let us consider
the construction of a syntax-directed editor. Then the functional
aspects of the wvision may be partly described by the con-
cept : "Syntactically consistent editing", and the structural
aspects of the vision may be partly described by the con-
cepts : "Menus", "selection and expansion of nonterminals" and
"abstract syntax trees".

- 10 -

Chapter 1

Abstraction in the Model System

Abstraction in the model system has the purpose of creating
realized concepts that make it possible to fulfill the modelling
function. The new realized concepts are developed by abstraction,
and their development is partly influenced by the insight gained
about the wvision, partly influenced by the requirements of the

machine.

Example of abstraction in the model system: Creation of dynamic
data structures that represent trees with a variable number of
successors to nodes, and creation of procedures to manipulate
such trees.

Modelling

Modelling is the function in which problem specific concepts
(established in the referent system) are given a definition in
terms of realized concepts (established in the model system).

Example of the modelling function: Using dynamic tree strucures
to model abstract syntax trees.

= 000 -

It is deliberate that we give no ordering of the three functions.
In a given programming process it is often impossible to separate

their fulfillment in time.

Modelling and abstraction in the model system will be subject to
further discussion in the following chapters.

- 1] =

CHAPTER 2

CONCEPT UNDERSTANDING AND ABSTRACTION

In chapter 1 we showed that modelling of concepts and abstraction
of new concepts from existing concepts are important functions of
the programming process. In this chapter we will discuss how con-
cepts can be structured and understood and what kinds of abstrac-
tions are important. Our purpose is to gain a deeper insight into
the nature of the modelling and abstraction functions of program-

nming.

First we would like to be more accurate about the terms concept
and phenomenon:

A phenomenon is a thing that has definite, individual

existence in reality (i.e. a manifest phenomenon) or in
the mind (i.e. a cognitive phenomenon); anything real
in itself.

A concept is a generalized idea of a collection of
phenomena, based on knowledge of common properties of
instances in the collection.

For example, "Person" and "War" are concepts, whereas "Winston
Churchill" and "The Second World War" are phenomena.

There are three important characteristic aspects of every con-
cept: the extension, the intension and the designation. We will
start with an informal definition of these aspects:

The extension of a concept refers to the collection of
phenomena that the concept somehow covers.

As an example, the extension of the concept "Human being" con-

tains all persons.

- 1D -

Chapter 2

The intension of a concept is a collection of proper-
ties that in some way characterize the phenomena in the
extension of the concept.

As an example, consider the intension of the concept "Human
being". Among others, it contains the properties: "able to
think", "walks upright", "uses tools", etc.

The designation of a concept is the collection of names

by which the concept is known.

The designation of the concept "Human being" contains in addition
to the name "Human being" names like "Person" and "Homo sapiens".

Note that phenomena also have a designation whereas it is usually
meaningless to talk about the extension or the intension of a
phenomenon. However, sometimes it may be the case that something
is considered a concept from one viewpoint but a phenomenon from
another. That is, the distinction between concepts and phenomena
is relative to a specific viewpoint.

As an example, a desigher may consider "Chair" as a phenomenon,
because from a designers viewpoint the individual chairs have no
importance, whereas the general chair have properties interesting
to the designer. On the other hand, the craftsman who actually
produces the chair would consider "Chair" as a concept and the
individual chairs as phenomena.

Often humans shift from one viewpoint to another when thinking
about and discussing concepts and phenomena. We abstract from
physical phenomena and consider a concept as a phenomenon whose
properties we can discuss. Later on, we will find analogies to
this ability in programming languages, but at present we will as-
sume that the distinction between phenomena and concepts is clear
and well-defined within the chosen viewpoint.

In the following two sections we will discuss concept understan-
ding and abstraction, respectively, in terms of the extension and

intension of concepts.

- 13 =

Chapter 2

Thus, the use of the Aristotelian view of concepts results in a
concept structure in which the concepts are characterized by
sharp concept borders - since it is determinable from the inten-

sion whether a phenomenon is included in the extension of the
concept. Furthermore, the phenomena in the extension of a concept
are relatively homogeneous - since they all have at 1least the

defining properties of the concept.

Discussion of the Aristotelian View of Concepts

The Aristotelian view is useful when one wishes to characterize
the cognitive structure of concepts within well-established
fields 1like mathematics, physics, zoology or botany. But even
within these fields there are some problems, primarily concerned
with the evolution of concepts as a consequence of acquisition of
new knowledge.

Let us give a well-known example from the field of zoology. For
many years it was one of the defining properties of the concept
"Mammal" that they "bring forth living young", but the discovery
of the Australian duckbill, which is an egg-laying animal with
many properties in common with mammals, made the zoologists
choose to change the intension of the concept "Mammal".

This example shows that although it is difficult, it is possible
to use the Aristotelian view of concepts within well-established
sciences, on the condition that one is willing to let the con-
cepts evolve as new insight is gained.

But what then about the cognitive structure of everyday concepts
like "Tall person", "Intelligent person", or "Food"? Considering
"Tall person'", it is not possible to give a precise definition of
what a tall person is - someone taller than 175 cm? Considering
"Intelligent person", we cannot agree upon how to Jjudge intel-
ligence - the IQ-test mainly measures academic knowledge, but is
that sufficient? Considering "Food", we must take into account
that whether something is characterized as food depends very much
on social background and personal taste - are snakes food ?

- 15 =

Chapter 2

2.1 Two Different Views of Concepts.

In this section we will present two different views of concepts
that are relevant when talking about programming: The
Aristotelian view, which 1is well suited for computer models of
concepts, and the fuzzy view, which 1is more realistic when
talking about problem specific concepts in the referent systen.
The two views differ in their way of describing the intension of
concepts and in their way of determining whether a particular
phenomenon belongs to the extension of a particular concept.

We present the two views as two extremes on a scale of possible
views of concepts. That is, there exist a variety of views
between the Aristotelian view and the fuzzy view.

2.1.1 The Aristotelian View of Concepts

The first of the two views has its origin in the classical
Aristotelian logic. The main idea is that the extension of a
concept contains phenomena that all satisfy some precisely
defined requirements.

Let us characterize the intension and the extension according to

the Aristotelian view.

The intension of a concept is a description of common
properties of the phenomena in the extension. The
nature of the properties is such that it is objectively
determinable whether a phenomenon has a certain proper-
ty or not. The properties may for instance be described
by means of predicates.

The intension is divided into two parts: The defining
properties that all phenomena in the extension must
have, and the characteristic properties that the

phenomena in the extension may or may not have.

The extension of a concept is the set of phenomena that
have all of the defining properties.

- 14 -

Chapter 2

In summary, the Aristotelian view of concepts is usable when we
consider cognitive structures within well=-established fields such
as natural science, but problems arise when we consider cognitive
structures that cannot be precisely defined or that have evolved
through everyday life.

2.1.2 The Fuzzy View of Concepts

The limitations of the Aristotelian view of concepts have caused
the fuzzy view of concepts to evolve. This view seeks to capture
the vague and fuzzy nature of some cognitive structures, by
realizing that not all concepts have sharp borders and cover

homogeneous phenomena.

Let us start by characterizing the intension and the extension of
concepts according to the fuzzy view.

The intension of a concept describes examples of
properties that phenomena may have, together with a
collection of phenomena: the prototypes.

The intension is as such divided into two parts. The first part
is a description of examples of properties. These properties are
such that a phenomenon in the extension of a concept has at least
some of them, and such that for each property there are at least
one phenomenon in the extension that has it. The second part,
the prototypes, contains characteristic phenomena from the exten-
sion; that is, typical examples of phenomena that are included in

the extension.

The extension of a concept is a collection of phenomena
that have some properties mentioned in the intension
and to some extent resemble one or more of the

prototypes.

In the Aristotelian view, the extension is completely determined
by the intension, but this is not the case with the fuzzy view.
Whether a phenomenon is in the extension of a concept is, in the

- 16 -

Chapter 2

fuzzy view, determined by a decision or a choice. This decision
or choice is necessary, since it is not sufficient to compare the
phenomenon with the properties in the intension. It is also
necessary to judge to what extent the phenomenon resembles the
prototypes. There are no universal rules for how to make this
decision and judgement - that is, there are no universally right
Oor wrong answers.

Thus, the use of the fuzzy view of concepts results in a concept
structure in which the concepts are characterized by blur-
red concept borders - since it is a matter of judgement whether a

phenomenon is included in the extension or not. Furthermore, the
phenomena in the extension of a concept are of
varied typicality = since their similarities are rather vaguely

defined in terms of some properties that they may have and some
prototypes that they to some extent resemble.

As examples of fuzzy concepts, reconsider the concepts: "Tall
person'", "Intelligent person" and "Food".

2.1.3 The Modelling Function, Reconsidered

We have indicated that the Aristotelian view of concepts is in
many cases too restrictive in its characterization of the inten-
sion and extension of concepts and thereby gives a too simplified
view of concepts. Concepts that do not have sharp borders and do
not cover relatively homogeneous phenomena are difficult or even
impossible to describe using the Aristotelian view.

Such concepts are more adequately described using the fuzzy view

of concepts.

In the 1light of the preceding discussion, we want to say
something more about the modelling function involved in the
programming process:

The problem specific concepts are often of a fuzzy nature. For
example, the concept "Typographical quality" in the "Text proces-
sing" problem area is a fuzzy concept.

- 17 -

Chapter 2

On the other hand, the vast majority of realized concepts given
by programming languages are precisely defined, Aristotelian con-
cepts. This means that a critical aspect of the modelling func-
tion will often be to give an Aristotelian definition of problen
specific concepts that have a fuzzy nature in the referent
system.

For example, in the text processing example, we must define the
concept "Typographical quality" in terms of fonts, lines, propor-
tions, etc. although this definition does not fully capture the
aesthetic intuition about typographical quality.

When a concept that has a fuzzy nature is given an Aristotelian
definition as a result of the modelling function of a programming
process, the concept is simplified and important aspects may be
lost. Adding more details to the Aristotelian definition may im-
prove the model, but will often not overcome the essential
problem of the fuzziness of the concept, since the difference
between a fuzzy and an Aristotelian definition is not only a
quantitative difference but equally much a qualitative differen-
ce. For example, adding further criteria for typographical
quality in terms of measurable properties of fonts, lines and
pages still does not fully capture the aestetic overall impres-
sion of a text.

No techniques to avoid the problem can be given, but of course we
can try to make the models as good as possible to meet the needs
of our application. In any case it is very important that we are
aware of the 1limitations of our model when it is obtained by
giving Aristotelian definitions of fuzzy concepts. Reasoning
using the Aristotelian definitions may yield results that cannot
be applied to the original fuzzy concepts.

When we are aware of the limitations of our model, we are able to
determine whether it will suffice for our purpose or whether the
limitations are so severe that the model system will be useless
or even harmful. In some cases a better solution can be obtained
by designing a model with extensive interaction with humans. This
may for instance be the case in the text processing example where

- 18 =

Chapter 2

interaction with a person who is a good judge of typographical
quality may eliminate the need to model the concept of
typographical quality directly on the computer.

Interaction with humans is one way of simulating fuzzy concepts
on a computer. Other attempts to avoid the rigidity of the
Aristotelian view exist. The programming language Fuzzy as-
sociates probabilities to the membership of entities to sets in
order to avoid the sharp concept borders of Aristotelian con-
cepts. Within the field of expert systems research is done on
subjects 1like probabilistic and heuristic reasoning in order to
simulate judgement within a fuzzy view of concepts.

Whether attempts in this direction will ever succeed in realizing
truly fuzzy concepts on the computer remains an open question. In
our discussion of programming languages we choose the
Aristotelian view as our basis because no existing programming
languages realize truly fuzzy concepts and it is unclarified
whether programming languages ever will.

2.2 Abstraction

Concepts are developed by humans who distinguish patterns and
recognize similarities between different phenomena. Before we
have gained enough experience to recognize similarities, we per-
ceive and apprehend the individual phenomena of the world.

As we gain more experience, we are able to abstract from some of
the details that distinguish the phenomena and concentrate on
similarities between them. We form concepts that cover collec-

tions of similar phenomena.

We abstract and concretize further by forming new more abstract
and more concrete concepts based on other concepts. The result
is a permanently changing cognitive structure of interrelated

concepts.

We distinguish between three fundamental subfunctions of abstrac-
tion: Classification, aggregation and generalization, and

- 19 -

Chapter 2

similarly between their three inverse functions: Exemplification,
decomposition and specialization, which are subfunctions of con-
cretion. The functions establish different kinds of relationships
between concepts and phenomena.

We will define the abstraction and concretion functions in terms
of an Aristotelian view of concepts. This will enable us to
discuss them more precisely, and since our purpose is to
establish a framework for discussion of programming languages, we
have already chosen to restrict ourselves to an Aristotelian
view.

After the presentation of the abstraction functions, we will
discuss their analogy to mathematical set operations.

2.2.1 Classification and Exemplification

To classify is to form a concept that covers a collec-

tion of similar phenomena.
The intension of the concept describes selec-
ted properties of the phenomena. The selected proper-

ties of the phenomena may, according to the
Aristotelian view of concepts, be split into two parts:
The defining properties that all the phenomena must
have, and the characteristic properties that the
phenomena may have. The extension contains the con-
sidered phenomena that all have the selected, defining
properties.

Examples:

The concept "Person" is formed to cover all phenomena with the
properties "able to think", "walks upright", "uses tools", etc.
The concept "Travel" is formed to cover all movements over long

distances.

To exemplify is to focus on a phenomenon in the exten-

sion of a concept.
Exemplification is the inverse of classification.

- 20 =

Chapter 2

When we talk about classification and exemplification, we focus
on the relation between a concept and the phenomena in its exten-—
sion. We will illustrate this relation graphically as follows:

Person Travel

e

Sokrates Platon Columbus's Hannibal's march
America-expedition across the Alps

2.2.2 Generalization and Specialization

To generalize is to form a concept that covers a number

of more special concepts.
The intension of the general concept describes selected
common properties from the intensions of the more

special concepts. The extension contains the union of
the extensions of the more special concepts.

