NVI3H/INIVA “NAHL

$5 €8 21 — 90 :ouoydee)
NHVYWNICQ - I snysey 0008 Ha — epeBexunyy Ay
ALISHIAINN SNHUVYY
uswuedeq 8ouads Jendwod

[FH |

G861 Arenue[
981 - d4d INIVA

ulspueI punupno

Lirqeinduwion arury pue suonminsqng
‘SurwrurexSoxg siSoy

G. Frandsen: Logic Programming ...

PB - 186

L198-90T0 NSSI

Abstract

Apt and van Emden have studied the semantics of logic programming
by means of fixed point methods. From a model theoretic point
of view, their formalisation is very nice. Least and greatest
fixed points correspond to least and greatest Herbrand-models

respectively.

Viewed operationally, there is an ugly asymmetry. The least fixed
point expresses finite computability, but the greatest fixed point
denotes negation by trans-finite failure, i.e. the underlying

operator is not w-continuous for decreasing chains in general.

We use the notion of finite computability inherent in Scott domains
to build a domainlike construct (the cd-domain) that offers w-con-
tinuity for increasing and decreasing chains equally. On this basis

negation by finite failure is expressed in terms of a fixed point.

The fixed point semantics of Apt and van Emden is very abstract con-
cerning the concept of substitution, although it is fundamental for
any implementation. Hence it becomes quite tedious to prove the
correctness of a concrete resolution algorithm. The fixed point
semantics of this paper offers an intermediate step in this respect.
Any commitments to specific resolution strategies are avoided, and
the semantics may be the basis of sequential and parallel implemen-
tations equally. Simultaneously the set of substitution dataobjects
is structured by a Scott information theoretic partial order, namely

the cd-domain.

1. Introduction

In 1965 J. A. Robinson proved the completeness of predicate
logic equipped with one inference rule only [3]. It transpired
that automatic theorem proving based on this resolution in-
ference rule could be performed efficiently, when restricting
axioms to Horn Clause format. This restricted class was in-

terpreted as a programming language by Kowalski [2].

The semantics of logic programming has been studied model-
theoretically and by means of fixed point methods initially by
van Emden and Kowalski [4]. Later, Apt and van Emden extended

this treatment to comprise negation [1].

They discuss three bases for augmenting logic programming with
negation: (1) the closed world assumption, (2) the if and only
if assumption and (3) the finite failure assumption. They are
able to characterize negation based on (1) or (2) in terms of
least and greatest fixed points respectively. We give a similar
fixed point characterization of the third sort of negation by

adopting an operational point of view.

The concept of substitution is fundamental to any implementa-
tion, and so it should be emphasized in an operational seman-
tics. Actually, we define a set of finite substitution data-
objects that represent the result of finite computations, and
use Scott's information system framework [5] (properly modified)

to build a domain-like construct, the cd-domain.

The cd-domain consists of infinite conjunctions of possibly
infinite disjunctions of dataobjects. In comparison, the power-

domain of indeterminacy [5] consists of infinite conjunctions

of finite disjunctions only. The addition of infinite disjunctions
assures w-continuity of decreasing chains as well as w=continuity
of increasing chains in the cd-domain. We can thus model the result
of a non-halting computation that makes non-deterministic choices
incessantly. The cd-domain is fully-abstract in the sense that two
substitutions are identified exactly, when they do bear the same

information contents with respect to finite computations.

The cd-domain is used to define a semantics for logic programming.
This new semantics is proved to be equivalent to the standard seman-
tics. It is shown that the new semantics induces a denotational

semantics.

In what follows we start by recapitulating the fixed point semantics
of Apt and van Emden [1], and proceed by reexpressing this semantics
in terms of ground substitutions. Sets of ground substitutions are
later used as a measure of the information contents of a substitu-
tion dataobject. The ground substitution semantics provides thus an
intermediate step that facilitates the proof of correctness of the

cd-domain semantics. Finally the denotational semantics is given.

2. Logic programming and the basic fixed point semantics

This section is based on the semantic analysis performed by van
Emden, Kowalski [4] and Apt, van Emden [1]. The description of
negation rely partly on a recent monograph by Lloyd [6].

