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ON PROVING LIMITING COMPLETENESS

Peter D. Mosses

Gordon D. Plotkin*

Abstract

We give two proofs of Wadsworth's classic Approximation Theorem for
the pure A-calculus. One of these illustrates a new method utilising a certain
kind of intermediate semantics for proving correspondences between denotational
and operational semantics. The other illustrates a direct technique of Milne,

employing recursively-specified inclusive relations.
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Introduction

Suppose that we have both a (standard) denotational semantics and an operational
semantics for some programming language. (For examples see [Stol], [Mil2], [deB].)
We would like to prove that they are equivalent, in that the output given by the
operational semantics, for each program and input, corresponds exactly to the output
specified by the denotational semantics. Thus not only is the former to be
consistent with the latter, but also it is to be complete. For diverging computations,
completeness is only required "in the 1limit". Following [Wad], we shall refer to

this property as limiting completeness.

In general, it is quite easy to prove consistency, using Structural Induction.
See [Stol], [deB] for some examples. We shall not consider consistency proofs any

further in this paper.

Sometimes, it is also possible to prove limiting completeness quite directly
using Structural Induction with subsidiary appeal to Fixpoint Induction for
recursive constructs:.such as loops (where Structural Induction fails). However,
when the programming language concerned allows self-application - either explicitly
as with Algol 60 procedures, or implicitly as with dynamic bindings in LISP - then
the direct method seems to be precluded, for Structural Induction fails but there
is no obvious recursive construct in the language where fixed-point methods could
be applied. In such cases, the domains of denotations are defined reflexively (that
is, recursively), and what one wants is to use induction on the level of the

projective approximations of the domains.

Wadsworth solved this problem in his study of the A-calculus [wWad] by labelling
expressions M (and their subexpressions) with integers n, so that, M(n) denoted the
n'th projection of the denotation of M. Having introduced some extra syntax to make
the levels visible, he then studied the operational properties of the M(n) induced by
this semantics and also their relation to the operational properties of the original
M. Thus one parameter - the labelling - was used both for inductions relating to
the denotational semantics (the projection levels) and for inductions relating to
the operational semantics. It seems fair to say that as a result a somewhat heavy

apparatus was ocobtained.

We present two other approaches to the proof of (the difficult part of)
Wadsworth's classic Approximation Theorem ([Wad Theorem 5.2]). In one the two
inductions are separated and the M(n) avoided by means of an intermediate semantics.
In the other, using ideas of Milne ([Mill],[Mil2],[Stol],{Sto2]), the second induction
is avoided entirely. In both approaches recursively-specified inclusive relations

are used ([Mill}g these play only a technical role in the first one but lie at the

heart of the second.



Our intermediate semantics is defined just like the standard denotational
semantics, except that intermediate denotations take an argument k in _ﬂm {the chain
cpo of the extended natural numbers 0 E 1 ,..C k& .« = ®), The operational
idea is that at finite values of k, an intermediate denotation is to correspond to
(perhaps partial) output produced by the operational semantics after at most k steps.
In particular, at k = 0 it is the least element L. At k = » it is by continuity

the limit of the intermediate denotations.

The denotational idea is (roughly) that the intermediate denotation at = of
any phrase is just a function of the intermediate denotations at = of its sub-phrases.
This makes it possible to see the relation between the intermediate and standard
denotations. To relate them formally, one defines a recursively-specified inclusive
relation between the standard and the intermediate domains. The existence and
properties of this relation are established by induction on the projective levels,
and in fact the techniques are, for the most part, well known (see [Stal,Mul] for
example) . Then a simple structural induction establishes the relation between the

standard and intermediate semantics.

The idea of the second appraoch is to strengthen the hypothesis so that
Structural Induction succeeds. To do this one defines (for every environment) a
relation between semantic values and terms of the language which holds when the
value is less than the limiting value of the term given via its operational
semantics and moreover when in all suitable contexts the relation still holds. As
explained by Stoy [Sto2] one can think of the relation as being that the value
approximates to the term. The suitable contexts are given by other related pairs of
values and terms and are determined by examining where the original proof by
Structural Induction failed. As usual, the existence of such recursively specified
relations is determined by induction on the projecti&e levels and the desired result
is shown by establishing by Structural Induction that the denotation of a term is

related to the term itself.

Comparing the two approaches, we see that the second is the more direct while the
first provides more information, .via the intermediate semantics, on the details of
the operational semantics. In that connection we should also remark that Wadsworth's
labelled expressions have been very useful in the study of the A-calculus, [Bar]. It
may be that the intermediate semantics with its feeling of explaining resource-
bounded denotations will also be of use. Technically as the reader will see the
proofs are less straightforward with the second approach, at least in the present
case. The references demonstrate the wide applicability of the second approach; we
expect this also for the intermediate semantics method although we have no precise

general recipe available for defining such semantics.
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We assume the general framework of denotational semantics [Ten,Stol,Mil2,Gor].
Wwe take domains to be w-complete partial orders (which are just partial orders
D = (D,&£) with a least element, lD' and lubs %an of increasing sequences) ; see
[SP] for further information on this topic, especially as regards constructions of
domains including the solution of recursive domain equations. Our notation is
essentially that of [Wad], to facilitate comparison of results, and that of [SP] to

handle cpos.