To specialize is to form a more special concept from a

general one.
Specialization is the inverse of generalization.

Examples:

The concept "Mammal" is a generalization of the concepts "Dog",

"cat", etc.
The concept '"Movement" is a generalization of concepts like

"Travel", "Jump", etc.

When we talk about generalization and specialization, we focus on
the relation between a general concept and more special concepts.
We will illustrate this relation graphically as follows:

Mammal Moveng:\\\
’///:;;j Horse ... Travel Jump Run ...

- 21 -

Chapter 2

Let us take a closer look at the role of the defining and charac-
teristic properties in relation to generalization/specialization.
A concept P is a specialization of another concept Q (Q is a
generalization of P) iff the extension of P is a subset of the
extension of Q.

This can be equivalently expressed in terms of the defining
properties in the intensions: P is a specialization of Q (Q is a
generalization of P) iff any x that satisfies the defining
properties in P's intension also satisfies the defining proper-
ties in Q's intension.

That is, set inclusion between the extensions is equivalent to
logical implication between the defining parts of the intensions.

Extensions: Intensions:

Q Defining-intension(P)

Defining-intension(Q)

Characteristic properties are properties that phenomena in the
extension of a concept may have, but are not required to have in
order to belong to the extension of the concept. It will
therefore often be relevant to develop two specialized concepts
that cover those phenomena that have a certain characteristic
property and those that do not, respectively.

The first of these specialized concepts has the characteristic
property changed into a defining property. The second has a new
defining property stating that phenomena in the extension do not
have the previous characteristic property.

Example:
Cats

Ordinary Cats Manx Cats

- 22 =

Chapter 2

Most cats have a tail, which is thus a characteristic property of
the concept "Cat". The two specialized concepts "Ordinary Cats"
and "Manx Cats" are defined as having and not having a tail,
respectively.

Thus, generalization and specialization do not imply logical im-
plication between the full intensions of concepts, only of the
defining properties.

2.2.3 Aggregation and Decomposition

To aggregate is to form a concept that covers composite

phenomena whose parts (aggregation components) are
described by means of other concepts. We say that an
aggregated concept composes a number of other concepts.
Defining properties in the intension of an aggregated
concept describe the components that phenomena in the
extension must have, and perhaps some other properties
that phenomena must have when considered as a
whole - e.qg. specific relations between the com-
ponents. The intension may also contain characteristic
properties that describe additional possible components
and other properties.

Example:
The concept "Travel" can be formed as an aggregation of the con-

cepts: "Source", "Destination", "Duration", "Subtravels", etc.

To decompose is to focus on a component of a concept.

Decomposition is the inverse of aggregation.

When we talk about aggregation and decomposition, we focus on the
relation between a concept and the concepts used to describe its
components. We will illustrate this relation graphically as fol-

lows:

- 23 =

Chapter 2

Travel

Source Destination Duration Subtravel ...

Note that properties of the components are not necessarily also
properties of an aggregated phenomenon as a whole. That is, the
aggregation relation between concepts does not imply inheritance
of properties as opposed to the generalization relation.

2.2.4 Analogies to Mathematical Set Operations

There is a very close analogy between the abstraction functions
discussed above and mathematical set operations, when we focus on
the extensions of concepts:

Classification corresponds to the basic grouping of elements into

a set:
Concept = {el, e2, ..., eN}; rHI?g;gcept
el e2 .ﬁTHMEN

Generalization corresponds to creating the union of a number of
concepts:

Gen = Specl U Spec2 U ... U SpecN; Gen

Specl Spec2 ... SpecN

Aggregation corresponds to creating the cross-product of a number

of concepts:

Aggr = Compl x Comp2 X ... x CompN; Aggr

Compl Comp2 ... CompN

However, to consider the abstraction functions only as set
operations on extensions is not sufficient. To classify is not
only grouping of elements - it is important that we focus on

- 24 =

Chapter 2

similarities and describe common properties. To generalize is
not only to create unions, since we may not always have special
concepts whose extensions together span the whole extension of
the generalized concept. Aggregation is not only creation of
cross-products, since also relations between components may be
important and some components may be only characteristic proper-
ties.

We have therefore defined the abstraction functions in terms of
both extensions and intensions of concepts. However, the analogy
to set operations can be used to convince us that the abstraction
functions are really basically different. Moreover, the analogy
can serve as an intuitive aid when dealing with concept struc-

tures.

2.2.5 Hierarchical Concept Structures

Concepts can be generalized and aggregated in many levels giving
a complex hierarchical structure of interrelated concepts. A con-
cept can be considered independently as a member of a
generalization hierarchy and an aggregation hierarchy.

Within the field of knowledge representation in Artificial Intel-
ligence, these two kinds of hierarchies are traditionally called
"is-a" and "part-of" hierarchies, respectively. /Barr et al./

To give an impression of the complexity and possible structure of
the concept hierarchies, the following page will contain a few
examples where we separate the aggregation hierarchy from the
generalization hierarchy.

- 25 =

Chapter 2

Example 1l: Aggregation Hierarchy

Car Motor-boat

|]

Horsepower Body Wheel Motor Hull Deck

Tyre Tube

Example 2: Generalization Hierarchy

Vehicle

N

Land-vehicle Air-vehicle Motorized-vehicle Man-powered

‘\4/% veh%rcle

Rail-vehicle Helicopter Bicycle
Train Civil-hel. Military-hel.

Example 3: Generalization Hierarchy Including Classifications

//7"011
Child Adult Male Female Teacher Doctor

High-school Primary Medico Surgeon
teacher school
teacher

- 26 =

Chapter 2

2.2.6 The Abstraction Function, Reconsidered

This discussion of abstraction and concretion has resulted in the
identification of three fundamental subfunctions of abstraction
(and three fundamental subfunction of concretion).

We have discussed the subfunctions using an Aristotelian view in
order to shorten the discussion. We believe that the same sub-
functions can be identified using the fuzzy view although they
would be less rigidly defined. In other words, we find that the
subfunctions of abstraction and concretion that we have iden-
tified are of basic importance in the referent system.

This observation suggests that the same abstraction and con-
cretion functions should be supported in the model system - that
is, by the programming language. This will ease the modelling
function considerably since the conceptual distance between the
problem area and the programming language can be naturally brid-
ged by means of the abstraction functions. Moreover, the struc-
ture of the realized concepts created as a result of the abstrac-
tion function in the model system will more directly mirror the
concept structure in the referent system and thus make the
program more comprehensible.

Several other advantages of supporting the abstraction functions
in programming languages are discussed in chapter 4 - especially
the advantages of supporting specialization/generalization.

- 27 -

CHAPTER 3

FUNDAMENTALS OF PROGRAMMING ILANGUAGES

Basically, we consider a program execution as a number of proces-
ses that change the state of some substance in the computer. We
use the term substance to cover all different kinds of storage in
a computer - i.e. anything that can contain bit patterns. Sub-
stance 1is physically present in the computer and used in two
ways: Firstly, substance can be used to represent values that
processes can obtain by measuring upon the substance. Secondly,
substance can be used to represent the state of processes (we say
that the processes originate from the substance).

Besides this basic distinction between processes, substance and
values in a program execution, we want to impose some further
structure on our view of a program execution in order to ease the
discussion of the relation between programming languages and
program executions independently of physical computer architec-
tures and specific language implementation techniques.

We consider a program execution as consisting of a dynamic col-
lection of logical units, called entities and descriptors:

A descriptor is a pattern from which entities may be created and

it gives the interpretation of the entities created from it. An
entity created from a descriptor occupies some substance and is
said to be an instance of the descriptor.

An entity behaves in accordance with its descriptor. The
descriptor specifies which kinds of measurements (if any) that
can be performed on the substance of the entity, and it specifies
the behaviour of processes (if any) that can originate from the
substance of the entity.

By means of the descriptor, the entity can be interpreted as a
semantically meaningful entity at some level of abstraction in-
stead of just a section of storage in the computer.

- 28 =

Chapter 3

The relation between descriptors and entities is analogous to the
model system relation between concepts and phenomena. We will
therefore use the terms extension and intension for descriptors
in much the same way as we do for concepts.

By considering a program execution as consisting of entities and
descriptors, we can establish a direct relation to the program-
ming language, since the programming language specifies the
descriptors and entities relevant to the program execution.

Types and variables are examples of descriptors and entities,
respectively. Similarly, procedure declarations and procedure
activations are descriptors and entities, respectively, where the
substance of a procedure activation is its activation record, and
the procedure activation behaves according to the code given in
the descriptor.

The rest of this chapter dedicates a section to further discus-
sion of each of the important concepts: Descriptors, entities,
values and processes. Moreover, a section discusses names, which
play an important role both in programs and in program ex-
ecutions, and a final section discusses parameterization, which
is a mechanism closely related to descriptors, entities and

naming.

- 29 =

Chapter 3

3.1 Descriptors

The purpose of descriptors is twofold. Firstly, they act as pat-
terns from which entities may be created, and secondly, they give
interpretations of substance.

Types and procedure declarations are examples of descriptors in
Pascal. Variables (entities) are created from types and the type
determines the interpretation of the variable and the possible
manipulation of the substance representing the variable.

In many languages the instantiation aspect and the interpretation
aspect of a descriptor are very different. 1In for instance Ada,
the package concept supports an explicit distinction between
these two aspects: A package defining an abstract data structure
gives rise to exactly one entity (which contains the datastruc-
tures and the operations defined in the package) and two descrip-
tors. The first descriptor is the instantiation descriptor (the
package body) and the other descriptor is the interpretation
descriptor (the package specification). The rules for using
these descriptors in Ada are that the instantiation descriptor is
used for instantiation of the package, and for the instance's own
interpretation of itself. The interpretation descriptor, on the
other hand, is used by other entities when they want to interpret
the package entity (or rather the substance of the package en-
tity). In languages like Clu, Alphard, Concurrent Pascal, Edison,
Modula-2, etc. there is a similar distinction, but not so ex-
plicitly expressed syntactically. In other languages - e.q.
Pascal - this distinction is not made at all, implying that all
details of the descriptor are visible when interpreting instances
of it.

In our view of program executions, we choose to consider descrip-
tors as occupying substance (e.g. a class in Smalltalk or the
code for a procedure in most implementations of Pascal). We
choose this view regardless of whether the actual implementation
is able to eliminate the presence of the descriptors at runtime
by extracting the needed information at compile time.

- 30 -

Chapter 3

In some cases it 1is possible to consider the substance of a
descriptor (or part of it) as representing an entity by inter-
preting it by means of another descriptor. E.g. in Lisp, a func-
tion definition is a descriptor but on the other hand it is pos-
sible to manipulate a function description by considering the
definition as an ordinary Lisp list - that is, by using the Lisp
list descriptor as an interpretation.

Another example is Smalltalk where classes are also objects. As
opposed to Lisp, it is only those parts of the class that are not
used for instantiation that can be manipulated. These parts may
be used to represent properties of the extension of the descrip-
tor as a whole, instead of properties of the individual entities
- i.e. class-variables and class-methods in Smalltalk.

Both the Lisp and the Smalltalk examples show programming
language support of the ability to consider a concept as a
phenomenon, which was mentioned in the beginning of chapter 2.

3.2 Entities

As mentioned in the previous section, entities are created ac-
cording to one (or more) descriptors. Entities are present in
the computer as substance and the substance represents the state
of the entity.

Examples of entities are variables in Pascal and objects in
Smalltalk. Another example is a procedure activation (the ac-
tivation-record and the corresponding procedure-execution).

One fundamental property of entities is that it may be possible
to take a snapshot of the state of an entity. This is done by
measuring on the substance of the entity in order to obtain a
value, representing the state of the entity at the time of the
measurement. Values will be discussed in section 3.3.

Another fundamental property of entities is that they may have
processes originating from their substance. The only way in

- 31 -

Chapter 3

which processes can occur in a program execution is by
originating from some entity. In other words, at least part of
the substance of the entity is used to represent the state of the
process and used to control the course of the process. Processes
will be discussed in section 3.4.

In order for something to be regarded as an entity, it must have
either the property of measurability, or of process(es)
originating from its substance, or both.

An entity may be composed of other entities and/or descriptors.
That is, the substance of the entity may be divided into parts
that represent entities and/or descriptors that are components of
the entity.

The above discussion might indicate that there is only one
descriptor to an entity but this is not always true. In some
cases it is for instance possible to use several different
descriptors when interpreting the substance of an entity (e.q.
classes at several levels of abstraction in Simula).

In most programming languages the concepts of data and process
are handled as fundamentally different concepts. In order to
ease discussion of such languages and in order to stress the dif-
ferences of the two fundamental properties of entities already
mentioned, we distinguish between two kinds of entities, namely
data-entities and process-entities. In the following two sub-
sections we will discuss these concepts and the interaction
between them.

3.2.1 Data- and Process-entities

For both data- and process-entities we will give two
definitions - a rigid one that defines the concepts very distinc-
tly and a more flexible one that is adequate for most purposes.

As mentioned earlier there are two fundamental aspects of en-
tities - measurability and originating processes. The rigid

Chapter 3

definitions of data-entities and process-entities are based on
having one and only one of these aspects:

An entity is a data-entity iff no processes originate

from its substance and it is possible to take a snap-
shot of the state of the entity by means of some
measurement on its substance.

An entity is a process-entity iff no values can be

measured on its substance but one or more processes
originate from (part of) its substance.

By this definition most ordinary datastructures from programming
languages will be data-entities. E.g. the integer-variables in
Pascal or the ordinary stack-variables in, say, Ada. A procedure
invocation in Pascal and a generator instance in Icon are exam-
ples of process-entities according to this definition.