The exposition starts by presenting an Example to establish intui-
tion, and proceeds by giving a formal definition of the syntax and
semantics of logic programming. This example formalism alternation

will also structure the subsequent sections.

A logic program consists of a set of positive Horn Clauses, and it
is a canonical representation of a certain limited number of first
order predicate calculus formulae. Ex. 1 demonstrates a very simple

program. It is composed of (open) rules and propositions.

Example 1

Program p:
airborne(X) « bird(X)

bird (X) « eagle(X) } thles

eagle(willy) proposition

Question g:

airborne(Y)?

Answer:
airborne (willy)

Groundterms T

TO consists of the elements of the free structure
generated by the identifiers occurring in p, i.e.

no element of TO refers to any variables.

A
Groundexpansion h: Question = 2 v
h(g) = h(airborne(Y)) = {airborne(Y)]YéETO}
To ., ,To
Inference operator Ip: 2 - 2

Ip(@) = {eagle(willy)}

IS(@) = {eagle(willy), bird(willy)}

I;(Q) = {eagle(willy), bird(willy), airborne(willy)}
I0(9) = I;(Q) for n 2 3. 13(@) is the least fixed

; 3
t of I_: 1lfp(I = I i
point o© B p(p) p(Q)

The meaning of the question g in terms of the program

p is:

QTU'q lp = lfp(Ip)f\h(q) = {airborne(willy)}.

Consider the last part of Example 1, where an inference operator
I is defined. The basic fixed point semantics relies on this
operator. Ip(@) yields exactly the instantiations of all proposi-
tions in p, while Ip(h) generally yields the conclusions of all
rules that have their premises entirely in h. Propositions may
be regarded as rules without premises. lfp(Ip) is precisely the
set of propositions that can be concluded from rules and proposi-

tions in p.

Consider also the question g = airborne(Y)? It is represented
by the infinite ground expansion h(gq) = {airborne(willy),
airborne (eagle),..., airborne(eagle(willy)),...}. The meaning
of g is the specific "subset" that may be concluded from

p: h(q)f\lfp(Ip).

Example 1 is limited in what it reflects. It does not expose
rules with multiple premises or rules with mutually intersecting
conclusions. Hopefully it has established the intuitive basis

for a formal semantics that includes all these aspects.

Let us begin by defining an abstract syntax precisely.

Abstract syntax

I a countable set of identifiers

V a countable set of variables

T = IT*|V terms

L=0T literals (= questions)
N = L* negative clauses

C = LN positive clauses

P = C¥* programs

Usually one distinguishes

predicate and function identifiers and

deals with arities. By removing these distinctions, we obtain

technical simplicity. This is our motivation and the result should

not be perceived as a proposal to extend logic programming beyond

first order logic.

It should be noted that we have countably many variables and iden-

tifiers to our disposal, but we refer to only a finite number in

a single program.

When specifying semantics

, we shall see that the list-ordering

(*-notation) of negative clauses (N = L*) is irrelevant. A nega-

tive clause may be regard

is true for programs (P =

Let us now define the gro

ed as a finite set of literals. The same

c*) .

und expansion of terms:

Groundterms
_ *
TO = ITO
T
_ 0
TT = 2
S0 = V—»TO

h: T=T

The set of groundterms

The lattice of sets-of-groundterms

ordered by setinclusion
The set of ground substitutions

The substitution operation
t[s] = "t, where any variable occurrence,

v, is replaced by s(v)".

The ground expansion of terms
h(t) = {tls]|s €54}

Usually the set of groundterms is called the Herbrand base and
is defined as the free structure generated by the identifiers
in a specific program. For technical simplicity we choose to
ignore the specific program and arities. We let TO denote "all

variable free terms".

Let us turn to a definition of the inference operator

Inference operator: Ip: T1 - T1
Ip(u) = {hd(c)[s]lsGSO, cEp, ¥Y1lE€%xlie).lls] €il,
where hd(c) and tl(c) denote "1" and "1.,...,1_"

1 n
respectively, if c is "l<=l1,...,ln".