THE INTERMEDIATE SEMANTICS APPROACH

We shall now prove the completeness of an operational semantics for the A=-calculus,

relative to its usual denotational semantics, by introducing an appropriate intermediate

semantics.

First let us recall the syntax of the A-calculus. We assume a denumerable set Var

of variables. Basically, the set Exp of A-terms is taken to be the least such that:

- if x is in Var then x is in Exp;

- if x is in Var and M is in Exp then (Ax.M) is in Exp;

- 1f M and N are in Exp then (MN) is in Exp.

However, for convenience, we extend Exp to include,partial terms by means of a clause

for the special symbol Q:

- § is in Exp.

We may now regard Exp as a poset, taking the least partial order C on Exp such that:

I
<
I

M, for all M in Exp;

- 1if M E M' then (Ax.M) T (Ax.M') for all M and M' in Exp and x in Var;

- 1f ML M' and N £ N' then (MN) C (M'N') for all M,M', N,N' in Exp

Note that (Exg,g; } is not a cpo. However, we shall ensure that all functions that we

define on ExXp are monotonic.

The standard denotational semantics of the A-calculus is given by the fmonotonic)
function “V“:Exp + (Env > D) specified in Table 1. Here D is taken to be the
(initial) solution of D= D - D that includes some arbitrary non-trivial cpo D
[SP (see also our Appendix)]. (This is a slight generalisation of Scott's original
Q - model [Sco , Wad], where only complete lattices were considered.) We omit the

isomorphism D=D ~» D from formulae, when there is no danger of confusion.

Our operational semantics for the A-calculus is given by the w-indexed family of
(monotonic) functionsz n : Exp > Exp defined in Table 2 for any n and any M in
Exp; GL (M) may be regarded as the partial normal form of M determined by n steps of
a (parallel) reduction algorithm. That is, U (M) can be obtained by making scme
B-reductions on M, followed by replacing all remaining B-redexes by ). Thus each
& n

(M) is an approximate normal form of M in the terminology of [Wad]. Moreover,

Q (M) is monotonic in n: CQn(M) [;_ _QHH(M}, for all n, as can be shown by a
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simple induction on (n,M) (lexicographically ordered) .

The completeness of this operational semantics (relative to the given denotational
semantics) is just that for any term M, its denotation V7 [M ] is included in the
28 i . i A/
limit of the denotations V[ R (M) 1, as n goes to » - this limit exists since

is monoteonic (and Env - D is a cpo).

Theorem 1. For M in Exp

Vin] O (__J VIR™ )]

n>0

An Admmediate corollary of this theorem is that for all M,
VIME - L_]{‘Vy [al | a is an approximate normal form of M},

which is the hard part of Wadsworth's classic Approximation Theorem for the A-calculus
[Wad] . (The reverse directions of both these theorems follow easily from the
consistency of B-reduction and the minimality of 2, with respect to V. we shall

not consider consistency any further in this paper.)

To prove our theorem, we introduce an intermediate Semantics
ﬂJ":Eég - :ﬂm - Egg' > D', as given in Table 3 ( Wflzggg > Env' » _ﬂm > D' might
be considered more natural, but leads to clumsier statements of theorems). Recall
that Em is the chain cpeo of the extended natural numbers, There is an evident
embedding of w in jm, such that the usual operations of successor, predecessor
and minimum on w have unique continuous extensions to ﬂm -~ Weget ® = w4+ ] =@ 1
and k min ® = k., The domain D' is taken to be the (initial) solution of
2' o ] ® > D') » D' that includes the same non-trivial domain 20 that we included

earlier in D. Again we often omit the isomorphism,
s @an ]
Our first lemma relates (M) to ™ at n.

Lemma 1 For all n < » and M in Exp,

VMian W' IR ] .

We shall prove this lemma by induction on (n,M), later in this section. By the

r
continuity of M  IMI n in n, we then get

(1) VIl - I_J VIR () T w,

QZQ

Now putting « for k in Table 3, it seems quite obvious that V[ u I is equivalent to

' -
i Va IMJ «, and that we should be able to infer the required result, namely,



b

(2) ViImMl U IR "y 1.