Entities in general are composed of data- and process-entities
and are therefore hybrid forms. On the other hand, in many cases
one can say that an entity is best characterized as a data- or a
process-entity which is the same as saying that the entity gives
rise to mainly data or process. At a higher level of abstraction
it may be relevant to abstract away from the data- or process-
aspect of an entity and consider it as a process-entity or data-
entity although according to the strict definitions it is a hy-
brid form.

One such example is a heap with automatic garbage collection.
One realization of this datastructure is to have a process local
to the heap continuously doing "mark-and-scan" garbage collec-
tion. At some level of abstraction we would 1like to consider
this kind of heap as a data-entity although it has a process
originating from its substance.

Another example 1is a Jjob-scheduler. One realization is as a
process that schedules the different jobs but at the same time
allows enquiries (measurements) about, say, the number of jobs of
a certain category. 1In this case we may want to abstract away

- 33 =

Chapter 3

from the data-aspect - i.e. the measurability - and consider the
job-scheduler as a process-entity.

As the examples show, we need more flexible definitions of the
concepts: data-entity and process-entity, that reflect the pos-
sibility of considering entities at different levels of abstrac-

tion:

A data-entity is an entity that mainly gives rise to

substance on which measurements can be performed.

A process-entity is an entity that mainly gives rise to

substance from which process(es) originate.

3.2.2 Interaction of Data and Process

Data- and process-entities have no meaning if they are considered
isolated from each other. Data-entities are not very interesting
if they never change, and process-entities are not very in-
teresting if they do not change the state of any data-entity.
The interesting aspect of a program execution is the interaction
between the two kinds of entities. The state of data-entities
are changed by process-entities and the course of the process-en-
tities may be influenced by the state of data-entities.

Some language constructs exist that support description of hybrid
entities that are intended to capture this interaction between
data and process. For instance the class-construct in Simula and
the pattern construct in Beta.

In the definition of the entity concept we required that an en-
tity must have either data-aspects or process-aspects or both.
This requirement implies that program units that contain only
descriptors but no data and process - e.g. a routine library - is
not an entity according to our definition.

- 34 -

Chapter 3

3.3 Values

One of the important aspects of the substance of an entity is
that values can be obtained by measurement on the substance. In
this section, we will discuss values and their relationship to
programming languages.

Values are timeless abstractions that are unchangeable as opposed
to entities that have state and can be created, copied, shared
and updated. The value "3" cannot be changed whereas an entity
with the state represented by "3" at some moment, may change and
later on have state represented by some other value.

Values have some semantic meaning associated with them - e.qg.
values representing different colours or values representing
names.

Values are represented by indivisible symbols, sequences of sym-
bols, or tuples of symbols, or combinations hereof (e.g. sequen-
ces of tuples of symbols).

When we discuss values, we are in the world of mathematics where
there is no state change but just values, value domains and pure
functions.

We will briefly present the most important kinds of mathematical
value domains together with the mathematical functions associated
with these kinds of domains. Afterwards, we will discuss the
relation between entities and values from a programming language

perspective.

3.3.1 Value Domains

Scalar domains are the basic domains. They consist of symbols and
a value from a scalar domain is as such indivisible. The only
function common for all scalar domains is test for equality, but
of course there may be other functions related to specific scalar
domains - e.g. the arithmetic functions on the domain of Integral

nunmbers.

- 35 =

Chapter 3

Union domains are unions of several other domains. The set of

values in a union domain is the ordinary mathematical union of
the involved domains. Associated with union domains in general is
a domain-test function that tests whether a specific value
belongs to a specific domain in the union.

Tuple domains are mathematical fixed length cross-products of

some other domains. The values in a tuple domain are fixed length
vectors of values from the component domains. Associated with
tuple domains in general are a number of projection func-
tions - one for each component domain. The i'th projection func-
tion projects on the i'th component domain - that is, it selects
the i'th element of a vector value.

Sequence domains are mathematical variable length cross-products

of some other domain. The values of a sequence domain are sequen-
ces of values from the component domain. Different values from
the same sequence domain may have different lengths. No projec-
tion functions are associated with sequence domains, but six
other functions are often considered applicable for sequence
domains: "First", "trailer", "last", "leader", "length" and "con-
catenate". "First" returns the first element in a sequence value.
"Trailer" returns a copy of a sequence value except for the first
element. "Last" returns the last element. "Leader" returns a copy
of a sequence value except for the last element. "Length" returns
the number of elements in a sequence value, and "concatenate"
takes two sequence values and returns a sequence value that are
the concatenation of the two.

Examples:

Integer, Real, Boolean, Char and user defined enumeration types
are Pascal examples of support of scalar domains, although the
names of the types are not only the names of the associated value
domains but also names of descriptors. The value domains are not
named but anonymous properties of the descriptor.

Union domains can be found in for instance Algolés8.

Arrays and records support (also anonymous) tuple domains as-

- 36 =

Chapter 3

sociated with array types and record types. The projection func-
tions are the indexing mechanism and the field selection
mechanism, respectively.

Sequence domains are supported in a restricted version by the
file concept in Pascal and by the list concept of Lisp.

3.3.2 Applicative Versus Imperative Programming

The term applicative programming is used for programming with
values and functions whereas the term imperative programming is
used for programming with entities and state.

Most programming languages take either the one or the other
stand. On the other hand, most of them include both the wvalue
and the entity/state aspect. Most applicative languages include
update-functions on values (e.g. assignment and variables in
Lisp), and most imperative languages include the possibility of
defining new value domains (e.g. the enumeration type constructor
in Ada) and for specifying values from certain domains (e.g. in-
teger, array and record values in Ada). But wusually the in-
tegration of the two approaches is only halfhearted (e.g. Ada al-
lows you to define values but includes no pure, side-effect free
mathematical functions).

From a mathematical point of view, the applicative approach to
programming is very appealing because the absence of state, state
transformation and time makes it possible to reason and verify
programs by means of well-defined mathematical principles. On the
other hand, as we have argued in the first two chapters, state
and time are important aspects of the referent system, and we
therefore often need to be able to create models that include
these aspects. Within many problem areas (e.g. data bases) usage
of a purely applicative language will require that large values
representing the state of the entire computation are continuously
passed as parameters from one function to the next. This ob-
scures the program and we find that it is far more elegant to ac-

- 37 =

Chapter 3

cept the notion of state and incorporate it in the programming
language in a thorough way. That is, we prefer the imperative ap-
proach to programming. On the other hand, we do find that the
mathematical elegance of the applicative approach is in itself a
good argument in favor of treating values as an integral part of
an imperative programming language. In /MacLennan/, a more
detailed discussion of value vs. state is given.

The programming language ML (and to some extent APL) is an exam-
ple of languages that seek to incorporate both imperative and ap-
plicative language elements. In ML, Values are treated just as
thoroughly as variables, but unfortunately the imperative parts
of the language may interfere with the applicative parts in such
a way that reasoning using mathematical principles is hazardous
without a very strict programming discipline.

We find that language design in the future should strive to find
ways of unifying the two approaches into one language design
where entities and values are distinct language elements of equal
rights. Such a language will enable us to treat state in an ade-
quate way, and to use mathematical reasoning within the ap-
plicative parts of a program.

We find that the descriptor-entity model presented in this paper
is a sound basis for such a work since the concept of measurement
on substance may act as the "missing link" between the imperative
and the applicative approaches. The idea is to carry out a
measurement on some entity in order to obtain a value. This value
may then be passed to applicative functions in order to obtain
other values that can be stored in some entities.

However, we must admit that our approach to programming language
design is mainly imperative. We mainly focus on the imperative
aspects and the possible improvements of the imperative aspects
of 1languages, but we want to stress that a similar effort should
be done to analyse the applicative aspects and the possible in-
tegration of the two approaches.

- 38 =

Chapter 3

3.4 Processes

In the previous section we discussed the aspect of measurement on
the substance of an entity within the framework of well-
established mathematical concepts - that is, within a model which
is commonly aggreed upon.

Unfortunately, such a well-established model does not exist for
processes. Many different models have been proposed but no com-
mon aggreement has been reached concerning which model to choose.
Among the most widely known models are the Petri-net model
/Peterson/, the event-structure model /Nielsen et al./, Calculus
for Communicating systems /Milner/, and Communicating Sequential
Processes /Hoare/.

The various models tend to agree that processes can be modelled
as collections of events with some relations between the events,
where the relations normally expresses time dependencies. In some
of the models (e.g. Communicating Sequential Processes) the
events are atomic, indivisible symbols whose semantics are given
by their written form (i.e. their written form should indicate
the semantics that the programmer associate with them). In other
models (e.g. Petri-nets) the events may in addition be abstrac-
tions of processes (i.e. events may have complex internal struc-
ture).

It is outside the scope of this paper to discuss the various
models and their relative merits. In this paper we have used only
the bare minimum with respect to a model for processes.

We have chosen to consider processes as a partially ordered set
of state changing events where the ordering defines the ordering
in time of the events. For the purpose of this paper this
rudimental model has proved sufficient.

Our descriptor-entity model contributes to this model in the fol-
lowing way. A process-descriptor specifies the possible proces-
ses that may originate from the substance of an entity instan-
tiated from the descriptor. The descriptor stresses the

= 39 =

Chapter 3

similarities of the patterns of events in all the processes.
Within the descriptor the possible patterns of events are defined
by the control structure, which is specified by means of language
constructs for control (e.g. the alternative command, the
repetitive command, and the parallel command in CSP). Many con-
trol structures express dependence between the state of data-en-
tities and the course of the process. In this way, the actual
course of a process is defined in a two-level manner: The
descriptor for a process entity defines the possibilities, and
the state of the computation defines the actual course of the
process within the possibilities given by the descriptor.

3.5 Names

The only way in which the computer can effectively manipulate the
entities and descriptors of a program is by giving each of them a
name (e.g. an address). In a programming language, these names
may be either hidden, computable or accessible as identifiers.

Hidden names cannot be specified by the programmer at all. Names

can be hidden as a result of the scope rules of the language (see
later) or because they are only relevent to the runtime system
(e.g. the dope vector of an array).

Computable names are names that can be specified by means of ex-

pressions. They are usually used to refer to components of struc-
tures such as arrays, where the names of the components are not
accessible as identifiers. Another use of computable names is
relative naming such as "THIS Stack" in Simula.

The last category of names, the names that are accessible as
identifiers, will be the subject of the rest of this section. Ex-

amples are names of static variables in Pascal.

For convenience, we say that entities and descriptors with iden-
tifier names are named, whereas entities and descriptors with

hidden or computable names are said to be anonymous.

- 40 -

Chapter 3

This enables us to give two useful definitions:

An entity is said to be category defined iff it is an

instance of a named descriptor (e.g. a variable instan-
tiated from a named type in Pascal).

and

An entity is said to be singularly defined iff it is an

instance of an anonymous descriptor (e.g. a variable
directly instantiated from a record-constructor in
Pascal).

- 0o0o -

Identifiers are treated very differently in different programming
languages and the differences are usually discussed in terms of
the scope rules for bindings.

It is not the aim of this paper to give a thorough discussion of
usage of identifiers in programming languages. We only give a
short introduction to the subject and for a detailed discussion
the reader is referred to chapter 15 in /Wulf et al./ and chapter
6 in /Tennent/.

An identifier occurrence is an occurrence of an identifier in a

program text and is either a binding or an applied occurrence:

A binding occurrence serves the purpose of binding the identifier

to a specific meaning - e.g. a value, an entity, or a descrip-
tor. That is, binding occurrences establish bindings, which are
associations between identifiers and meanings.

The associations between identifiers and meanings are not always
required to be unique. Some programming languages allow over-
loading - i.e. several active bindings of the same iden-
tifier - and some programming languages allow aliasing - i.e.
several identifiers bound to the same meaning.

- 4] -

Chapter 3

An applied occurrence is an occurrence where the identifier is

used to refer to its meaning. An applied occurrence requires a
corresponding binding to be found so that the meaning associated
with the identifier can be used.

All declarations in Pascal contain examples of binding occurren-
ces, whereas the identifiers in an assignment or in a procedure
call are examples of applied occurrences.

Given an applied occurrence of an identifier, the scope rules of

a language are the rules that determine how to find a binding oc-
currence of the same identifier. The corresponding binding is
used as the one valid for the applied occurrence.

A great variety of different kinds of scope rules exist in
various programming languages, but they can be divided into two
major categories: Static scope rules and dynamic scope rules.

Static Scope Rules are rules that imply that the valid binding

for a specific applied occurrence is determined by the lexical
structure of the program.
Examples are the block-structured scope-rules of Pascal and Beta.

Dynamic Scope rules are rules that imply that the valid binding

for a specific applied occurrence is determined by the dynamic
structure of the program execution - i.e. the dynamic chain of
program unit activations.

Lisp is an example of a language that uses dynamic scope rules.
Ada is an example of a language that uses both static and dynamic
scope rules. Static scope rules are mainly used in Ada, but a
dynamic scope rule is used to find bindings of exception iden-
tifiers to exception handlers.

This formulation of the scope rules focus on the iden-
tifiers - that is, given an identifier, what is its binding. We
could equally well have given a formulation of the scope rules
that focus on the program unit - that is, given a program unit,
which identifiers are usable (and with which bindings) within the

given program unit.

- 42 -

Chapter 3

Discussion of Scope Rules

The choice between static and dynamic scope rules is in some way
a choice between security (in terms of compile time checking) and
flexibility. The static scope rules enable the compiler to en-
sure that an applied occurrence of a name is bound to some
meaning, and to some extent ensure that the name is used ac-
cording to its binding. On the other hand, this security forces
the programmer to be very explicit and rigorous with bindings.
The dynamic scope rules allow a more flexible style of program-
ming since an applied occurrence of a name does not need to be
bound to the same meaning all the time. That is, it is the
dynamic context of an applied occurrence of a name that deter-
mines its meaning. In some respect, use of dynamic scope rules is
a shortcut to parameterization (see next section for a discussion
of parameterization).

