G5 68 &1 - 90 -euoydapey
WHVWNIA - J snusey 0008 NA - epeBaxunyy AN
ALISHIAINN SNHEVY
Wwawuedsq 8ousdg 1andwor

LT98-G010 NSSI

G861 Y2Ie|N
161 - dd INIVA

yokepy "H ueng

SUOTINITISU] PUE SILId[[RS)

Galleries and Institutions

B.H. Mayoh

PB - 191

NYJI3H/INIVA HAML

Gallexies and Institutions

Abstract:

This preprint has four parts:

(1) Unified theory of knowledge representation (presented at

ATIMSA 84 conference in Varna).

(2) ynified theory for modal, dynamic, temporal and process

logics (presented at PUC conference in Rio de Janeiro).

(3) Unified theory for logical programming and semantic

representation (presented at Copenhagen workshop) .

(4) Unified theory of languages, models and logics.

The "unified theory" in the titles of each part refers to the
theory of galleries, a development of the theory of institutions.
These theories seem to be relevant in many areas of computer
science: (1) - (3) are applications to particular areas and

papers on:;

- processes, event systems, Petri nets and other forms

of parallelism

- specification, program development and design languages

are under preparation.
The current status of the general theory is given in part 4, but

it is not yet clear how this theory should be developed further.

UNIFIED THEORY OF KNOWLEDGE REPRESENTATION

Brian H. Mayoh
Aarhus University

In any artificially intelligent program knowledge of the external
world must be represented. Many formal languages for representing
knowledge have been invented and used in recent years, but there is
a need for a unified theory in which one can

- prove general results that hold for many particular
knowledge representation languages;

- transfer results for one knowledge representation language
to other languages;

- combine knowledge represented in one language with
knowledge represented in other languages.

In the first, second and last section of this paper we present a
unified theory; in section 3 we indicate how the theory includes
typical knowledge representation languages; in section 4 we indicate
how the theory include Montaque's formalisation of natural language.
The motivating example in section 1 is an algebraic language for
relational data bases.

The key concept of our unified theory, the concept of a gallery has
a long history. Many years ago logicians generalised the study of
models of first order theories to "soft model theory", the study of
models of families of logics. Recently this concept of a logical
family has been generalised to that of an institution ([G].

Galleries are a further generalisation of institutions, in which one

can have general values of expressions (terms) not just sentences
with truth values.

#1 Signature, Frames, Structures and Galleries

In this section we gradually develop the concept of a gallery.by in=-
troducing the concepts of signature, frame and structure. The devel-
opment is motivated by the data base example in figure 1.

A particular relational data base is given by a "conceptual schema"
with domains of object types and names of relations on these
domains. Such a conceptual schema is an example of a sorted
signature I where one has a set of sorts and a family Z(S) of rela-
tion names for each set S of sorts. In figure 1 I(NAME,ADDRESS) and
I (ADDRESS,PRICE,SIZE) have one element and the other families I (S}

are empty.

Signature domains: NAME, ADDRESS,PRICE,SIZE

relations: PERSONS « NAME, x ADDRESS
HOUSES < ADDRESS x PRICE x SIZE

Two frames el: Join (PERSONS,HOQOUSES)
el: Project (PERSONS,NAME)

Two structures

mil: PERSCNS HOUSES
NAME | ADDRESS ADDRESS | PRICE | SIZE
Brian | Ry 66 Ry 66 750000] Stor
Pia Ry 66 Alken 12 | 200000 | Lille
mygame = ™ apprESS = Mlgrgg = WORD mip. .o = INTEGER
m2: PERSONS HOUSES
NAME | ADDRESS ADDRESS | PRICE | SIZE
Brian| Ry 66 Ry 66 750000 | Stor
Pia Bra 93 Alken 12 | 200000 Lille
Bra 93 400000 | Middel
= - - W = INTEGER
m2yaME - ™2apDRESS ~ Megrzp - WORD M2pp1cE
Evaluaticn
val(el,m1) = | NAME | ADDRESS | PRICE SIZE
Brian | Ry 66 750000 Stor
Pia Ry 66 750000 | Stor
val(el,m2) = | NAME | ADDRESS | PRICE SIZE
Brian | Ry 66 750000 | Stor
Pia Bra 93 400000 Middel

Val(e2,m1) NAME = Val(e2,m2)

Brian

Pia

Figure 1: Relational Data Base Example

In the algebraic approach to relational data bases one can define
new relations from old using algebraic oeprations. We can suppose
that the expressions for defining new relations are given by

<exp> :: Persons | Houses |
Union (<exp>,<exp>) |

Intersection(<exp>,<exp>) |

Join (<exp>,<exp>) |
Project (<exp>,<list>) |
Select (<exp>,<list>) |

<list> ::= NAME|ADDRESS|PRICE|SIZE|<list>,<list>

This grammar is an example of the definition of the I-frames for a
signature IX.

The contents of our data base will change when new houses are built
and people buy and sell houses. At any time m we have a set MyAME of

names, a set M N DRESS of addresses, a set mPRICE of prices, a set

Mo1zE PERSONS < Pname * Mappresss 2Rd @ relation
Maouses © MADDRESS * MprICE ¥ Ms1zp We may also have data base opera-

of sizes, a relation m

tions of insertion and deletion, which change the contents m of the
data base to some m'. This is an example of the definition of the
I-structures and I-structure-morphisms for a signature I.

The value of a data base expression e is a relation that depends on
the contents m of the data base; it is given by the usual function
for evaluating algebraic expressions in a data base. This is an
example of an evaluation function which gives a value to each
I-frame in each Z-structure.

Definition A discrete gallery consists of a set SIGN of signatures,
a set FRM(X) of I-frames, a category STR(IZ)} of I-structures and an
evaluation function Valz:FRM{Z) x STR(X) - SET for each ¥ € SIGN.
The data base D in figure 1 is closely related to the data base D'
in figure 2, because D' is given by renaming relations and domains,
then adding a new relation. As figure 2 shows, this operation takes
each D-frame e into a D'-frame e' and each D'~-structure m' into a
D-structure m, in such a way that: Vval(e,m) = Val'(e',m'). This is
an example of a signature morphism ¢ from £ to I' generating a func-
tion FRM(¢):FRM(X) —> FRM(X') and a functor STR(¢) from STR(L') to
STR(Z), such that Valz(e,STR(¢}m') = Valz'(FRM(¢)e'm‘)'

Definition A gallery consists of a category SICN of signatures, a
functor FRM from SIGN to some category of sets, a functor STR from
SIGN to some category of categories, and an evaluation function
ValX:FRM(I) x STR(Z) —> SET for each ¥ € SIGN such that

Valz(e,STR(¢)m'} = VALZ,(FRM(¢)e,m')

for each signature morphism ¢ from Z to I', each e € FRM(X) and each
m' € STR(L').

Comment An institution (G) is a gallery such that Val_(e,m)
€ (true,false) for each signature X, each e € FRM(I) and each
m € STR(Z).

i~
By

Signature X' domains: N,A,P,S
relations: PPcN x A,HHcA x P x S,VWeN x S

Two frames el': Jjoin (PP,HH)
e2': project(PP,N)

Two structures

ml* s PP HH Vv
N A A P S N S
Brian | Ry 66 Ry 66 750000 | Stor Brian| Stor
Pia Ry 66 Alken 12| 200000 | Lille Pia Stor
1 =] = T - 1 =
m1 N INTEGER m1 N mi 2 m1 s WORD
m2: PP HH vV
) N A A P 3 N [s
Brian|{ Ry 66 Ry 66 750000 | Stor
Pia Bra 93 Alken 12| 200000 | Lille
Bra 93 400000 { Middel
| = T = 1 = ' =
m2 p = INTEGER m2 N m2 a m2 s WORD
Morphisms For ¥ in figure 1, renaming gives a signature
morphism ¢ from I to I' such that:
FRM(¢) el = el1',FRM(9) e2 = e2'
STR(¢) m1' = m1,STR(¢) m2' = m2
Evaluaticon function
val'(el',m1'} = Val(el,ml1), Val'(el1',m2') = val(el,m2)
val'(e2',m1') = Val'(e2',m2') = val(e2,m1) = Val(e2,m2)

Figure 2: Morhpisms of Relational Data Bases

One reason why signature morphisms are important is that they cap-
ture parametrization; one often has a formal parameter signature I,
an actual parameter signature I,, a parametrized signature I, and
parametrization diagrams

FRM(9) STR(9)

gy eiPls oy FRM(Z,) > FRM(EZ,) STR(L,) «>2®! gmp(x,)
T = FRM(T) T STR () T

| | = l

o S Ey FRM(Z,) — > FRM(Z,) STR(Z,) ¢——— STR(Z,)

In most useful galleries the category SIGN has pushouts so I; is
determined by the signature morphisms ¢ and 7.

#2 Specifications and Theories

The contents of the data base D in figure 1 may vary in time but
"constraints" can restrict them to a particular class M of D-struc-
tures. Two data base expressions, e: and e;, may or may not satisfy
the condition

vm € M. Val(e;,m) = vVal(e,,m)

This condition gives an eguivalence relation that is the theory
determined by M.

Definition Let Mc STR(X) for some signature I in a gallery
<SIGN,FRM,STR,Val>. The theory determined by non-empty M is the
equivalence relation on FRM(I) with the equivalence classes

[e]M = (e' € FRM(X) |Val(e',m) = Val{e,m) for all me M)
A true sentence of this theory is a frame e € FRM(I) such that
vm€ M.Val(e,m) = true.

Comment If a theory has a true sentence, then one of its equival-
ence classes consists of all the true sentences.

Example For the data base in figure 1 "Project(join(persons,
houses) ,name) " is equivalent to "Project (persons),name" in the
theory determined by M = {mi1,m2}.

Definition For any signature I in a gallery <SIGN,FRM,STR,Val>

the theory determined by the empty subset of STR(Z) is the "Universal"
eguivalence relation with [e]¢ = FRM(Z) as its only equivalence

class.

The reason for the last definition is that it gives a connection
between subsets of STR(Z) and thecries with such useful properties
as

[ely, = {lel | mem

$ € ml € m2 € STR(Z) - [e] I P) [e]¢

STR(X)

This connection is a natural generalisation of the more usual Galois
connection in which theories are identified with their set of true
sentences.

Definition The specification determined by non-empty E< FRM(Z) in
a gallery <SIGN,FRM,STR,Val> is the equivalence on STR(Z) with the
equivalence classes

[m]_ = {m'"€STR(£) | Val(e',m) = Val(e,m') for all m€ M}

E

Comment For each result about theories there is a dual result
about specifications.

#3 Knowledge Representation Language

In this section we indicate how our unified theory captures A.I.
languages for knowledge representation by looking at two examples:
Sowa's conceptual structures [S] and Wolfengang's frames [W]. The
representation of "a monkey eating a walnut with a spoon made out of
the walnut shell" in the two languages is shown in figure 3.

WALNUT: *

[z 7}~

MONKEY EAT WALNUT SPOON SHELL

= fa I= e 1
mo ea ea wa ea sp sp sh wa sh
AGNT OBJ INST MATR PART

Figure 3: Two Frames with the Same Meaning

The signature & of a Sowa representation consists of (1) a set C of
"concept types" partially ordered by "is a subconcept of" (2) a
family I _ of individual names for each c€C (3) disjoint families
Z(cy1,C2,--.) of relation names for each sequence (c¢ci,cz,...) € C*,

The I~frames are given by
- instances of relations in the signature

-~ restrictions of I-frames in which concept types are
replaced by subconcept types

- joins of frames in which matching concept types are
identified.

Figure 4 shows instances of signature relations and restrictions of
I-frames; the join of its five restrictions is the frame in figure 3.
Sowa [p. 92] also allows copying and simplification of frames, but
this is not necessary when frame joining is defined appropriately.

Signature I concept types MONKEY<ANIMATE<ENTITY
EAT<ACT
WALNUT<SPOON<SHELL<ENTITY

Relationnames L (ACT,ANIMATE) = {AGNT}
I (ACT,ENTITY) = {OBJ, INST}
Z(ENTITY,ENTITY) = {MATR,PART}

Instance frames

ACT: * @ ENTITY: * LACT: * @ ENTITY: *

ENTITY: * MATR ENTITY: *] ENTITY: * @ ENTITY: *

Restriction frames

MONKEY: * @ EAT: *
EAT: * @ WALNUT: *] EAT: * SPOON: *

Figure 4: Sowa Representation Language

|

The I-structures are given by (1) a set m, for each concept type c

such that cl1<c2 implies m,cm (2) an element o, EHE for each indi-

Cz2
vidual name i€ X (3) a relation m_c<m_ x m ... for each
C P - c1 Cz2

PEZ{Cci,C2)

An assignment to a I-frame e in a I-structure m gives an element of
m_ to each in e. The natural inductive definition gives either

"e 1s true in m for the assignment a" or "e is false in m for the
assignment a". We can define Val(e,m) as the set of assignments that
make e true in m. When there are no *-concepts in e, there is a
unique assignment a_ to e in m; if e is true in m, then Val(e,m} =
{a_}; if e is false in m then Val(e,m) is the empty set; I-frames
wifhout *—concepts are I-sentences.

Our I-specifications correspond to Sowa's canons, sets of canonical
graphs; our I-structures correspond to his closed worlds; for simpli-
city we have ignored his open worlds and replaced his game semantics
for modal and higher order logic by traditional first order semantics.
We will make similar simplifications in our description of the
gallery for the knowledge representation language in [W].

A signature ¥ of a Wolfengangen representation consists of (1) a set
C of sorts such that ¢; =» ¢;,c;x c; €C for all sorts c;,c£ C (2) dis-
joint families x(c) of function names for each sort c€ C. The
I-frames are given by

- instances of function names in the signature

- variables for each sort

- Ktpseaent)> where t;...t, are I-frames

- (s,t) where s is a I-frame of sort ¢; - ¢, and t is a frame
of sort ¢,

(Ay.t) where t is a I-frame and y is a variable.

Figure 5 illustrates scme of these ways of building new frames from
old; the product of its ten frames is given in figure 3.

Signature Z sorts: ENTITY,ACT,ACT - ENTITY ...
Functionnames: Z(ACT x ENTITY - 2) = {AGNT,OBJ, INST}
Z(ENTITY x ENTITY - 2) = {MATR, PART}
Z(ACT - 2) = {EAT}
T (ENTITY - 2) = {MONKEY,WALNUT,
SPOON, SHELL}
Frames (MONKEY ,mo) , (EAT,ea) , (WALNUT,wa) , {SPOON, sp) , (SHELL, sh)
(AGNT,(ea,mo)),(OBJ,(ea,wa>],(INST,(ea,sp>)
(MATR, <sp,sh>), (PART,<wa,sh>)

Figure 5: Wolfengangen Representation Language

The I-structures are given by (1) a set m, for each sort ¢ such that

m_ xm =m_ xm and m_ -m is the set of functions from m to
[of] C» Ci C2 Ci1 Cz c1

e’ mc2 (2) an element m, of m, for each function name i € ZC. An

assignment a to a I-frame e in a I-structure m gives an element of
m, to each free variable of sort c in e. The natural inductive defi-

nition gives a function fa for each <e,m,a>, so we can define Val(e,m)
as the map taking assignment a into function fa' When there are no
free variables in e, there is unique assignment ao to e in m and

Valle,m) is essentially fa z-sentences are I-frames without free

O;
variables such that fao is a truth value.