n>0

However, to prove this "obvious" equivalence between AV M I ana V' [M HQ,
we need to relate values of D and D'. As we have already remarked, the techniques
for this are guite standard but they appeal to the construction of solutions to
reflexive domain equations, and we relegate éhe details to Appendix I. It would
be routine to relate any reflexively-defined domain to an analogous one involving

jw, in essentially the same way. (Thus the proofs of the remaining lemmas should

not really be considered when assessing the complexity of our approach.)
Lemma 2 There exists a relation ~ & D x D' such that

i) for all d in 20, d ~ d; and

ii) for all 4 in D and &' in D',

d ~d' iff for all e in D and ¢' in 1~ » D,

e ~c'(») implies d(e) ~ d'(e")
The proof of ILemma 2 may be found in the Appendix.
The next lemma states that "V"I[M ] and “V'[M J= are related by the relation
provided by Lemma 2.
Lemma 3 For all M in Exp and p in Env and p' in Env',
if for all z in Var, p(z) ~ p'(z)ew
)
then V [MIp ~ ViiMIe o',
We shall prove this lemma by induction on M, later in this section.
According to the next'lemma, if d ~ d' then 4 is (continuously) determined
by d'. This will allow us to infer (2) from (1) above.
Lemma 4 There exist continuous functions $:D > D' and r:D' » D such that
i} for all 4 in D, d ~ s(d); and

ii) for all d in D and 4' in D',

if d ~d' then d = r(d').
The proof of Lemma 4 may be found in the Appendix.

We now show how our theorem follows from the above lemmata.

Proof of Theorem 1 Let M in Exp and p in Env be arbitrary. The required result

will follow if we show that
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rul o = L] IR Pen g,
n>0

Define p' in Env' by
o'x) = & 1. s(p(x)

where s:D - D' is as in Lemma 4 i , so that for all z in Var,

p(z) ~ s(p(z)) = p'(z)=.

Now by Lemma 1!, for all n in w(c _ﬂw) we have
VI mMIng' & W' IR M) ] np!

- . s " ==
which by continuity in n and L_J n = o(ip ﬂ ) gives

n>0
(3) Winlepr T || 47IR "o Ieor
n>0
Lemma 3 gives
(4) NIl p ~ NV [M]) =p
and that for all n,
(5) VIR Pl p~ W [®R™ny] wpr.

Let r:g' - 2 be as in remma 4 ii . Then we have
WMl p = (W [M] = p') from (4),

c (L] v IR ] = o) by (3),
n>0

= L_J (VR n(M)B = p') by continuity,
n>0

= L_J vVl | ® n(M)B p, from (5),
nzp

as required.

We now return to our lemmata. The proof of Lemma 1 will make use of the
following standard lemma about substitution, whiech confirms that the operator
[-/%]1- has been defined correctly so as to respect the static determination of

bindings.
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oo
Substitution Lemma. For all M and N in Exp and p' in Env' and k in _ﬂ 5

VoL /%MD kp' =
AL M Ike'fakre [T LW k'p")/x1).

We shall omit the straightforward but tedious proof by induction (on M), which

is entirely analogous to the usual substitution lemma for the standard semantics,
AL

Proof of ILemma 1

We are to show that for all n < « and M in Exp,
NI MIn CA LR W] n.

We use induction on (n,M). For n = 0 and any M, we have VI'[ M] 0 = 1 &
LR O(M) 10, as required.

For n + 1 and any My let v and w abbreviate “\/ T M5 I (n+1) and
; n+1 ; :
Ve [I@ (MD) 1{n+l), respectively. We shall show that v £ w, as required,

by cases on MO.

For (I, we have v = 1, hence v Cow.
Qn+l ¢
For x, we have (x) = x, giving v = w,

For (Ax.M), we have @ n+1(z\x.M) = (Ax.M"), where M' = @ IHl(M). By the
induction hypothesis for (n+l1,M) we have “V"i[ M]n+t1) = V[ M 1 {n+1),

hence v C w (by monotonicity).

Finally, for (MN), take p' in Env'., Then

ve' = (VI MIne) k' € 17 UWOL N J(k' min n+1)p").
Let M' = ® nM(M) and N' = & Tl (N). By the induction hypothesis, we have

A IMln £ W IR T ) In
C "' [mM']n (by monotonicity) ;
also for any k' € ]]_w, we have k' min n+1 < n+l so that
VT IN Dk' min n+1) ©OoA [R SRR AL g g min n+1)

E A IN'T (k' min n+1) (by monotonicity).



Putting these calculations together we get
(6) vo! G (V' Iulne) Ok' € [T.V'[N'] (k' min n+1)p').

We shall now consider the cases for M' ; but note first that when n = 0, we have

AN I M ] Op' = 1, so that (6) gives vp' = 1L C  wp', and hence v E w as required,

We may now suppose n > 0.

For M' = Q, we have VW[ 21 np' = L, and then (6) again gives vp' = 1 and

v £ w as required.

For M' = Ax.M", we have

vo's (W'D M']np') (Mk'e 1°-. V'IN'Tk'p"), by k! min n+1 T k',
= V' IIneike 17, YInN'] k'p') /x])

= A\ .{N'/x]Mj'I ne', by the Substitution Lemma,

= WI e By [N'/xIM" InP', by induction hypothesis,

= AR ™lung ] noe

VIR " om T (ne1)or = wor

In

giving v Z w, as required.

In the remaining cases for M' (viz. x and (M"N")) we have @n+1(MN) = (M'N").

Hence

wo' = (W ImInpn ke 17 A I nD min n+1)p')

so vo' o wp' by (6), giving v Ew as required.

