TI h_”mn._ 95 E8 21 ~ 90 ‘ouoydepe |
MHYWNIQ — D snyley 0008 3a — epeBexuniy Ay

ALISHIAINN SNHYVY

_I_I_J_ _ - waswyedaq aousids eyndwo?

L148-9010 NSSI

$861 Ioquiada(
L81 - dd INIVA

NIRULIBN] 1INy

suoneIsYIop [edrgyders) uo
judwido[aAd(q werSoxg

PB - 187

K. Nermark: Program Development on Graphical Workstations

NYIIH/INIVA NAHL

Program Development on Graphical Workstations
Kurt Ngrmark

Computer Science Department, Aarhus University, Aarhus, Denmark

Abstract.

The aim of this paper is to emphasize the merits of progr.m development on graphical
workstations. A workstation with a graphical display and a pointing device is an inter-
esting base for new programming environments. Sufficient machine resources are provided
to support advanced software development tools, and a considerable improvement of the
programirer-machine interaction is possible. Program editing on graphical workstations is
discussed. Using windows, a program can simultancously be presented at several abstrac-
tion levels and hereby good program survey and rapid program navigation is provided. We
discuss how to cope with the large set of commands in syntax-directed editors, and how to
create programs using the pointing device as the primary input medium. Testing incom-
plete program sketches by simulating unimplemented facilities via so-called state editing is
explained. Simple graphical means scem to be useful when observing the program state. It
is argued why continuous program observation combined with programmer conlrolled exe-
cution speed (including reverse execution) is valuable. Examples are drawn from the Klkko
design—a proposed integrated program development system for graphical workstations—
and from an implemented syntax-directed editor on a Perq workstation.

Note. This paper is to appear in the proceedings of the Iighteenth Annual Iawaii Interna-
tional Conference on System Sciences, 1lonolulu, Hawaii, January 2-4 1985.

1. Introduction.

The aim of this paper is to point out the advantages in applying a graphical workstation
as a host for program development systems. Most of the paper is based on research carried
out in the Ilkko project at Aarhus University in Denmark during 1982 and 1983. In the
Ilkko project a concrete system has been designed, but instead of a detailed presentation
of Iikko in this paper we will focus on some areas of program development, where a
graphical workstation seems to be an interesting alternative to more traditional hardware.
As will appear, most of the ideas presented in the paper can be found in some already
implemented systems, but we hope that this paper will be a small contribution to a more
coherent exploration of the subject. Several examples will be drawn from the Ekko design
as well as from other similar systems. Notice that only a very small part of the Ekko
system is implemented. The implemented part of the systems is briefly illustrated and
described in the appendix.

Today, software is typicall; developed and used on the same machine. The program
development system consists of some primitive tools linked together in a general purpose
operating system. Some important problems of such program development systems can
be summarized in the following points:

(1) The user interface of the program development system is purely character-oriented
preventing an adequate interaction style.

(2) Too little knowledge about the programming language is present in the program de-
velopment tools.

(3) The integration among the program development tools is not sufficient.

(1) The incrementality of the tools is too small.

An integrated sct of program development tools must be co-operating, it must be casy
to switch between using the different tools without losing accumulated information and
finally the tools must have a common user interface. And a tool is said to be incremental,
if it is able to perform a task in several smaller units, and thercby obtain a result similar
to the resull obtained, if the task was performed in its entirety.

In our opinion, software should be produced using advanced program development systems
mn the same way that other advanced industrial products are produced in highly specialized
environments. When the software is complete, it should be possible to move it to a target
machine of another kind than the program development machine. The same approach is
encouraged in Ada Program Support Environments!”.

Belore we proceed, we will give a characterization of a graphical workstation. A graphical
workstation is a single-user machine having a graphical raster display, a pointing device
(hereafter called a mousc) and a keyboard. The processor should nearly be as powerful as
a mainframe processor and a large primary as well as secondary memory must be available.

Several existing program development systems and isolated tools are hosted on various
)
graphical workstations. Smalltalk-80 can be considered an object oriented program de-

velopment system”. The tools in the system are well integrated and the user interface is

2

largely based on windows and menus. Smalltalk is currently running on for example the
Xerox Dorado and Dolphin workstations. Interlisp®!Y has been, for more than a decade,
one of the most advanced programming systems used in the scientific community. The
Programmer’s assistant, Masterscope and “Do What I Mean” are some of the well-known
Interlisp tools. A version of Interlisp called Tnterlisp-D? is running on the Xerox 1100 se-
ries graphical workstations. Here all the ordinary Interlisp tools are present, together with
some display oriented facilities for editing and data inspection. At Brown University a
program development system called Pecan'® is running on Apollo graphical workstations.
Pecan provides many different views of programs and data, for example, a textual view
of a program manipulated via a syntax-directed editor, a graphical flow chart view and a

symbol table view.

As already mentioned, Ekko? is an integrated program development system designed specif-
ically for a graphical workstation. Ekko supports development of Pascal programs during
syntax-directed editing, dynamic examination tools and tools for program administration.
The syntax-directed editor is implemented on a Perq workstat on (see the appendix), and
the entire system is described in detail in reference 2.