It can be easily observed that T1 is a complete lattice and Ip
is a monotonic function. These facts imply the existence of
least and greatest fixed points [1] that fulfil

Theorem 1
W _ : W
@ c Ip(@) = lfp(Ip) & gfp(Ip) = Ip(TO) < Ty

and any of the above inclusions is proper for some program.

The above notation I; is defined as follows I;(Q) = U 1;(@) and
n<w

Im(T) = N In(T). We shall later use the same notation for

p "0 n<w P 0

arbitrary limit ordinals without explicit definition.

The inclusion hierarchy of Theorem 1 is mentioned and interpreted
by Apt and van Emden [1]. Later Lloyd has compiled further results
on the subject [6]. We present an example to illustrate the inter-

pretation.

Example 2

Consider the program
p: r « gl(Y)

g(f (X)) «g(X)

s & 5.
We may compute
I =
p(¢) D,
and thus
lfp(Ip) = Ig(@) = @ for any ordinal n.
IE(TO) = {s,r}lJ{q(fl(t))lizrh t:ETO}, for any
ordinal n< w.
W n
I (r.) = NI _(T,) = {s,r}
p 0 n<w 0 '
w+1 _ _ w2
Ip (Ty) = {s} = Ip (Ty)
and thus
gfp(I) = IE(TO) = {s} for any ordinal nzw+1.
The result lfp(Ip) = @ means that nothing can positively be con-

cluded from p. However, we may draw some negative conclusions.
Precisely which ones is left to our discretion. By using the

Closed World assumption, we take anything to be false unless it

is explicitly said to be true. The negative conclusions are thus

{ lfp(Ip) = T,. A more cautious attitude is reflected in the

If and only if assumption: From p we form the completion p' that
consists of: r & 3IY.q(Y), VZ. (g(Z) ® 3X.Z2 =£(X) Ag(X)), s & s

and some axioms about equality. The negative conclusions of p are

defined to be the set of formulae, which is false in every
Herbrand-model of p'. This yields ﬁgfp{Ip) = TO\{S}, which may
be computationally approximated by the

Finite failure assumption: In this case the following negative

conclusions can be drawn: ﬂIg(TO) = TO\{s,r}. These conclusions
coincide with the set of formulae, which is false in every model

(not necessarily Herbrand-) of the above p'.

We emphasize computability and define the meaning of a question
with respect to a program in terms of what may be concluded in

a finite number of inferences:

Meaning of a guestion:

Q1: L > P->T The positive meaning of a question

Q, 01 Dp = h(1l) n lfP(Ip).

1

N.: L > P ->T The negative meaning of a gquestion

N1‘D1Dp = h(1) Ip(TO).

These definitions have been related to the model theoretic seman-
tics by van Emden, Kowalski [4] (Q1) and by Apt, van Emden [1]
and Jaffar, Lassez and Lloyd [7] (N1).

It is our goal to characterize each of Q1 and N1 in terms of
fixed points by using the concept of finite compatability in-
herent in domain theory. Furthermore our domain (the cd-domain)
will reflect the importance of substitutions for any actual
computation. As an intermediate step, the meaning of a gquestion

is reexpressed in terms of ground substitutions.

3. Semantics and ground substitutions

In the earlier semantics, the meaning of a question was defined
as a certain subset of the corresponding ground expansion (de-
pendent on a specific program). This subset might be defined in
terms of the associated ground substitutions. In support of

intuition another example is presented here:

Example 3

program p:

family(Y1,Y2) = married(Y1,Y2)
fam11y(Z1,Z2) &= cousins(ZT,Zz)
married (pia,W)

cousins (grethe,hans)
guestion qg:
family (grethe,X) ?

answer: [X = hans]

Ground-substitution lattice:

The elements of this lattice are sets of ground-substitutions ordered
by setinclusion. [X =hans] is representedknrtheelement{EESOhNX)=hmnﬂ
(This representation will be elaborated in terms of domain theory du-
ring subsequent chapters). An answer involving no restrictions is re-
presented by SO’ and @ denotes "no positive answer". Remember S0 and

@ are top and bottom elements respectively.