#4 Natural Languages

In this section we indicate how our unified theory captures Montague
grammars [P], one of the most elaborate formal theories of natural
language. In this formal theory a natural language expression e has
zero, one or more representations as formula in an intensional logic.
The meanings of e are given by the values of its representative
formula. For simplicity we only consider equational logic here, not
full intensional logic.

The signature I of a Mcntague grammar consists of (1) a set C of
sorts (2) a family ¥ of variables for each sort ¢ (3) a family
Zc e, 2o of function names for each non-erpty sequence of sorts
1+C2
Co,C1+C2 ... The I-frames are given by
- variables from the signature

- o(ti1,t2 +...) where c€ Zci,C2... =+ Cg, t1 is frame of sort
c1, t; is frame of sort c

- t; = tp where t; and t; are frames of the same sort.
This set of frames is unusual because a I-frame always has one sort,

but it can have more than one sort. Figure 6 is the Montague version
of figures 4 and 5.

Signature z sorts: ENTITY,ACT,ANIMATE

Functionsnames: X (ACT,ENTITY - 2) = {0OBJ,INST}
I (ACT,ANIMATE - 2) = {AGNT,OBJ,INST}
I (ENTITY,ENTITY -» 2) = {MATR,PART}
Variables: £, ANIMATE = {mo,wa,sp,sh}
L, ENTITY = {wa,sp,sh}
£, ACT = {ea}

Frames AGNT(ea,mo),0BJ (ea,wa) ,INST (ea,sp) ,MATR(sp,sh) ,PART (wa,sh)

Figure 6: Montague Representation

There are two kinds of ambiguity in the Montague approach to natural
language. A natural language expression L can be syntactically am-
biguous because L can be represented by more than one I-frame. Even

10

if the expression L is syntactically unambiguous, it can be seman-
tically ambiguous because the unique representative e of L can be
assigned sorts in several ways. Semantic ambiguity affects our defini-
tion of Val{e,m) - assignments in the domain of Val(e,m) may be of
different sorts.

The I-structures are given by (1) a set m. for each sort c (2) a func-
tion me: m x m . - m, for each £ in £

c1 cz "7 0 c1,Cz " "
ment a to a X-frame e in a I-structure m gives an element of m, to

. =» c . An assign-
0

each variable of sort ¢ in e. The natural inductive definition gives
"value of e for the assignment a", so we can define Val(e,m) as the
map taking assignment a into value va. When the frame e has the form
ti=tz, then va is a truth value for all a - the value true when

assignment a gives the same m-value to t; and t;, the value false
when a gives different values to t; and t».

#5 Gallery Morphisms

In this section we introduce gallery morphisms; the key to our
achieving two of the three aims of the unified theory - transferring
results from one representation language to another and combining
knowledge represented in several languages.

Consider two galleries, G = <SIGN,FRM,STR,Val> and G' =
<SIGN',FRM',S5TR',Val'>. One can argue for the following requirements
on a morphism ¥ from G to G':

(1) a function ¥:SIGN - SIGN'

(2) functions a_: FRM'(¥(X)) - FRM(Z) for each I € SIGN

oH)
(3) functors BZ: STR(ZXZ) -+ STR'(Y(X)) for each I € SIGN
(4) Valztaz(e‘),m) = Val'W(z)(e"Bz(m)) for each I € SIGN,

m € STR(Z), e' € FRM' (¥ (X))

Figure 7 illustrates these requirements by indicating a morphism ¢
from the data base gallery in section 1 to the first knowledge repre-
sentation gallery in section 3. The reader can check that ¢ satisfies

the

Definition A gallery morphism from G to G' consists of (1) a func=-
tor ¥ from SIGN to SIGN' (2) a natural transformation a from FRM';V
to FRM (3) a natural transformation g from STR to STR';¥ such that
Valz(az(e'),m) = Val'wlx)(e',ﬁztm)) for me STR(L), e' € FRM' (Y (X)) .

Motivation Gallery morphisms transfer G-signatures, G-frames,
G-structures, G-specifications and G-theories into G'-signatures,
G'-frames, G'=-structures, G'-specifications and G'-theories.

11

Signatures z

domains NAME , ADDRESS,PRICE,SIZE NAME,ADDRESS,PRICE,SIZE

Y
=

PERSONScNAME xADDRESS z
HOUSEScADDRESSxPRICExSIZE X

relations
NAME, ADDRESS={PERSONS}

ADDRESS,PRICE,SIZE={HOUSES}

Frames
o

join (PERSONS,HOUSES) <=

z

ADDRESS *

1

PRICE * 2 HQUSES
Structures
mPRICE = Integer
M™waME ~ MADDRESS ~ Msize - WORD
PERSONS
' =
NAME ADDRESS BZ ' oerer Integer
=
: R 6 1 = ' = i = W
Brian | By 48 ™' naME © ™ aDDRess T ™ size © WORD
Pia Ry 66 y
| M L ERSONS {<Brian, Ry 66>,
<Pia, Ry 66>}
n LOUSES {<Ry 66,750000,Stor>,
<Alken 12,200000,Lille>}
HOUSES
ADDRESS PRICE SIZE
Ry 66 750000 | Stor
Alken 12} 200000 | Lille

Figure 7: A Gallery Morphism

12

References

[c] J.A. Goguen, R.M. Burstall: Introducing Institutions,
Springer LNCS 164, pp. 221-256.

[P] B.H. Partree, ed.: Montague Grammars, Academic Press, 1976.
[s] J.F. Sowa: Conceptual Structures, Addison-Wesley, 1984.

[W] V.E. Wolfengangen: Frame theory and computations,
Computers and Artificial Intelligence 3 (1984), pp. 1-30.

13

UNIFIED THEORY FOR
MODAL, DYNAMIC, TEMPORAL AND PROCESS LOGICS

by
Brian H. Mayoh

Many years ago logicians generalised the study of models
of first order theories to "soft model theory", the study of
models of families of logics. Recently this concept of a logical

family has been generalised to that of an institution [GB].

Galleries are a further generalisation of institutions, in which
one can have general values of expressions and terms, not just
sentences with truth values. In this paper we show that there
are natural galleries for modal, dynamic, algorithmic, temporal
and process logics. The general theory of galleries is given in
[MA]; that paper uses category theory but this does not. We will

present galleries by giving

set SIGN of signatures,
set FRM(X) of frames for each X € SIGN

category STR(Z) of structures for each X € SIGN

functor‘ValX from STR(X) to FRM(X) - Set for each ¥ € SIGN

1
O oo

and the proof that our galleries satisfy the "categoric" require-
ments is omitted. It seems more appropriate here to describe the
logical innovations of computer science: programs as new modali-
ties (dynamic logic), sequences and trees of variable assignments
(temporal and process logic).

For all the logics we shall consider, a signature consists of
a ranked set of function and predicate symbols. "Individual
constants" are function symbols of rank 0 and "propositions" are
predicate symbols of rank 0. We could have allowed "sorted"
signatures, but the presentation of our galleries is simpler if

the signatures in SIGN are only ranked, not sorted.

14

First Order Logic

The frames of the first order logic for any signature ¥ are given
by the grammar

<variable> ::= x, | x

%

(1) <term> = <variable>J<function symbol> (<term>,...,<term>)
<formula> = <predicate symbol>(<term>,...,<term>)[false[<term>,...,<term>

|-1<formula>|(<formula> A(formula>)](<formula> v <formula>)

|V <variable>,<formula> | 3 <variable>.<formula>

where Z gives the function and predicate symbols and the number
of terms after such a symbol is given by its rank. These frames
are the elements of the set FRM(IX).

The structures of the first order logic for signature s are
r-algebras - a set M, a functionng:MkaM for each function symbol

f of rank k, and a relatiocn rMcM

rank f. Such structures are the objects in a category STR(Z), if

for each predicate symbol r of

the morphisms are defined to be algebra homomorphisms [BG].
Suppose we have a I-algebra and an assignment or state
o: <variable> -» M. Then each r-frame can be given a value by the

rules
Hxiﬂc = o(xi) Ef(t1,...,tk)]o = fM (Et1]o,..,[tk]o)
[r(ty,...,t)00 .=. rM(Et1ﬂo,..,Ht£] o) [falsel o= 0

) Et1=t2ﬂc 2. [t1]o = Et2]0 [“Floc = 1-[Flo
[(FyaFy)10 = min([F,Jo ,[F,lo) [(F,vF,)]o = max ([F 0o ,[F,]c)
[vx; Flo = min([F Jo'[c"' = olm/x,] for meM)
[3x, Flo = max ([F Jo'|o' = o[m/x;] for meM)

Notice that each formula gets either 1 or 0 as its value, 1 and 0
are the two truth values of our logics.

To complete our definition of the gallery for first order
logic we should define ValZ from STR(X) to FRM(X) - Set and
prove for each signature morphism <¢6,¢#> that Valz1(¢#(
Valzz(m)¢6(e) for each e € FRM(Z£1) and m € STR(Z2). Here we
shall only define ValZ by

m))e =

15

(3) Val (m)e = ky1...yn.let O(Xi) = Y4 and .. and c(xi) = vy
1 n
in [elo

n

where Xi ""’Xi are the free variables in the frame e and
1 n
T4 1)< 06 A 0]

Modal Logic

The frames of the modal logic for signature I are given by the

grammar (1) with the extra rule

(4) <formula> ::= & <formula> | o <formula>

The structures of the modal logic for signature I are "Kripke
universes", X-algebras with a binary relation R on states. If we

extend (2) by

[&¢ Fllo

l

max ([Flc' | oR o')

[o Flo min([Floc" | o R o')
then we can still use (3) to define the Val function in the
gallery for modal logic.

Different varieties of modal logic are given by placing
restrictions on the relation R in Kripke universes. Computer
scientists have been particularly interested in the logic of
linear time (R must be a linear order) and the logic of branching
time (R must be a partial order with a first element), where R
is interpreted as "before". They have been still more interested

in

Dynamic and Algorithmic Logic

Dynamic logic [FL] and algorithmic logic [SA] are essentially
the same - one adds a number of program symbols. The frames of
the dynamic logic for signature ¥ are given by the grammar (1)

with the extra rule

(6) <formula> ::= "<"<program symbol>">"<formula>| [<program symbol>]<formula>

16

and the structures are I-algebras with a binary relation Rp

on states for each program symbol p. If we extend (2) by:

[<p>Flo

[[plFlo

max ([Flo' |oR_o")
(7) N

min([Flo"' | o Ry, a')

then we can still use (3) to define the Val function in the
gallery for dynamic logic. This logic is important for computer

science because the constructions:

R is: ¢ R_ o" and " R ¢' for some o"

p;g P q

R is: 0 R_ ¢! or o R_ g

p*q P q

Rp* igs g =gl or g Rp c" and ¢" Rp* ' for some g"

capture the basic sequencing, choice and iteration concepts of

programming.

Temporal Logic

When a sequential program executes on a computer, it starts in an
initial state, passes through many intermediate states, and
usually ends in a final state. This is the motivation for tem-
poral logic [PN] with its formulae about state sequences. The
frames of the temporal logic for signature I are given by the

grammar (1) with the extra rule
(8) <formula> ::= ¢ <formula> | o<formula> | o <formula>
and the structures are just I-algebras. For such an algebra

and a finite sequence 60,01,02,...,Gm of states, which is not

empty, we can define a value for each frame by

I < F]6061 ee O max(EFﬂoi ...0 0<i<m)

m

EIJF]0001 .. O min(EFﬂoi ik wis 0<i<m)

m

[o F]OOU ssis O EFBU1 ee. T

1 m

17

and Ee]GOG1 cee O for the frames given by (1) is the value

Eeﬂoo given by (2). For the definition of the Val function in

the gallery for temporal logic we can use,

(10) Val((m)e) = A<y01,...,y0n> 5.5 % <ym1 . ymn>
let Uj(xi1)=yj1 and ... and Oj(xin) in
He]ooo1 cee O

where Xi1”"’xin are the free variables in e and il1< ... <in.
In the usual formulations of temporal logic there are more
connectives than those in (8) and state sequences can be infinite,

but the semantics is similar to that we have given.

Process Logic

Process logic [PR] is the natural combination of dynamic and
temporal logic. The frames of the process logic for signature I
are given by the grammar (4) and the rules (6) and (8). The
structures of the process logic for signature I are r-algebras
with a set Sp of state sequences for each program symbol p. If

we extend (9) by

E<p>Fﬂ000

(@]
1}

1 -+ Oy = max([Flo, ... o |00 -e. 0, € Sp)

(11)

Q
Il

[lplFloyo, ... min([Flo, ... O loo .o 0, € Sp)

then we can use (10) to define the Val function in the gallery

for process logic.

Behaviour Logic

For many years it has been apparent that state sequences are
not the right concept of computation for distributed, parallel
and concurrent programs. In the literature more appropriate
concepts have been suggested: synchronisation trees [MI], net
processes [P2]. Each of these suggestions can be represented
by a family of sets of state sequences, so the behaviour of a

program is given by a collection of families of sets of state

18

sequences. The logic of such behaviours has not yet been for-
mulated in a totally adequate way, but adequate formulation

will probably be a form of modal logic [HE] or type theory.

Schema Logic

Until now we have interpreted predicate and function symbols in
the structures of the logic, but it is sometimes convenient to
treat these symbols as schema variables and interpret them in

the state in the same way that individual variables get a value

in a state. In the usual formulation of induction
$(0) A vn(é¢(n) - ¢(n')) - vn ¢(n)

in Peano arithmetic, the symbol ¢ is a schema variable which
is given a first order formula with one free variable in a state.
Logics with schema variables have been used by computer
scientists for specifying data types [BT], so it is not inappro-
priate to define the corresponding gallery here.

The signatures and the frames in the gallery for schema
logic are the same as those in the gallery for first order logic.
The structures for schema logic are the structures for first
order logic except that there is no interpretation for schema
variables. In the state ¢ the schema variable ¢ is assigned
a first order frame eIJJ with the appropriate number of free
variables - if {y is a predicate schema variable, it is assigned
a formula; if ¢ is a function schema variable, it is assigned
a term. The valuation function in the gallery for schema logic

is given by adding = Val_(m)e, given by (3) for each schema
M T

variable ¢ to the first order ru%es {2) .

Clearly schema logic variables can be added to modal,
dynamic, temporal, process and behaviour logic. Temporal logic
with predicate schema variables for relations in a data base
gives a very natural way of expressing integrity constraints in

relational data bases ([CF], [VCF]).