In the rest of this paper a more detailed discussion of program development on graphical
workstations will be carried out. In section two some general advantages of applying a
graphical workstation during program development will be presented. In section three
program editing on a graphical workstation will be considered, and in section four and five
program testing and program state observation is discussed.

2. General Advantages of Applying a Graphical Workstation.

In the introduction we postulated some problems of traditional program development sys-
tems, and we described some properties of a graphical workstation. In this section we will
explain why the properties of a graphical workstation form one way to overcome some of
these problems.

As has been demonstrated in, for example, Smalltalk-80 and Interlisp-1) the graphical
display and the mouse together form the basis of a qualitative improved user interface.
The now widely used window concept, pionecred in the development of these systems,
turns out to be an important way to achieve integration among the program development
tools. A window visualizes an activity by constituting a frame around it, and the activity
is still visible and present while other tasks are performed in other windows. IFurthermore,
simple graphical means can replace the exclusive usage of text in today’s program editing,
and a much more direct and natural interaction style becomes possible by allowing selection
and manipulation of program clements on the display using the mouse.

A powerful processor is desirable for incremental execution of some tasks during interactive
use of the system. If, for example, static semantic analysis or code generation is to be
carried out during interactive editing in an incremental way, the editor’s response time
should not increase above some upper limit.

And finally, much memory is needed to support the graphical capabilities and to represent
programming language information. Furthermore, in an integrated system much memory
is necessary to store the state of temporarily suspended activities.

3

In the following sections, usage of a graphical workstation in more specific functions of the
program development process, will be discussed.

3. Program Editing.

In this section we will discuss advantages of doing program editing on a graphical work-
station. A program editor we consider as an editor knowing some of the formal rules of
a programming language. One particular class of program editors is the syntaz-directed
editors, where syntactic program constructs rather than pure text are manipulated by the
editing commands. The majority of existing program editors are implemented on comput-
ers having traditional interaction hardware: a character oriented display and a keyboard
as the only input and output devices. The editors in Mentor?, the Cornell Program
Synthesizer'® and Aloe!! are all examples of such editors. But recently, several program
editors have also been designed for various graphical workstations, ¢.g., the Pecan syntax-
directed editor'®, the editor in Magpie®, the GLSE editor!® and the Ekko syntax-directed
editor?. It is furthermore interesting to notice that Emily®, the very first syntax-directed
editor reported in literature, was based on equipment having a graphical screen (a vector
technology display) and a pointing device (a lightpen).

In this section we will first thoroughly discuss various program presentation techniques.
Then a note is given on the large command repertoire in especially syntax-directed edi-
tors. After that, we will describe techniques whereby the mouse can be used even more
extensively than in most existing syntax-directed editors. Tinally, some screen updating
problems, and programming language comments in a syntax-directed environments, will
be treated. :

3.1. Program Presentation.

Basically, the bitmapped raster display of a graphical workstation is well suited for repre-
senting a large amount of textual as well as graphical information. But cven the largest
existing display can only contain programs of modest size in full detail on the display.
Therefore, sonme kind of technique is necessary to sclect that subset of the program which
is to be presented on the display. Two techniques are widely used:

(1) Windowing: The program is seen through a window which can be moved across the
program (or equivalently the program can be moved relative to a fixed and non-
movable window).

(2) Holophrasting: Certain program constructs arc elided and short “cover names” are
shown instead. The cliding can be automatic or controlled by the user.

In the first approach an unbroken and relatively small section of the program is presented
in full detail on the display. Using the second approach a larger part of the program can be
shown, but not in full detail. This approach requires that the editor knows the syntactic
structure of the program.

/\
\/

Fig. 1. Presentation of a program P and four modules, M1-M4. An arrow indicates
“imports from”

We will now describe a more general program presentation scheme, which seems to be
attractive, when the host of the editor is a graphical workstation. Let us in troduu, the
technique by considering an analogy not bounded to the computer arca.

We want to get some geographical information about a small country in Furope. Instead
of traveling around in the world to find this information, most people would probably use
an atlas to observe the information at an appropriate level of abstraction. In the “physical
world” too many irrelevant details are present, and it is inpossible to get a survey of the
desired structure. In the atlas a map can be found, where nearly all details except the
“country structure” are suppressed. If we start by looking at a world map then Furope
can be located, but perhaps not the small country we are looking for. We then select a
detailed map of ISurope, and as a third step a detailed map of the desired country might
be found. That is, by turning some leaves in the atlas the desired geographical information
can be observed at various abstraction levels.

Having this analogy in mind, we will now describe some general properties of a program
presentation scheme. The key problem is selection of abstraction levels for program pre-
sentation fitting the actual needs of the programmer. If the programmer wants to see the
entirety ol a program having many modules and hundreds of procedures, then nearly all
details, except the module structure of the program, have to be suppressed in the presenta-
tion. A graph showing the modules and their import-export interrelations would probably
be appropriate, see fig. 1.

