ISSN 0105-8517

Symmetric Distributed Termination

Ole Eriksen
Sven Skyum

DAIMI PB - 189
January 1985

Computer Science Department] hT‘I]
AARHUS UNIVERSITY

Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 ~ 12 83 55 E

Introduction

In this paper we present a simple algorithm for deciding when to terminate
a distributed computation. Former solutions to the termination problem,
e.g. [2, 4], are restricted to rings and undirected connected networks, resp.,
and they rely on the existence of a special master processor present in the
network. The class of configurations for which our algorithm is applicable
is the most general possible, namely the class of configurations, where the
underlying (directed) networks are strongly connected. If the network is not
strongly connected then there exists a group of processors which cannot send
messages to the rest and it becomes impossible to detect when to terminate.
Furthermore, the algorithm does not require a special master processor acting
differently from the others. The only information needed is an upper bound
on the diameter of the network (the number of processors, for example). The
protocol for all processors is in other words identical.

In [3] it is shown that the existence of a master processor in a strongly
connected network makes it possible to calculate the number of processors in
the configuration while the opposite is impossible in general (see [1]). Our
algorithm therefore generalizes present algorithms with respect to both the
class of configurations for which it is applicable and the initial information
available.

The Model and the Termination Problem

A configuration is a collection of processors each of which is connected
to some other processors by one-way communication lines, The underlying
network (or graph) is a strongly connected (directed) network where the nodes
are associated with the processors and the edges with the communication
lines. Each communication line is a buffer containing messages, namely
those sent but not yet received. Writing (sending) and reading (receiving)
messages happens instantaneously, i.e. we consider buffer operations to be
indivisible. Computations are asynchronous and since communication goes
via buffers, the communication is asynchronous as well. Finally, we assume
NO processor to stop computing.

Consider a configuration in which each Processor can be either active, passive
or terminated and for which (a) through (d) below hold for any computation:

(a) All processors are either active or passive initially.

(b) An active processor can send activation messages to any processor
regardless of the existence of a communication line between them.

The motivation for, in general, allowing activation to happen independently
of communication lines is to be able to use a termination algorithm for
special networks as ringshaped in [2] on a larger class of networks. If a
network contains a known Hamiltonian circuit (or ring), the circuit can be
used for termination while activation messages can follow all edges in the
larger network (potentially there can then be a communication line between
each pair of processors). Since our algorithm applies to all strongly connected
networks, the motivation for “free” activation becomes less transparent.

(c) A passive processor receiving an activation message becomes active.
(d) An active processor may become passive spontaneously.

Since only active processors can “activate” other processors, no more com-
puting is done when no more processors are active.

The termination problem is to detect when all processors are passive and
then let them all terminate,

The following notation is used in the next section.

Let G = (V, E) be a network. For p, ¢ € V, dist(p, q) denotes the length of
the shortest directed path between p and g. The diameter of G is identified
as

max {dist(p, 9)}
PgEV

We call (p, q) € E an inbuffer for g (the receiver) and an outbuffer for p
(the sender). Finally, we use the word processor instead of vertex.

A Solution to the Termination Problem

We present a protocol which in a sense makes the configuration work
synchronously. We achieve this by introducing a time concept defined
locally. This time scale is smooth (or continuous) enough for the individual
passive processors to “"know” that if they have not heard from any active

processor for some “time”, then there are no more active processors in the
configuration. The amount of time any passive processor has to wait is given
by a linear function of the diameter of the network.

The time concept is introduced by splitting up the computation for a
processor into parts separated by a broadcast to all outbuffers followed by a
reading from each inbuffer.

The protocol has the following form:

broadcast a message.

cycle
await that no inbuffers are empty;
read one message from each inbuffer;

broadcast a message;
end;

Figure 1

We number the broadcasts from 0 and the reads from 1.

Since the processors are asynchronous they can do any finite computation
between the i'th reading and the i'th broadcast. We call the cycle starting
with the i’th read and finishing with the i’'th broadcast for phase ¢ or p-phase
¢ if we wish to emphasize the processor (p).

The duration of a phase in real time differs from processor to processor and
phase to phase. The time during which a processor is active is contained
in a single phase. Thus an active processor (participating in the underlying
distributed computing) does not take part in the termination process apart
from holding messages back.

Note that the protocol ensures that the maximal number of messages ever
contained in a buffer is bounded by the length of the shortest cycle containing
the corresponding edge in the network (see [5]).

The following Lemma shows that the protocol makes the configuration act
synchronously in some sense.

Lemma 1 If p,q € V,p # g, then p-phase k happens before g-phase
k + dist(p, q) for any k = 1.