19

Inductive Logic

Logicians have often studied definition by induction [Mo]
because such definitions are very natural. Recently the compu-
tational insight behind inductive definition was revealed in
[HK] and important applications to the theories of dynamic
logic and data base queries were made. Here we will explain
inductive logic as a generalization of schema logic in which
schema variables are assigned inductive sets not just definable
sets. Inductive sets are given by programs in the language IND,

by sequences of labelled commands of the forms

l1 : accept 12 - reject
13 : Xi <« 3 l4 s Xi <« ¥
15 ¢ if R(x1 .. xn) then goto 16

where R(x1 & wik xn) is an atomic formula.

In [HK] several examples of IND programs are given and it
is shown that (loop-free) IND programs accept precisely the
first order (definable) inductive relations. Although the in-
tuitive idea of "the set accepted by an IND program" is clear,
the precise definition is rather complicated. Suppose we have

a first order structure (m,fm,r ..), a state ¢ and an IND

m’*
program m. For any function f from ProgramLabels - States to

{0,3,1} we can define a new function t(f) (1,0) by:

|
—

(1) if 1 1labels accept, then t(£f) (1,0)

1
(=]

(2) 1if 1 1labels reject, then 1(f) (1,q)

(3) if 1 1labels X, € 3, then

1l

T(£) (1,0) = max(£(1',¢') | o' G[m/xi] for m € M)

(4) if 1 1labels X, < VY, then

t(£) (1,0) = min(f(1",¢") | o' = O[m/xi] for m € M)
(5) if 1 1labels if R(x1 s xn) then goto 16' then
f(16,6) if [[R(x1 - Xn)ﬁo =]
T(£) (1,0) =
£f(1',q) if][R(X1 e xn)]U =0

20

where 1' is the label after 1 in the program m. The predicate
wM for the schema variable ¥ is given by
* = = =
(*) LPM(V1 R vn) = let o(xi1) vy and ... and d(xin) v
in E(lo,o) = 1

n

where 10 is the initial label of the program 7 for ¢,

is a list of the variables in the program, and f is

X cee X

t;; leastl?ixed point of the function T starting with the
function fO(l,O) = i,

The gallery for inductive logic is the same as that for
schema logic except that the meaning of schema variables is given
by (*) not: wM = Valz(m)ew. We have followed [HK] is allowing
only atomic R in IND commands, but we could have allowed any
first order test. One can also allow IND functions and develop
very powerful "schematic" versions of modal, dynamic, temporal,

process and behaviour logic.

States and Time

It can be argued that the various extensions of first order logic,
we have described, are dishonest ways of suppressing state and
time variables. First order logic with explicit state and time
variables is often used in artificial intelligence and it
occasionally appears in the data base literature [VCF]. Formulae

of our various logics are translated by

¢ F(s) o ds'(sss' A F(s'"))
o F(s) £ Vs'(s<s' - F(s'))
o F(sg) > F(next(s))
<p> F(s) e Hs'(Rp(s,s') A F(s'))
[p] F(s) e VS'(Rp(S,S'} - F(s'))
Rp;q (s,s8') «~» 35"(Rp(s,s") A Rg(s“,s'))
Rouq (5/8') <> R (s,8') v R_(s,s")

21

where F(s) is a first order formula with free variable s and
F(s') is the result of substituting s' for s. One captures
temporal and process logic if one lets the "index" variable s
range over sequences or trees of states, not just single states.
The reader may well be worried by the fact that our
translation only applies to formulae F(s) with at most one free
variable. Most of the formulae that arise in practice have
this property because (1) every function symbol f and predicate
symbol has one argument of "index" sort, (2) forgetting the
index sort in the indexed structure I gives a structure M such

that

Ef(t1""'tk’S)DI Ef(tT""’tk)HM(s)

[e(tyreeert,,s)l; Er(t1,...,tk)ﬂM(s)

for all frames t1""'tk of the appropriate sort. However, it

is not clear that our translation into first order logic is
intuitively correct: what are the appropriate axioms for £ and
next(); the translation of <p;g> assumes "angelic" non-determinism;
how should <p*> be translated? Not only are modal, dynamic,

temporal and the other logics very natural extensions of first
order logic, but they also allow computer scientists to express
clearly and concisely the most important properties of programs

and processes.

22

References

[BT]

[CcF]

[FL]

[GB]

[HE]

[HK]

[MI]

[Mo]

[NPW]

[P1]

[P2]

J.A. Bergstra & J. Terlouw: Standard model semantics
for DSL - a data type specification language, Acta Inf. 19
(1983) 97-113.

M.A. Casanova & A.L. Furtado: On the description of

data base transition constraints using temporal languages -
Advances in Data Base Theory, vol. II: H. Gallaire,

J. Minker and J.M. Nicolas (eds.), Plenum Press 1983.

M.J. Fisher, R.E. Ladner: Propositional dynamic logic

of regular programs. J. Comp. Sci. 8 (1979) 194-211.

J.A. Goguen, R.M. Burstall: Introducing Institutions,
Springer LNCS 164 (1984) 221-256.

M. Hennessy: Axiomatising finite delay operators.
Acta Informatica (1984).

D. Harel & D. Kozen: A programming language for the
inductive sets, and applications. Proc. ICALP82,

Springer LNCS 140 (1982) 313-329.

B.H. Mayoh: Unified theory of languages, models and logics,
to appear.

R. Milner: A calculus of communicating behaviour,
Springer LNCS 92 (1980).

Y.N. Moschovakis: Elementary induction on abstract

structures, North-Holland 1974.

M. Nielsen, G. Plotkin, G. Winskel: Petri nets, event

structures and domains, Springer LNCS 70 (1979).

V.R. Pratt: Process Logic, 6 POPL Symposium (1979) 93-100.

V.R. Pratt: Mathematics of parallel processes, Proc.
IFIP 83 (1983)«

[PN]

[sa]

[VCF]

23

A. Pnueli: The temporal logic of programs, 18 FOCS
Symposium (1977) 46-67.

A. Salwicki: Formalized algorithmic languages.
Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys. 18 (1970).

P.A.S. Veloso, M.A. Casanova, A.L. Furtado: Formal Data
Base Specification - and eclectic perspective.
PUC Monograph 1 (84).

24

25

Unified Theory for Logical Programming

and Semantic Representation

Brian H. Mayoh

Computer Science Department
Aarhus University
Aarhus, Denmark

Tepresentation languages, and logic brograms can be considered
as theories, knowledge about some model of the real world. One
can also consider Scientific bapers, lectures and textbooks as
theorieg, expressed in informal natural language. In this paper
We compare the eXpressive power of various semantic represen-
tation languages. The results are shown in Figure 1, where an

ar)
row from L1 to L2 means: LT 1S not more expressive than L2.

NATURAL language

1

Sowa Conceptual Graphs

1

PROLOG —> Chomsky Grammars

1

AND/OR Trees <—> Extended Attribute Grammars

1

LUCID Data Flow Machines

Fig. 1. Expressive Power of some Semantic
Representation Languages

26

If we can give a precise meaning to "equivalence of theories",
we can also give a precise meaning to an arrow from L1 to L2 in

Figure 1:

- every L1—theory can be translated into an equivalent L2—

theory.

One can distinguish between (1) two theories are weakly equivalent

because they have the same conclusions (models, results) (2) two

theories are strongly equivalent because they have the same

proofs (deductions, computations). The distinction between weak

and strong equivalence is the same as that

- of the computer scientist between denotational and opera-

tional semantics
- of the logician between model theory and proof theory

- of the linguist between semantics and syntax.

Note however that both kinds of equivalence presuppose a theory
of meaning such that "eguivalent theories have the same meaning".
In this paper we choose strong equivalence and we give a unified
theory of various semantic representation languages by devising
a "gallery" for each language and "gallery morphisms" for

translations between languages.

#1 Galleries

In a gallery one has signatures, frames, structures, and

valuation functions. The galleries, we shall present for PROLOG

and our other semantic representation languages, will have the
same signatures and structures, but their frames and valuation
functions will be different. For each of our galleries, the struc-
tures will be non-linguistic "possible worlds", but the signatures
are always "vocabularies" - linguistic objects like those in
Figure 2. Each structure gives a meaning to each linguistic

object in its signature; these meanings can be objects, functions,

relations or sets.

27

r, = | i,i,n,zx : INTEGER
oy ® : INTEGER® - INTEGER
[i>n],[jsn] < INTEGER?

r, = mo: MONKEY < ENTITY
wa: WALNUT < ENTITY
sp: SPOON < ENTITY
sh: SHELL < ENTITY
ea: EAT < ACTIVITY

AGNT,0OBJ,INST < ACTIVITY x ENTITY
PART,MATR c ENTITY x ENTITY

Fig. 2. Examples of Signatures

The valuation functions in a gallery give a "meaning" to
every frame in every structure with the same signature. In each

of our galleries the valuation functions will give a set of proofs

to every frame in every possible world m with the same signa-
ture, and this set will be empty iff m is not a possible world for
the frame e.

So far our description of galleries has been imprecise so

we should give the

Definition 1 A gallery consists of a set of signatures, SIGN,

and for each signature € SIGN

- a set of frames, FRM(X)

- a set of structures, STR(X)

- a valuation function, Valz: FRM(Z) x STR(Z) - Set.

] to a gallery G2 with the same

signatures and the same sets of structures is a set of maps

wzz FRM2(Z) - FRM1(Z) such that

A morphism from a gallery G

Va11(wz(e),m) = Valz(e,m)

for all e € FRMz(Z) and m € STR(ZX).

For this paper the importance of this definition is that:
there is a morphism from the gallery for a language L2 to the
gallery for a language L1 if and only if L1 is not more expres-
sive than L2. The informal notion of the last section has been
formalized - theories correspond to frames, translations
correspond to the functions wz, and strong equivalence corresponds
to defining Val(e,m) as a set of proofs.

The galleries and morphisms, given by Definition 1, are
rather special. In the general theory of galleries [Mal], one
has structure morphisms, signature morphisms and more general
gallery morphisms. Finding a rich set of signature morphisms
for the gallery of a semantic representation language like
PROLOG corresponds to finding powerful ways of modularising
theories in the language. This is an important area of current
research; in time it will lead to the appropriate definition

of signature morphism in cur galleries.

#2 The PROLOG Gallery

The frames in the PROLOG gallery are finite sets of assertions
and definitions like the set in Figure 3. The primitive predicate
symbols in a frame are those which do not occur in an assertion
or on the left side of a definition. If the variable, function
and primitive predicate (relation) symbols of a frame e are
included in a signature X, then e is a Z-frame, and it has a
meaning for each I-structure. A X-structure m is a "possible
world" where each symbol in £ has a meaning; a possible world m,

for the frame in Figure 3a is given by

23

(a) frame

Root(n,r) :- Iterate(0,1,n,r).
Iterate(i,j,n,i) :- [j>n].

Iterate(i,j,n,r) :- [jsn], Step(i,j,n,r).

Step(i,j,n,r) :— Tterate(i+1,j+2*%i+3,n,r).
(b) computation (c) proof
Root (7,2) Root
- [
Iterate(0,1,7,2) Eterate
N
17 Step(0,1,7,2) [j2n] Stﬁp
Iterate(1,4,7,2) Iterate
et N
4<7 Step(1,4,7,2) [j<n] Sﬁep
ITterate(2,9,7,2) Itﬁrate
9>7 [i>n]
(d) proof rules
m(0/i,1/3) F Iterate m(i+1/i,j+2*i+3/9) F Iterate
m F Root m | Step
mtE [>n]l m b r = i m + [jsn] m Step
m Iterate m Iterate
(e) derivation

<6,17,7,2> F Root

<0,1,7,2> - Iterate

<0,1,7,2> F [jsn] <0,1,7,2> | Step

<1,4,7,2> F Iterate

<1,4,7,2> F [jsn] <«1,4,7,2> |- Step

<2,9,7,2> |- Iterate

<2,9,7,2> = [j>n] <2,9,7,2> - r = i

Fig. 3. A PROLOG frame, computation and proof

30

- 1 denotes 6, j denotes 17, n denotes 7, r denotes 2

+ denotes "addition"

- * denotes "multiplication"

[§>n] denotes "true"

[j£n] denotes "false"

This possible world has the linguistic representation <6,17,7,2>.
In a possible world a X-goal is either true or false; in the
structure m, the goal Root(n,r) is true and the goal Root(n,i)

1
is false.

A PROLOG program consists of a Z-frame and a X-goal for
some signature I, and the execution of the program will either
succeed or fail. If the execution of the program succeeds, it
will produce a computation like that in Figure 3b. In the
procedural interpretation of PROLOG every computation gives a
"trace", a tree of procedure calls; in the logical interpretation
of PROLOG every computation gives a "proof" like that in
Figure 3c. The axioms and definitions of a PROLOG frame give
"proof rules" like those in Figure 34, and these proof rules
give "derivations" like that in Figure 3e. Now suppose we have
a computation or proof for a Z-frame e and m is a X-structure.
We may or may not be able to expand the proof to a derivation
of m R where R is the top node of the proof. We can define
the meaning of the frame e in the possible world m as the set

val(e,m) = [e-proofs of R that can be expanded to)
derivations of m F R /

This completes the definition of the PROLOG gallery.

What is the connection between the semantics given by this
valuation function and the "official" semantics of PROLOG?
Implementations may not be able to find computations that do
exist; gquite apart from the problems of "cut", the convention

- an implementation takes the first matching assertion or

31

definition and works through a definition from left to right -
ensures that some proofs may not be found by an implementation.
At each step in its search for a proof, an implementation must

choose

- the next assertion or definition

- the substitution instance of this assertion or definition.

This intrinsic double existence quantifier is the reason for

the PROLOG problems with negation; it is also the reason why

the logical semantics of PROLOG is cleaner than the procedural
semantics. In the logical semantics a PROLOG frame is a first
order theory, goals are atomic formulae, and goals may or may
not be valid (true in all models of the theory). Every model

of a theory has an interpretation of the non-primitive predicates
in the theory, whereas our I-structures take the interpretation
of these predicates that the theory gives (the least fixed point
interpretation explained in the next section). The logical
semantics of PROLOG makes precise our notion of "a goal is
either true or false in a possible world", and it agrees with
the valuation function in the PROLOG gallery if (1) every deri-
vation gives a valid goal (2) every valid goal has a derivation.
The inductive argument for (2) will be given in the next sec-

tion, and the soundness of first order logic gives (1).