Meaning of a guestion:

We are going to define the meaning of a question as the least fixed
point of a certain operator, but in the meantime the following re-

cursive characterization will suffice:

Q,010p = U ("unify,(1,hd(c))"n N 2,01 Up)}

cEp 1'etl(Q var(l)

We may compute the following:

Qz[l married(Y,],Yz) Dp = {sESOls(Y_I) =.pia,S(Y2) =S(W)}|{Y1,Y2}
= {SESOIS(Y1) = pia}
Q2D cousins(Z1;ZZ) [|_p = {sesols(z_l) = grethe, S(Zz) = hans}

Qzﬂfamily,(grethe,x)ﬂp ({SESO|S(YT)==grethe, s(Y,) =
s(xX)}n {SESOIS(Y-I} =pial) ’{X}
U({SESO|S(Z1)::grethe, s(2,) =
s(xX)}n {s€SO|s(Z1) =grethe,s(22)=hans})! (%}
@ U {SESO|S(Z1) = grethe, s(z,) =s(X) = hans} |{X}

{s€SO|s(X) =hans}.

By the restriction " " we ignore the bindings of any wvariable

'var(l)
but X, on delivering the final result.

10

We proceed by extending the formalism of section 2, so as to

encapsulate the concepts of Example 3.

Ground-substitutions

S =

unify2:

V-—>T0

TxT=5

The set of ground-substitutions as

defined previously.

The ground-substitution lattice.

The restriction operator, which "erases"
any information on variables that are not
members of the specified set:

S v = {sesolas'es. VVEV. s(v) =s'(v)}

The most general unifier of two terms,
exXpressed as a set of groundsubstitutions.
unlfyz(t1,t2) = {SESO\t1[s] = tz[s]}.

The lattice of ground-substitution answers

canonically ordered, i.e.

def

a,lf;a2 & V1., a1(l) Eaz(l).

k is the canonical transformation of a
set of groundterms into a ground-substitution

answer:

k{t) (1) = {=]|1[s)et}.

It should be noted that the bottom and top elements of the two

lattices are characterized by V1 .lA(l) = iS =@
YL . TA(l}

=T = g

S

and
1

respectively.

11

Let us now define the inference operator

Inference operator: Izp: A - A

I, (a) (1) = U (unify,(1,hd(c'))n N a(l')) ,
P c€p 1'€tl(c") var (1)

where var(l) denotes the set of variables occurring in the
literal 1, and c' denotes ¢ with variables renamed properly,
so var(l) Nvar(c') = @. The restriction to var(l) means igno-
rance of specific choices of renaming, which therefore lose

their importance.

It can be easily observed that A is a complete lattice and IZp
is a monotonic function. Hence I2p has least and greatest fixed
points. The following result makes it clear to us that Theorem

1 may be directly restated in terms of ground-substitutions:

Theorem 2:

i) k is an injection

. 2 n _ < ;

ii) k(Ip(@)) = Izp(LA), for any ordinal n
G n _ -n :
iii) k(Ip(TO)) = Izp(TA), for any ordinal n

. w _ W o
iv) L1, I2p(lA) = lfp(Izp) c_:gfptlzp) gIzp(TA) CT,r and
any of the above "inclusions" is proper for some

program.

Proof:

i)

ii)

iiiy

iv)

1.

1,t2 ET.] and t1 #tz.

Then k(t1)(t) = S0

Assume t

wlog.

n

2}_:>(l

) is proved

n —
K(I(B)) = T (dy

Basis: k(@) = L

A

n+1
Successor step:

{s|1[s] ezg”w)}

L]

{S[HS'ESO Jce€p. 1lls] =

Furthermore t € t, ~t

1

and k(tz)(t) = Q.

by induction.

k(Ip (2)) (1)

hd(c)[s'],

V1'e€tl(c). 1'[s'] €Ig (@) }

cEp

(c'

U (unifyz(l,hd(c')) n n
cEp

n
Izp(k(lp(ﬂ)))(l)

ind

o _n+1
= IZp (iA)(l)

Limit step: k(I;(@))(l)

_ n
= {s]l[s]EIp(Q)}

= {s|1llsle U 1%(®)}
a<n P

_ o
= U {sll[s]EIp(Q)}

ind

a<n

= U k(IX(2)) (1)
a<hn

= b I [(L, 3
a<n 2p A

_ n

= Izp(LA)(l).