The major argument that can be given against dynamic scope rules
is the complexity of name usage. In the static case, it is the
lexical structure of the program that defines the meaning of a
name. That is, one only has to examine a static structure in
order to grasp the meaning of a name. 1In the dynamic case, one
has to examine a dynamic structure - namely the dynamically
changing structure of a program execution - in order to grasp the
meaning of a name, and moreover, the meaning may change during
the execution.

For a discussion of static versus dynamic scope rules in connec-
tion with exception handling, the reader is referred to
/Knudsen a/.

3.6 Parameterization

We have chosen to discuss parameterization in a subsection of
this chapter because it 1is a very fundamental mechanism and
because it relates very closely to the discussion of descriptors,
entities, and binding of names.

On the other hand, parameterization is usually considered as a

- 43 -

Chapter 3

fundamental abstraction mechanism, and this aspect of
parameterization will be discussed in section 4.3.7.

From a very abstract view, parameterization is to specify a
descriptor and leave out some parts of it in order to allow these
parts to be specified either when the descriptor is used for
specifying other descriptors or for instantiating entities.

When a descriptor 1is parameterized, it contains some formal
parameters, also called formals, that are used in the descriptor
to denote the partially specified parts. A parameterized
descriptor cannot be used for instantiation of entities without
first supplying actual parameters, also called actuals, for the
formals.

Usually, a parameterized descriptor contains a formal parameter
specification that specifies the name of the formal parameter.
Moreover, the formal parameter specification may specify some
constraints that the actual parameter must satisfy.

An actual parameter specification must complete the binding of
the formal name by specifying the descriptor, the entity or the
value to be bound to the name of the formal. Of course, the ac-
tual parameter specification must satisfy the constraints in the
formal parameter specification, if any.

In many cases it 1is possible to specify default parameters
together with the formal parameters. A default parameter
specification is an actual parameter specification that becomes
valid if no actual parameter specification is given later.

A formal parameter specification together with its corresponding
actual parameter specification form a total binding of the name
of the formal parameter.

The popularity of parameterization in programming languages has
resulted in a great variety of parameter passing mechanisms such
as call-by-value, call-by-reference, call-by-name, type-
parameters and procedure-parameters.

In many programming languages the parameter passing mechanism to
be used for a particular formal is specified either as an overall

- 44 -

Chapter 3

rule of the language (a default rule) or as part of the con-
straints in the formal parameter specification. In such languages
compile time checking of the parameterized descriptor is possible
to some extent (we will later discuss some problems related to
compile time checking of parameterized descriptors).

One typical constraint on the formal expresses whether the actual
must be a descriptor, an entity, or a value. Other typical con-
straints are type constraints on entity parameters.

However, in some programming languages (typically typeless
languages such as Icon) the constraints are very weak. This makes
compile time checking very difficult - if not impossible - and
leaves a great responsability to the run time system. The run
time system has to check the legality of all manipulations of the

parameters.

Compile time checking of the parameterized descriptor and all
usages of it has the advantage that it is unnecssary to check the
legality of the manipulations of the parameters at run time.
There are two major approaches to compile time checking.

The most restrictive approach to compile time checking is the
above mentioned formal parameter specification method that

enables the compiler to check that the formal within the descrip-
tor is wused in accordance with its specification. The formal
parameter specification tells something about the intention of
the programmer and the compiler checks whether the usage of the
formal within the descriptor is in accordance with this inten-
tion. Furthermore, the compiler is able to check whether all ac-
tual parameter specifications are in accordance with the formal
parameter specification. The parameter passing mechanisms of
languages like for instance Algolé60, Pascal and Ada are based on
the formal parameter specification method.

The other approach is the formal parameter inference method. In
this case, no formal parameter specification is given as part of
the descriptor (except usually the names of the formals - either

as user defined names or as language defined names). The compiler
will then infer the specifications from the usages of the formals

- 45 =

Chapter 3

within the descriptor and then associate this specification with
the formal. This inferred specification is then used to check the
legality of the actual parameter specifications. During the in-
ference process, the compiler usually checks the usages of the
formal for concistency with respect to the inferred
specification. As an example, the parameter passing mechanism of
the programming language ML uses compile time inference of the
formal parameter specification if no explicit specification is
given.

In order to discuss further characteristics of parameterization,
we divide the discussion into three: Parameterization by values,
parameterization by entities, and parameterization by descrip-
tors.

3.6.1 Parameterization by Values

The purpose of parameterizing a descriptor by a value is to allow
different instances of the descriptor to use the name of the
parameter to refer to different values.

Of course, parameterization by values is a major parameterization
mechanism in the applicative programming languages. Most im-
perative programming languages, on the other hand, either do not
support parameterization by values (e.g. Pascal, Algol60, Icon)
or they support it the same way as the value parameter mechanism
of Concurrent Pascal: Within an instance of the parameterized
descriptor the name of the formal is bound to a value but the ac-
tual may be a value or it may be an entity.

3.6.2 Parameterization by Entities

The purpose of parameterizing a descriptor by an entity is to al-
low different instances of the descriptor to access different

other entities.

46

Chapter 3

When the formal is bound to an entity, it is interesting to study
the relationship between the formals and the actuals:

The name of the formal may be bound to either an existing entity,
or to a new entity.

- If the formal binds to the same entity as the actual, the
actual parameter specification must specify an entity and
the formal will be bound to this entity (e.g. the call-by-
reference parameter passing mechanism).

- If the formal binds to a new entity, the actual parameter
may be either an entity or a value. The purpose of the ac-
tual must be at least one of the following:

. The substance of the new entity bound to the formal is
initially given a state represented by the value of the
actual at the instantiation time of the parameterized
descriptor (e.g. the call-by-value parameter passing
mechanism).

. If the actual is an entity, there is also the pos-
sibility that immediately before the instance of the
parameterized descriptor ceases to exist, the state of
the entity bound to the formal is transferred to the
state of the actual (e.g. the call-by-result parameter
passing mechanism).

3.6.3 Parameterization by Descriptors

The purpose of parameterizing a descriptor by a descriptor is to
allow different instances of the parameterized descriptor to use
different actual descriptors.

Parameterization by descriptors appears in several programming
languages. In Pascal, parameterization by procedures and func-
tions is parameterization by descriptors. In Ada, generic
parameterization by types is parameterization by descriptors. The
parameter passing mechanisms call-by-name and call-by-need are
also examples of parameterization by descriptors, since the

- 47 -

Chapter 3

parameters in these cases are expressions to be evaluated within
the parameterized descriptor.

It is important to note that parameterization by descriptors in-
troduces some new problems if we want a compiler to check the
legality of the uses of the parameters.

When an entity is used as a parameter in a typed language its
descriptor is usually known in advance (specified in the formal
parameter specification). This makes it possible for a compiler
to check the legality of the uses of the entity parameter.

When a descriptor is used as a parameter it is equally important
to know at least some of the properties of the formal descriptor
in order to ensure 1legal use. As most languages do not allow
descriptors for descriptors, these properties must be specified
in some other way, or inferred.

In the following, we will give three examples that illustrate
compiler problems with descriptors as parameters. The first two
illustrate that information about the formal descriptor parameter
is needed when it is used to create and manipulate instances. The
inference method is able to infer the needed specification in
these cases, so our discussion will concentrate on how to enable
compile time checks by means of specification. The third example
illustrates a problem in connection with definition of new
descriptors based on the formal descriptor. The inference method
will not always be able to infer the specification in this case,
so our discussion is relevant to both the inference and the
specification approach to compile time checks.

Programming languages that accept extensive run time checks
typically ignore the problems and leave legality checking to the
run time system.

The Parameter Specification Problem

The parameter specification problem can be illustrated in connec-
tion with routines as parameters to routines.

If a parameterized routine calls its actual routine parameter, it

- 48 =

Chapter 3

must specify the right number and types of actual parameters to
this routine. If this is to be checked at compile time based on
specification and not inference, it is necessary to specify the
number and types of the formal parameters of the formal routine
parameter in the declaration of the parameterized routine.

Pascal allows routines as parameters to routines, but the Pascal
Report /Jensen et al./ does not require specification of the for-
mal parameters of the routine parameter. This has lead to
problems with run time checks, so most implementations of Pascal
and the 1ISO Pascal Standard require specification of the formal
parameters of the routine parameter.

This problem can be generalized to all descriptors with
parameterized descriptor parameters. If an instance of the
parameterized descriptor creates instances of the parameterized
descriptor parameter, it must know the number and kinds of formal
parameters to the parameterized descriptor parameter. That is,
the specification of the formals must include enough
specification to ensure legal use of the formals in the
parameterized descriptor.

The Operation Problem

The operation problem can be illustrated in connection with types
as parameters to routines.

If a routine with a type as parameter manipulates variables of
the parameter type, it must manipulate these variables in ac-
cordance with their type. For example, if the routine assigns to
a variable of the parameter type, it must be checked that assign-
ment is a legal operation for all types used as actual parameters
to the routine.

If this is to be checked at compile time, then it must be pos-
sible to ensure that the manipulations of the variables are legal
for all possible actuals. In order to make this possible by means
of the specification method, it must be specified in some way,
which operations the routine requires the type parameter to have.

- 49 =

Chapter 3

For example, it should be possible to specify that the operations
"assignment" and "test for equality" must be legal operations on
variables of the parameter type.

In general, if a descriptor is parameterized by a descriptor, it
must be specified how instances of the parameter can be
manipulated. Again, this can be ensured by the formal parameter
specification.

In Alphard, this is done by enumerating the legal operations as
part of the formal parameter specification. In Ada, the operation
problem is solved by elaborate rules stating which operations are
legal by default, depending on the formal parameter
specification. Additional operations must be given as explicit
additional parameters. In section 4.3.1 we introduce the concept
of qualification that solves the operation problem in an elegant
way.

The Recursion Problen

This problem can also be illustrated in connection with types as
parameters to routines.

Recursive call of a routine with a type parameter can lead to
types with an indeterminable level of complexity. This makes it
complicated for a compiler to know and check all types in the

program.
Example:
Procedure Pip(Type t)
Type t' = Array [1 .. 10] of t;
Begin
Pip{ t*):
End

In general, if a recursive descriptor uses a data-descriptor
parameter to define new data-descriptors, then data-descriptors
with an indeterminable level of complexity may be created. There

- 50 -

Chapter 3

is no way of avoiding the problem unless dynamic instantiation of
such parameterized descriptors is eliminated or compile time
checking is dropped /Gehani/.

In Ada, the problem is solved by a binding "trick" that effec-
tively eliminates the possibility of recursive instantiation. The
trick 1is that outside the generic unit, the name of the generic
unit is bound to the generic unit, whereas within the generic
unit the name 1is bound to the actual instantiated unit. This
makes it impossible to instantiate the generic unit recursively,
since there is no way of referring to it within an instantiated
unit.

- 5] -

CHAPTER 4

ABSTRACTION IN PROGRAMMING LANGUAGES

This chapter is intended as a synthesis of chapter 2 and 3. The
abstraction functions identified in chapter 2 will be analysed in
a programming language perspective by means of the terminology
and descriptor-entity model introduced in chapter 3.

As mentioned in chapter 1 the conceptual distance between a
programming language and a problem area is determined by two fac-
tors:
- the language defined realized concepts
- the support of abstraction

By support of abstraction we mean the ability to create a named
descriptor that models a concept that we want to realize. This
involves two steps: Firstly, the ability to describe the wanted
concept in terms of the given language and secondly, the ability
to encapsulate this description in a named descriptor. If only
the first step is possible, we say that the concept can be
simulated, but not obtained by abstraction by the programming
language.

For instance, any programming language with a mechanism for asyn-
chronous communication can simulate synchronous communication by
means of a certain programming discipline, but in order to make
it possible to realize synchronous communication by abstraction
in a programming language it should be possible to name (and per-
haps parameterize) a descriptor that describes the discipline for
synchronous communication. When such a descriptor is used to
create instances, the communication will automatically behave ac-
cording to the discipline encapsulated in the descriptor, and

thus enforce synchronous communication.

If a programming language contains language defined concepts that
make simulation of the problem specific concepts very easy, this

- K2 =

Chapter 4

can to some extent compensate for the lack of good abstraction
mechanisms. However, since the optimal is to be able to abstract
and since abstraction depends on the ability to simulate, we will
concentrate on abstraction and not discuss simulation any fur-
ther.

We will discuss abstraction in programming languages by focusing
on the three abstraction functions: Classification, aggregation,
and generalization and the inverse concretion functions.

4.1 Classification and Exemplification

In chapter 3 we discussed the descriptor-entity model and the in-
stantiation relation between descriptors and entities. Further-
more, we pointed out that descriptors and entities in many ways
are analogies in the model system of the referent system's con-
cepts and phenomena, respectively. Then, looking at the discus-
sion of the abstraction function in chapter 2, it is apparent
that classification and instantiation are closely related. In the
following we will discuss classification and exemplification in
programming languages.

The way in which classification is supported in programming
languages is by allowing creation of new descriptors. When
creating a new descriptor, we classify all future entities, in-
stantiated from or interpreted according to the descriptor.

Exemplification, on the other hand, occurs when an entity is in-
stantiated from a particular descriptor, when an entity is selec-
ted as an instance of a particular descriptor, and when an entity
is interpreted according to a particular descriptor.

From the above it can be seen that classification is very fun-
damental - it 1is impossible to specify a descriptor without in-
volving classification (just as it is impossible to think of a
concept without classifying).

= 53 =

Chapter 4

Examples:

Definition of a new type 1in Pascal and definition of a new
generator in Icon are examples of classification. Declaration of
a variable of the type and creation of an instance of the
generator are examples of exemplification.