3 The GRAMMAR gallery

As Figure 4 shows, context free grammars become logic programs

when each production XO tr= X1”"'Xn is given a proof rule
M1 - X1""'Mn = Xn
MO = XO
where M1, Mn’ MO are substitution instances of the same struc-

ture m. A substitution instance of a I-structure m is the

structure m(t1/v1,...,tn/vn), given by using ZI-terms t1""’tn

32

to give new values to I-variables V1,...,Vn. Now we can define
the frames in the GRAMMAR gallery as: context free grammars

with a proof rule for each production. The signatures and struc-
tures in the GRAMMAR gallery are the same as the signatures

and structures in the PROLOG gallery. This is also true of the
valuation function because proofs and derivations can be de-
fined as we outlined in the last section. There is an obvious
bijection between PROLOG frames and GRAMMAR frames so the
galleries are isomorphic - PROLOG has the same expressive power

as Chomsky gramamrs with proof rules.

m(0/1i,1/j) F Iterate
R t:= 1
oot terate m b Root
mb [§*n] mpbxr =3
It t: HIHES >
EEete [3>n] m | Iterate
|E52u] Btep mF [jsn] m F Step
m Iterate
m(i+1/i,j+2*i+3/9) F Iterate
St N ki
v SRS m F Step

Fig. 4. A GRAMMAR frame

The natural semantics of a GRAMMAR frame is given by
rewriting its proof rules as first order formulae, then taking
the least predicates that satisfy the formulae as the meaning
of the frame. From the example in Figure 5 it is clear that
these least predicates make the goal of every derivation valid.

The converse 1is also true by the inductive argument

33

(1) a goal is valid iff it is true in the "least predicate"

interpretation;

(2) the "least predicate" interpretation is given by starting
with the interpretation where predicates are always false
and gradually making P(...) true as demanded by the formulae

for the frame;

(3) the "least predicate” interpretation is given by the

derivations.

This argument shows that the valuation functions in the GRAMMAR
and PROLOG galleries give the natural semantics for these

galleries.

Theory
Iterate(0,1,n,1) .». Root(n,r)
I & B S 4 .=». Iterate(i,j,n,r)
j<n & Step(i,j,n,r) .». Iterate(i,j,n,r)

Tterate(i+1,j+2*3+i,n,r) .-. Step(i,j,n,r)

Least Predicate Model

Root (n,r) is "r = v/n" by the iteration

Iterate Step Root
false false false
n<j & r=i false false

- _ ' n<j+2i+3 & r=i+1 n<1 & r=0
JEnd g+ 2143 B 1] e : oo

ce J+2i+3Sn<j+4i+8 & i=i+2 14n<4 & r=1
J+2i+3<n<j+41 & r=i+2 o s —_

. J+4i+85n<j+6i+15 & r=i+3 4:=n<9 & r=2

Fig. 5. Theory and Interpretation for a GRAMMAR Frame

»

34

Comment This inductive argument is possible because GRAMMAR
and PROLOG frames give sets of "Horn clauses”, so the "least
predicate" interpretation is an initial model in the (consistent)
theory for the frame. In more expressive galleries one cannot
reduce validity to truth in a particular model - every goal is
valid in an inconsistent theory, consistent theories may not

have an initial model [MM].

#4 The AND/OR Gallery

In [Ha] Harel introduced a programming language, based on the
AND/OR trees so common in work in artificial intelligence.
Sequencing and concurrency of programs are expressed by AND
nodes in a tree; conditionals, non-determinism, repetition and
recursion are expressed by OR nodes in a tree. Since the pro-
gramming language is designed for decomposing complicated
problems into simpler problems, it is unfair of us to choose
so simple an example as that in Figure 6a. An execution of an
AND/OR program gives a computation, and computations can be
converted into proofs and derivations - the AND/OR frame in
Figure 6a has the computation in Figure 6b, the proof in
Figure 3c and the derivaiton in Figure 3e. The valuation function
of the AND/OR gallery can now be defined in the same way that
the valuation function of the PROLOG gallery was defined.

Val(e,m) = {e-proofs that give m-derivations}.

We get a morphism from the PROLOG gallery to the AND/OR
gallery by the translation wz

- AND/OR nodes give PROLOG definitions
- each branch of an OR node gives a PROLOG definition

- each AND/OR function becomes a PROLOG predicate with

extra arguments for the function results.

35

(a) frame

r = Root(n)

/N

(i,3)=(0,1) r=Iterate(i,j,n)

j)l’l:/ \] <n]

r=Step(i,j,n)

/T

(nexti,nextj)=(i+1,j+2*%i+3) r=Iterate(nexti,nextj,n)
(b) computation
= Root (7)

/N

(i,3)=(0,1) 2=Iterate(0,1,7)

‘[157]

2=Step(0,1,7)

N

(nexti,nextjl=(1,4) 2=Iterate(1,4,7)

[4<7]

2=Step(1,4,7)
(nexti,nextj)=(1,4) 2=Iterate(2,9,7)
[9,7]
2=2

Fig. 6. An AND/OR frame and computation

36

Figure 7 shows the translation of a fairly complicated AND/OR

program into a PROLOG frame.

r = Prime(n)
/ "\
i=2 r=Test (n)

/,\

A

j=square (i) d=Inner(i,j,n) r=0Outer(d,i,n)

///[j<n]

d=Local (i, j,n) d=TRUE d=FALSE

//A\

¥ v 2
[4d] [ﬁdn12<d [Adni“©zn]

r=FALSE r=Global (i,n) r=TRUE

/N

k=succ (i) r=Test (k,n)

\

[j=n] [j>n]

k=sum(i,]j) d=Inner(i,k,n)

l

Prime(n,r) :- Test(2,n,r).

Tegt (i,n,r) i= Inner(i,iz,n,d),Outer(d,i,n,r).

OQuter(d,i,n,FALSE)
Outer(d,i,n,r)
Quter(d,i,n,TRUE)
Global(i,n,r)
Inner(i,j,n,d)
Inner (i, j,n,TRUE)
Inner(i,j,n,FALSE)
Local(i,j,n,d)

Fig. 7.

-

s= [d].

s - [1dAiz<n],Global(i,n,r).
s - [1dAi22n].

:— Test(i+1,n,r).

:= [j<n],Local(i,j,n,d).

:= [J=n].
:= [j>n].
:= Inner(i,i+j,n,d).

Translation for AND/OR to PROLOG

37

Do the PROLOG and AND/OR galleries have the same expres-
sive power? There is no obvious way of translating a PROLOG
frame into an equivalent AND/OR frame. The difference between
PROLOG frames and AND/OR frames is the same as the difference
between relations and non-deterministic functions - non-
deterministic functions have designated input and output argu-
ments, relations do not. Even if there is an equivalent AND/OR
frame y(e) for every PROLOG frame e, there may not be a gallery
morphism because iy (e) may not have the same signature as e.

One would expect that the official semantics of AND/OR
programs would use non-deterministic functions, but in fact
they use the "least predicate" interpretation. In the last sec-
tion the "least predicate" interpretation was described, and it
was shown that the resulting semantics agrees with the semantics

given by the wvaluation functions in the galleries defined so far.

#5 The EAG Gallery

Attribute grammars are not usually thought of as logical pro-
grams but this prejudice is misleading for extended attribute
grammars [Ma]. Those with attribute grammar based compiler
systems should be able to execute the grammar in Figure 8a as

a logical program. An execution of this grammar is a computa-
tion and computations can be converted into proofs and deriva-
tions - the EAG frame in Figure 8a has the computation in
Figure 8b, the proof in Figure 3c and the derivation in Figure 3e.
The valuation function of the EAG gallery can now be defined in
the same way as the valuation functions for the PROLOG and
AND/OR galleries. The official semantics of extended attribute
grammars is given by "least solution of attribute equations"
but this agrees with the semantics given by the EAG valuation

function.

38

(a) frame
Root (vntr) ::- Iterate(+0+1¥ntr).
Iterate (vivi¥nti) ::- less(yjV¢n+TRUE).
Iterate(¥yivj¥ntr) ::- less(+Jj¥ntFALSE),Step(+yit+j¥ntr).
Step (+ivj¥ntr) t:= Iterate(+i+1+J+2*i+3¥ntr).

(b) computation

Root (+742)
Iterate(+0+14+742)

less (+1+74TRUE) Step(+0+1+712)

Tterate (+1444742)

less (+4474TRUE) Step(+1+4+742)

Tterate (+2+94742)

less (+9+7 FALSE)

Fig. 8. An EAG frame and computation

The EAG and AND/OR galleries have the same expressive
power, because there are morphisms between them in both
directions given by the translations illustrated in Figures
6a, 7a, 8a and 9a. The expressive power of the EAG gallery
can be increased by allowing "relational attribute grammars"
[CD] as frames and dropping the distinction between inherited
(input) attributes and synthesized (output) attributes. One can
define relational attribute grammars as context-free grammars
with proof rules like those in Figure 9b for each production.

As every GRAMMAR frame is a relational attribute grammar, every
PROLOG frame can be translated to a relational attribute grammar.
PROLOG fanatics may borrow good ideas from attribute grammar

enthusiasts and vice versa.

39

(a) Prime (¥ntr) ::= Test(+2¢ntr)
Test (vi4nir) ::= Inner(+i+ivn+d),Outer (+d+ivntr)
Outer (YTRUEVi+n+FALSE)
Outer (+FALSE+Yi¥n+tr)
Outer (vFALSE+ivn+tr)

less (+i“¥ntTRUE) ,Global (+ivntr)
less(+12+n+FALSE)

Global (+i+ntr) ::= Test(Vi+1¥ntr)
Inner(+i+j+n+d) ::= less (¥J+ntTRUE) ,Local (+i+j+n+d)
Inner {(+i+j¥nt+j=n) ::= less(+j+ntFALSE)
Local (+vi+j+n+d) ::= Inner(+it+i+j4d)
(b) m, Test m1l— Inner m, - Outer
mg Prime my F Test

Fig. 9. Another EAG frame and general proof rules

#6 The Data Flow Gallery

Data flow machines are not usually thought of as lcgical
programs, but this impression is misleading because "machines
that compute a function non-deterministically" are one way of
defining a logical relation. Unlike von Neumann machines, data
flow machines have no store, data flows between processes and

a process transmits its results as soon as it has received its
arguments [Ka]. The data flow machine in Figure 10a has the
computation in Figure 10b, the proof in Figure 3c and the deri-
vation in Figure 3e. The wvaluation function of the data flow
gallery can be defined in the same way as the valuation function

of our other galleries
val(e,m) = {e-proofs that give m-derivations}

where m is a structure and e is a data flow machine/frame.

49

(a) frame

n »>r—— 9 & T
Root Iterate

(b) computation
Root (7) = Iterate(0,1,7)
= Step(0,1,7)
= Iterate(1,4,7)
= Step(1,4,7)

= Tterate(2,9,7) 2

Fig. 10. A data flow frame and computation

It is clear that data flow machines can be translated into
extended attribute grammars and vice versa, so data flow
machines, extended attribute grammars and AND/OR programs
have the same expressive power; the corresponding galleries
are isomorphic. In Figure 11 equivalent logical programs for
determining an interesting infinite object illustrate these
gallery isomorphisms, and show that our data flow machines are

proper generalisations of flow charts (see [BVE]).

41

frames

Fi(4<1,2>) ::- Fib(y<0,1,2> 4 <1,2> + z)

Fib(4<i,I> ¢ <j,JI> 4+ <2,Z2>) ::- +{ix¥y+tz) Fib(+I+J+Z)

<1,2> = Fi() <z,Z> = Fib(<i,I>,<j,J>)
AN
Z = Fib(<0,1,2>,<1,2>) z=i+] Z=Fib<I,J>
computation
12 3 5 cws = Fib()
1 2 3 5 s wis = FiIBL0 1 1 23 5 suse T T 2 3 5 auw)

1=0+1 235 4o =Fibl 11 235 ...y T 2 3 5 wau)

2=1+1 35 uee = Fibl(12385 susy 2 38 B waw)

3=1+2 5 ... = Fibl 235 sy 3 8 wewd

Fig. 11. Three frames with an infinite computation

42

#7 The LUCID Gallery

The logical programming language LUCID was introduced by
Ashcroft and Wadge [AW] and a recent paper advocates LUCID
style programming in PROLOG [BvE]. A LUCID program is a set of

equations specifying a set of variables; a variable may be

specified directly by an equation like V E or indirectly by
two equations: first V = E, next V = E'; every variable except
"input" must be specified, and no variable may be specified more
than once. Figure 12 gives two LUCID programs and shows how the
"official" semantics gives computations as infinite seqguences

of values for the variables in the programs.

frames
n = first input
first i = 0 first i = 0
next 1 = i+1 first j = 1
first j = 1 next i = j
next j = j+2*%i+3 next j = i+j
output = 1 as soon as j>n output = j
computations
input = (7 ...) i = (0112 3
n = (7777 7 woa) J = (11235
i = (01 2 3 4 ...) output = (112 35
3j = (149 16 25 ...)
output = (2 2 2 2 2 ...)

Fig. 12. Two LUCID frames and computations

43

The structures and the signatures of the LUCID gallery are
the same as those of all our other galleries and the frames are
LUCID programs but what is the wvaluation function? Let us
define the value of a LUCID program e in a structure m as the
value of the data flow frame §(e) in the structure m where § is

the translation given by

- there are two processes, FIRST and NEXT

- the process FIRST assigns the initial values of the

variables which are not specified using as soon as

- the process NEXT computes the non-initial values of
variables and also checks when the initial value of an

as soon as variable is defined.

This translation gives a gellery morphism from the data flow

gallery to the LUCID gallery, but it is not an isomorphism

because there are data flow machines that are not translations of

LUCID programs.

8 The Sowa Gallery

Let us now look at a typical knowledge representation language -
Sowa's conceptual graphs [SO]. Figure 13a gives the conceptual
graph for the natural language sentence "a monkey is eating a
walnut with a spoon made out of the walnut shell". The voca-
bulary of this conceptual graph is given by the signature 22 in
Figure 2, and the graph is either true or false in each Zz—
structure. The graph e is true in a structure m if and only if

the PROLOG goal in Figure 13b is true in m.

(a)

MONKEY: *mo J AGNT | EAT: *ea WALNUT : *wa]

\—-_.._,__'_JQ
SPOON: *sp —.-- SHELL: *sh

(b) AGNT(ea,mo) & OBJ(ea,wa) & INST(ea,sp) & MATR(sp,sh) & PART(wa,sh)

Fig. 13. A Sowa frame and a PROLOG goal

The structures and the signatures of the Sowa gallery
are the same as those of all our other galleries and the frames
are sets of conceptual graphs, but what is the wvaluation function?
The valuation function in [Ma2] is not quite appropriate because
here we are focussing on the expressive power of languages and
free variables in conceptual graphs disappear (all variables occur
in the signature). Before defining the modified valuation function,
let us consider the conceptual graphs in Figure 14a. This set of
conceptual graphs is more verbose than our other representations
of the square root program because signature information is made
explicit in conceptual graphs. The only logical operator in
Figure 14 is implication, but quantifiers and modal operators are
also allowed in conceptual graphs. Traditional logic gives proof
rules like modus ponens, and these proof rules give proofs of a
conceptual schema from a set of conceptual schemas. Figure 13b
shows a typical proof with conceptual graphs translated into
logical formulae. The implicit applications of modus ponens in
Figure 14b have become explicit in Figure 14b. The obvious trans-
lation from PROLOG frames to conceputal graphs is a gallery mor-
phism from the Sowa gallery to the PROLOG gallery if we define
the valuation function in the Sowa gallery by: Val(e,m) = if e
is the translation of a PROLOG frame e', then the PROLOG value
of e' in m, else proofs from e and assumptions valid in the
structure m. Because the Sowa gallery captures first order logic,
there are Sowa frames that are not translations of PROLOG frames;

the PROLOG and Sowa galleries are not isomorphic.