Having provided the possibility of program presentation at several levels of abstractions,
some means should be available for the programmer to select a construct at one abstrac-
tion level, and request presentation of this construct at another (or the same) level of
abstraction. The two presentations should be shown simultaneously on the display, which

. :

is easy on a graphical workstation using two different windows. According to the map
analogy, one useful application is selection of a construct at a high abstraction level in
order to observe a more detailed presentation of the construct at a lower level. If, for
example, the programmer wants to see some details of a particular module in fig. 1, then
it should be possible to present this selection at lower level of abstraction in a new win-
dow, using the traditional textual program presentation or a presentation showing only
the procedure structure of the module. But also the opposite direction may be useful,
i.e., to select a construct presented in detail, and have this construct presented in another
window, suppressing some of the details to provide a better survey. In our opinion, si-
multaneous program presentation at different abstraction levels is important, because it
allows presentation of both a survey of a large piece of software and detailed views of some
selected constructs at the same time. Furthermore, it provides a fast and flexible way of
program browsing, similar to browsing known, for example, from Smalltalk-807.

Finally, it should be possible to modify a program at each abstraction level of program
presentation. Forcing the programmer to make all modificatioas at one particular level of
abstraction, say the textual level, is not satisfactory. It means, for example, that it should
be possible to add and delete import-export relations in fig. 1 solely by manipulating arrow
symbols, rather than stating textually in another window that “M1 imports M2”. It is
impertant to remember thal each window is just a view of (some piece of) a program.
That is, modifications in one window can affect the contents of several other program
presentation windows.

The program presentation and modification scheme described above is fairly general. We
will now consider some special cases of the scheme found in some existing program editors
on graphical workstations.

A particular simple case emerges, if a program can be shown in dilferent windows using the
same abstraction level of program presentation. One useful application ol this technique
is to show some declarations of names in one window, while the context of some applied
occurrences ol the declared names are shown in other windows. Hereby it becomes possible
to look al the definitions of names, while they are used in parts of the program far away
from their delinition. Support?! is an example of a program editor allowing data defini-
tions and control to be shown in different windows. Support is, among other machines,
implemented on a Sun workstation.

16 a program can be scen through several so-called wiews: An ordinary textual

In Pecan
view, a [low chart view, a textual view of declarations and an expression view showing
the tree-structure of an expression. The program can be modified through the textual
views, whereas the llowchart view and the expression views—al least in the implementation
reported in relerence 16—are recad only. All the views in Pecan show the program at rather
detailed abstraction levels. The expression view is even more detailed than the textual
presentation of an expression. Views at higher abstraction levels such as “procedure-level
connection diagrams” are only shortly discussed in reference 16.

In Ekko? a program (and the modules on which the program depends) can be presented at
three abstraction levels: At the module composition level, at the procedure composition
level and at the body level. The program can be modified at all three levels, and this is

6

in our opinion very important. Exactly three windows are used, one for each abstraction
level. At the module composition level a graph—Ilike the one in fig. 1—shows the modules
and their import-export relations. At the procedure composition level a tree shows the
procedure structure of the module (or main program) selected in the module composi-
tion window. And at the body level a textual presentation of the procedure selected in
the procedure composition window is presented. Textual presentation of local procedures
via textual nesting is omitted in the body window, because this information is presented
better in the procedure composition window. A similar approach, using textual program
presentation at all abstraction levels, is present in Loipe®. The Ekko approach of program
presentation on the screen resembles somehow the holophrasting approach. Some syn-
tactic details are elided in the program presentation at the higher level, but the selected
“holophrast” is automatically expanded and presented at the lower abstraction levels. The
choice of the elements in the various abstraction levels determines a fixed syntactic elision
scheme.

Until now we have only been concerned with presentation and editing of one program at
a time. In the general case it should be possible to edit several programs simultaneously
in a co-ordinate manner. Hereby it becomes easy and atiractive to transfer some program
constructs from one program to another. This is very important for reusability of already
existing programs and program fragments. Still, we want to retain the possibility to present
each program in several windows at different abstraction levels as described above. So,
one means or another should make it possible to distinguish between different programs.
If the workstation has a color display, each set of windows presenting a particular program
can be shown using a particular background color.

In the Ekko system, a program fragment facility constitutes a rather limited elaboration of
a multi-program editor. In a fragment window several program fragments can be defined.
A fragment is not named, because it is identified as a prefix of itsell, using a very small
font (sce the figure in the appendix). The selected program fragment can be modified as
it is possible to modify the working object. The program fragment facility is a flexible
equivalent to the traditional register facility known from many text cditors. However, the
general approach having several co-ordinate programs in the editor should be preferred,
rather than one special program of interest together with a collection of program fragments.
In Ikko it is, for example, not possible directly to insert a fragment into another. This
seems to be an unnatural limitation.

3.2. Command Repertoire.

A syntax-directed editor is characterized by a very large set of commands. Some of the
commands are directly derived [rom the programming language while others are indepen-
dent ol the programming language.