May be proved similarly.

Apply i),

U {s|1lls] =hd(c')[s], V1'etl(c").

1reElie’)

: n
1 [s]€Ip(®)
is ¢ renamed)

n !
k(Ip(Q)}(l))‘

ii), iii) and Theorem 1.

2

'

var(1l)

var (1)

Q.E.D.

13

We are now ready to specify the meaning of a question:

Meaning of a question

QZ: L-»P—es1 The positive meaning of a question.
Q,010p = 1fp(L,) (1)

N2: L—aP->S1 The negative meaning of a question.
= W
N,010p = [Top(Ta) (1)

The following corollary to Theorem 2 creates the anticipated

connection between the two semantics:

Corollary 1

i) k(2,01 10p) (1) Q,010p

ii) k(N1D 10p) (1) Nzﬂ 10p

We are now going to leave the ground-substitution lattice and
turn our attention to the cd-domain of substitutions, which may
be regarded as a more pragmatic representation of the somewhat

abstract ground-substitutions.

14

4. The cd-domain of substitutions

Our aim is to express the semantics of logic programming in
terms of ordinary substitutions rather than large sets of
ground-substitutions in order to stress aspects of computa-
bility. For this purpose the cd-domain of substitutions (a
domainlike construct) is built by using Scott's information
system framework. The cd-domain will be fully-abstract in the
sense that two substitutions will be represented by the same
domain element if and only if they bear the same information
contents and their equivalence can be confirmed within a finite
computation.

To begin with an example will show an intended "operational"

interpretation, which may later guide the domain construction.

Example 4

An algorithm for computing the answer to a guestion, need
only work with one sort of substitution dataobject, from

which finite conjunctions are constructed.

program p:
goal (X) « cond1(X,Y,Z), condz(X,Y,Z).

cond1(Z,Y,Z).
cond1(f(Y),Y,Z).
condz(f(g(Z)),Y,Z).

question:
qq: goal(X)?

dy: cond1(X,Y,Z)?
d3: condz(X,Y,Z)?

The answer to q, may be _represented by

c, = {{[X->2],[X->£(Y)]}},

that has an intended interpretation: "apply either the substitu-
tion [X->Z] or the substitution [X - f(Y)] to the question

cond1(X,Y,Z), SO as to obtain an answer." Similarly the reply

15

to d; is represented by

cy = {{[X~>1f(g(z))]1}}.

In order to obtain an answer to qqr we must form the conjunc-
tion of C, and Cq and forget about variable names local to q,
or g4. This result in the cds (conjunction of disjunctions of

substitutions) s

{[x->2],[x->£(Y)]}

{[X->£(g(2))]}
{x}

By means of unification ¢, may be reduced to

41’={ux»fWLYaqmn}}
{x}

The first alternative in C, is inconsistent with Cyr i.e. we do
not allow cyclic substitutions of the form [Z- f(g(Z))]. This
leaves only one disjunkt for c{1). This disjunct can be expressed

in more than one way, and
(2) _
5 = WISy 3=g@1L)
{x}

might do equally well.

Finally, we apply the restriction |{X} inside c{1):

e = iixs £, ¥og@ 1)L,

Underscore denotes an anonymous variable. We have restricted the
set of named (non-anonymous) variables to those referred to by
dqr i.e. the set {X}. The choice of names for anonymous vari-

ables is arbitrary and

d = ({ixs£m), 2o9®I1M

16

should be perceived as equivalent to c We may even remove an

1
anonymous variable without changing the information content:

01(5) = {{IX>£(g(2))1}}.