- o0o -

Programming languages usually contain some language defined
descriptors (i.e. language defined classifications) and some
language constructs for definition of new descriptors (i.e. user
defined classifications). In the following, we will discuss some
of the most common language constructs for simple classification
of data and process, respectively.

4.1.1 Classification of Data

The oldest and most common approach to classification of data in
programming languages is by means of a number of language defined
descriptors, such as Integer, Character and Boolean in Pascal.
Each of these descriptors models entities in a way inspired by
the scalar domain of values. The approach is that the substance
of the entities instantiated from the descriptors may have states
that, when measured, correspond to values in the corresponding
scalar domain. Moreover, the language defines some operations on
the entities which make state changes possible.

As an example, the Boolean descriptor is based on the scalar
domain (false,true) with the ordering: false<true, and several
operations, such as "not", "and", "or", and "assignment". If we
ignore the assignment, we could say that the Boolean descriptor
defines a new scalar domain, boolean=(false,true), with as-
sociated functions "not", "and", "or" and "<". Moreover, the
Boolean descriptor describes how to instantiate entities whose
substance may describe boolean-values and furthermore defines the
state changing operation "assignment". An equivalent discussion

- 54 =

Chapter 4

could be given for any of the other descriptors mentioned above.

Another way in which programming languages support classification
of data is by providing some language constructs for specifying
new descriptors. The simplgst such language construct is the enu-
meration type constructor ‘. The enumeration type constructor
(e.g. in Pascal and Ada) is used for specifying a descriptor
which, in addition to the normal purpose of descriptors, defines
a new scalar domain consisting of the symbols enumerated in the
constructor.

Common to the simple descriptors above is that they describe en-
tities whose substance can represent values from a specific
mathematical scalar domain (see section 3.3). Moreover, they may
describe some additional mathematical functions and some state
changing operations. 1In other words, the intension of a simple
descriptor is first of all the property that measurements on the
substance of entities instantiated from the descriptor result in
values from the specified scalar domain, but in addition, the in-
tension also specifies the existence of the additional
mathematical functions and the state changing operations.

All of the above mentioned descriptors are usually called simple
descriptors or enumeration types. These simple descriptors form
the basis for definition of new descriptors by means of the other
descriptor constructors such as the array-constructor, the
record-constructor and the class-constructor, which all involve
aggregation as well as classification.

4,1.2 Classification of Process

The most common approach to classification of process in a
programming language is that the language provides some construc-
tors that allow the programmer to specify simple and aggregated

*) We use the term x-constructor instead of, the phrase; the
language construct which makes 1t possible to specify an
x-déscriptor.

= 55 =

Chapter 4

process-descriptors. Examples of constructors for simple process-
descriptors are the assignment-constructor in Pascal and the com-
munication-constructs in CSP, which both result in anonymous sim-
ple process-descriptors when used by the programmer.

Examples of constructors for aggregated process-descriptors are
the procedure-constructor in Pascal and the process-constructor
in Concurrent Pascal, which both result in named process-descrip-
tors. The block-constructor in Algolé60 and the while-constructor
in Pascal both result in anonymous aggregated process-descrip-
tors.

Moreover, a language may provide some language defined simple
named process-descriptors that can be used directly or as ag-
gregation components in an aggregated descriptor. Examples are
the "Read" and "Write" primitives of Pascal. For a further
discussion of aggregated process-descriptors we refer to section
4.2.3.

- 000 -

A language may also support classification of hybrid entities by
providing constructors that allow the programmer to define ag-
gregated descriptors that describe both data and process com-
ponents. The class-constructor in Simula is an example of this.

We will not discuss classification any further, but for a full
understanding of classification the following sections on ag-
gregation and generalization are also important, since clas-
sification is also involved when creating a new named descriptor
by aggregation or specialization/generalization.

4.2 Aggregation and Decomposition

Simple descriptors were discussed in the previous section. When
discussing composite descriptors we choose to distinguish between
two different kinds of properties that can be used to specify the

- B -

Chapter 4

intension of a descriptor in a programming language: Aggregation
components and constraints on the components, which will be fur-
ther discussed in section 4.2.1 and 4.2.2.

To aggregate 1is to create a descriptor by specifying
some components that instances of the descriptor must
have. Moreover, aggregation wusually involves as-
sociation of some constraints to the com-
ponents - constraints that instances must satisfy.

Note that in general properties of the components are not in-
herited by the aggregated descriptor and its entities. For in-
stance the values that can be measured on an aggregated entity as
a whole need not be the same as the values that can be measured
on its components.

Aggregation components may be named or anonymous. As examples,
the components of a record in Pascal are named whereas the com-
ponents of an array in Pascal are anonymous (in the absence of
aliasing).

Most language constructs that support aggregation also support
decomposition to some degree. Let us assume that we have an ag-
gregated entity. Then decomposition may take different forms. The
most common form is that the scope rules of the language (see
section 3.5) allow access to the named aggregation components of
the entity (e.g. the field selection of record entities in
Pascal). Another very common form is that the descriptor con-
structor implicitly defines the access to the anonymous ag-
gregation components (e.g. the subscription operation on array-
entities). Finally, it may be possible to define the access in
the descriptor for the aggregated entity by means of the socalled
selector functions (see chapter 7 in /Tennent/). When invoked, a
selector function returns a name of an aggregation component and
thereby gives access to it. A selector function is usually
defined in terms of process-descriptors.

It is important to note that it is by no means always the case
that an aggregated entity can be fully decomposed (e.g. only the

- B7 =

Chapter 4

aggregation components marked "Entry" in a Concurrent Pascal
class can be accessed). There is an analogy between decom-
position and the projections functions of the tuple-domains, and
the different functions of the sequence domain. However, in some
cases decomposition allows changes to be made to the state of the
data-components, whereas the domain functions return values only.

Examples:
The array and record constructs in Pascal support aggregation.

There is one selector function for each projection function of
the underlying tuple-domains, namely one for each component. The
class construct of for instance Concurrent Pascal also supports
aggregation. Here only the components marked "Entry" give rise to
selector functions.

The procedure concept of many languages supports aggregation of a
number of anonymous process components (statements) and a number
of named data components (local variables).

- 000 =-

In chapter 2, concept understanding and abstraction were discus-
sed in terms of properties in general. The properties that are
relevant when discussing descriptors and abstraction in program-
ming languages are different kinds of aggregation components and
constraints (e.g. 1local variables, local procedures/functions,
and type constraints). Aggregation components and constraints
will be discussed in the following two subsections. A third sub-
section contains a discussion particularly related to aggregation

of process.

4.2.1 Different Kinds of Aggregation Components

We will discuss a number of different kinds of aggregation com-
ponents that are relevant when describing properties in a
programming language. They all have analogies to conceptually

- 58 =

Chapter 4

different kinds of properties of phenomena in the referent
system. However, we do not claim that our discussion is complete
or that the kind of some property from the referent system or
some component from an entity in the model system can always be
uniquely characterized by one of our categories.

Dependent Entities

An aggregation component of an entity is called a dependent en-
tity if it is an entity and its substance is part of the substan-
ce of the surrounding entity. That is, the dependent entity
exists only as a part of the surrounding entity and cannot sur-
vive this entity.

Examples from programming languages are local variables in a
procedure and components of a record variable.

To give referent system analogies we must either choose an ab-
stract example - e.g. the voice, hearing and vision of a person -
or assume a particular perspective and relative stability of the
phenomena considered - then components like arms and legs of a
person are examples of dependent components.

Dependent Descriptors

An aggregation component is called a dependent descriptor if it
is a descriptor whose substance is part of the substance of the
surrounding entity, and dependent on it as described for depen-
dent entities.

Examples from programming languages are local procedures and
local types of a procedure.

Analogies from the referent system are concepts that make sense
only in a limited context - e.g. grammatical rules that make sen-
ce only in the context of a specific language.

- 59 =

Chapter 4

Relations to Independent Entities

An aggregation component may represent a named relation to
another entity with an independent substance and existence.

An actual reference parameter of a Pascal procedure activation is
a relation to an independent entity, since the existence of the
variable does not depend on the procedure activation. Pointer
structures in Pascal also represent relations to independent en-
tities.

As a referent system analogy we can consider a person who may
have a "has mother" relation to another independent person.

Relations to Independent Descriptors

An aggregation component may similarly represent a named relation
to an independent descriptor.

A programming language example is the actual type parameter or
routine parameter of a generic instantiation in Ada.

A referent system analogy could be the religion of a per-
son - i.e. the named relation "Religion" to an independent con-
cept representing a religion.

Measurable Properties

An aggregation component of an entity is said to represent a
measurable property if it is a measuring method that delivers a
value when it 1is activated. The value represents the result of
the measurement on the substance of the entity, and the wvalue
need not be directly represented in the substance of the entity.
The aggregation component representing the measurable property
will typically be a dependent process-descriptor.

In programming languages, local functions, value-returning
procedures and generators are examples of language constructs
that can be used to describe measurable properties.

Analogies from the referent system are properties like height,

weight and eyecolour of a person.

- 60 -

Chapter 4

4,2.2 Constraints

A constraint can be associated with one or more aggregation com-
ponents. It is specified in a descriptor and expresses some re-
quirements that all instances of the descriptor must satisfy.
That is, constraints express properties in the intension of
descriptors.

The most common constraints known in programming languages are
type constraints. A type constraint is associated with an ag-
gregation component that is an entity, and expresses the re-
quirement that the component must be an instance of a particular

descriptor.
Example:
Type T = Record
X ¢ Integer;
Y : Char;
End

Other kinds of constraints on individual aggregation components
can be found in existing programming languages. In some languages
that allow descriptors as parameters to other descriptors the
operation problem (see section 3.6.3) is solved by specifying ex-
plicitly the operations that the actual parameter must possess.
The parameter is a relation to an independent descriptor, and the
requirement of having certain operations is a constraint.

Example:

In Alphard, descriptors for abstract datatypes are called forms:

Form Stack(T : Form < < >, N : Integer):

Endform

The type parameter T is required to possess an assignment

operation, i.e. "e",

- 6] =

Chapter 4

Constraints can also be concerned with the relation between dif-
ferent aggregation components. This kind of constraint is not so
common in programming languages.

Example:
In /Thinglab/, such constraints can be specified in a constraint-

section of the class definintion:
Class Line-With-Midpoint
Part-descriptions

Line : aline
Midpoint : aPoint

Constraints
(Line Startpoint + Line Endpoint)/2 = Midpoint

Other examples can be found in database specification languages
/Astrahan et al./.

4.2.3 The Control Aspect of Process Aggregation

As mentioned in section 3.4, we consider processes as being com-
posed of state changing events in the following way: A process is
a coherent set of partially ordered events. That is, a process is
a set of events that we have chosen to consider as a conceptual
unit.

Aggregation of process is concerned with formation of this par-
tially ordered set of events. We aggregate processes by composing
a number of component processes and define the partial ordering
between the events of the component processes. The component
processes may also be composite processes (i.e. aggregated
processes) that define their own partial ordering of events. The
aggregation then defines a new partial order of events based on
the partial orders of the component processes. The composition of
the component processes can be formed in several different ways,
resulting in different partial orderings of the events in the ag-

- 62 =

Chapter 4

gregated process. The partial ordering of the aggregated process
is specified in the descriptor by means of language constructs
for control (e.g. the alternative command, the repetitive com-
mand, and the parallel command in CSP).

We will in the following discuss some basic control mechanisms:
Sequential composition, nested composition, co-sequential com-

position and concurrent composition:

Sequential Composition

In a sequential composition of a number of processes, the proces-
ses are executed one after the other in strict order. In terms
of the partial order of events, this can be expressed as follows:
Two processes are sequentially composed if all events from one
process come before all events from the other process.

Nested Composition

In a nested composition of two processes, the one is executed as
part of the other, like a procedure call. In terms of the par-
tial order of events, P2 is nested in Pl if P2 is executed as a
whole between two events of Pl.

Co-sequential Composition

In a co-sequential composition of a number of processes, ex-
ecution alternates between the processes so that their partially
ordered sets of events are merged, but only one process is ex-
ecuting at a time.

In terms of the partial order of events, any two events el and e2
from two different processes in a co-sequential composition are
ordered either (el<e2) or (e2<el), but as opposed to sequential
composition, not all such pairs need to be ordered the same way.
shift of execution from one process to another is made at the so-
called changeover points (or control transfer points), which are

explicitly marked in the process descriptor.

- 63 =

Chapter 4

Concurrent Composition

In a concurrent composition of a number of processes, the proces-
ses are executed overlapping in time.

In terms of the partial order of events, every pair of events
from two different processes are unordered.

Discussion

If we consider sequential composition, it is easy to see that it
is a special case of nested composition, and furthermore it is
easy to see that nested composition is a special case of co-se-
quential composition. However, the nature of both sequential and
nested composition is that the processes involved conceptually
share one single thread of control.

We say that sequentially and nested composed processes are
uni-sequential (they share one thread of control) whereas co-se-

quential and concurrent processes are multi-sequential (the

processes have individual threads of control).

We want to use the distinction between these composition forms to
characterize different language constructs for aggregation of
process. Therefore we want to be able to determine which com-
position form is supported by a particular language construct by
considering only the semantics of the language and not the im-
plementation. For instance, we will say that processes in Concur-
rent Pascal support concurrent composition, independently of
whether the language is implemented by means of interleaving on a
single processor or by means of true parallelism using several
processors. An interleaved implementation could be thought of as
a co-sequential execution, but the changeover points are not part
of the semantics of the language and thereby not determinable by
the programmer at the language level. We will therefore say
that, conceptually, Concurrent Pascal only supports concurrent

composition.

- 64 -

Chapter 4

In general, we decide only to consider a language as supporting
co-sequential composition of processes if the changeover points
are explicitely specified in the process descriptor. An example
of this is Simula's quasi-parallelism where resume and detach
specify changeover points.

- 000 -

Within each composition form there are further interesting con-
trol aspects. We will not go into a detailed discussion of these
aspects here but give a brief overview.