Each construct in the programming language gives rise to one or more commands, and
it turns out that more and more commands arc added to new syntax-directed editors in
order to achieve more flexible modification facilities (e.g., the nest and transform com-
mands in Aloe'!). In IEkko, approximately 170 different programming language dependent
commands are possible for the Pascal dialect on the Perq. It is very difficult or ncarly

7

impossible actively to remember the names of so many commands, even if some kind of
systematic naming of commands is used. Using command menus, the user should not
actively be able to enter a command name. It is sufficient if the user is able to deduce
the semantic value of the command from the syntactic command name in the menu. It is
well-known that it is difficult to grasp a menu with many fields. Therefore it is important
to organize the system in such a way, that only a few menu fields are visible at any time.
Ekko uses postfix syntax (i.e., the command follows the argument selection) and therefore
the system is able to present only the legal commands at any time. The longest command
menu in [Fkko for the Perq Pascal dialect contains 34 commands (concerning nesting in
different expressions), but the average length of command menus is much smaller.

Cursor movement commands are examples of programming language independent com-
mands. If the keyboard is the only input device, text oriented commands or function keys
have to be used for cursor movement. In the Cornell Program Synthesizer'® 13 different
cursor movement commands are available. When a pointing device is present, it is easier
to select a mew construct by pointing at some syntactic ent:iy logically associated with
the construct. An array type, for example, can be selected by pointing at the keywords
“array” or “of” in Pascal. This technique is absolute navigation whereas the former is
relative navigation. Absolute navigation is only possible if the new construct is visible on
the display. Therefore a scrolling facility is also necessary if absolute navigation is used.
In relative navigation scrolling can be activated implicitly when the cursor is located near
the border of a window.

3.3. Programming by the Mouse.

Because the graphical workstation has two input devices (a keyboard and a pointing de-
vice), the user typically shifts between using the two devices. Some users consider such
a shilt as a discontinuity in the interaction. Therefore it scems wise to use one of the
two input devices as the primary one, in order to minimize the shifting. It is relatively
unproblematic to design a system where all actions can be issued via the keyboard, for
example using various conlrol sequences. We will in this section discuss the other extreme:
maximal use of the mouse.

We have already mentioned several advantages in moving the cursor and initiating editing
commands using the pointing device. But still a considerable part of the total amount of
input is specification of user defined names and literals. The keyboard is well suited to
enter the first occurrence of a name, but then the following occurrence can be specified
via the mouse by referring to an already existing occurrence of the name. Typing only the
first occurrence ol an identifier reduces the number of primitive input actions considerably,
and misspelling is nearly climinated.

16 collect already used

Several syntax-directed editors, for example Emily® and Pecan
names in a menu, which is presented when an identifier is expected. Some context infor-
mation could be used to reduce the length of such a menu. In Ekko, an alrcady existing
occurrence of a name or a literal can be copied directly from one place in the program to
another. (Sclect the existing occurrence of the name and while the button on the mouse is

pressed, move the mouse slightly and the name will be copied). By referring to a scoped

3

occurrence of a name instead of a name in a menu, the name binding process of the static
semantic analysis (i.e., the process of binding applied names to the defining occurrences of
the name) could furthermore be controlled directly by the programmer. The programmer
is supposed to enter the defining occurrcuces of a name via the keyboard, and all the
applied occurrences of the name by referring to the definition of that name. However,
several interesting problems arise. The proposal requires definition before use, not textual
but on the time scale. And it would be possible to break the normal scope rules of the
programming language if the same name is used in different scopes, and if an inner name
occurrence is bound to the outer meaning of the name. Finally, it is not clear how to
visualize the actual binding between an applied name occurrence and a binding occurrence
of the name. Anyway it can be seen, that by adapting an adequate editing discipline (per-
haps somehow restricting the freedom of the programmer) more secure program editing is
possible.

3.4. Updating the Screen.

Experiences from the Ilkko project and from an earlier implementation of a syntax-directed
editor on a timeshared computer in Aarhus'®, show that it requires many computing re-
sources to obtain a “real screen oriented interface” of a syntax-directed editor. The reason
is mainly the substantial structural difference between the internal program representation
(a tree) and the usual textual screen presentation. The implementor of a syntax-directed
editor has to be carcful that (1) the screen updating process following a program modifica-
tion and (2) the selection of a particular construct by pointing at it using the mouse, both
can be carried out within reasonable response times. A powerful processor in a graphical
workstation will help by making these two kinds of operations fast enough.

The screen updating can either be incremental or total. In both cases “screen flicker”
should be minimized. In Ekko we use a total rewrite of the working object window for every
editing action, and screen f(licker is avoided by writing the program into an intermediate
bufler, which is copied to the screen in one RasterOp operation'®. Tkko traverses the
whole syntax tree lor every screen rewrite, but this is too slow when the program becomes
considerably larger than the working object window. ISither a smaller tree should be
selected as the base of rewriting, or an incremental screen updating technique should be
adopted.