45

(a)

(b)
Root (7, 2)

Iterate(0,1,7,2) Iterate(O,?,n,r) - Root(n,r)
17 Step(0,1,7,2)

127 & Step(0,1,7,2) - Iterate(0,1,7,2)
Iterate(1,4,7,2)

Iterate(1,4,7,2) - Step{0,1,7,2)
4<7 Step(1,4,7,2)

457 g Step(1,4,7,2) - Iterate(1,4,7,2)
Iterate(2,9,7,2) Iterate(2,9,7,2) - Step(1,4,7,2)
9>7 9>7 - Iterate(2,9,7,2}

Fig. 14. Another Sowa frame ang gz proof

46

#9 Natural Language

For every natural language we have a gallery L; the signatures

and structures are the same as all our other galleries; the

frames of L are the sentences of the natural language. The ob-
vious translation of conceptual graphs into sentences gives

a gallery morphism from L to the Sowa gallery if we define the
valuation function in L by: Val(e,m) = if i is the translation

of a conceptual graph e', then the Sowa value of e' in m, else
arguments from sentence e that are valid in the "possible world" m.
We do not know if conceptual graphs have the same expressive power
as natural language. Is every sentence in every natural language
the translation of some conceptual graph? Do all natural languages
have the same expressive power? Perhaps these are not the right
questions to put to linguists, because the privileged role of

sentences in our language galleries and the identification
meaning of sentence e = valid arguments from e

may be unjustified. In the first section we considered the iden-

tification
meaning of sentence e = possible worlds where e is true

and there may be other reasonable formalisations of the "expressive

power" of languages.

References

[AW] E.A. Ashcroft, W.W. Wadge: Lucid, a non-procedural
language with iteration. CACM 20 (1977) 519-526.

[BvE] D.R. Brough, M.H. van Emden: Dataflow, Flowcharts and
LUCID style programming in logic, Proc. IEEE Logic Prog. 84,
252-258.

[CD] B. Courcelle, P. Deransart: Proofs of partial correctness
for attribute grammars and recursive procedures, INRIA

fHio. 3225 1984,

[Kal

[Ma]

[Ma1]

[Ma2]

[MM]

[Sol

47

D. Harel: And/Or programs, a new approach to structured

programming, ACM Tr. Prog. Lang. 2 (1980) 1-17.

G. Kahn: The semantics of a simple language for parallel

programming. Proc. IFIP 74, N. Holland.

0.L. Madsen: On defining semantics by means of extended

attribute grammars. Springer LNCS 94 (1980).

B.H. Mayoh: Unified theory of languages, models and logics,

to appear.

B.H. Mayoh: Unified theory of knowledge representation.
PROC. AIMS 84, Varna.

B. Mahr, J.A. Makowski: Characterising specification
languages which admit initial semantics, TCS 31 (1984)

49-60.

J.F. Sowa: Conceptual structures, Addison Wesley, 1984.

43

49

Unified Theory of Languages, Models and Logics

Most of theoretical computer science consists of studies of spe-
cific problems, illustrated by a particular choice of program-
ming or specification language, program model or logic.

The literature is full of particular choices, but there is a need

for a unified theory in which one can

- prove general results for many languages, models and logics.

- transfer results from one choice of language, model or logic

to another.

- combine particular choices of languages, models and logics.

In this paper we present a unified theory, based on the concept
of a gallery. Many years ago logicians generalised the study of
models of first order theories to "soft model theory", the study
of models of families of logics.

Recently this concept of a logical family has been generalised to

that of an institution.[GB2]. Galleries are a further generalisa-

tion of institutions, in which one can have general values of ex-
pressions (terms) not just sentences with truth values. As fi-
gure 1 indicates, there are galleries "behind" most theories in

computer science. For each gallery the figure gives its signatu-

res, its frames and its structures, but the theories and the

specifications of the gallery are not given.

50

GALLERY FRAMES STRUCTURES SIGNATURES
Languages:
:functional expressions domains function names
:ADA statements bodies interfaces
:programming commands domains
:den.sem. programs domains syntax
:0p.sem. programs configurations syntax
Models:
:graph graphs domains node & edge labels
:flowchort flowchorts domains multi-exit boxes
+Turdne move tables tapes alphabet
iPetri nets behaviours transition labels
:Milner agents synch. trees actions
:fairness parallel- domains primitives
programs
:Pratt process-nets pomsets process labels
:diagram movesets domains configuration &
move labels
Logics:
:Equation equations Z-algebras sorts & symbols
:modal Kripke struc- function/relation
tures names
: 1-order 1-order-form X-algebras sorts & symbols
:dynamic [pl <p> Kripke struc- program/relation
tures names
:schema schema form ZI-algebras sorts & symbols
:n-order higher form function alge- sorts & symbols
bras
:e—order lambda exp. cartesian cat. types
Inf. System data-objects object-sets
Rec. prog. sch. equations domains function names
Att:grammars words domains grammars
Conc. graphs graphs closed worlds names & concepts

Knowledge frames

Montague dram.

Figs

lambda exp.

formulae

1. A galaxy of galleries

domains

domains

sorts with

sorts & symbols

51

In section 1 the contrast between the directness of galleries and
the indirectness of institutions is illustrated by data type and
programming language examples. In section 2 we introduce the con-

cept of a room with a frame set, a structure category, and an e-

valuation function. As section 3 shows, every room has a multi-
tude of theories and specifications. The concept of a signature

is explored in section 4, and galleries are defined as a functor

to rooms from signature categories. Institutions are no more than
functors from signature categories to particular kinds of rooms, in
which each frame is either "true" or "false" in each structure. The
main reason for using category theory and indexing rooms by signa-
tures is: constructions in the signature category may be reflected
in room constructions. In section 5 this is illustrated by such
examples as: pushouts induce parametrised structures.

Many galleries have useful substitution conventions and grammars

are often convenient, so these are explored in section 6. The next
section is devoted to morphisms between galleries, because they al-
low results to be transferred from one gallery to another and en-
hance the generality of our unified theory. The final section des-
cribes three "intrinsic" logics for reasoning in pafﬁicular galleries

- a traditional logic, a lambda calculus, and a type theory.

#1 Direct and indirect definitions

When one defines a data type in a programming language, one writes
a declaration like: type RATIONAL is record Usually various
operations are associated with new data types, so modern program-
ming languages allow modules or clusters like: package STACK is....
The interface to such a package is a signature ¥ and the body of
the package gives a I-structure, i.e. routines for the associated

operations and value domains for the types in the package. The u-
ser of the package can compose r-frames, i.e. I-commands and XI-
expressions. The direct way of presenting a datatype is to give a

function

Valz:Z—frames X I-structures ——> Set

The indirect way of presenting a data type is to give an algebra
or logical theory which determines a particular "initial" S-struc-

ture.

Programming languages can be considered as data types, whose sig-

nature X is given by a grammar: sorts for each non-terminal and

52

operations for each production. The X-frames are the programs and
program fragments in the language. The direct way o©of presenting

the semantics of a programming language - giving value domains to
each sort and functions for each operation - is taken by operatio-
nal and denotational semantics. The indirect way of presenting the
semantics of a programming language - giving edquations and formu-

lae - is taken by algebraic and axiomatic semantics.

Direct definitions seem to be both more basic and closer to actual
practice, but indirect definitions also have their virtues. In our
unified theory indirect objects are special cases of direct objects,
logical rooms are particular kinds of rooms, institutions are par-

ticular kinds of galleries.

#2 Rooms

The building blocks of our unified theory are called "rooms".

We shall lead up to the precise definition of a "room" by giving

examples of special kinds of rooms.

Example 1

One can argue that data types are no more than functions from a

set of expressions to values [M2]. One can consider the function
M: Program Fragments x Environment —>

(State —> State)

given by the semantics of a programming language as a data type but

it seems more natural to consider M as an example of

Def.1. A discrete room consists of a set FRM of expressions; a

set STR of contexts and a function Val:FRMxSTR—>Set.

A data type of this room is a function f:FRM—>Set; it is
a realisable data type iff f(e)=Val(e,m) for some mESTR.

Comment

Discrete rooms with finite sets FRM of objects and STR of attributes

have been investigated in (P) under the name of information systems.

53
Example 2

Suppose we are interested in program transformations and we know
the semantic function M in the last example. It is not unnatural

to consider assertions like "fragment P, is equivalent to fragment

1
P2" as sentences that are true in an environment p if M(P1,p):M(P2,p)
and false if M(P1,D)¢M(P . 0) .

If we define Val(p)—{sentences true in environment p}, this is an

example of

Def.2. A logical room consists of a set FRM of sentences, a cate-
gory STR of structures and a functor Val from STR to P (FRM),

the family of subsets of FRM considered as a category. A
datatype of this room is a subset EcFRM; it is realisable
if E=Val(m) for some m€|STR]|.

Example 3

Information systems [S,2] are an interesting reformulation of do-

main theory. Each information system gives a logical room with
FRM = data objects |STR|=consistent subsets of FRM
Val(m) = m

when we agree that inclusions are the only STR morphisms.

Comment

In a logical room one often writes
m |=e for e € val (m)
m #e for e ¢ val (m)

So in our example pl=P1 = P2 expresses M(PT,p)=M(P2,p).

Logical rooms are the building blocks for the theory of institutions
(GB2), In some institutions the logical rooms are discrete, because
the only structure morphisms are the identities, so the room func-

tor Val gives the function - Val(e,m)=if m |=e then 1 else 0 - and

a subset EcFRM corresponds to the datatype f(e) = if e€E then 1

else 0. The natural generalisation of discrete and logical rooms is

54

Def.3. A room consists of a set FRM of frames, a category STR
of structures, and a functor Val from STR to Bn(FRM), the

category of functions from FRM to Set. The data types of

the room are the objects in the category Bn(FRM), families
of sets indexed by FRM, < veIeEFRM >. A data type d is
realisable iff d=Val(m) for some m&€STR; it is a truth wvalue
iff ve=0 or ve=1 for all e€FRM.

Comment

In Bn(FRM) a morphism from a datatype < VeleEFRM > to a datatype
< weIeEFRM > is a family < feieEFRM > of set functions indexed

by FRM with fe a function from s to Wy for all e€FRM.

The reason why "truth value" is an appropriate term will become
apparent when we describe the implicit logic of a room, but a few

remarks might be welcome:
- 0 is a synonym for "false" or "the empty set ¢"
- 1 is a synonym for "true" or "the set {¢}"
- there is no function from 1 to 0
- there is one function from 0 to 0, 0 to | and | to |
- the truth value V = <v_|e€FRM > corresponds to Ev={elve=1}5FRM

- there is a morphism from truth value v to truth value w if

and only if E_ < E
v — W

The last two remarks show that a room is logical iff each of its
realisable data types is a truth value.
Since we have the bijection Val(m)=)e. Val(e,m), a room is discrete

iff the only structure morphisms are identities.

Example 1 ctd.

The truth values in the room for M: Program Fragments x Environments
—> (State —> State) are just "sets of program fragments". The
evaluation function M has state functions as the meaning of programs
but many other semantics are possible - continuation functions,
predicate transformers, computation sequences, traces and much else
appear in the literature. Each of these meaning functions gives a
room with FRM=Program Fragments, STR=Environments but different data

types in Bn(FRM) are realisable in the different rooms.

55

We will be very interested in maps between rooms. Our definition
may seem strange, but it is adapted from [GB2] and ensures that

institutions are galleries.

Def.4. A discrete room morphism ¢ from discrete room D=< FRM,STR,Val>

to discrete room Df=< FRM',STR',Val® > consists of functions
¢6: FRM —> FRM', ¢#: STR' —> STR such that

val(e,s” (m'))=val (4% (e) ,m")

for all e € FRM, m'ESTR'.

Comment

The function ¢+ takes each data type f':FRM' —> Set to data type
f'o ¢6:FRM —> Set. If the data type f' is realisable or a truth
value, then f'o¢6 is also; if ¢# is a surjection, then every

realisable datatype f:FRM —> SET has the form f'o¢6.

Def.5. A logical room morphism ¢ from logical room L=< FRM,STR,Val >

to logical room L'=< FRM',STR',Val' > consists of a function
¢6:FRM —> FRM' and a functor ¢# from STR' to STR such that

6

eEVal(¢#(m')) =. ¢ (e)EVali(m')

]

for all sentences e€FRM and structures m'€STR'.

Comment

The function ¢+ takes each truth value E'cFRM' into the truth value
{e|¢6(e)€E'} < FRM. If the truth value E' is realised, so is ¢+(E');
if ¢# is a surjection, then every realised truth value has the form

s (EY).

Def.6. A morphism ¢ from a room R=<FRM,STR,Val> to a room
R'=<FRM',STR',Val'> consists of a function ¢°®:FRM —> FRM'

and a functor ¢# from STR' to STR such that
val(s®(m')) = val'(m') o 4°

for all m'eESTR'.

56

Any function ¢6:FRM ~—> FERM' gives a functor ¢" from
Bn (FRM') to Bn (FRM) by

67 (< v_le€FRM' >) = < v | cEFRM >

$° (e)
and this function takes a datatype d' to the datatype
d'e ¢° € B (FRM) . The requirement in definition... for room

morphisms can be expressed in the communitive diagram

#
STR 2 grR? R ¢ > R
val val' gt (@) = ave 4¢
¢+
B, (FRM) <—— B_(FRM')

Fig. 2. Room morphism requirement

Example 2 ctd.

Consider the distinction between concrete and abstract syntax
in some programming languages. In formal semantics it is usual
to define meanings of abstract derivation trees, to define a
room < Tree, STR, Val >. If we have a parser ¢°: Program
Fragments —> Tree, and we take Q# as the identity on STR,

then ® is a room morphism from
< Program Fragments, STR, Am. Val(m)e ® >

to < Tree, STR, Val >. If the programming language is un-
ambiguous, there is no choice in the definition of the parser

¢°.

#3 Specifications and Theories

In software engineering specifications are used to describe
programs and data types; in logic theories are used to define
classes of models; in this section we show how every room has
a multitude of theories and specifications; every class of
structures gives a theory and every class of frames gives a

specification.

57
Each frame e in a logical room L=<FRM,STR,Val> partitions STR

into two equivalence classes

TRUEe = {mESTR|e Val(m)}, FALSEe = {mESTR|efVal (m) }

Usually one says "e 1is a specification of TRUEe" but we prefer
"e is a specification of the partition {TRUEe,FALSEe}" because
of the generalisation: each frame e in a room R=<FRM,STR,Val>

partitions STR into equivalence calsses

[m] = {m ,€eESTR|Val(m)e = vVal(m)e)?}
e 1

This is further generalised in:

Def.7. Every non-empty set E of frames in a room R=<FRM,STR,Val>

defines a specification, the partition of STR with equiva-

lence classes

[m]E = {m1€STRIVe€E. Val(m1}e = Val(m}e}

A set M of structures is describable iff M:[m]E for some

me | STR| ECFRM.