Control within uni-sequential processes is usually divided into

three well-known main categories: Sequencing, selection and
iteration.

Examples from programming languages are ";" for sequencing, "If-
then-else", "Case" for selection, and "While" for iteration. A

detailed discussion of uni-sequential control can be found in
chapter 5 of /Tennent/.

Within multi-sequential processes in general, the important con-
trol aspects are synchronization and communication. The purpose

of composing processes multi-sequentially is either that they
must cooperate to do some task, or that they must share some
resources, or both. Therefore, synchronization which enforces
some mutual time control on the processes, and communication
which enables exchange of information, are important. A further
discussion of communication and synchronization mechanisms in
programming languages can be found in /Thomsen et al./.

Moreover, some special control aspects concerning the changeover
points of co-sequential processes are relevant. For a discussion
of these aspects, the reader is referred to /Knudsen b/ and
/Thomsen et al./.

- 65 =

Chapter 4

4.3 Specialization and Generalization

When we talk about the final hierarchy of descriptors obtained by
specialization or generalization, it is both a specialization
hierarchy and a generalization hierarchy depending on whether we
choose to consider it top-down or bottom-up. During the program-
ming process, however, it makes a difference whether the language
supports specialization or generalization. Only very few language
constructs exist for generalization, whereas a number of object-
oriented languages support specialization. We will therefore only
discuss specialization in depth.

Specialization means set-inclusion of the extensions, and im-
plication between the defining parts of the intensions as
described in section 2.2.2.

We talk about descriptors as describing aggregation components
and constraints for the entities in their extension. That is, the
defining properties in the intension of a descriptor are the
properties of having some aggregation components and satisfying
some constraints.

The way in which a @programming language can support
specialization is to allow definition of a specialized descriptor
by mentioning the more general descriptor(s) and specifying the
additional properties (aggregation components and constraints) in
the intension of the new descriptor as compared to the general
descriptor(s). The language should then let the properties from
the general descriptor(s) be automatically inherited by the new
specialized descriptor, so that the programmer need not specify
the general properties more than once.

Examples:
Simula's prefix-mechanism supports definition of specialized

descriptors called subclasses by adding new aggregation com-

ponents:

- 66 =

Chapter 4

Class Person Person Class Student Person
Begin Begin

Text Name; Text Subject;

Text Address; .o

Procedure New-address(A) Procedure Examination;

Text A; Begin ... End;

Begin ... End; % ¥ W Student
End; End;

Ada's subtypes support specialization by adding new constraints-
e.g. a record subtype has an additional constraint concerning the
value of the discriminant:

Type Vkind is (Bus, Truck):

Type Vehicle(Kind : Vkind) is Vehicle
Record 4
Registration-Number : Integer;

Case Kind is

When Bus => No-Of-Seats : Integer;
When Truck => Max-Load : Integer;
End Case;

End Record;

Subtype BusType is Vehicle(Bus): BusType

- o0o =

It is generally accepted that aggregation is needed in progranm-
ming languages, since otherwise no composite types or processes
can be built. Specialization is not in the same way a basic
necessity of a language, and many high level languages do not
support it. Therefore we feel there is a need for a detailed
discussion of the advantages obtained by supporting
specialization in a programming language.

We will show that although specialization can be partially
simulated by aggregation, we cannot obtain all the advantages of
specialization by such a simulation.

After this discussion, we will return to a more detailed discus-
sion of the interaction between aggregation and specialization
due to the fact that specialization is often done with respect to

- 57 -

Chapter 4

the possession of certain aggregation components, as illustrated
by the previous examples. Moreover, specialization of process
needs a special analysis, as it was also the case for ag-
gregation.

As the last aspect of specialization, we will discuss the pos-
sible structure of the resulting hierarchy.

We will finish the section by summing up the important aspects of
specialization and analysing some existing language constructs.

4.3.1 Advantages of Specialization

The advantages of supporting specialization in a programming
language are discussed in the following five subsections.

The first advantage is concerned with the ease of the modelling
function. The next three are concerned with the support of
structured programming methodology. Finally, the last, and per-
haps the most important, is concerned with the expressive power
of the language.

4.3.1.1 Conceptual Modelling

Since generalization/specialization are important mechanisms for
structuring concepts in the referent system, a clear conceptual
modelling can be obtained when specialization is supported in the
programming language. This makes programming easier since the
conceptual distance between the problem specific concepts and the
realised concepts can be naturally bridged by means of the
language mechanisms for specialization.

Moreover, it makes reading and understanding of programs - and
thus program maintenance - easier, since the described concepts
can be more easily recognized as models of problem specific con-

cepts.

- 68 =

Chapter 4

4.3.1.2 Stepwise Refinement

Specialization as a structuring mechanism is particularly well
suited for applications where the complexity is due to a large
amount of details, and where many related but different concepts
are to be modelled.

Common properties of different concepts are described first, and
then a stepwise refinement technique is used in connection with
the development of a number of specialization hierarchies where
additional details are described step by step down the hierarchy.

After the full program has been developed, the intermediate
descriptors in the hierarchy are still part of the final program.
This means that specialization, used as a stepwise refinement
technique, directly supports that the intermediate descriptors
can be used as documentation that is developed together with the
program itself. Moreover, the intermediate descriptors can be
used as the basis for reasoning about the properties of the final
program, since all defining properties are invariantly satisfied
all the way down the hierarchy.

Attempts to wuse specialization hierarchies as an aid in formal
verification is described in /Wong/.

4,3.1.3 Factorization

Specialization supports that common properties of different con-
cepts are factorized - that is, described only once and reused
when needed. This results in greater modularity and makes com-
plicated programs more comprehensible, since a lot of redundant
description is avoided.

Intentional similarities betweeen descriptors are made explicit
so that they can be distinguished from accidental similarities.
In this way it can be ensured that it is only possible to make
use of the intentional similarities.

- 59 =

Chapter 4

4.3.1.4 Separation of Concerns

When several more or less independent aspects of a concept are to
be described, specialization hierarchies help separate the dif-
ferent concerns, so that the programmer (and the reader of a
program) can focus attention on one aspect at a time.

For example, the abstract behaviour and the implementation of an
abstract datatype can be separated by means of specialization. A
general descriptor can abstract from the implementation and focus
on specification, whereas one or more specialized descriptors can
realize an implementation:

Stack
array-stack list-stack

If two independent perspectives are relevant for a specific con-
cept, the perspectives can be described in two different descrip-
tors and inherited by a third:

Stack

el

Array-based-Stack Stack-of-Integer

\/

Array-Stack-of-Integer

4.3.1.5 Qualification: a Flexible Type=concept

With a specialization hierarchy of descriptors we can have
qualifications instead of strict types when declaring entities,
formal parameters, etc. in the following way: If an entity "e" is
qualified by the descriptor "D", then "e" must be in the exten-
sion of "D", but it may also be in the extension of any
specialization of "D". At this level of abstraction, however,

- 70 =

Chapter 4

"e" can be manipulated only in accordance with the descriptor
“DII .

This kind of qualification mechanism is known for instance in
Simula as qualified references. As an illustration of the flex-
ibility and the expressive power gained by qualifications as com-
pared to a traditional type-concept, we can consider the example
of developing a program library that implements index sequential
files. The library should be generally usable for index sequen-
tial files regardless of the kinds of elements to be stored in
the file, assuming only the existence of, say, an integer "Key"
in every element. The 1library could then contain a general
descriptor called "Element" with only the defining property of
having an integer component "Key". Besides, the 1library should
contain the descriptor for index sequential files, whose elements
are just qualified by "Element", and a number of procedures,
whose formal parameters are qualified by "Element".

We illustrate this by means of a pseudo programming language:

Descriptor Element
Key : Integer;
End Descriptor;

Descriptor Index-Sequential-File
File : Array[Range] of Element;
Position: Range;

Function Index(Key : Integer) : Range;
Begin ... End;

Function Get(Key : Integer) : Element;
Begin ... End;

Procedure Put(E : Element);
Begin ... End;

etc.

End Descriptor;

This library could for instance be used in a database ap-
plication, where information about persons are to be stored with
the civil registration number represented by the "Key" component.

- 7] -

Chapter 4

The application then defines a specialized descriptor from
"Element" to model the concept "Person", and all entities that
are instances of this descriptor will now be 1legal actual
parameters to the procedures "Get" and "Put", since they are also
instances of the qualifying descriptor for the formal parameters.

Descriptor Person
Is-specialization-of Element
(* with additional properties *)

Name : Text;
Address : Text:
etCe weu

End Descriptor;

f : Index-Sequential-File;
k : Integer;
Pl, p2 : Person;

f.Put(pl):;
p2 = f.Get(k):

Also entities belonging to the extensions of specializations of
"Person" - if present - can be included in the file. If the
language allows additional constraints to be added to inherited
properties in a specialized descriptor, we could make a
specialization of the descriptor "Index-Sequential-File", that
allows only "Person" entities (and specializations) to be in-
cluded in the file.

Descriptor Person-file
Is-specialization=-of Index-Sequential-File
Where Element Is-restricted-to Person;

End Descriptor;

Some of this flexibility can be obtained in languages that allow
types as parameters, for instance by means of generic packages in
Ada.

The index sequential file could then be a generic package with a
generic parameter representing the element type and another
generic parameter - a function - representing the requirement
that a key-value must exist. The person-file could then be
created as a generic instantiation with the relevant actual

- 72 =

Chapter 4

parameters. However, such a person-file could contain persons on-
ly, not specializations of persons like for instance secretaries,
truck-drivers and other kinds of employees. Of course, if all
needed specializations of "Person" are foreseen when the descrip-
tor 1is specified, "Person" can be defined as a descriminated
record with a variant part, implying that the specializations
described by this record can all be included in the database.
However, it is impossible later on to make new specializations of
"Person" such that instances of these specializations can also be
included in the database. Thus, most of the flexibility of al-
lowing the actual entities in the person-file to be heterogeneous
is lost when choosing the Ada approach. On the other hand, it
makes implementation easier.

A more important difference, however, between the specialization
approach and the Ada approach can be illustrated by extending the
example:

Suppose the general index sequential file is part of a standard
library, supplied and owned by an independent software developer.
Suppose moreover, that a customer who has bought this 1library
often wants to dump different index sequential files on a dump-
file. Obviously then, it would be desirable for the customer to
be able to write a general dump-procedure that would accept any
index sequential file as input parameter. This would be impos-
sible in Ada without changing the generic package specification
and thus violating the modularity of the system. Moreover, since
the specification is the property of the software developer, it
may not be available to the customer at all.

In a language based on specialization, this could be done very
nicely by writing a procedure "Dump" with a formal parameter
qualified by "Index-Sequential-File".

Flexibility of the kind just demonstrated is very valuable. So

valuable that some language designers have chosen to abandon
types completely - e.q. Smalltalk and Lisp - to avoid the

- 73 =

Chapter 4

rigidity usually inherent in traditional type systems. However,
when designing a type-less programming language, the security
that types can give, is also renounced, and great responsibility
is placed on the runtime systemn.

With qualifications based on a specialization hierarchy instead
of a traditional type concept, we have gained additional flex-
ibility, but we have preserved most of the security, since a com-
piler can still check that an entity is manipulated only in ac-
cordance with its qualifying descriptor. The specialization
hierarchy guarantees that all defining properties of the
qualifying descriptor are possessed by the entity also if the en-
tity later on turns out to be an instance of more specialized
descriptors. The defining properties of a qualifying descriptor
represent invariant knowledge of any entity with this
qualification, so that any manipulation in accordance with the
qualifying descriptor will be valid for the actual entity.

4.3.2 Simulation of Generalization by Aggregation

As already mentioned, specialization and aggregation are both
conceptually basic, but from a technical viewpoint, aggregation
is more fundamental than specialization. In the previous section,
however, we presented the advantages of also supporting
specialization. As a continuation, we will now show that these
advantages cannot be obtained by aggregation alone, although
specialization can be partially simulated by aggregation.

Example:

Vehicle «— Registration-Number

Insurance

Bus Truck

T
Max-Load .J

No-of-Seats .

& —

- 74 =

Chapter 4

can be partially simulated by

Truck Bus
N &
.in Maleoad Vehfcle No-ofLseats .!.
Registration-Number Insurance

The simulation is done by letting both the "Truck" and the "Bus"
descriptors describe an aggregation component which is an instan-
ce of "Vehicle".

However, this simulation is not a very good one. The relations
between the concepts have become confused, since it now seems
that the relationship between "Registration-Number" and "Vehicle"
is the same as the relationship between "Vehicle" and "Bus". Con-
ceptually, these relationships are very different since busses
are a subset of vehicles, whereas vehicles are certainly not a
subset of registration-numbers.

It is impossible to obtail a qualification mechanism that is only
valid for those parst of the hierarchy that simulate
specialization - e.g. the Vehicle-Truck-Bus part in the example
above. Either we must abandon qualification totally or we must
accept a qualification mechanism that covers the whole hierarchy.
The latter forces us to allow also a "Vehicle" as actual
parameter to a procedure where the formal is specified as
"Registration-number", although this may not be what we want.

As shown above, a qualification mechanism which only follows the
specialization hierarchy cannot be obtained if specialization is
simulated by means of aggregation. Since such a qualification
mechanism is one of the strongest arguments in favor of
specialization, simulation by aggregation is insufficient.

- 75 =

Chapter 4

4.3.3 Use of Aggregation in Specialization

As already mentioned, specialization heavily depends on ag-
gregation since specialization is done by adding new aggregation
components and new constraints. In this section we will have a
closer 1look at this interaction between aggregation and
specialization. First we will discuss constraints added to ag-
gregation components, and afterwards we will discuss the role of
defining and characteristic properties.

4.3.3.1 Constraints on the Aggregation Components

A general discussion of the kinds of constraints that it could be
relevant to specify on aggregation components was given in sec-
tion 4.2.1. Here we will concentrate on constraints added in a
specialized descriptor.