Fast response times are essential for selection of a program construct with the mouse, in
the same way that fast response times arc essential when activating a key on a keyboard.
In Ilkko, the position of every program construct is stored in association with the nodes
in the abstract synlax tree, and every program modification leads to a recomputation of
this information. Sclection of a program construct activales a simple scarching procedure
ol complexity O(h), where h is the depth of the abstract syntax tree.

3.5. Comments.

As the final subject in this section we will discuss comments in a syntax-directed program-

ming environment. As has been discussed in several papers®!tH'8 comments as lexical

9

elements cause problems in editors where the syntactic constructs are the elements of ma-
nipulation. Only those comments, which easily can be associated with syntactic structures
in a program, can be handled satisfactory of existing syntax-directed editors. But still there
are problems, for example concerning placement of the comments during pretty-printing.
A classification of comments might help solving some of the problems, but in our opinion,
the syntactic oriented comment concept is not satisfactory. It would be of great value to
have a similar free comment facility in a syntax-directed programming environment, as we
know from pure text-oriented programming environments.

In Dice®, two classes of comments are identified: left comments and right comments. A
left comment of a program construct is printed before the program construct. A right
comment is regarded as an annotation of the construct, and it is printed to the right of it.

In the Cornell Program Synthesizer!®, the comment concept and the holophrasting mech-
anism are coupled together. Certain program constructs can associate a comment, and
the program construct itself can be elided leaving only the comment on the screen.

Also in Ekko, a comment is associated with a syntactic structure in a program, and there-
fore we call it a structure comment. The facility is designed to provide a clean user interface
easing program development by stepwise refinement®’. A structure comment can be asso-
ciated with every program construct corresponding to a node in the abstract syntax tree
(except identifier and literal nodes). Just select the node, enter the text and the structure
comment will substitute the program construct on the screen. A characteristic font is
used on the screen of the graphical workstation, to make clear that the text is a structure
comment (sce the picture of the screen in the appendix). Two commands allow alternating
views of the structure comment and the underlying program construct, but both cannot be
presented at the same time as in the Cornell Program Synthesizer. The structure comment
associated with a construct does not impote any restrictions on the editing commands on
the construct. Therefore the structure comment concept makes it attractive to develop
programs in a top down manner by stepwise refinement. An unexpanded structure com-
ment can be refined in exactly the same way as the underlying unexpanded placcholder.
The most important drawback of the structure comment concept in Tkko is, that it cannot
be associated with a sublist, which does not correspond to a node in the abstract syntax
tree. It is not clear what to do when the commented list is extended or reduced, but it
would probably be an advantage to impose a hicrarchical structure too on “flat lists” in
a program. In this way a comment can be associated with an arbitrary node in the list
hierarchy.

4. Program Testing.

Program testing is the process of examining whether the program realizes the vision of the
programmer, 1.¢., to determine if logical errors exist in the program. Testing any non-trivial
program is an incremental process, because several sub tests of different program aspects
arc to be performed to ensure the correctness of the whole program. In this section, tools
supporting two different incremental program testing techniques will be discussed. The
testing techniques to be treated arc a top down testing technique and the more traditional
boltom up testing technique.

10

Consider program construction by stepwise refinement as creation of a sequence of program
sketches ranging from a very rough draft (only containing the main structures of the
program) to the final and detailed program. In order to examine if the already implemented
aspects of a program sketch are in harmony with the vision of the programmer, it is
desirable to be able to execute each of these program sketches. The problems to cope with
are the incomplete nature of the program sketches, for example, what to do if meeting
an undeveloped placeholder, an unrefined structure comment, an undeclared variable or
an obvious incorrectness during the execution. In our opinion, it is important not to
force the programmer to refine the program in a way, dictated by the order in which
the incompletenesses are met during testing. Instead, tools in the program development
system should support simulation of unimplemented facilities in program sketches. The
success of the described top-down incrementality of the program testing process is critically
dependent on, whether a facility tested in one program sketch remains to be correct in the
succeeding sketches.

In the bottom up testing tcchnique, a piece of program P is created using already tested
and hopefully correct facilities. Then P is tested by activation of the facilities in P, in
such a way that the correctness of P is ensured too. A typical practical problem in this
kind of testing is creation of an appropriate test context, e.g., creation of a collection of
data objects on which a new set of procedures and functions can operate. DBut also the
activation itsell of the new facilities may cause problems. Very often a new program is
constructed with the only purpose of testing the facilities in P.