The distinction between anonymous and named variables is im-

portant. The cds's

{Ix-£(¥), Y>qg(2)]1}} and

0
1
1l

c! {{[X->£(2), 2-g(Y)]1}}

with no anonymous variables are mutually inconsistent, whereas

:3)) and cé (reduces to c§4)) are equiva-

{x}

c4l (reduces to c
le ég}

The existence of different equivalent representations calls for
a canonical representation, which is obtained by constructing

the cd-domain of substitutions.

The domain element Sy represented by Cqr is itself a cds, namely
the deductive closure of Cqr which is the conjunction of all these
disjunctions, which make no more commitments than those made by

o, (or 0{1),...,c:5}). We adapt the notation sy = C4-

1

ET = {d| d is a set (disjunction) of substitution dataobjects,

such that d contains no more information than c1}.

c1,...c}5) are all finite sets of finite sets, which is all that
may possibly result from a finite computation. However, S, is an
infinite set of possibly infinite sets. This may seem undesirable.
Yet, we cannot confine ourselves to finite sets if we wish to

represent the result of a non-halting computation.

12

Consider the programs

P2: r=g(Y). P3: gla).

g(f (%))eg(x). gl(f(x))eg(x).
and the qguestion
g: g(y)?

It seems obvious that the P2—answer to g should be the infinite

in s,= ;
cha 2 %52,1,where.

= {{[y= f(Xq),X1—>f(X2),...,X.

1_1—>f(xi)}}}l{y}

Sored

{{Iy>£5(x) 13}

If we were to represent Sy by a finite cds, we might choose {¢},
where @ is the empty disjunction that poses no alternatives, i.e.
it denotes inconsistency. This is unsatisfactory because all of
the S2,i, denoting finite subresults, are consistent. In com-
parison, the groundsubstitution representation of the previous

section has such "discontinuity" that

; O |
gfp(IZPZ) * 2p2(Ta))
£ _ w+1 5 _ { } _ A

(g p(12p2) = 12p2 (a) = @+{r} = Izpz(Ta)).

is the result. We want
(HIy> £ 0013, 10v> £2(X) 1}, oo, LIV £2) 13, .. .}

and not {@} to be a proper representative of S,. By introducing
infinite sets of conjunctions, we obtain more structure than the

groundsubstitutionlattice could offer.

18

With respect to Py similar considerations can be made. It seems
obvious that the answer to g with respect to P, should be

SBZQSB,i, where

s3 4= UHly=>al,[¥>£(X,,),X;,>al..,[Y->f(X

3,i %, ;->all}l

| _ v}
= {{[y>aliy->£f(a)],..,[vy> £ (a)]1}}.

i1 i)

Each computation step adds another alternative, and the result
becomes less specific with the passage of time: We lose information.
The limit result s; might be represented by the finite cds {{[]}},
i.e. the empty substitution, which contains no information at all.
Such a representation is unsatisfactory, because every finite sub-

result (53 i.) contains some information. We want
r

n
sy= {{lYy>al,lYy>£f(a)],...,[¥Y> £ (a)],...}}
The ground substitution lattice has sufficient structure to model
the "continuous" representation of S3- This is reflected in

- W
lfp(Izp) = IZP(LA) for all programs p.

Our aim is to formalise the above observations in a domain-
construction: Scott's power domain of indeterminacy [5] is almost
what we want. This power domain models infinite sets (conjunctions)
of disjunctions. Unfortunately, only finite, nonempty disjunctions
are allowed. We have just seen that infinite disjunctions are ne-

cessary to model the nonhalting computation connected to program

P3 (ex.4). Such chains of decreasing information contents seem
important in the description of nondeterminism. Yet only chains

of increasing information contents generally have nice continuity-

properties in Scott-domains. Apart from this the empty disjunction
is a natural representative of "no alternatives" or inconsistency

as the result of unification-failure.

We choose to construct a new sort of domain, the cd-domain, which
assures continuity of decreasing and increasing chains equally,
and it contains an inconsistent topelement as well as the uninfor-

mative bottomelement.

19

The cd-domain will be based on Scott's information system

framework [5], which is briefly given beneath.