This exhausts the cases for M', thus completing the final case (MN) for ME)'

Having now completed the induction step to n+l, we may infer the required result. R

We finish this section with a proof of ILemma 3. Its simplicity justifies

our earlier remarks about the obviocusness of the equivalence of VI M ] and

VL M .

Proof of Lemma 3.

We use (structural) induction on M. Our induction hypothesis is that for all

components M of MO in Exp,
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for all ¢ in Env and p' in Env',
(7) if for all z in Var, o(z) ~p'(2) e

then V[ M p ~ [ M=o,

We shall show that (7) then holds also for MO' by cases on M_.

0

For £ , we have W[ Q] p = VL Q] ', for any p and p'. But by Lemma 2 i

L~ 1, since 1L € 20. Hence (7) holds for Q

s

For x, we have W[x1p = p(x) and Vi[x Jwp' = p'(x)=
So (7) holds for x.

» for any p and p'.

For (Ax.M), take p and p' such that for all z in Var, p(z) ~ p’(é)w. Also

o«
take e in D and c¢' in 1 - D' such that e ~ c'(®). We have

(VI Ax.M]p) (e} = VWIM] (ole/x])
~ VM) e (p'[c'/x]), by induction hypothesis

= (VM 'I[Xx.MJoep') (c")

so by Iemma 2 ii we get ™ [Ax.MJp ~ A\ '[ix.M I=p’,
(Ax.M) .,

showing that (7) holds for

'Finally, for (MN), take p and p' such that for all z, p(z) ~p'(z)®. Now by

induction hypothesis,

NIMIp~ V[ M o', and
VIN T~ V'[N Iep’
= Ok' € 1.V ' IN] (k' min ®)0') (=)
so that VIm o = (VI ulp)(WIn Ip)
~ (NIl 2" Ok € 17 VI N Ik min =)p)
= VO MN] =p?

so {(7) holds in this case also.

There are no more cases, so we may infer the required result. =
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THE RELATIONAL APPROACH

n : .
Here we use a different operational semantics A& :Exp >Exp, (given in Table
4) which is "outside-in" whereas the previous one was "inside-out" (and this seems
n . ;
to be needed to make the method work) . Again each 45 (M) is an approximate form

of M, monotonic in n. And we will show:

Theorem 2 For all M in Exp

Wil & L) a4 Py

n>0
thereby providing our second proof of Wadsworth's Theorem.

If one tries to prove this directly by Structural Induction on M, the proof
breaks down in the case where M is an application, Consequently, follOW1ng the

idea explained above for every p in Env we wish to define a relation hb between

D and Exp so that:

d~ Miff 4 g ‘__f-\rg[,g "]  and
n>O

Ye € D, N € Exp.e mb N D d(e)mbM(N)

These relations are constructed in Appendix II where we also demonstrate the very

useful:

Lemma 5 Given any d and M if whenever ei~'p_Ni for i = 1,n' it is the case that

dfe ) ... ( LJ“VP Id " MN, ...N O]

then it follows that d ﬂb M.
Note that it follows that lﬁb M always holds.
Now to demonstrate Theorem 2 it is clearly enough to show that “V*[M] (p)mb M

always holds. This is now done by proving a stronger statement (to handle free

variables) by Structural Induction on M.

Lemma 6 Let M be an expression and 0 be an environment. Suppose that a, Np A,
s J )
for j = 1,m. Then

A\~ [M] p[aI/xl,...,am/xm] o [Al/xl,...,Am/xm]M

holds, where the X, are distinct variables,
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Proof By structural induction on M. We will write g for pla /xl,....a /x 1 and
X for [A /xl,...,A /x IK (for any term K), where the aj,A],x:l will be understood

from the context.

Case I M is an applicaticn, M1M2'
By induction hypothesis we have ‘N”ﬂMi] (®) . ﬁi (i=1,2)
So WI'EMIB (0) ( “J”EMZH (E)) hb ﬁl(ﬁé). But as the left hand side is

~ /-\-_/
V HMI(M2)B (p) and the right hand side Ml(Mz) we are finished.

Case II M is Q. This is by the remark after Lemma 5.

Case III M is a variable, x:
Subcase 1 x is some xj.
Then V' [x] o =_aj nb A, =
Subcase 2 x is no xj. Then we must show that
AMIx] o ~, X and we employ Lemma 5, taking e, e, Ni (i=1,n"') and
calculating:

N Ix1 (p) (e)eunte )

= ViIxl (o VIS .U g ™, 16
n n

(since e, ~ N))
« Y

LINF I o) (A L& "N, Te)) oo (v 18N Tip))
¢

L] s 3 an)... (,énwn,) 1)
n

Ll A n+1{xN1...Nn,) 1 (p)
n

as required.

Case IV M is an abstraction, Ax.M'. We may assume without loss of generality that
X is no xj and x does not occur free in any of the Aj.