Bottom up testing can in a natural way be done in systems supporting dynamic languages
like Lisp and Smalltalk, and several systems for static languages like Pascal have adopted
techniques allowing more flexible bottom up program testing. In Magpie®, [or example,
a so-called workspace can be created. A workspace is an anonymous procedure in which
testing actions casily can be initiated via a “Do It” command. A workspace is presented
on the display in a particular window. Conceptually, a workspace can be nested into any
procedure and hereby gain access to the local declarations in the procedure,

Top down testing is most obvious in systems supporting top down program creation using,
for example, a syntax-directed editor. The Coruell Programm Synthesizer'® allows execution
of incomplete programs, but the programner is expected to implement the missing lacilities
as they are met. In the Ekko design it is proposed, that unimplemented facilities in a
program P may be simulated by executing one or more program fragments. For example,
invocation of an unimplemented function may be simulated by specilying a reasonable value
of the function call, and a procedure call may be simulated by changing the value of the
global variables, on which the procedure has effect. The execution ol a program fragment
modilies the program state of P, but I itsell is not modilied during the modification of the
state. The fragment may invocate procedures deflined in P as well as procedures defined in
other program fragments. In the latter case the procedure is considered local to the most
recent procedure activation. Changing the point of control could be done by execution of
a goto fragment and by adding a label into the program itself, but it is not satisfactory to
modify the program in order to edit the program state. Therefore, direct modification of
the “program counter”, by selecting the next statement to be executed using the mouse,
is much more attractive. This technique, lurthermore, allows the programmer to simulate

11

boolean expressions in selective and iterative control structures. For example, the value
“true” of the expression in an if-then-clse statement may be simulated by pointing at the
statement in the then-part before execution is resumed (assuming that the expression has
no side effects).

In general, what is needed to carry out testing of a program is some kind of a program
state editor. Using such a tool it should be possible to modify and augment the program
state in a unified manner. Both simulation of missing facilities and creation of new test
contexts should be carried out using a program state editor. Of course, editing of the
program state can be carried out through the programming language, but it is interesting
to imagine a real screen oriented “What you see is what you get” state editor. After all,
the programming language is an indirect way to access the state of a program, just like
the commands of non-screen oricnted text editors are an indirect way of manipulating a
textual document. It should be noted, that not only creation and modification of the
program state is possible via such a program state editor, but inspection and observation
can be carried out as well using this tool. In our opinion, designing a program state editor
for a graphical workstation is an interesting subject for further research.

5. Program State Observation.

The output of a running program reflects that part of the program state which is essential
to carry out the program testing process. But often it is necessary to get knowledge about
some non-visible parts of the program state too, e.g., in order to locate the cause of an
error. We distinguish between the external program behavior, which is visible through the
output of the executing program, and internal program state reflected by the state of the
data objccts, the current point of control and the procedure call stack. In many traditional
program development systems it is possible to observe the internal program state via a
debugger.

In this scction we will first discuss observation of the internal program state using a graphi-

cal workstation. Secondly, we will treat the problems occurring if both the internal program
state and the external program behavior have to be shown simultancously on the screen.

5.1. Observation of the Internal Program State.

Two paramecters, among others, characterize observation of the internal program state:
The abstraction level of the observation and the chronological correspondence between the
current program state and the state shown on the screen. At least three abstraction levels
ol program observation may be distinguished:

(1) The abstraction level of the problem being solved. The concepts to be presented
during program state observation at this level are closely related to clements in the
problem.

(2) The abstraction level of the programming language used to solve the problem. Pro-
gramming language concepts like arrays, records and procedures can be observed.

12

(3) The abstraction level of a low level programming language used to realize the high
level program. Concepts associated with the target machine like “program counter”
and “machine cell” are important at this level.

In our opinion, graphical means are well suited for presentation of the internal program
state at level (1) and (2). Several windows can be used to show different aspects of the
program state. The Incence system'? has interesting facilities for graphical presentation
of data objects on a graphical workstation.

The two extremes of the sccond parameter, the chronological correspondence between the
current state and the state shown on the screen, are :

(1) Continuous program observation: Every change in the internal program state, relevant
at the selected level of abstraction, is automatically reflected on the screen.

(2) Discrete program observation: Predetermined or programmer defined snapshots of the
program state can be observed on the screen.

The possibility of continuous observation of the internal program state is powerful in
order to carry out effective debugging of a program. It is likely that the programmer
during execution of the program catches an anomaly in the internal program state im-
mediately, simply by observing the evolution of the program state. As the state of the
program changes during program execution, the contents of the program observation win-
dows should be changed too, according to the continuous observation approach. Therefore
a high bandwidth between the processor and the screen of the program development ma-
chine is necessary, in order to make continnous obscrvation of the internal program state
realistic. A graphical workstation with a memory mapped display is in that respect supe-
rior to an ordinary graphical terminal running on a host via a low speed communication

link.

Continuous program observation of any non-trivial program results in an overwhelming
amount of information on the screen. The success of a program obscervation tool, therefore,
critically depends on the [acilities to control the observation in various ways.

Continuous program observation can be carried out in both the Cornell Progmni
Synthesizer'® and Loipe®. In the Ilkko design?, continuous observation of the internal
program state at the abstraction level of the programming language is proposed. The
values of some data objects are presented in a particular window at the screen. Composite
data objects are presented in nested boxes, instead of using purcly textual denotations like
Ada aggregates'®. In another window the procedure call stack is shown. The point of
control is indicated at the module composition level, at the procedure composition level
and at the body level in the three program description windows (the windows also being
used in program cditing, as described in section 3.1). -

Several mechanisms can be used to control the internal program state observation in Ekko.
The user can sclect which data objects are to be observed. The systems shows per default
a (non-fixed) number of the most recent updated data objects. But the user of the system
should be able to request observation of data objects of special interest. Some parts of the
program may be uninteresting with respect to observation of the internal program state.