In a logical room L=<FRM,STR,Val> the equivalence classes
are given by m1€[m]E.E.Ve€E(e€Val(m1)z e€Val (m) and there is
a distinguished equivalence class E*= {mESTRIE c Val(m) }.

A structure m implements E iff E < Val(m).

By convention the empty set of frames defines the trivial
partition () of STR with one equivalence class, and 1 is the
trivial partition of STR with one structure in each equi-

valence class. This gives
= [m], = M ﬁnﬂeIeEE}
= 1 . .
¢ € E ¢ E' < FRM implies lelm]ppycinl clm] <0

- 1= [m]FRM iff Val is an injection.

58

- {Az} is describable iff Val(m):Val(m1) implies m=m,

- the intersection of describable sets is describable or

empty

Specifications in non-logical rooms have been used to define

closures and approximations to structure classes in figure 3.

ST

Fig.3. Upper and lower approximations

The small squares show a partition of structures, the inner
curve shows a structure class M, the outer dashed line shows
the upper approximation of M, and the inner dashed line shows
the lower approcimation of M. Because the two approximations
can be different, the "logic of the specification" is not
classical; if the lower approximation M is chosen, this logic
is intuitionistic, if the upper approximation M is chosen, it

is paraconsistent.

. ¥
In a logical room TRUE_ = {e}
¢ € E < E c FRM implies ¢ < FRM* < E'* ¢ E* < STR

and 0=FRM* is equivalent to "every struc
o h q y ture makes some sentence
alse,

59

For us theories are duals of specifications. Each structure
m in a logical room L= <FRM,STR,Val> partitions FRM into
two equivalence classes

DIAGRAM = {e€FRM|e€Val (m) },{e€ FRM|e¢Val (m) }
Usually one says "DIAGRAMm is the theory of m" but we pre-
fer "the partition <DIAGRAMm,SENT - DIAGRAMm> is the theo-
ry of m" because of the generalisation: each structure m

in a room R=<FRM,STR,Val> partitions FRM into equivalence

classes
[e] :{ EFRMIVal(e,m)=Val(e,mf?
m 1 J

- This is further generalised in

Def 8. Every non-empty set M of structures in a room
R = <FRM,STR,Val> defines a theory, the partition

of FRM with equivalence classes

[e]M = {e1€FRMIVmEM.Val(m},e' = Val(m)e}

A set E of frames is definable iff
E = [e]M for some e€FRM,Mc| STR]| .

In a logical room L = <FRM,STR,Val> the eguivalence
classes are given by e1€[e]m - VmEM(Val(m)e1sVal(m)e and
there is a distinguished equivalence class

M* =/ \{val(m) |meM}
a

By convention the empty set or structures defines the
trivial partition O of FRM with one equivalence class
and 1 is the trivial partition of FRM with one frame in

each equivalence class. This gives
- lely =N {lel, | men3

- ¢ Mc M c STR implies 1E[e]STRg[e]M_E[e]MEO

- {e} is definable iff vm(Val (m)e=vVal(m)e') implies e=e'
= 1=le]l gng iff all singletons {e} are definable

- any intersection of definable framesets is definable

or empty.

60

Our concept of a theory as a partition is not as strange as it
might appear, it is very closely related to the algebraic theories
introduced by Lawvere and used by many computer scientists. See
the construction of algebraic theory from a congruence and the
references in (GBI). The specification system CLEAR (BG) shows

how complicated theories can be built from simple theories.

In a logical room DIAGRAMm={m}*=Val(m),
$ € Mc Mc STR implies ¢ £ STR* . € M'* c M* c FRM

¢ = STR* is equivalent to "no sentence is true in all

structures."

Notice that we have the usual Galois connection:

c M

R * * * % * = * k
y —5 M* £ M McH M M* % *

— * -
E2 > E2 = ET* E € E** BE* = EXx*x*

=
n

** is a closure operation, our M* are the closed frame sets,

and our E* are the closed structure sets.

Notice also that Val can be replaced by any other function from
[STR| to P(FRM) in our definitions of E*,M* and the Galois closure
operations *, and there is such a function for every relation
rcFRM/ | STR. Because the subsets of FRM are "truth values", our

definitions give
- a truth value for any subset of STR
- a subset of STR for any truth value
This is such a big improvement on
- a truth value Val(m) for any structure m
- the subset {m|Vval(m)=E} for any truth value

that we should try to generalise the construction to rooms that

are not logical.

61

Def.8. Every non-empty set M of structures in a room
R=<FRM,STR,Val> defines a datatype M*=Xe./\{Val (m) |meM}.
Every datatype d€Bn(FRM) defines d*€|{STR| by
med* .=. d(e)=d(e') —> val(m) (e)=Val(m) (e")

A structure m implements datatype d iff medx*.

Comment

Every data type d gives a partition of FRM with equivalence
classes [e]d = {e'ld(e) = d(e')} so the condition for med*

is [ely < [el , the d-partition refines the theory of m.

Notice that ** is still a closure operation, our d* are the
closed structure sets, and our M* are the closed data types.
Notice also that Val can be replaced by any function from |STR]|
to Bn(FRM) in our definition of d* and M* - and there is such a

function for any f:FRMx|STR| —> Set.

In most rooms there is a connection between theories and
structure morphisms m —> m! Some of the possibilities are:

(MONOTONE) m —> m' implies [el v < lel

(ISOTONE) m —> m' —> m iff [e] v = [e]
m m

(INITIALITY) every describable M = STR has an initial model m
such that

[ely = lel_

The great succuss of initial models in the theory of abstract
data types suggests that conjunctive rooms, where every define-

able E < FRM has a frame e such that [m]E:[m]e may warrant
r

special study. In (T) there is a careful study of the connection

between structure morphisms and theories in logical rooms.

62

What happens to the theories and specifications of a room R
when it is mapped into a room R' by a morphism ¢? A specifi-

cation in R = <fFRM,STR,Val> determines a room R_=<E,STR,Val>;

E

if ¢°(E)cE' then ¢ gives a morphism from RE to RE,=<E',STR'Val'>,

the room determined by E'. A theory in R determines a room
RM:<FRM,M,Val>; if ¢#(M")cM, then ¢ gives a morphism from RM

to RM" This motivates:

Def.9. Let ¢ be a morphism from R=<FRM,STR,Val> to R'=<FRM',STR'Val'>.

The morphism is a specification morphism from EcFRM to E'cFRM'

iff ¢5(E)EE'; the morphism is a theory morphism from McSTR
to M'cSTR' iff ¢#(M')cM. |

Example

Consider the identity morphism on a room R. This gives a specifica-
tion morphism from E1 to E2 when E1 is a subset of Eyi it gives a

theory morphism from M, to M, when M, is a subcategory of M, .

Theorem

If ¢ is a morphism from room <FRM,STR,Val> to room <FRM',STR',Val'>,

then:
(1) my' € Mo g = ¢#(m'1) € [¢#(nn]E for E c FRM
(2) e, € [e] ¢#(M').E ¢5(e1) € [¢6(e)]M, for M' « STR!
(3) ¢ (M') = [¢#(M')]* for any M' c STR'

(4) ¢#(d'*) c [47(d")1* for any d'€ Bn(FRM')

63

Proof
(1) m1' € [M']¢5(E)'E' VeEE[Val'(mT')¢5(e) = Val'(m")¢® (e)]
= Ve€E[Val(¢#(mT))e = Val(¢#(m')e]
#

= b (m1')€ (o7 (m')]

(2) e,€lel # iy, -=.vmrew (val(6¥ (m))e; = var(s¥mr))el
=, Vm'EM'[Val'(m')¢>G(e1) = val'(m')¢°%(e)]
= ¢°(eq)eld®(e)] p

(3) 6T (M'*) = M'% 6% = [val'(m') Im'€M']o ¢

(val' (m")oe ¢ |m'eM")
#

I

(m'1) Im'eMm')

(Val (m) | mE¢#(M')) = [¢#(m')3*

(val(¢

(4) m'ea'* —> d'(@ﬁ(e1)) = d'"(¢%(e)) ~—>

S val'(m')o®(eq) = val'(m')¢5(e)

A%

1

. 67(@) (eg) = ¢ (@") (e) —
val(o® m ey -~ va1 (6t mi))e

=. ofm) € [oF(ar))*

#m') = m]

#

m€¢#(d'*).s.3m‘ [m'ed' A ¢

—_—> 3m'(¢#(m‘)€[¢+(d')]* A ¢ (m') = m]

=, m € [¢+(d')]* A 3m' ¢#(m') = m
Corollary
If ¢ is a specification morphism from EcCFRM to E'cFRM', then
1 1
[m]E' c [m]@S(E) and

m € My, —> ¥ m') e rofm,

If ¢ is a theory morphism from McSTR to M'cSTR' then [e]MC[e]¢#(M')
6 6
and e1€[e]M —> ¢"(ey) € [(e)]Ml

If m' implements d', then ¢°%(m'") implements ¢+(d').

64

Comment

#

The reasons why one does not always have ¢ (d'*)=[¢+(d)]*

are (1) m'€d'* is stronger than ¢#(m)€[¢+(d)}*

(2) there can be m6{¢+(d')]* which not of the form ¢#(m').
Figure 4 summaries our results on preservation by room morphism

from R to R'.

+

¢

> R-datatype
6" 0°
> R-truth value ——> R'-truth value
+
R'-realised datatype —9—> R-realised datatype
+

R'-datatype

R'-truth value

R'-closed Datatype o > R-closed datatype

R'-structure ~ﬁf> R-structure R-frame —§E> R'-frame

R'—-theory ~Qf> R-theory R-specificaiton —$E> R'-specification
R'-structures —Qf> R-structure class

Figure 4. Properties preserved by a room morphism from R to R’

#4 Galleries, institutions and signatures

Now we can define the fundamental concept of our unified theory:

Def. 10. A gallery G is a functor to the category of rooms
from a category SIGN of signatures.

The gallery G is an institution iff

- each object G(X) is a logical room

- each morphism G(¢) is a logical room morphism
The gallery G is discrete iff

- each object G(X) is a discrete room

- each morphism G(¢) is a discrete room morphism

65

Comment

For each signature morphism we have the commutative diagram

and our previous results show that ¢+ not only STR(Z1)<$—STR(22)

carries realised Zz—data types into realised Val(Z1) Val(Zz)
21-data types but also closed Zz-data types

+
into closed 21-data types. Bn(FRM(Z1))<$—Bn(FRM(22))

One can think of signatures as vocabularies, that provide useful
concept names () , but what kinds of signature categories are
useful. The simplest vocabularies are given by discrete signarures,
where the only signature morphisms are the identities.

Galleries with discrete signatures are no more than "indexed fami-

lies of rooms. For each room R, (R) is an indexed family so we have:

every room gives a gallery with one signature.
every logical room gives an institution with one signature.
More complicated vocabularies are given by ranked signatures with

a family X (k,1l) of names for each pair <k,1> of natural numbers.

66

Usually one insists on unambiguous ranked signatures where the
families X(k,1) are disjoint. Frequently Z(k,1) is empty for 1>1

and we read:

- c¢c € X(0,17) as "c names a constant"
- £f € ¥(k,1) as "f names a k-ary function"
- r € x(k,0) as "r names a k-ary relation"

For ranked signatures the natural morphisms are

- embeddings, functions from each £(k,1l) to ZX'(k,1l)

- inclusions, x(k,1) < Z'(k,1) for each <k,1>

- relabellings, bijections between each X(k,1) and £'(k,1)

To establish a gallery with ranked signatures one has to check

that each morphism ¢ gives maps <¢6,¢#> such that

#
Valz(¢ (m'))e= Valzs¢6(e)
for each e € FRM(Z), m' € STR(XL'). This is usually easy; figure 5

gives an example:

6./

Signatures Z(k,l) is a family of transition names. Morphisms ¢

give injections of £(k,1l) into x'(k,1).

Frames Marked nets where each k-entry l-exit transition has

a name in £(k,1). Function ¢°%(e) relabels transitions

o Cl\g ////a O—> [E]— C}\\g
[I

.
C>/ﬂ \\\? O—s [E2]—> 0.7

T g O (&g
4 (e) = \@ﬂ -9L_ai——>o\§
o

Structures are sequences m of transition names mj=e.=. m is a fi-

ring sequence of e. Functor ¢#(m') omits names out-

side ¢ (X)
oFm) e .=l m'= 46 (e)
m’ = gg fa fb rr is a firing sequence of ¢6(eo)
¢#(m5) = g £f1 f2 r is a firing sequence of e,
Comment The most appropriate gallery for Petri nets is some-

what different from this institution.

Fig. 5. A Petri net institution

68

Most vocabularies in computer science are given by sorted signa-
tures with a set of I-sorts and a family Z(uv,t) of names for
each pair <o,T1> of sequences (words) of ¥-sorts. Some common no-
tation for sorted signatures is shown in figure 6. Usually gal-
leries with sorted signatures are unambiguous and finitaryt

the families X(o,T) are disjoint, and empty when ¢ or T is infi-
nite, For sorted signatures the natural morphisms are

- embeddings, functions from each Z(o,1) to Z'{¢"{5),¢" (1))
- inclusions, Z(o,t) = £'(0,t) for each <o,t>

- relabellings, bijections between each Z(o,1) and

' (o' (o), 9" (1))

where ¢' is the extension to sequences of a function from L-sorts

to Z'-sorts.

c € 5 ,UO) constant names BT CF 5 Gib

f € Z(o1 GkTOO) function name f:o1 0] —>G kdj\gf L A
o 2
. . ‘Sl r;
rE 2(01..0]{1 relation name r:01X0p..0, .
C
g € 2(01..Gk'T1..Tl) 9:04X05. X0 —>T XK. XT
M A0
|
B/ @
Fig. 6. Signature notation in sorted galleries

Sorted signatures are usually flat, ordered, polynomial or typed.

In flat sorted signatures sorts are not related to one another;
in ordered signatures there is a partial order on the sorts; in
polynomial signatures there is a set of basic I-sorts and every

Z-sort is given by the production.
<sort>: := <basic-sort> | <sort>+<sort> | <sort> x <sort>

in typed signatures we also have the sorts given by the production:

<sort»>: := <sort> —> <sort>.

69

#5 Records, Arrays, Variants and Parameters

When the category of signatures in a gallery has various proper-
ties, then these properties are reflected in the frames, struc-
tures, theories and specifications of the galleries. In this sec-
tion we look at SIGN properties that make it possible to construct

complex rooms in the gallery from simpler rooms: products, powers,
sums, copowers and pushouts. The literature on institutions has

focused on sums and pushouts (colimits) because institutions origi-
nate from the desire to build complicated specifications from

simple specifications.