It is obviously relevant to be able to add constraints together
with the addition of new aggregation components in a specialized
descriptor. This 1is the basic possibility of the prefix
mechanism in Simula.

Example:
—Name: Text
Person<—
——Address: Text
—— Typing-speed: Integer
Secretary<

——"new components with type-constraints"

It is also relevant to be able to add new (stronger) constraints
on the old - the inherited - aggregation components.

The person-file example in section 4.3.1 illustrates the useful-
ness of this possibility, since "Person-file" is obtained as a
specialization of "Index-Sequential-File" by adding further con-

- 76 =

Chapter 4

straints to all the inherited "Element" components.

The person-file example shows that the possibility to add con-
straints to inherited components increases the expressive power
of a specialization mechanism. There is also a maintenance ar-
gument in favor of this possibility as illustrated in the fol-
lowing:

It is important to notice that a concept is often specialized
with &respect to a specific property or a number of properties.
For instance, the concept "Person" can be specialized with
respect to "Job" into different categories like "Secretary",
"Truck-driver", etc. The property "Job" of a person can be
represented directly as an aggregation component of the person or
indirectly by the person's membership of the extensions of more
specialized descriptors.

In a language like Simula, where addition of constraints to in-
herited components is not allowed, a choice between these two
representations would have to be made, and the criterion for the
decision must be whether additional properties have to be model-
led for persons with different jobs. If this is the case, two
subclasses should be made and no aggregation component should
represent the Jjob of a person. If no additional properties are
needed, subclasses are unnecessary and the job can be represented
by a simple aggregation component.

If the simple representation is chosen and the application 1later
on changes so that different additional information is to be
stored for secretaries (e.g. typing speed and language knowled-
ge), and for truck-drivers (e.g. type of licence), then this
change will be very difficult to incorporate since besides
defining subclasses to represent secretaries and truck-drivers,
the "Job" component of class "Person" should be deleted.

Deletion of the "Job" component would have consequences also for
all applications that operate on the abstraction level where the
additional details of secretaries and truck-drivers are unin-
teresting - that is, applications that wuse the qualification

- 77 =

Chapter 4

"Person" and not the qualifications "Secretary" and "Truck-
driver".

If the "Job" component is not deleted, a programming discipline
must ensure that the value of the "Job" component of an entity is
consistent with the class-membership of that entity.

LE constraints can be added to inherited components,
specialization with respect to a specific aggregation component
can be made by adding constraints to this component and adding
the relevant new aggregation components, without having to change
from an explicit to an implicit representation of the component
that causes the specialization.

Name: Text
Personé———{E}Address: Text
Job: (sec, td)

Typing-speed: Integer
Secretary({:

Job: (sec)

Example:

Licence: ...
Truck-driverf{:

Job: (td)

With this model, applications that use only the qualification
"Person" need not worry about the additional descriptors, since
all persons still have all the original aggregation components.

4.3.3.2 Defining and Characteristic Properties

When we have been talking about specialization by adding new ag-
gregation components and new constraints, we have mainly discus-
sed defining properties. As the conceptual discussion of
specialization in chapter 2 showed, the characteristic properties
may also play a role in connection with specialization. If the
programming language supports description of both defining and
characteristic properties, it 1is relevant to be able to

- 78 =

Chapter 4

specialize by promoting a characteristic property to a defining
property or by introducing a defining property saying that en-
tities in the extension of the specialized concept do not have
the previous characteristic property.

An example is that we could be interested in considering the
descriptor "Stack" as a specialization of the descriptor "Sequen-
ce", where some of the "Sequence" operations are only charac-
teristic properties of "Sequence", and excluded from the
specialized descriptor "Stack".

However, a mechanism for specializing with respect to a charac-
teristic property is only useful if the language clearly
distinguishes between defining and characteristic properties. If
all properties are considered only characteristic and all proper-
ties may be excluded at lower levels in the specialization
hierarchy, then the knowledge that a specific entity at least
belongs to the extension of a specific descriptor, is useless
since it does not allow us to assume anything about the proper-
ties of the entity. Thus the Kknowledge will not allow us to
reason about the entity. To qualify an entity by a certain
descriptor will give no security because the compiler is unable
to deduce anything from this qualification about what is legal
and what is illegal manipulation of the entity.

In summary, it is crucial to have defining properties in order
for a specialization mechanism to be useful at all. In fact, most
languages with specialization do support that some properties are
defining.

Moreover, other interesting specializations are possible if
characteristic properties are also supported.

4.3.4 Specialization of Process-descriptors

The relation between specialization and the defining and charac-
teristic properties of a descriptor causes problems when con-

sidering process descriptors.

- 79 =

Chapter 4

There are two important aspects of a process:

1) The functional aspect - i.e. the effect of executing the

process, measured in terms of the change of state of the in-
volved entities.

2) The procedural aspect - i.e. how this effect is obtained by

means of a sequence of state changing steps.

In most programming languages only the procedural aspect is ex-
plicitly described, whereas the functional aspect is implicitly
given as the net effect of the performed steps. Conceptually,
however, the defining property of a process concept is often its
functional aspect and not its procedural aspect. For instance,
the defining property of the stack operation "Push" will often be
considered to be its effect of adding an element to the stack,
not the concrete algorithmic sequence of steps used to obtain
this effect.

Conceptually then, the most obvious way to define what we mean by
specialization of a process would be in terms of the functional
aspect. That is to require a specialized process descriptor to
describe at least the same effect as a more general descriptor.

In a language where the functional aspect is explicitly described
and not just implicitly as a result of the procedural aspect,
such a notion of specialization could probably be realized - see
for instance /Taxis/ and /Borgida/.

Most attempts to including specialization of process in program-
ming languages have been made in languages that focus on the
procedural aspects of processes. This means that the languages
have chosen to let the procedural aspects be the defining proper-
ties of a process descriptor. This is by far the simplest in im-
perative languages, and when carefully used, it can still cor-
respond to functional specialization and be a useful structuring

mechanism for processes.

- 80 -

Chapter 4

Examgle:

Procedure Access-shared-data

Begin
Wait(Semaphore)
Inner (* activates specialized body, if present *)
Signal(Semaphore)

End

Procedure Update(Param)
Is-specialization-of Access-shared-data
Begin

Data :=
End

Procedure "Update" is a specialization of procedure "Access-
shared-data" (both considering the functional and the procedural
aspects) since "Update" always reserves the right to wuse the
shared data, then updates the data and finishes by releasing the
shared data.

However, a process descriptor that is a specialization of another
with respect to its procedural aspects does not need to be a
specialization with respect to the functional aspects. For in-
stance, specializing a process descriptor by adding a procedural
aggregation component in the form of a statement, does not neces-
sarily result in a specialization from a functional viewpoint,
since the additional statement may undo some of the effect of the
original descriptor instead of adding new effect.

Specialization of process descriptors mainly with respect to the
procedural aspect is described by /Vaucher/ and also realized in
/Beta/. In /Thomsen b/ a more general mechanism for procedural
specialization of process is introduced.

In summary, we would 1like that a language mechanism for
specialization of process ensures specialization with respect to
both the functional and the procedural aspect. However, it is our
impression that further research is needed in order to find
elegant solutions to this problem.

= 8] =

Chapter 4

4.3.5 Single Versus Multiple Inheritance

If specialization hierarchies are restricted to be tree-struc-
tured we talk about single inheritance, since a descriptor can
only inherit properties from a single more general descriptor
(wvhen we ignore the even more general descriptors). If the
hierarchy can be an acyclic directed graph, we talk about mul-
tiple inheritance.

For a detailed discussion of the advantages of multiple in-
heritance and the different possible realizations of it, the
reader is referred to /Thomsen a/.

The following figure illustrates a useful application of multiple
inheritance:

Stac

Array-based-stack List-based-stack Integer-stack Element-stack

Array-stack-of-integer Array-stack-of-element ...

The following procedures show the advantages of such a hierarchy,
since procedures can be described in general for the whole range
of stacks on which they make sense.

Procedure Bottom-up(St: Stack)
(* reverses a general stack *)

Procedure Sum-of-elements(Ist: Integer-stack): Integer
(* returns the sum of the values on a general Integer-stack *)

Procedure Full(Ast: Array-based-stack): Boolean
(* returns true if the array limit is reached *)

- 82 =

Chapter 4

4.3.6 Summary Concerning Specialization

As a summary, we will briefly mention the aspects of
specialization that have been discussed in the preceding sec-
tions. The summary is intended to provide a basis for the under-
standing of the kind and quality of specialization mechanisms in
different languages.

1) Wwhat kinds of defining properties can be added when
specializing.
- new aggregation components
- new constraints
- associated with new components
- associated with inherited components

2) Does the specialization mechanism provide qualification in-
stead of strong (or no) typing.

3) Is multiple or only single inheritance supported.

4) Does the language distinguish between defining and charac-
teristic properties.

5) Is specialization of process (if possible) done with respect
to the functional or the procedural aspect of processes.

6) Is the number of possible levels of specialization hierar-
chies limited or not. This aspect has not been discussed
above, but it is obviously interesting whether the number of
levels can be arbitrary large or not.

4.3.7 Analysis of Some Language Constructs

In this section we will analyse some language constructs that
support specialization. We will characterize them in terms of the
aspects summarized in the preceding section.

- 83 =

Chapter 4

4,3.7.1 Parameterization

When we have a parameterized descriptor, we can consider the
specification of the formals as constraints on the
parameters - e.q. type-constraints. From the preceding discus-
sion of specialization it is then obvious that specialized
descriptors could be obtained by adding further/stronger con-
straints to the parameters. Only few languages support this kind
of specialization, but in the following we will show the advan-
tages of such a possibility using a language invented for the

purpose.

The strongest constraint that can be added to a formal parameter
is to supply the actual parameter:

Descriptor Stack(Descriptor Elementtype; Size : Integer)

Descriptor Int-Stack-100
Is-specialization-of Stack(Elementtype = Integer;
Size = 100)

This possibility exists in Ada by the generic facility. In an Ada
generic, all generic parameters are bound simultaneously resul-
ting in a two-level specialization hierarchy. If selective bin-
ding was allowed, several levels could be obtained:

Descriptor Int-Stack(Size : Integer)
Is-specialization-of Stack(Elementtype = Integer;
Size : Integer)

Descriptor Char-Stack(Size : Integer)
Is-specialization-of Stack(Elementtype = Char;
Size : Integer)

Descriptor Int-Stack-100
Is-specialization-of Int-Stack(Size = 100)

This gives the following hierarchy:

- 84 -

Chapter 4

Stack
Int-Stack Char-Stack
Int-Stack-100

The concept of curried functions /Stoy/ is an example of this
specialization technique used for functions.

If the programming language already includes a specialization
mechanism for descriptors, the formals of a parameterized
descriptor can be specified by means of qualification as
described in section 4.3.1. A specialization of the parameterized
descriptor can then be obtained by adding a constraint that
specializes the qualification of a formal instead of binding it
completely to an actual parameter.

Note that qualification can be wused also to specify formal
parameters of kind descriptor and thus solve the operation
problem described in section 3.6.3: Qualifying a formal descrip-
tor by a descriptor Q means that the actual parameter must be
either Q or a more specialized descriptor. Thus the
parameterized descriptor can assume that its formal parameters
has all the properties of Q and manipulate it accordingly.

Now we will illustrate the specialization mechanism that can be
supported by parameterization. Assume that we have the following
hierarchy of descriptors where "Record" just describe the proper-
ty of having a key-value.
Record
Person Vehicle

Secretary Truck=-driver

and a parameterized descriptor

- 85 =

Chapter 4

Descriptor Queue(Descriptor Element : Record)

Then the following specializations can be made:

Descriptor Person-Queue(Descriptor Element)
Is-specialization-of Queue(Descriptor Element : Person)

Descriptor Vehicle-Queue(Descriptor Element : Vehicle)
Is-specialization-of Queue(Descriptor Element : Vehicle)

If there are several parameters, they can be used to obtain
several levels in the specialization hierarchy by focusing on one
parameter at a time. Moreover, the same parameter can be
gradually specialized down the hierarchy:

Descriptor Secretary-Queue(Descriptor Element : Secretary)
Is-specialization-of
Person-Queue(Descriptor Element : Secretary)

The virtual pattern mechanism in Beta is an example of a
parameterization mechanism that supports this kind of
specialization.

4,3.7.2 The Prefix Mechanism in Simula

A class in Simula describes aggregation components in the form of
data attributes, procedures and an action part. Constraints are
expressed as qualifications on data attributes and association of
procedure bodies to procedure names.

In a specialized class - a subclass - new aggregation components
can be added - i.e. new data attributes, procedures and action.
The specialization thus obtained on the process part of the class
is specialization with respect to the procedural aspect of the
action, not the functional.

In subclasses, new qualification constraints are added to new
data attributes and new body constraints are added to new

- 86 =

Chapter 4

procedures. New qualification constraints cannot be added to in-
herited data attributes, but new body constraints can be given
for a special kind of inherited ©procedures - the virtual
procedures. In fact the new body constraint on a virtual
procedure need not be stronger than the old one but just over-
writes the old one. This means that in reality the body con-
straint on a virtual procedure is not a defining property but
just a characteristic property of the class, whereas of course
the property of having a procedure with the given name is a
defining property.

For ordinary procedures - i.e. non-virtual procedures - both the
existence of the name and the associated body constraint are
defining properties, and further constraints cannot be added
later on. This also means that for ordinary procedures both the
procedural and the functional aspects are defining properties,
whereas for virtual procedures none of the aspects are
defining - only the name. Of course, this does not prevent the
programmer from writing virtual procedures where the functional
aspect is in fact invariant down through the specialization
hierarchy - it is just not guaranteed by the language construct.