We apply Lemma 5 and take e ﬁb Ni (i=1,n").
Subcase 1 n' = 0. We calculate

“V’EAxM'] B‘: Ad E D. N Im'] 5Ta7§3 (as x is no xj)

C Ag € Q,LJ VI "M ora/x) (by induction hypothesis applied to M'}).
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LIxa €. 41 g ™ 1 (orasx)
n

LI 1ax 4750 7 (o)
n

i

LI 18 awig o)
n

LI 1 8™ om0
n

as required.
Subcase 2 n' > 0. First calculate that:
6 = AT[m :
N[ Ax.M ](p)(el) [M'] p{el/x,al/xl,...,am/xm] (as ¥ is no xj)

s L}
L {Nl/x,Al/xl, - ,Am/xm]M

(as e, ~b N1 and by induction hypothesis applied to M')

= {NI/X]M' (since x is no Xj and does not occur free in
any A4.)
¥ |
Soase.,~ N_,...,e ~
2 Tp o ' 5 D Nn'
AxMT (D)e, ... ~ !
NT[Ax M) (p)e1 i ™ {[Nl/X]M IN,...N

we have that

I.]I

and so we see that

A [AxM'] (B'}el...en, - l?l_]‘V'E,én(([Nl/x]H')Nz...Nn,)ﬂ(D)

It

|_] 1.3 n+1(()x.g’lv')NIN2...Nn,)] (p)
- _

L] -+~ [4 n+1((m3N1...Nn.)If (p)

n

as required, concluding the proof. b:4
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TABLE 1: STANDARD SEMANTICS

Domains

D= (See text)

ng
¥
no

&
o}
<
1
o
&
[

Denotations

-V : Exp - Env -

na

NI o = p(x)

AN [Ax.mM Q0 = AdeD. N[ J(e(da/x])
N IMNle = (VIMIp) (VIN] 9)

vV [alle = 1

ng



-16—-

TABLE 2: OPERATIONAL SEMANTICS

Rn’?-@*@ (each ne w)

R % - 0

'Q/n-'-l(x) = ;i

(Rn-‘-l(lx.M) = Ax.M' where M!' =@n+I(M)

£, if M* = Q
R = F o /x1umy, if MY o=ax Mo
(M'N'), otherwise
where M' =@an+1(M), N'! =4an+1(N)
R™w) =g

({-/x]1-: Exp x EXp » Exp is the usual substitution operator.)
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TABLE 3: INTERMEDIATE SEMANTICS

Domains
2|=(ﬂmg>g)+ D' {see text)
Eé).l = (ﬂm+2')£
Denotations
Vs Exe >1" > Env' »p
l, if k=0
V' [x] ko' =
p'(x)k, otherwise
{l, if k = 0
'[rx.M].ko' = ®
Y [xx.M].ko iete 1° = Er.'\["[m]] k{p'[c'/x]), otherwise
L, ifk =0
V'[MN] ko' = =
[M N] ke VM) (k=1)e") (k'€ L.V '[ N (k' min k)p'), otherwise

i

[l

'l ko
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TABELE 4: ANOTHER OPERATIONAL SEMANTICS

A%n: Exp -~ Exp (each ne w)

4% =0

45n+1(QN

8

oM, =

n+1
A vy ) = x 8 )L 8 e )

xS () (if n' = 0)
»ffn+1((?\x.1"d)l\ll...Nn,) < !

Jn(([lex]M)N:Z...Nn,) if n' £ 0)
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APPENDIX I

Construction of D and D'

This proceeds as described in [SP]. Let D, be a fixed Tnon-trivial) cpo.

For the construction of D satisfying

first define an w-chain A = <D_,f > of cpos D and embeddings £ :D =+ D by
= =0 N =n n =n  =n+1
2n+1 - (Qn - gn)
R
and fo(d)~ Ae € Qo.d, fO(g) = g(lpo),

_ o R R _ R 5 o
fn+1{g) - fn g fn’ fn+1(h) - fn B fn'

Next D is the colimit of A, being the sub-cpo of ggn of all sequences d with, for
2 =

every n, dn = fn(dn+1)' We have a cone u:A + D of embeddings where
f (a)y (m > n)
nm n =
(un(dn))m = »
£ (d) {(m < n)
mn' n
R = R = (R R
and un(d} = dn, for all n (and where frlm = fm—l 0"'°fn, o _ e
Now we have a cone v:A™ - (2 > 2) where AT = <D fn > is A less its Eifst

]
=
o
=3
Q
=

B R R
element and un(g) =H, g un (and un(h)

Then the isomorphism pair

w]
= 2=
=]

¥
e

is given by the formulae:

LJ\) OHR ’

= n n+1
nzp
R
y=1du o,
an n+1 n

We need to examine the first formula in more detail..

For ¢ we calculate that for any d,e in D

(8(d) (e)) = ( LJumcde(ui(e))))n
m .