Def.171. A gallery admits variants iff SIGN has products - for any
21,22 € |SIGN| there is a signature 21 X 22 and signature

morphisms

mT 2 21 X ZZ —> 21, 7T2:Z1 X 22 ——>22 such that for any
ET s 23 -> 21,C2:Z3 -> 22 there is C:Z3 -2 21 xzzz

satisfying: ¢l1=nleg ,z2=m2er.

If a gallery admits variants, we have the diagram

Room(z3) h
AN _ﬁ
2 3Room421x22) D Room(zz)

h1 lj1 N
~

Room (x,) Q_.Room(z1)XRoom(22)

where Room(Z1)XRoom(22) has FRM(Z1)XFRM(22) as frameset,
STR(X1)+STR(X2) as structure category, and

Val(m)(e1,e2) = 1f mESTR(Z1) then Valz(m)e1 else Valz(m)e2

as valuation fundtion. The room morphisms in this diagram connnect
the frames, structures, datatypes theories and specifications in

Room (Z1X22) with those in Room (21) and Room (zz).

70

Example

If Z1 and 22 are ranked signatures, one can define Z1XZ2 by

Z1XZ2(k,l) = 21(k,l)X22(k,l). Suppose 21 and 22 are the signa-

tures in figure 2 so

il

Z1XZ2(2,2)

Z1XZ2(1,1)

(<g9,99) I, =,(2,0) = (<r,rr>)

(<f1,fa>,<f2,fa>,<f1,fb>,<f2,fb>)

and a typical memeber of FRM(Z1XE2) is

Clearly FRM(Z1) FRM(Zy) has frame pairs which are not given by F6.

R if Z1XZ2 is to be the prouct of 21 and 22 in the category of
signatures in our gallery, we must allow firing sequences like

R oEE el S B 8BS W1# can be defined on
<g,f1,f2,r>€STR(Z1). Normal firing sequences like <g,gg><f1,fa>
<f2,fb><r,rr> are not in STR(Z1)+STR(Z2), but they are so tightly
coupled members of STR(ZT)XSTR(Z2) that "variant" is a more appro-

priate term than "record".

Def.12. A gallery admits copies 1ff SIGN has powers - for any sig-
. n
nature ¥ there is a signature s and morphisms 71...mn:I —>%
. n
such that for any z1 ... Zn: £ —> ¥ there is a L:X' —> %

satisfying: ¢l=m11ec..... Cn=Tnoef.

71

If a gallery admits copies, we have the diagram

h

1
Room (X ') ““-~__“lL_‘5__‘Hh
. 2

~

~
) Room(Zn)——EnﬁbRoom(Z)

N b

Room(z}é———;hoom(z)n

Where Room(z)n has FRM(Z)n as frames set nxSTR(X) as structure
category and

Val(n)(e1,e2...en) = case HlESTR(Ei) of Valei(n)(ei) end

as valuation function. The room morphisms in this diagram connect
the frames, structures, datatypes, theories and specifications in

Room (£') with those in Room (Z) .

Example
el

If X is a ranked signature, one can define ™ by Ln(K,l) =€(K,l)n.
If Z is the signature 21 in figure 2, then FRM(ZH) is much smaller
than FRM(Z)" and firing sequences like <g,*...*> <f1,*...*>
<r,*...*> must be allowed. Normal firing sequences like s g

<f1,f1...f1,f2

><f2,...f2,f1><r...r> are not in n x STR(€), but
they are so tightly coupled members of STR(€)" that "copies" is

a more appropriate term than arrays.

Def.13. A gallery admits records iff SIGN has sums - for any

€ |SIGN| there is a signature ¥, + X, and morphisms

Zqr I
such that for any

ﬂl:z1 —_ z1+22, ﬂ2:22 ——>Z1+22

C1:Z1 —_> 23,C2:22 —_—> Z3 there is Q:Z1+22 ——>Z3

satisfying: C1=Com1,52=CoT2.

72

If a gallery admits records, we have the diagram

Room(Z1)+Room(22)<————————-Room(22)

—~— lrrd

- E?
!

Room(Z1) o > Room(21+22)

l‘l.\“‘-‘__\
n1 Room(z3)
where Room(z1)+Room(22) has FRM(Z1)+FRM(22) as framesets
STR(ZT)XSTR{Zz) as structure category, and

val(m, ,my)e = if €EFRM(Z,) Then valy, (m)e else Valg, (m,)e

as valuation function. The room morphisms in this diagram give
the connection between the frames, structures, datatypes, theories

and specifications in Room(21+22) and those in Room(z1) and Room(Zzl.

Example
L 21 and 22 are ranked signatures, one can define Z1+22 by
Z1+Z2(k,l) = 21(k.l)+ Zz(k,l). Suppose ZT and Z2 are the signatures

i Eig. 2, 86

Z1+22(2,2) = (g,9q9) Z1+22(2,O) = (r,rr) Z1+22(1,1) = (f1,f2,fa,fb)

and a typical member of FRM(Z1+22) is

This frame is not the image of a frame in FRM(Z1)+FRM(22).

If m is a z1+22—structure forgetting the szsymbols (21—SYmbols)
gives a I, -structure (Zz—structure).

This gives the map from STR(Z1+ZZ) to STR(Z1)XSTR(Z2] but this

map is not an injection because a I1-firing-sequence can be merged

with a Z2-firing-sequence in different ways.

73

Def.14. A gallery admits arrays iff SIGN has copowers for any
signature I there is a signature nxI and morphisms
TqeeaTy® nxXy—>% such that for any n,..n,: T'—>%

there is n:nxi—>3' satisfying n1:n°w1..;nn:n=ﬂn.

If a gallery admits arrays, we have the diagram

n x Room({)<__ﬂ_“m__Room(Z)

~ ™
~
~N
~
b
m™ X
Room(y) —m Room(nxz)\
7 T %

Room(Z"')

where n x Room(Z) has n x FRM(X) as its frame set, STR(Z)n as its

structure category and
Val(m1...m) (e) = case e EFRM(Z,) of val(m.)e end
n e I == v 1 -

as its valuation function. The room morphisms in this diagram
connect the frames, structures, datatypes, theories and specifica-

tions in Room(nxZ) with those in Room (%) .

E}_gamgle
If ¥ is a ranked signature, one can define nx 2 by [nxXZ] (k,1) =

nx[Z(k,1)]. If £ is the signature in figure 2, then FRM(nxZX)
is much larger than n x FRM(X). Forgetting symbols gives a map
from STR(nxX) to S'I‘R(Z)r1 but this map is not an injection because

firing sequences can be merged in many different ways.

74

Def.15. A gallery admits parameters iff SIGN has pushouts - for sig-

nature morphisms W:Zo —>X a:ZO —>22 we have signature I

1, 3

and morphisms 1T‘I:Z1 —> 23, ﬂ2:22 —>23 such that
(Comm) 1nlem = m2sa

(Uni) for any z‘l:z1 —> 24,C2:22 —> X, there is

4
;:23 —> 24 satisfying ¢ = gem1,52= GaT2.

If a gallery admits parameters, one has the diagram

-
Room(EO)———————-—é Room(E1)

o 1 ™
m2
Room(Ez) —_— Room(€3)\
<N
12 N

where I is the signature of the formal parameter room 21 is
the signature of the formally parametrised room, Iy is the
signature of the actual parameter room, and N is the signature
of the actually parametrised room. The room morphisms in this
diagram give the connection between the frames, structures,
datatypes, theories and specifications in-Room(z3) and those

in Room(y Room{21) and Room(Zo).

b

There are other properties of the signature category SIGN that
help in building complex rooms from simple rooms:

We could have defined "gallery G admits routines" for "SIGN
has exponents" and "Gallery G admits files" for "SIGN has

limits of sequences”.

75

Comment When galleries admit records, arrays and parameters,

the room morphisms go to the constructed object from its compo-
nents so component specifications are carried into specifica-
tions in the constructed room. This seems to be why the litera-
ture on institutions has focussed on these colimit constructions.
Is it also the reason why x and - seem more natural than +? Why
do records, arrays and parameters appear in most programming
languages, while variants and copies have a more twilight

existence?

#6 Presentations of rooms and galleries

In this section we describe systematic methods for determining pos-
sible y-frames and I-structures from a signature X. Consider a
gallery with ranked signatures. A general method for defining FRM(X)
is to identify r-frames with bipartite I-graphs by "K-entry l-exit
nodes" labelled by names in X(k,1) (see figure 7). When there
are only constant, function and relation names in ¥ one can iden-
tify Z-frames with X-trees or I-terms. Note that components of -
terms are ordered implicitly, and one may or may not insist that
the edges of I-graphs and branches of I-trees are ordered. In ma-

ny ranked galleries one allows ranked variables in I-frames:

- k-entry l-exit nodes in Z-graphs can be labelled by vari-
ables of rank(k,1l):

- vertices in X-trees may be labelled by variables of the ap-

propriate rank;

- variables of the appropriate rank can replace constant,

function and relation names in y-terms.

Every y-frame has a rank(k,1l)

- in a y-graph %k is the number of source nodes and 1 is the
number of sink nodes; '

- in a y-tree or z-term k is the number of variable leaves

and 1 is if relation root then 1 else o;

Now we can define substitution: if e is a s-frame of rank(k,1l) and

for some variables x; in e we have a frame e, of the same rank,
then e [e1/x1,e2/x2..] is the frame given by substitutions

e for Xq,€, for Xoeos

76

Example
In figure 7 the graph N and the term T have rank (2,0).

Suppose x is a variable of rank (2,0). If x replaces r in N, we get

- [ma"_ /=]

N [N, /x] = ON /O_-A/,@_,g, O\; /Q—a@%o\l
/745]\3 (] £]

O O0—[3—0.7 NO-»[E2-50_7

the graph Nx and N = N

If x replaces r in T we get the term;
T and T =T [r(y,3)/x] = r(hic,y),£'(3))

T IT./ x] = r(h(c,hic,y)) ,£1(£1(3)))

T [c1/¥,c2/3] = rlh(c,cl) ,£1(c2))

h | / \\ T=r (h(c,y) ,£1(3))

Cex(0,1)£f1,£2€x(1,1)hex(2,1)g€ex(2,2) rex(2,0)

Flige s Frame presentation

77

A general method for defining structures in a ranked gallery
1+1
o

for each f ¢ £(k,1+1),and a relation m. ¢ m]g for each r ¢ < (k,0).
Occasionally we want to restrict STR(Z£) to those m that satisfy

is: m € STR(£) has a set m of objects, a function mf:mok —>m

=3 T 1 " 3 0 . "
constraints like "f, is e1,f2 is ey,...£f is e ". In any gallery

with substitution this can be done by
mESTR' (£) .=. Ve€EFRM(I)Val z(m)e = Valz(m)e[f1/e1,..fn/en]

Recursive constraints where the names fj occur in the frames ej,
may be so restrictive that no structures satisfy the constraints;
in some galleries fixed point properties ensure that recursive

constraints are satisfied.

Our systematic methods for determining frames and structures in
a ranked gallery also work in sorted galleries. When a signature
2 is sorted, it is convenient to label the "circle" vertices in
the £ -graphs by the sort, and insist that me and m _ respect the

sorts in a £-structure m.

Another systematic method for determining the frames in a sorted

gallery should be mentioned: Chomsky grammars.

The sorts are given by the non-terminals of the grammar, the
elements of £ (¢,7) are given by the productions, and the < -
frames are the words in the language generated by the grammar.
If the grammar is context free, 7 has length 1 in non-empty

£ (o7,7) and £-trees or % -terms may be used instead of £ —~graphs.

The grammatical way of determining frames in galleries is so use-
ful that one often gives a common grammar ry to a gallery, and
defines the € -frames using both £ and Fh. Once the wvalues of the

< —frames, not involving]qo, have been defined in € -structures,

the values of all & -frames can be defined using semantic functions
for the po—productions. This method can also be used for presen-

ting a room <FRM,STR,Val> - some grammar F determines FRM and Val.

78

Example 4.

Suppose we want to extend some gallery Base (g} by adding con-
ditional equations as new I-frames for each signature X. We can

introduce the common grammarfﬁo:

<sentence>::= <term>=<term>|<sentence>—><sentence>

and define the new I-frames as the sentences given by GO when both
sides of every eguation are old Z-frames of the same sort. The old

evaluation function can be extended by:
ml=t= &' .=. Valo(m)t = Valg (m)t!

ml=e—>e' " mfe v mlEe’

i

where t,t' are old y-frames, m is a Z-structure, and e,e' are new

y -frames.

#7 Gallery morphisms

In this section we introduce gallery morphisms; the key to achiev-
ing two of the three aims of our unified theory: galleries are
particular theories, one should be able to combine galleries and
transfer results from one gallery to another.Intuitively there is
a morphism ¥ from a gallery G to a gallery G' if every room in G

corresponds to a room in G'. This is made precise in:

Def.lg. A gallery morphism from G to G' consists of a functor V¥

from SIGN to SIGN' and for each signature X a room

morphism § (£) from G' (Y(Z)) to G(Z)

The picture is

A #
steN —Y 5 s1oN! sTR(z) —(Z) > STR' (Y (Z))
G G' val(X) val (Y (X))
01 4 v ke
ROOM <— ROOM Bn (FRM(Z)) > Bn (FRM' (Y (X)))

7Y

Comment In such a gallery morphism we have
6 1 = T #
Valz(w (e') ,I) “Val'q}(z)(e PR (m))

for © € SIGN, m € | STR(Z) | ,e"€FRM" (VY (X)) .

In [G] there is an extra requirement on institution morphisms:

#

¥®:¥;FRM'—>FRM, ¥7 : STR—>¥;STR' are natural trans—

formations.

Example

Thetre ié a morphism from the one room gallery {R} to the one
room gallery {R'} if and only if there is a room morphism from
R' to R.

Example 5.

If gallery G is included in gallery G', we have SIGNcSIGN' and
G(X) = G'(X) for each I € SIGN

so there is a gallery morphism from G to G' given by:

w(Z)=Z,@(Z)6e':e',@(Z)#m:m'

One still has this morphism if FRM' (X) <€ FRM(ZX) and STR(X) = STR'(X);
In example 4 we have a morphism from the new gallery to the old

because the new gallery had not only the frames of the old gallery
but also sentences.

80

Every gallery G determines an institution Inst(G) by: drop

all frames that are not sentences, keep all signatures and
structures. Example 5 shows that there is a gallery morphism
from G to Inst(G); with example 4 we see how grammars can give

a morphism from G to some "basic" gallery Base(G).

Figure 8 shows what happens to frames, structures, data types,

truth values, when we have a gallery morphism from G to G'.