As a summary, the defining properties of a class in Simula - i.e.
the properties that can be assumed valid when reasoning about all
instances of the class independently of whether they are also in-
stances of subclasses, are:

- The possession of certain named data attributes with some
qualification constraints associated with them.

- The possession of certain named procedures with body con-
straints that define both the procedural and the functional
aspects of the procedures.

- The possession of certain other named procedures (the vir-
tual procedures for which only the names are defining
properties).

- The possession of an action part with a certain procedural

behaviour.

- 87 =

Chapter 4

4.3.7.3 The Subclass Mechanism in Smalltalk

A class in Smalltalk describes data attributes and procedures on-
ly, and no constraints are associated with the data attributes,
whereas a body constraint is associated with procedure names.

In subclasses, new data attributes and new procedures can be ad-
ded, and old body constraints can be replaced with new ones like
for virtual procedures in Simula.

The only defining properties of a class are thus the possession
of some specific named data attributes and procedures. No con-
straints are defining properties at all.

4.3.7.4 The Prefix Mechanism in Beta

Instead of an exhaustive description of the prefix mechanism in
Beta, we will point out the most important differences from
Simula and Smalltalk:

A pattern (a descriptor similar to a class or a procedure)
describes local entities (for instance data attributes), local
patterns and an action.

Local entities are qualified like in Simula, and the
qualification is a defining property, but as opposed to Simula,
additional qualification constraints can be added in a
specialized pattern (a subpattern). That is, the qualification
constraints on existing data attributes can be strengthened but
never cancelled in subpatterns. Similarly, the body constraints
on procedures can be strengthened to more specialized bodies but
never cancelled. Thus also the body constraints are defining
properties, but as in Simula, specialization of process considers
only the procedural aspect, not the functional.

In summary, Beta has obtained that all aggregation components and
all constraints are defining properties, and at the same time al-
lows new constraints to be added also to inherited aggregation
components in specialized descriptors. This is obtained by means
of the virtual pattern mechanism in Beta.

- 88 =

Chapter 4

4.3.7.5 Subtypes and Generics in Ada

In Ada there 1is only very 1little support of specialization.
However, we will mention subtypes and generics and show why these
concepts only weakly support specialization.

In section 4.3 and section 4.3.1 we discussed specialization in
Ada but let us here give a short summary:

In section 4.3 an example of a record-subtype was given, but only
a two-level specialization hierarchy was obtained. Array-subtypes
can also result in two-level specialization hierarchies only.
Only for enumeration types, hierarchies of greater depth can be
obtained.

In section 4.3.1 some of the limitations of the Ada generic con-
cept were illustrated, namely the fact that although a generic
instantiation can be considered a specialization of the generic
unit, it 1is impossible to use qualification - for instance to
write a procedure that will accept any generic instantiation of a
particular generic unit as an actual parameter. Moreover,
generics only support two-level specialization hierarchies.

In /Wegner/, a more detailed criticism of the Ada generic concept
is given.

- 89 =

CHAPTER 5

CONCLUSION

We have shown that modelling and abstraction are basic activities
in a programming process. Modelling causes some serious problems
due to the conflict between the fuzzyness of many concepts in the
problem area and the Aristotelian nature of concepts in
traditional programming languages. We have made no attempts to
solve these problems but have concentrated on how to judge and
improve the quality of programming languages with respect to con-
ceptual modelling and abstraction within an Aristotelian view of

concepts.

As a basis for the discussion, we have introduced a model of
program executions that makes it easy to relate program ex-
ecutions to programming languages and conceptual modelling. This
model makes a basic distinction between descriptors and en-
tities - a distinction that is wusable for all programming
languages.

We have shown that traditional topics like data, values, proces-
ses, names and parameterization can be adequately discussed
within this model.

A thorough analysis of abstraction has been given. First as
general mechanisms for concept structuring, and later as
mechanisms in programming languages. The discussion of abstrac-
tion in programming languages is based on our descriptor-entity
model and showed the importance of supporting all of the func-
tions: Classification/exemplification, aggregation/decomposition
and generalization/specialization.

Additional expressive power in the programming language is ob-
tained when all the abstraction functions are supported.
Moreover, by supporting all the functions, the conceptual distan-

- g0 -

Chapter 5

ce between the problem area and the programming language can be
more easily bridged, and the concept structure in the resulting
program will in a nice way mirror the concept structure in the
problem area, thus making the program more comprehensible.

It is our hope that our framework can serve as an aid in gaining
a coherent understanding of the programming language area, and be
a source of inspiration in the design of new programming
languages. In particular, we hope that we have succeeded in ar-
guing that specialization deserves to be better supported in
programming languages than it is at present.

Acknowledgements

We want to express our gratitude to our supervisor Ole Lehrmann
Madsen for many inspiring discussions concerning our conceptual
framework. Thanks are also due to Peter Mosses who acted as our
supervisor during Ole Lehrmann Madsen's sabbatical, and to Brian
Mayoh who made us clarify our analysis of specialization. Final-
ly, we have benefited from comments from graduate students who
read an earlier version of this paper on a graduate course.

- 9] =

/Ada/

/Algol60/

/Algole8/

/Alphard/

/APL/

/Astrahan et al./

- 92 =

CHAPTER 6

REFERENCES

Reference Manual for the Ada Programming
Language, United States Department of
Defence, July 1982.

P. Naur: "Revised Report on the Algorithmic
Language Algolé0",

Communications of the ACM, Vol.6, No.l,
January 1963.

A. van Wijngaarden, B.J. Mailloux, J.E.L.
Peck, C.H.A. Koster, M. Sintzoff, C.H. Lind-
sey, L.G.L.T. Meertens, R.G. Fisher (Eds.):
"Revised Report on the Algorithmic Language
Algolé8", Acta Informatica, Vol.s,

No. 1-3, 1975.

W.A. Wulf, R.L. London, M. Shaw:

"An Introduction to the Construction and
Verification of Alphard Programs",

IEEE Transactions on Software Engineering,
Vol.2, No.4, December 1976.

K. Iverson: "A Programming Language", John
Wiley & Sons, Inc., London, 1962.

M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin,
K.P. Eswaran, J.N. Gray, P.P. Griffiths,

W.F. King, R.A. Lorie, P.R. McJones,

J.W. Mehl, G.R. Putzolu, J.L. Traiger,

B.W. Wade, V. Watson:

"System R: A Relational Approach to Data
Base Management", ACM Transactions on Data-
base Systems, Vol.1l, No.2, June 1976.

Chapter 6

/Barr et al./ A. Barr, A. Feigenbaum (Eds.): "The Hand-
book of Artificial Intelligence", Vol.1,
Pitman Books Limited, London, 1982.

/Beta/ B.B. Kristensen, 0.L. Madsen, B. Mgller-
Pedersen, K. Nygaard:
"Abstraction Mechanisms in the Beta Pro-
gramming Language",
Proceedings of the 10'th ACM Symposium on
Principles of Programming Languages,
Austin, Texas, 1983.

/Borgida/ A. Borgida: "On the Definition of Specia-
lization Hierarchies for Procedures",
7'th International Joint Conference of
Artificial Intelligence, Vancouver, Canada,
August 1981.

/Clu/ B. Liskov, A. Snyder, R. Atkinson,
G. Schaffert: "Abstraction Mechanisms in
cLu",

Communications of the ACM, Vol.20, No.8,
August 1977.

/Concurrent Pascal/ P. Brinch Hansen: "The Architecture of
Concurrent Programs", Chap.8,
Prentice-Hall, 1977.

/C8P/ C.A.R. Hoare: "Communicating Sequential
Processes", Communications of the AcCM,
Vol.21, No.8, August 1978.

/Edison/ P. Brinch Hansen:
"Edison - A Multiprocessor Language",
Software-Practice & Experience, Vol.l1,
No.4, April 1981.

/Fortran/ American National Standard Fortran
(ANS X3.9-1966),
American National Standards Institute,
New York.

/Fuzzy/ R. LeFaivre: "Fuzzy Reference Manual"
Computer Science Department,
Rutgers University, March 1977,
Revised June 1978.

/Gehani/ N. Gehani: "Generic Procedures,
An Implementation and an Undecidability
Result", Computer Languages, Vol.5, 1980.

/Hanssen et al./ E. Holbaek-Hanssen, P. Haandlykken,
K. Nygaard: "System Description and the

- 93 =

Chapter 6

DELTA Language", publication no. 523,
Norwegian Computing Center, February 1977.

/Hoare/ C.A.R. Hoare: "Notes on Communicating
Sequential Processes", Technical Monograph
PRG-33, Oxford University Computing Labo-
ratory, August 1983.

/Icon/ R.E. Griswold, M.T. Griswold:
"The Icon Programming Language",
Prentice-Hall, 1983.

/Jensen et al./ K. Jensen, N. Wirth: "Pascal User
Manual and Report", second edition,
Springer-Verlag, 1975.

/JIgrgensen et al./ T.M. Jgrgensen, J. Kammersgaard:
"Et begrebsapparat til karakteristik
af programmeringsprocesser" (In Danish),
DAIMI IR-38, Computer Science Department,
Aarhus University, August 1982.

/Knudsen a/ J.L. Knudsen: "Exception Handling -
A Static Approach", Software-Practice
& Experience, Vol.14, No.5, May 1984.

/Knudsen b/ J.L. Knudsen: "Control Abstraction in
Programming Languages", in preparation.

/Larsen/ S.F. Larsen: "Egocentrisk tale, begrebs-
strukturer og semantisk udvikling"
(In Danish), Nordisk Psykologi,
Vol.32, No.l, January 1980.

/Lisp/ J. McCarty et al.: "Lisp 1.5 Programmer's
Manual", 2nd. edition, M.I.T. Press,
Cambridge, Mass.

/MacLennan/ B.J. MacLennan: "Values and Objects in
Programming Languages'", ACM Sigplan
Notices, Vol.1l7, No.1l2, December 1982.

/Madsen et al./ 0.L. Madsen, B. Mgller-Pedersen,
K. Nygaard: "From Simula-67 to Beta",
Proceedings of the Eleventh Simula-67
User's Conference, Paris, Norwegian
Computing Centre, 1983.

/Mathiassen/ L. Mathiassen: "Systemudvikling og system-
udviklingsmetode" (In Danish), DAIMI PB-136,
Computer Science Department, Aarhus Univer-
sity, September 1981.

- 94 -

Chapter 6

/Milner/ R. Milner: "A Calculus for Communicating
Systems", Lecture Notes in Computer
Science, Vol.92, Springer-Verlag, 1980.

/ML/ M. Gordon, R. Milner, C. Wadsworth:
"Edinburgh LCF", Lecture Notes on Computer
Science, Vol.78, Springer-Verlag, 1979.

/Modula-2/ N. Wirth: "Modula-2", Berichte des
Instituts fuer Informatik, Nr.3s,
ETH, 1980.

/Nielsen et al./ M. Nielsen, G. Plotkin, G. Winskel:

"Petri nets, event structures and
domains", Proceedings of Conference

on Semantlcs of Concurrent Computation,
Evian, Lecture Notes in Computer Science,
Vol.70, Springer-Verlag, 1979.

/Peterson/ J.L. Peterson: "Petri Nets",
Computing Surveys, Vol.9, No.3,
September 1977.

/Pascal/ BS6192: 1982 Specification for Computer
Programming Language Pascal, ISO 7185.
In I.R. Wilson, A.M. Addyman° "A Practical
Introduction to Pascal - with BS 6192",
Macmillan, 1982 (second edition).

/Simula/ 0.-J. Dahl, B. Myhrhaug, K. Nygaard:
"Simula 67, Common Base Language",
Norwegian Computlng Center, 1970.

/Smalltalk/ A. Goldberg, D. Robson:
"Smalltalk-80: The Language and its
Implementation", Addison-Wesley
Publishing Company, 1983.

/Smith et al./ J.M. Smith, D.C.P. Smith:
"Database Abstractions: Aggregation
and Generalization", ACM Transactions
on Database Systems, Vol.2, No.2,
June 1977.

/Stoy/ J.E. Stoy: "Denotational Semantics:
The Scott-Strachey Approach to
Programming Language Theory",
MIT Press, 1977.

/Taxis/ J. Mylopoulos, M.K.T. Wong:
"Some Features of the Taxis Data Model",
6'th International Conference on Very
Large Data Bases, October 1980.

= 8§ =

Chapter 6

/Tennent/ R.D. Tennent: "Principles of Programming
Languages", Prentice-Hall International,
London, 1981.

/Thinglab/ A. Borning: "Thinglab -- A Constraint-
Oriented Simulation Laboratory",
SSL-79-3, Xerox PARC, July 1979.

/Thomsen a/ K.S. Thomsen: "Multiple Inheritance
in Object oOriented Languages",
preliminary version, Computer Science
Department, Aarhus University,

June 1984,

/Thomsen b/ K.S. Thomsen: "Specialization
Hierarchies and Distributed
Termination Detection", in preparation.

/Thomsen et al./ K.S. Thomsen, J.L. Knudsen:
"A Taxonomy for Programmlng
Languages with Multi-Sequential
Processes", DAIMI PB-175,
Computer Science Department,
Aarhus University, May 1984.

/Vaucher/ J.G. Vaucher: "Prefixed Procedures:
A Structuring Concept for Operations",
INFOR, Vo0l.13, No.3, October 1975.

/Wegner/ P. Wegner: "On the Unification of
Data and Program Abstraction in Ada",
Tenth International Conference on
Principles of Programming Languages,
January 1983.

/Wong/ M.K.T. Wong: "Design and Verification
of Interactive Information Systems
Using TAXIS", TR CSRG-129,
University of Toronto, April 1981.

/Wulf et al./ W.A. Wulf, M. shaw, P.N. Hilfinger,
L. Flon: "Fundamental Structures
of Computer Science',
Addlson—Wesley Publlshlng Company,
Philippines, 1981.

- 96 -