13

Thus, certain units of a program (procedures or modules) may be closed in such a way,
that the flow of control and the local data objects in these units do not disturb the observer
during program observation. Another means to control the grain of monitoring is to close
one or more of the monitoring windows. If, for example, the detailed flow of control is
uninteresting, the window giving this information may be closed. In this case, the flow of
control still can be observed at the module and at the procedure composition levels.

During continuous program observation, it is important to be able to control the speed
of the executing program and hereby the rate on which information is presented in the
observation windows. Things typically happens too fast, even in systeins where only the
external program behavior can be observed. A “program execution speeder”, allowing
changes in the execution speed at any time during execution, would be useful. The speed
control can be generalized to allow “single-step speed”, zero speed and even negative speed.
The latter possibility is a simulated reverse execution facility known from, for example, the
Cornell Program Synthesizer'® and from Cope!. Reverse execution is especially useful if
continuous program observation of the internal program state is provided, namely in order
to compensate for the human reaction time, in this case the period of time from an anomaly
is identified, to the user have managed to stop the execution. The possibility of reverse
program execution is based on information stored during “forward” execution. In Ikko,
we have proposed to organize this information on a stack. The reverse program interpreter
uses the information from this stack, together with the program itself, to restore previous
program states, (see reference 2 for more details).

5.2. Observation of the External Program Behavior.

The presentation of the external program behavior, i.c., the program output, is normally
not a problem during program development. But if the same screen simultancously is to be
used for both presentation of the internal program state and presentation of the program
output, it may be diflicult to test a program which uses the whole screen for program
output. A very large screen, or a program development system having two independent
screens, would naturally solve the problem, but it is interesting to consider solutions, where
the program output during program development is presented in a window smaller than
the screen of the target machine.

Several techniques can be used to remedy the lack of physical screen space. In the case
of purely textual output, the well-known line folding and vertical serolling technique can
be used. But this solution is nol appropriate for general graphical oulput. As a sccond
solution, the entire output screen can be shown on a reduced scale, so that it fits into the
output window of the program development system. This solution requires a very high
screen resolution, probably together with special hardware to make the transformations
fast. I'inally, a virtual display of the same size as the screen of the target machine may be
allocated in the program development system. In this case, program output is written into
the virtual display, and part of the virtual display is continuously mapped into a smaller
output window on the screen. A scrolling facility may be used to determine the actual
mapping.

14

The latter solution is preferred in the Ekko design, although some kinds of interactions
become awkward, e.g., dragging a screen element from one location to another, outside
the visible area of the virtual display. The virtual display is technically attractive, because
many workstations have a very fast so-called RasterOp operation!3 well suited to copy a
rectangular area from the memory to the screen.

6. Concluding Remarks.

We have in this paper discussed the usage of a graphical workstation in the program editing,
the program testing and the program debugging processes. The graphical workstation
is a flexible and powerful workbench for the professional programmer. The improved
integration among the program development tools, and performance of routine work by
the program development system rather than by the programmer, is important for such
users. The improved user interface of the program development system on a graphical
workstation is probably most important for novices, but it is a:so pleasant for more skilled
users.

Using a high quality program development system, the productivity of a programmer will
probably increase because some time consuming tasks will vanish. But also from the
programmers point of view, the quality of the working-day will be improved, because more
time now can be used for meaningful problem solving instead of trivial routine work.

Besides the topics treated in this paper, the program administration problems are very
mportant. It would be interesting to design program administration tools, taking care of
the numerous relations among the information in the program development process. The
capabilitics of a graphical workstation will undoubtedly be of great benefit in such tools
too.

Acknowledgments.

Most of this paper is based on ideas from the Ilkko project, carried out by Karen Borup,
Elmer Sandvad and the author of this paper. T am grateful to Karen and Elhner for their
co-operation during the Ekko project. I would also like to thank Ole Lehrmann Madsen,
Bent Bruun Kristensen, Nazim H. Madhavji, Brad Hartficld and the referees for useful
comments during the preparation of this paper.

References.

1. James E. Archer Jr, Richard Conway, I'red B. Schneider, “User Recovery and Reversal
in Interactive Systems”, ACM Transactions on Programming Languages and Systems,
vol. 6, no. 1, January 1984.

2. Karen Borup, Kurt Ngrmark, Elmer Sandvad, “CKKO-—An Integrated Program De-
velopment System”, DAIMI IR-51, November 1983, Computer Science Department,
Aarhus University, DK-8000 Aarhus C, Denmark.

15

10.

11.

12.

13.

14.

17.

Normann M. Delisle, David E. Menicosy, Mayer D. Schwartz, “Viewing a Program-
ming Environment as a Single Tool”, Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development Environments,
SIGPLAN Notices, vol. 19, no. 5, May 1984,

Véronique Donzeau-Gouge, Gérard Huet, Gilles Kahn, Bernard Lang, “Programming
Environments based on Structured Editors: The Mentor Experience”, Inria, Rapport
de Recherches, no. 26, July 1980.