]

!
Lu (a (e )

m
- m+1
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and then note that for any n,m

R ; _ R
@@ ) = L wlw @ (e (since £ = H o)
m>n
R.
= L] £l e,
m>n nm' m+l1 " m
In the case where e = 4 (e ) with e in D we have
n'n n =n
@@twen = [ | £@ .  (ke)))
m>n
R
= £ (d (£__(e )))
£§£ nm m+l "nm n
R .
= L T e G ()
m>n
= dn+1(e Y
Turning to D', which is to satisfy the isomorphism
pr=( 1" >0 >0
we take the w-chain A' =«<2£,f£> of cpos and embeddings where
1 ) @
= = . ' > 0
"R B =L v opy
and  £.(d") =Ac' € ( 17 >DY. a', £(g") =q'(L . )
0 0 S 1° - D'
R R R
] = LI Ll i QR 1 1 - 1 ° L S | A
fn+1(g ) fn g' o (f 0 ), fn+1(h ) fn g (fn Y

Now D' is the colimit of A' being the sub-cpo of QQ'H of all sequences 4' with,

R
for every n, d& = fé (d'n+1). We have a cone pu':A' - D' of embeddings defined as
before (and with uAR(d') = dé, as before). Now we have a cone v' from A' (defined
as before) to ( 1% > DY) 2', where vé(g') = u& o g' o (uARO =) (and vAR(h') =
WR o h' o (u! o -)).

Then the isomorphism pair
2'2‘(1 +2:)+2.

is given by the analogous formulae to those for & and ¥, Upon detailed examination

these yield for any d' in D' and c' € ( jlm -+ D') that

1 ] ] 1 — IR ] IR ]
(@'(a") (")) = ]_] Eom(@ e (7 0 ey
m>n



Also for any d' € D' and cé € ( 17 + D) we have that

[+}

(@'(d')(ué Cé)) =, AEl)

n n+l'"n

The relation between

{[lw}

and D'

First we inductively construct relations o between Qn and Qﬁ by
d ~ a' iff d = a'

d gy 4" AEE Ve€D , o € (] - Di)-e ~, e'(®) Dd(e) ~ a'(c').

We recall that for cpos D and E a relation R S D x E is inclusive (termed
w-complete in [SP]) iff it is closed under lubs of increasing sequences, which
is to say that if dh' en are increasing sequences in D and E respectively then

if R(dn,en) holds for every n so does R(LJdn,LJen).
Lemma 7 Each . is inclusive.

Proof By induction on n. For n = 0 this is obvious. For n + 1 assume for all

m > 0 that d ~
- m

- d' where d,d' are increasing sequences. Take e in Dn’ &' in
m =

1 - gé with e ~ ¢' (%) . Then dm(e) o d&(c') an@ SO %kdm(e)) = %J(d$(c')),

by induction hypothesis and so we have (|]d) (e) = %gtdm(e)) ne, %i(dé(c'))f (e,
concluding the proof. ]
Lemma & i) For all @ in D and d' in D

d~ d' of () ~
n n

n+l fn(d B

ii) For all 4 in D and 4" in D'
=n+1 =n+1

A ' R i R '
a %4 a'S fn(d) . fn (a').

Proof By simultaneous induction on n. For n = 0O suppose first that 4 ~o d'. Te

show f5 (d) ~ fé(d') take e in D_. and c' in ﬂw + D! with e ~0 c' (=),

1 0 0
Thenfo(d)(e) = dand £4(d') (¢") = 4d', so fo(d)(e)ﬁt)fé(d')(c') as required.

Next suppose d ~y d'. As L~ Ok € 17 .0 (=) we have £(d) = d(D) ~y d' Ok € 17,1 =

i R(d') as reguired.
-0

(o]
1]
1 and c' € (_ﬂ > Q£+1

R
fé (c'(=»)) (by induction hypothesis)

)

n+1

For n + 1, suppose first that d ~ d' and take e in D

=n

such that e ~ c'(*) . Then fR(e) ~
n+1 n n

R ~ ' R ' . R R
so d{fn(e)) 2 d (frl e c') (by assumption); so fn(d(fn(e))) G fé(d(fﬂ s o'}

(by induction hypothesis). But this is just fn_‘_l(d)(e)ﬁ'f'+1 (d'kc') as required
5 .

The proof of the second part is similar. R
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Now we can define our relation between D and D' by

d~d' if ¥Vn .d ~ 4d'.
n n n

By Lemma 7 and the compeonentwise calculation of lubs of W-sequences in D and
D' we get that ~ is inclusive. By Lemma 8 we get that for any d in Qn and d'

. s i ' - v '
in gn if 4d L d' then un(d) un(d e
We are now is a position to supply the proof of Lemma 2.