An information system is a structure (P,A,Con,I|-), where D is
the set of dataobjects (or propositioné) and A€D is the un-
informative (or least informative) dataobject. Dataobjects
provide finite information about possible elements of the domain
to be constructed. Conjunctions of dataobjects are represented
by subsets of D. Con are those finite subsets of D which are
consistent. |- is the entailment relation between members of

Con and members of D.
Any information system must fulfil six simple axioms (cf. [5]).

The domain induced by the above informationsystem consists of
the finitely consistent, deductively closed subsets of 0, i.e.

the domain fulfils:

i} Any element x is finitely consistent:

Yuc x. u is finite = u € Con.

ii) Any element x is closed under entailment:
LG VXeTD. (u is finite, u FX) = X € x.

An element may be perceived as the conjunction of its constituent

dataobjects, and the domain is ordered by set inclusion.

In the following we shall use the information system framework,
properly modified. Firstly, we do not require domain elements to
be finitely consistent, but allow an inconsistent topelement (to
represent "no alternatives" or inconsistency as the result of
unification-failure). In relation to this we define entailment

from inconsistent sets as well.

20

Secondly, domain elements are sets of sets of dataobjects rather
than merely sets of dataobjects, and domainelements may be in-
terpreted as conjunctions of disjunctions of dataobjects instead
of conjunctions alone. For this reason, consistency and entail-

ment will be defined in terms of such sets of sets of dataobjects.

Due to these changes, we no longer take Scott's original six

axioms into consideration.

We are now ready to define the cd-information system of substitu-

tions (DS,AS,ConS,FS):

Substitution dataobjects:

S = V-T The set of substitutions

hi: 8 =5 The groundexpansion of substitutions:
h(s) ={s'€SO|Vv.s(v)[s'] =g'(v)}

D The set of substitution-dataobjects

DS ={(v,s)€2sz| i) v and def(s) are finite
ii) h(s) #+@ iii) vcdef(s) Uref(s)}

where def(s) ={v|s(v) #v} and ref(s) =
{v|3v'e def(s). s(v') refer to v}.

AS = (@, s) The uninformative dataobject, where
def(s) =¢@.
h: DS - S1 The groundexpansion generalised to DS:

h((v,s)) = h(s)
v
Ds x2V-+DS The restriction operation on dataobjects

(v,s) = (vnV',s)
VF

21

A dataobject (v,s) EDS consists of a substitution s with an
appointed set v of named (non anonymous) variables. The require-
ment of def(s) being finite reflects the fact that in a finite
computation only substitutions with a finite number of non-
trivial values need be considered. The second condition h(s) @
demands that s be a consistent substitution, i.e. s does not
contain cyclic variable references (directly or indirectly). The
last condition (vcdef(s) Uref(s)) states that some information

must be supplied on any named variable.

The groundexpansion h is defined so as to erase any information
on anonymous variables. We may perceive h as denoting the infor-
mation contents of a dataobject: AS poses no restrictions and
h(As) = SO. It should be noted that any dataobject with no named
variables is equally uninformative: h((@,s)) = S for any s. At
the opposite end of the information scale reside the inconsistent
dataobjects, which have empty expansion. They are, however,

excluded from DS by restriction ii) in the definition.

The restriction operator delimits the set of named variables
and fulfils the commutative law: h(s|) = h(s)!v. Note that
A = A for any set of variables v.

S |y S

The notation for dataobjects can be illustrated by an example:

Example 5

We use the syntax of Example 4, when writing down dataobjects:
[X-£(Y),Y>g(2)]

denotes the element (v,s) EDS, for which v = {X,2Z} and

£(Y) i wt =X

s(v') =¢(g(z2) , v'=Y
v' » oOtherwise
In particular [] denotes Ay

For the above dataobject we compute the following expansion:
h([X-£(Y),Y>9g(2)]) = h([X=>£(Y), Y->g(2)]) ‘{X %3
{s|s(X) =£f(s(Y)), MY)=QM(M)}{ Z}='k|sm)=fﬂﬂsw)ﬂ}.

i

22

Let us now define consistency and entailment in terms of con-

junction of disjunctions of substitution dataobjects:

Conjunctions of disjunctions of substitution dataobjects (cds's)

21)S
H; = 2 The set of all cds's.
h H; - 81 The groundexpansion generalised to H;:
h(c) = n U h(s).
dec s€d

b, = {cEPPSIc is finite, Yd€c. d is finite}

The set of finite cds's.