Peter H. Feiler, “A Language-Oriented Interactive Programming Environment Based
on. Compilation Technology”, Ph.D. thesis, Department of Computer Science,
Carnegie-Mellon University, May 1982.

Peter I'ritzson, “Towards a Distributed Programming Environment based on Incre-
mental Compilation”, Dissertation no. 109, Department of Computer and Information
Science, Linkoping University, Sweden.

Adele Goldberg, “Smalltalk-80: The Interactive Programming Environment”,
Addison-Wesley, 1983.

Wilfred J. Hansen, “User Engineering Principles for Interactive Systems”, Fall Joint
Computer Conference, 1971.

“Interlisp Reference Manual”, Xerox, QOctober, 1983.

David B. Leblang, “Abstract Syntax Based Programming Environments”, Proceedings
of the AdaTec Conference on Ada, Arlington, Virginia, October 6-8, 1982.

Raul Medina-Mora, “Syntax-Directed Iditing: Towards Integrated Programming En-
vironments”, Ph.D. thesis, Department of Computer Science, Carnegie-Mellon Uni-
versity, March 1982. '

Brad A. Myers, “Displaying Data Structures for Interactive Debugging”, Xerox, Palo
Alto Research Center, Junc 1980.

William M. Newman, Robert I'. Sproul, “Principles of Interactive Computer Graph-
ics”, Second Idition, McGraw-ITill, 1983.

Jakob Nielsen, ITenrik Wendelbo Nielsen, Kurt Ngrmark, Jan Sgrensen, “EAGLE - a
Syntax-directed editor, User’s guide”, (In Danish) DAIMI MD-45, Computer Science
Department, Aarhus University, January 1982,

. “Relerence Manual for the Ada Programming Language”, United States Department

of Defense, Springer-Verlag, 1983.

Steven P. Reiss, “Graphical Program Development with PECAN Program Develop-
ment Systems”, Proceedings of the ACM SIGSOFT/SIGPLAN Software Engincering
Symposium on Practical Software Development Environments, SIGPLAN Notices,
vol. 19, no. 5, May 1984.

“Requirements for Ada Program Support Environments” “S toneman”, De artment
b] bl
of DCFCHSC, Fcbr‘uary 1980.

16

18.

19.

20.

21.

Tim Teitelbaum, Thomas Reps, “The Cornell Program Synthesizer: A Syntax-
Directed Programming Environment”, Communications of the ACM, vol. 24, no. 9,
September 1981.

Warren Teitelman, Larry Masinter, “The Interlisp Programming Environment”, Com-
puter, vol. 14, no. 4, April 1981.

Niklaus Wirth, “Program Development by Stepwise Refinement”, Communications of
the ACM, vol. 14, no. 4, April 1971."

Marvin V. Zelkowitz, “A Small Contribution to Editing with a Syntax Directed Edi-
tor” Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, SIGPLAN Notices, vol. 19, no. 5,
May 1984.

17

Appendix

This appendix contains a brief description of the implemented part of Ekko, which is
a syntax-directed editor. In the upper window-—called the Body window—a traditional
textual presentation of the editor’s working object is presented. The commands in the
Command Menu operate on the selected statement placeholder. Three different kinds
of programming language dependent commands are possible: expanding commands, list
manipulation commands and nesting commands. The structure comment facility described
in section 3.5 is implemented. The text “Procedure to accept a factor” is an example of
a structure comment. Furthermore, it is possible to copy identifiers, literals and structure
comments as explained in section 3.3. The keyboard icon indicates that keyboard input
will be directed to the Body window.

The Program I'ragment window can contain a collection of program fragments (see section
3.1). In the following illustration, the program fragment window is shown in survey mode.
By activating the “Detail” command only the selected fragment will be shown in the
window, and this program fragment can be modified exactly as in the Body window.
Information is copied from one window to another by “dragging” it over the screen.

18

repeat
read(ch)
until ch O ' ' and not eolnlinputl

E;gg&hre Acceptldentifier
in
if ch in letters

in
ead{chl};
while ch in letters or ch in Digits

do Read(ch)

else error
end;
FROCEDURE TO ACCEFT A FACTOR:

procedure Accepilerm
declaration:
in

zcceEtfactar;
v n »

= '#¥' or ch = "div’

Bgand with
assignment
empty
procedure-call
Begin .. End
if-then
if-then-else
case
while
repeat
for-to
for-downto
Wwith
Add before/after
statement before
statement after

procedure Acceptldentifier s
begin
if ch in letters
then begin
Read(ch) ;
while ch in letlers or ch in Digits
do Read(ch)
end
else error
end

procedure RAcceplTerm
begin
Acceplfactor
find §
if ch = "% or ch =z ‘div’
then begin

Acceptfactor §

find

end

end

procedure AcceptExpression : procedure find
begin

begin
e 8 el R *

e e # T