Lemma 2. Proof i) What this claims is that for any d. in D, it holds that uo(do) ~

0 0

ué(do), which follows at once by the above remark and the fact that dO ho do.

ii) = : First suppose d ~ d' (so that dn+1 ~ d'n+1 for any n). Take e in
D and c¢' in _ﬂm + D' such that e ~ ¢'(») (to show that d(e) ~4d'(c"), meaning that
2(d)(e) ~@'(d')(c'")). Now since e ~ ¢'(=) we have for any m that e Nﬁ (uéROC'){m)
R
: : i 1 ' '
and so by assumption, we have dm+1(em) - d m+1(um oc'). Therefore by Lemmas 7
and 8 ii we have for any n that

R ~y IR ] lRD 1
L,J fnm(dm+1(em)) n L_I fnm(d m+1(um 2t
mzp mzp

and by the above remarks on ¢ and ¢' this is just

(¢(d)(e))_~_ (&'(d') (c"))
n n n

showing ¢(d) (e) ~ ¢'(d"(c') as required.

ii) < : Suppose that whenever e in D and c¢' in ]% »> D' satisfy e ~ ¢'{x)

then ¢(d) (e) ~ ¢'(d')(c'"). We wish to show that d ~ d' and by Lemma 8 ii it is
B v . tak G [ = ]

enough to show dn+1 A a sl for all n. So take e in En and c¢' in ﬂ =5 Bn such

that eﬂhc'(w). Then by a previous remark we have un(e) ~ (u'n o c')~ and so, by

our supposition, that @(d)(un(e)) ~:@'(d')(u$ o &),

So we have

dne1

]

(@(d)(un(e)))n (by a calculation given above)
e ﬁ@'{d')(ué ° C')}n (as just shown)

dﬂ+1(c') (by a calculation given above)

showing that dn+1 ﬁ'dn+1 and thereby concluding the proof. B
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The functions s and r

First we inductively define continuous s_:D -+ D' and r :D' -+ D by
n =n =n n=n =n

Sl = T o= imdl 4
o 0 2o

0]
2
1]

r'e 17 D' . os (d(r (' (=)))),
=1n n n

r (@)= 2X€p . r (@ 0ke 17 .s (e))).
=n n n

R R
T 9 1 1
Lemma i) For all n, fn L | S, ° fn

.. R R
ii) For all n, fn °r .4 =Zr o f;

Proof By simultaneous induction on n. For n = 0, first we have f'%(sl{d)) =
= 0 - 2 - R . R ] — 1 -
sl(d)(L) = so(d(rO(L( )1)) = daw) = so(fo(d)), and second fO(rI(d )) = rl(d ) (L) =

] £ - 1 e lR ]
r,(d' (AKE A S = dt) = ry(edTan).

(ool
apd w* En. T =+ B,

For n+l and part i we first calculate that for any d in 2n+2 D’

g2 e o (D) (e)

|R ] 1
2o B fn (sn+2{d)((fn o =) (c")))

- |R ' 1
= fn (Sn+2(d)(f n®C ))

R

= £ (sm_l(d(rn+ (fﬁ(C'(w))))))

1

and then calculate that

R ' g R " (o
sn+1(fn+1(d))(c ) = Sn(fn(d(fn(rn(c (=) ) %33 .

R
; ; : ; .
But (fn ° Sn+1) = (sn ° fn) (by induction hypothesis, part(i)) and also
(z: o £1) 3 £ o fioerx o £'' J £ o r o £15 o £' (by induction
n+l n = n n n+l n n n n n
huypothesis, part ii ) = (fn o rn) and applying these two facts enables us to

complete the above calculation, showing that
R R
] (s 1 1
BB @) e O e € 18y} (o*)
as required. For part ii the proof is similar. -]

Because of part 1 of this lemma, for any 4 in D and any n, the sequence

R ; : ;
<E£' (s _(d ))> 1s 1increasing and so we can define s:D - D' by:
nm m m =~ m>n = =

nm m m
m>n

s@)_= LI g7 (a)
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it being simple to verify that s(d) is in D'. Similarly using part ii we can

define r: D'> D' by

ar = R '
Celd* i, m[;jn £ (r (@' ).

Lemma 10 i) For all dinD , d~ s (4).
ZEMa Y =n n n

ii) For all d in D_ and &' in Q;

if d~ 4d' then d = r_(d').
n n n
Proof Simultaneous induction on n, the case n=0 being evident. For n+l1 and
o]
part i suppose d is in 9n+1' Take e in Qn and ¢' in ] - Qé such that

e “h c'(®) (so that e = rn{c'(m)), by induction hypothesis part ii ). Now we

just calculate that

d(e) ﬁh sn(d(e)) (by induction hypothesis part i)

sn(d(rn{C'(w))))

S 41 (d) (c")

as required.

For part 1ii suppose 4 is in gn and 4d' is in QA and d ~ d'. For

+1 +1 n+1

any e in Bn we have
B = sn(e) (by induction hypothesis, part i )
= (k€ 175 () (=)
and so Ad%e)ﬂh dr' (Ake ﬂm.sn(e)), by assumption

and so d(e) = rn(d'(AkE _ﬂm.sn(e))), by induction

hypothesis, part 1ii . But this just says, since e was chosen arbitrarily, that

s T
d = rn+1(d ) R

We can now prove Lemma 4.