Proof The result follows by induction on dist(p, q) by observing that if
(p, q) € E then g cannot enter phase k& + 1 before it has read & messages
from inbuffer (p, ¢) and p has to finish phase k to have written & times on
outbuffer (p, q).

O

The termination protocol is based on two kinds of messages flowing around
in the network, namely ready-messages and warning-messages with an “age”
attached to them. When a processor p changes state from active to passive,
it sends a warning to the other processors by broadcasting a warning-message
of age one. This warns the other processors that some processors might
have been activated by p during its last phase. Passive processors send on
warning-messages which are not too old and add one to the minimal age
received. If a warning-message becomes too old, a passive processor treats it
as a ready-message. This ensures that a processor does not react on the same
warning over and over again. When a passive processor has only received
ready-messages for some time, it knows it can terminate and does so.

In Fig. 2 the termination protocol is shown in a more detailed form. Two
constants L and n occur in the protocol. We show that the protocol is correct
for any network with diameter d if L = 2d andn = d + 1.

We consider reception of an activation-message as an interrupt. disable
closes for reception of interrupts and enable opens. Hence a piece of
program enclosed by disable and enable is indivisible.

The key Lemmas are the following two.

Lemma 2 Consider a network of diameter at most d. If processor p
broadcasts (warning, 1) in p-phase %, then if n = d each processor ¢ # p
reads (warning, s) for some s < dist(p, q) in g-phase k& + dist(p, q).

Proof Let p = po, py,...,p, = g be a path from p to g of length
r = dist(p, q). It is easily shown by inductionon ¢t that for 1 = i < ¢t =< 7

l active : = true;

l:=0;

broadcast(warning, 1);

cycle
await that no inbuffers are empty;
disable;
read one message from each inbuffer;
enable;

if / = L then terminate endif;

disable;

if active then
broadcast(warning, 1);
active : = false;

l:=0
else
if all inputs were (warning, n) or ready then
broadmst(ready);
l:=10+1
else
m := min{t | (warning, i) was read};
broadcast(warning, m + 1);
I:=0
endif
endif;
enable;
endcycle;
Figure 2
2
l
5

processor p; reads (warning, s) for some s < {, from inbuffer (b;—1, ;) in
p,-phase k + 7 and then broadcasts (warning, s') for some s < 5+ 1(< ¢ + 1).

0O

Lemma 3 Consider a network with diameter d. If processor p is active in
p-phase k> d then for all/, 1 = I = k — d there exists a processor g which
is active in g-phase s for some s € {{,1+ 1,...,1 + d}.

Proof Let 7 be the first processor entering phase { + d and let ¢ be the time
it does. Such one exists since £ = [+ d and p entered p-phase k. From
Lemma 1 we deduce that at time ¢ each processor is in some phase s, where
s€ {L1+1,...,1+ d}. If at that time all processors were passive, p could
not be active in p-phase & = [+ d since it does not enter phase k until after
time ¢. ‘

O

Theorem 4 The termination protocol is correct for networks with diameter
dif L =2dandn =d + 1,

Proof Assume that at time ¢ processor p is going to enter a phase with [=
L and some processor q is active at the same time. Then p has entered phase
k + L + 1 for some £ = 1 and has not read any (warning, 7) messages for any
t<ninphasek + 1,k +2,...,k + L — d. Then by Lemma 2 no processor
7 was active in 7-phase £ + 1,k + 2, ...,k + L — d and by Lemma 1 we get
that ¢ was active in g-phase s, forsomes 2 k+ L+ 1 —d =k +d + 1.
This contradicts Lemma 3, since L — d = 4.

Hence no processor terminates before all processors are either passive or
terminated. On the other hand when no more active processors are present,
all processors will terminate since warning-messages will eventually disappear
when they become older than n.

O

Acknowledgement

We would like to thank our colleague Jorgen Staunstrup for many fruitful
discussions.

e

References

[1] Augluin, D.: Local and global properties in networks of processors.

(2]

(3

]

(4]

—_

Proceedings of the 12th Ann. ACM STOC, 1980, pp. 82-93.

Dijkstra, E.W., Feijen, W.H.J., van Gasteren, A.J.M.: Derivation
of a termination detection algorithm for distributed computations.
Information Processing Letters, vol. 16, 1983, pp. 217-219.

Eriksen, O., Skyum, S., Staunstrup, J.: Distributed Algorithms for
Network Problems. Manuscript.

Francez, N.: Distributed termination. ACM Toplas vol. 2, 1980, pp.
42-55.

Genrich, H.J., Thiagarajan, P.S.: A theory for bipolar synchro-
nisation schemes. Technical Report, PB-158, Computer Science
Department, Aarhus University, Denmark.