G-data type w+ > G'-data type
G-truth value w+' > G'=truth value
G-realised data type v > G'-realised data type
G-closed data type o > G'-closed data type
G-structure @# > G'=-structure
G-theory i# > G'-theory

7e

G'=frame in FRM' (¢ (X)) > G-frame in FRM(Z)

-~

6
G'-truth value in P(FRM' (¢ (X)) lb——-> G-truth value in P(FRM(Z))
76
G'-specificaiton in FRM'(¢(Z})—£—> G-specification in FRM(ZX)
v

)

G-signature > G'=-signature

G-signature morphism > G'-signature morphism

Fig. 8. Properties preserved by a gallery morphism from G to G'

81

There are three natural logics for reasoning about rooms and
galleries. The simplest is first order logic with sorts for
frames and structures. The syntax of this intrinsic logic for

a room(FRM,STR,Val) is given by
<term> i=«¢Variable>| <Structure>|<Frame>|<term> (<term>)

<formula> := <term> = <term>|7<formula>| (<formula> - <formula>)
| L] (<formula> A <formula>| (<formula> v <formula>)
| 93<vVariable>.<Formula>|V<Variable>.<Formula>

where <Structure> = STR, <Frame>» = FRM and <Variable> =

(m,m1,m2 e,e1,e2....M,MTMz....E,E1,E1,E2....). The semantics
of the logic will give a meaning to each well formed term and
formula. Suppose we have an assignment S which gives a structure
to each free m-variable, a frame to each free e-variable, a
structure class to each free M-variable, and a frame class to
each free E-variable in a term t or formula F. Such an assign-
ment gives a value to the term t or formula F by:

[vl [s] s (V)

Str

[[strllls]

([Frmll[s]
[t, () Ls]
F [t (t,) DIs] .

Frm

VaJ.(Ht1H[s])(thﬂ[s])...ﬁt1ﬂ[s]€ISTRl,HtZH[s]EFNM

—-llt Nis] =STR, [[t,][s] € STRIt,]1[s]1€lt,1ls]
or ([t 1[s] <FRM,[t,][s] € FRM

[[L111[s] =9
(e, Nls] = [[t,110s])

il

= [[t1=t2]][]
([FII[s]

([F,~F,] [S]

. not k [[FIl(s]

FIF 1 S] implies k [[F,N[s]

™

[[F AF,][s] FIlF,11[s] and E F,1ls]

1

[([F,ve,N0ls] .=. FHF1H[S] or [[[F,11[s]

1

[[vv.F[S] EIFN[S'] for all s' =slc/v]

[[3v.FII[s] .=. EI[FNI[s'] for some s' =slc/v]

82

where c ranges over structures (frames, structure classes,

frame classes) when v is an m-variable (e-variable, M-variable,

F-variable). We also use = and =. when values are either 0 or 1.
Example
The formula "E(e) - (m(e) =I%(e))" expresses the proposition

'”% EEmBE" where [BE is the specification given by the frame
set E. The formula "M(m) - (M(e)==M(e1))" expresses the proposi-
tion “e1€EEe]M" where [[BM is the theory given by the structure

set. Simple logical arguments give our earlier assertions

E, € E, implies [ﬂEz cf HE1
My e M, dimplies[1, <[1,
2 1
the logic captures our informal arguments about rooms. |

In the first order logic for a gallery one has a structure,
frame, structure class, and frame class sorts for each signature
Z. There are infinitely many variables for each sort, and an
assignment s has to respect the sorts. There is a constant term
¢ for each gallery logic are given by the semantics of the room

logic and the clauses.

Mot) []

oF(LeTtsh) - - [eDls) € IsTR() |

[6(6)1 [s] = ¢®(Mells]) - - [tDls] € FRM(Z,)

when ¢ is a signature morphism from 21 to 22.

Example

The clause "Val1(¢#

(mz))(e1) = Valz(m2)¢6(e1)" in the definition

of a gallery gives the law
¢(my) (eg) = m,(d(e,))

in our first order logic - for any assignments we have s(mZ)ESTRﬂi),
s(m,) EFRM(€,), F H¢(m2)(e1) =m, (¢(e))I[s].

83

As most of the informal arguments about rooms and galleries
are captured by our first order logics, one may well ask why
look for other "intrinsic logics". One answer is there seems

to be no natural way of handling structure morphisms; another

answer is that one should be able to formalise all informal
arguments about rooms and galleries. The second answer is
reasonable in view of the fact that there are many suggestions
for program logics, in which one can formalise informal argu-
ments about programs, but no one suggestion is generally

accepted.

We can devise two more natural logics of rooms and galleries
from the idea of data types. For the datatypes of a room
<FRM,STR,Val> can define

dxd' (d(e) xd'(e) |e € FRM)

g+’

(felfe:d(e)-ed'(e) for all e € FRM)

-
I

(| |e € FRM)

so Bn(FRM) 1is a Cartesian closed category. It is known that
Cortesian closed categories correspond to typed lambda calculi,
so our second intrinsic logic for a room can be the lambda

calculus with the syntax

<type> := <Structure>|1|<type> x <typed>|<type> - <type>

<term> := <Variable>|*|<Structure Morphism>
| {<term>,<term>) |71 (<term>) |72 (<term>)
[<term> (<term>) | A<Variable>.<term>

<formula> := <term> = <term>

where <Structure> = STR, <Variable> has an infinite supply of
variables of each type and <Structure Morphism> has a symbol

84

o of type m, - m, for each morphism from structure m, to struc-
ture m,. An assignment s from variables to wvalues of the appro-

priate type also gives datatypes to terms and formulae by

Evﬂ[se] = s, (v) (e)
E*H[se] = 1
Ecﬂ[se] = Val (o) (e)

1

[(ty,t,)0ls,] [t 00s_] x[t,Is]

EW1(t1:t2)H[se] = Etzﬂ[se]

HWZ(t1,t2)ﬂ[se] = thﬂ[se]

Ht1(t2)ﬂ[se] = Kt1ﬂ[se](ﬂt2ﬂ[se]) -- explained later
Hkv.tﬂ[se] -- defined later

kDt,=t,[s] Lt 00s_] = Dt 0s_]

where [Se] abbreviates [s] (e).

Notice that an assignment s to the variables

in a formula t1 = t2 gives a truth wvalue in @ to the formula
for each frame e we have either t, = t2[se] =0or t, = t2[Se] = 1.
In general assignments give data types to terms; if the term t1
receives a data type fe in d - d' and the term t2 receives a data-
type Ve in d, then the term t1(t2) receives the data type
(fe(Ve)IeEEFRM) in 4', if t, is a lambda term Av.t, then t1(t2)
should receive the same data type as the term given by substitu-
ting t2 for the variable v in t1. This motivates

Hkv.t][se] = fe where fe(ve) = Et][s'e] and s' is s

except s'(v) (e) = L

85

Example

The formula 01(02)(v)) = 03(04(v)) expresses the structure morphism
equation 04005 = 0500,. This equation is meaningful iff there

are structure types A,B,C,D such that 04t B - D, 0,: A > B,

A - C. The formula is meaningful iff a is a

ag C = Dy @

3¢ 4¢
variable of type A. For an assignment s we have

Eaﬂ[se] € Val(A)e

[o,(a)lls,] = Val(o,) (alall[s_]

[[61(02(a))]][se] = Val(o,) oVal(Gz) ([[a]}[se])

[o3(0,(a))Tls.] = Val(oy) oVal(o,) (Talls_])

E i[o1 (Oz(a)) = 03(0‘4(a))]][5e]

.=, Val(o1)(JVal(Gz)(Eaﬂ[se]) = Val(03)chal(U4)(EaD[se]}

so the equation is true for all assignments if and only if
Val(01) o Val(oz) = Val(d3) o Val(64). il

In order that the semantics of the lambda calculus for a room be
as simple as possible, we have followed (S1) not other authors
who would define a [t]] as a morphism from the type of the free
variables of t. However, we do have to say something about vari-
ables of type d where d(e) in the empty set for some frame e.

If term t has a free variable v of type d and d(e) = 0, then

Etﬂ[se] is undefined and
F Etz =t'ﬂ[se] L=, Ht'ﬂ[se] is undefined.

Notice what happens when v is bound in Av.t, the functionlﬂkv.tﬂ[se]

is the unique function defined on the empty set.

Because the set of data types Bn (FRM) is a particular kind of
Cartesian Category, we have other intrinsic logics of rooms and

gallery. In a later paper we will look at the dependent type theory,

86

advocated by Martin Lof and used in the languages PEBBLE ML
and PL/CV3. Here we focus on the fact that Bn(FRM) becomes a
topos with the definition

P(q)

{set families s such that s, € d(e) for all e € FRM}

2
1l

{(0,1) |e € FRM}

Since topoi correspond to higher order type theory, our last

intrinsic logic for a room can be the type theory with the syntax

<type> i= <Structure>|lI|Q|<type> x <type>|<type> » <type>
| P<type>
<type> := <Variable>|x|<Structure Morphism>

I(<term>,<term>lﬂ,(<term>)Iﬂ2(<term>)
[<term> (<term>) | A\<Variable>.<term>

<formula> := <termd> = <term>|<term> € <term>
| (<formula> A <formula>| (<formula> v <formula>
| (<formula> » <formula>) |L| <formula>
|3<Variable>.<formula>|V<Variable>.<formula>

where <Variable> has an infinite supply of variables of all types
and <Structure> <Structure Morphism> are as before. The semantics
of our logic is given by extending the lambda calculus definition
of a data type for each term and formula under an assignment s,

the following clauses must be added:

87

E I[t1€t2]l[se] .=, [[t1]][se] E[[tzll[se]

= [(FAF,) 10s] = [F,1[s_] and F IF,0ls,.]

]|

T

E(FTVFZ)H[Se] .=. F HF1][se] or E ﬁFzﬂ[se]

H(F1*F2)]{se] E EF1][se] implies F EFzﬂ[Se]

Elﬂ[se] =
E EEHH[Se] .=. not E EF1H[se]
Elvv.FIls_] .=. F [FI[s'_] for all s' =slc/v]
FOvv.Flls] .=, E [[Fn'[s-e] for some s'=sl[c/v]

wheree ranges over the type of v.

can w talk about specifications in our type theory? For each
fram¢ set Ec FRM, the type P(m) has the set family

m(F)k = if e € E then Val(m)e élse 0

so ach P(n) "contains" the truth values. If [C DE is the specifi-
caton given by the frame set E, then the proposition m, € ml
carbe expressed by "m1(E)==m(E)", but this is not a formula of

owtype theory. This suggests an extension of our type theory
allow variables over structures and frame sets. Answering the

question "can theories in a room be expressed in our type theory"
suggests the extension - allow variables over frames and structure
sets. If we made these two extensions to our type theory by intro-
ducing a "universal type of structures", the resulting theory would
include all three of our intrinsic logics of rooms. Instead of
making this extension, let us define the intrinsic type theory

of a gallery. There are types for each signature as well as types

for each structure. There are infinitely many variables of each

88

type, and an assignment s has to respect the types. There is a
constant term for each signature morphism ¢. The semantics of
the type theory for the gallery are given by the semantics of
the type theory for rooms and

[¢(£)T0s,] =¢"([tI[s_])

where ¢ is a signature morphism to the room containing the data
type [tl[s]. A formula F is valid iff = [£1(s.] for all frames

e and all assignments s to the free variables in F. If the formu-
la F has a free variable of type d and some d(e) is empty, then

F says nothing about e such that d(e) is empty, so the validity
of F is unaffected by such e. Notice also that E HFH[se] iS5k

E E71Fﬂ[se] so
F is valid .=.44 F is wvalid

because the set of truth values is a Boolean algebra. We would
have had an intuitionistic type theory if rooms had been defined
with valuation functions from FRM to Bn(STR) instead of from STR
to Bn(FRM). A study of this intuitioniétic logic would be interes-
ting because BNn(STR) as the topos SETSTROP contains a full and

faithful copy of the category STR.

Comment

Consider a room morphism ¢ from <FRM1,STR1,Val1> to <FRM2,STR2,Va12>.
The associated functor ¢+ from Bn(FRMz) to Bn(FRM1) is what the
category theorists call a logical morphism; it gives a translation
from the logic of <FRM2,STR2,Va12> to the logic of <FRM1,STR1,Val1>.
Another way of capturing the room morphism is to combine the

logics of the two rooms, to consider the logic for either Bn(FHH+Em%)
= Bn(FRM1Ix Bn(FRM2) or Bn(FRM1)-+Bn(FRM2). In our type theory we
have adopted the last of the three alternatives - data types are
given by the sum of Bn(FRM(ZI)) over all signatures x.

89

Our three natural logics do not exhaust the richness of the set

of data types Bn(FRM). For any two data types d1 and d2 we have

data types
d1 U d2 = (dT(e)Lsz(e)le(EFRM)
d1 n d2 = (d1(e)ﬂd2(e)IeEEFRM)
d1 < d2 = (d1(e)éd2(e)le€€FRM) -- a truth wvalue.

For any room <FRM,STR,Val> the data type 1 represents FRM and
we have data types

(An.Val(m)ele € FRM) -—= the valuation function
(STR|e € FRM) --- the set of structures
(¢6(e)le€€FRM) -—-— morphisms from the room

(oe: Val(m1)e-+Val(m2)e|eEIFRM)

where O is given by the functor Val on a structure morphism o
from m, to m, . There must be intrinsic logics for rooms and
galleries, that capture more of this algebraic richness of

Bn (FRM) than the three logics we have described. However, the
richness of Bn(FRM) is not always relevant for particular rooms
and galleries; the aim of this section has been to argue for and
show how a particular room or gallery can determine an "intrinsic"”

logic for reasoning in that particular room or gallery.

90

References

(BG?)

(GB1)

(GB2)

(M1)

(M2)

(P)

(s1)

(52)

(T)

R. M. Burstall & J. A. Goguen: An informal introduction
to CLEAR, a specification language in R. Bovyer & J.
Moore, eds. The correctness problem in computer science.

Academic Press 1981.

J. A. Goguen & R. M. Burstall: Some fundamental algebraic
tools for the semantics of computation, Th. Comp. Sci. 31
(1984) pp. 175 - 209, 263 - 296.

J. A. Goguen & R. M. Burstall: Introducing Institution
in: E. Clarke ed. Proc. Logics of Programs, Springer
LNCS 164(1984) pp. 221 - 256.

J. A. Makowsky: Model theoretic issues in theoretical

computer science, Proc. Logic Ceoll. 82. Florence 1982.

B. H. Mayoh: Data types as functions, Proc. MFCS 78.
Springer LNCS 64(1978) pp. 56 - 70.

Z. Pawlak: Information systems - theoretical foundations,
Information Systems 6(1981) pp. 205 - 218.

D. S. Scott: Relating theories of the A-calculus in:
J. P. Seldin & J. R. Hindley, To H. B. Curry, Essays
in combinatory logic, Lambda calculus and foundations.

Academic Press 1980.

D. S. Scott: Domains for denotational semantics, Proc.
ICALP 9. Springer LNCS 140(1982) pp. 577 - 613.

A. Tarlecki: Free constructions in algebraic institutions,
Proc. MFCS 84. Springer LNCS 176(1984) pp. 526 - 534,