Lemma 4 Proof i) Take d in D. Then for any m we have dm ~ s (d ), by Lemma 10i ,
= m m m

'R(s (a
nm m m

and so for any n and any m > n we have by Lemma 8 ii, d ~ f )) and so,
== n n

by Lemma 7, d mh(s(d))n, showing d ~ s(d) as required.
n
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14 ~ L ~ 1 = ]
ii) Suppose d ~ d'. Then for any m we have dm dm and so dm rm(dm) by

R
Lemma 10ii . So for any n and m>n, by Lemma 8 ii we have dnzfnm(dm) =

R . , :
' = ' — A
£ (r_(d")) and so dn {(r(d ))n by Lemma 7 showing d r(d'), as required. R
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APPENDIX IT

We show that a relation, mb, with the required properties exists. First

define relations ~§ between Qn and Exp for every n > 0 by:
Sise v 18>
4~ M AEE Va'XONN LN (@ & [V RS Kew L)1)

k
a~D* oy ser L. (d) T L_I b E[’ESRMH (p) and
p n+1 X

(Ve €D ,N € Exp . e ~ N Dd(e) ~M(N)).
=1 — P p
Lemma 11 i) 4 ~§ MOAFE po(d) C I_j~\r I =f kM]! (p) and for all N,d n% M(N) .
k

ii) L NQJM always holds.

Proof Obvious. =}

1 3 . . .
Lemma 12 Each ﬁb is inclusive (in its first argument).

Proof Easy induction on n. R

Lemma 13 i) 1If d N;I M then £ (d) ~§+1 M

£1) TE 4 s TE i Shen B o8
P n p

Proof By induction on n. For n=0, assume for i that d ~;)M. Then first we

calculate that:

1

ul(fo(d))

by (d) T U-’v [ % (o)
k

and second, supposing that e AﬁJN we see that fo(d)(e) =d ~§)M(N), by Lemmail i .

So fo(d) ﬂg M as required.

Next, for ii suppose that d ﬁé M. We show, using Lemmall that fg(d) ﬁg M.

First,
n R
u (£2(A)) = (£, o £2(d) C w (&) C [_J“\rlrszm]{o).
9L € 10 0 1 = X
since d mg M. Next for any N, since L ~;) N, by Lemmall ii we have
R . 0 .
fo(d) = d(J-)"-‘D M(N), as required.

For n>0, the verification is routine. b=
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Note that L ~; M always holds and that if d'C 4 ~2 M then Q' ~2 M, that is
~§ is downwards closed in its left argument. All in all, {d| d ~; M} is always a
non-empty Scott closed set.
Now we can define the relation = by:
g n
d~ M iff Wvn. d ~ M,
p n o
This is clearly inclusive using Lemma 12, and indeed L Np M always holds (and

actually {d[d ND M} is always non-empty Scott closed). Note that, by Lemma 13 ,
if @ ~° M then p (d) ~ M.
p n e

Now we show that the recursive specification for ~ is satisfied.
p

Lemma 14 d~pM iff 4 . U“\fﬁzg‘mﬂp and
X

(Ve ~ N, d(e) ~ M(N)).
p P
Proof This is routine, but perhaps worth writing down.

= Suppose d Np M. Then dn NIF; M, so un(dn) & U“\f’ ;{,ékm]] (p) holds for every
k

n and so holds for 4 = [__I u.n(dn) -too. Next, suppose e Np N. Then g ~2 N
n

n+1
and so, as d

n
1% M, we have dn+1(en) Np N and so un(dn+1(en)) Np M(N) and

so, as d(e) = Uun(dn+1(en)), d(e) Np M(N), as required.

k
< Suppose d [ LI“L/'[Q? M] (p) and whenever e ~ N then d(e) Np M(N}). We will
k

n+1 bk k
show that dn+1 Np M, for every n. Clearly un+1(dn+1) C IEJ/\./ [[;z? M1 (p), from

the 'supposition. Suppose that e~;' N. Then u.n(e) Np N and so d{u.ne) Np N and

_ % '
so dn+1(e) = c’i(}.Lne)n Np N, as required. R

Proof of Lemma 5 We show by induction on n that for any d,M if for any n'>0

whenever €. 1 Ni (for i = 1,n') then
o}

k :
del...en - L}EI’V'[I‘Q& MNI"‘Nn' I (p)

then it follows that dn ~2 M.

First suppose n = 0. Take Nl"""Nn" Then _L~p Ni and so



oY rn

k
= TR R = i
uo(do) uo(dO)L 12 4L L_Jihf [Qg MNI""Nn' 1 (p)
as required.
For n+l1l, first

k
Moeld ) EdE I]_{_l"\)' [ 5m1] (pT

and second, suppose that e mg N. Then un(e) hb N. Now suppose that, in order to

apply the induction hypothesis to d(une),MN, that ei mb Ni for i = 1,n'. Then
k
d(une)el....en, ; %J‘\f Lég (MN)N1'°"Nn' 1 (p)

8 n i
by assumption on d, M and so (d(une))n 5 MN. But as d(une)n = dn+1(e), it follows

n n+1
~

that dn 1(e) 5 MN and so, finally, that dn+1 M, as required. ]

+