Con_ = {c'EFFS|h(c) +Q}
The set of finite cds's which are consistent,
i.e. Scott's Con, modified to conjunctions

of disjunctions.

FS={RLS)E%XDJhm)Ehm)L
The entailment relation, i.e. Scotts |-,
modified to conjunctions of disjunctions.

Conjunctions of disjunctions of substitution dataobjects (cds's)
are represented by sets of sets of dataobjects. The groundexpan-
sion of a cds reflects the fact that the (global) information
contents of a (possibly infinite) cds is a conjunction of
disjunctions of single dataobject-information contents. When
h(c1) = h(cz), the information content of ¢, is more specific

than the information content of Cy-

The set of finite cds's, Hy, is all that we need to represent the
result of a finite computation. Consistency and entailment are

defined exclusively in terms of such finite cds's. For a cds to

23

be consistent, there must exist a groundsubstitution included
in at least one alternative (disjunct) of every conjunct of c.

Note that an inconsistent cds entails everything.

Let us now illustrate the above definitions with an example:

Example 6

Consider the dataobjects

s [X->£(Y)], s, = [X=>£(¥)], s3 = [X->g(Y)]

1 2

and the cds's

i}

c {{51}}, c, = {{52}}, Chy = {{52,53}}.

1
Cqr CyrC,q are sequenced according to decreasing information
contents: <, is a singleton with a single disjunct, which
refers to no anonymous variables. In Cy the variable Y has
been discarded and replaced by an anonymous one (52 =8, {X}).
Thus all information about Y is lost. In Cy3 another

disjunct has been added, and Co3 becomes less specific than Cye

These observations are reflected formally:

h(c;) = hi(s)) = {s|s(xX) =£(s(¥))}
h(c,) =h(s,) = h(s,|)=h(s,) ={s]s(x) = £(t),
{x} {x} for some t}.
h(c,3) = his,} Uh(sy) = {s|3t1.s(X) =f(t,) v3t,.s(X) =g(t2)}.

This means h(c1) 511(02) gll(c23) which proves decreasing information

contents of the sequence Cqr Cyr Cpge

The dataobjects s, and s, are incompatible and the cds

Cy 3 = h(sz)(1h(s3) = (. Furthermore, 5,3 - d for any data-

object d.

24

We are now about to introduce the cd-domain

The cd-domain of substitutions

D
l—S e {(c,d)EZH;x ZS[hkﬂ c U h(s)} Entailment is generalised
s€d
to disjunctions of dataobjects.

- H;—>H; The deductive closure of a cds:

u = {d|3{d;,...,d} cuvf,,..,f . (Vi. f.cd £, is finite) ={£f,.., £ }F_d}
= {dlﬂ{d1,...,dn}55u. h({d;s...,d }) = U h(s)}
sed
Is| = {sEH;]s =s} The cd-domain of substitutions, ordered by
setinclusion.

—_ Ds
1. =8 = {{AS}} = {d€2 " |3s€S. (@,s)ed} The bottom element of |S].
Ty = {6F = 2° The topelement of [S]I.

“les 18] XZV->IS| The restriction operator generalised to |S|:

SIV = {d‘ |des}, where the restriction of a disjunction
\Y

}i = fig

is {s -
v 1\V nlv

1;...,Sn,..

unify3: TxT-1S| The most general unifier of two terms

expressed as an element of the cd-domain.

pe
{{lv=tl}} (ty=veEV,t =t or t, =veV,t =t) andh([v-t]+ 0.
unify3(t1,t2) =<j_1u nun;Lfy3(t1j,t2j), ty =ittt =it ety
J=lfpeay
Te , otherwise.

-

25

The closure of a cds u consists of those disjunctions, which are
entailed by all finite subdisjunctions of some finite subconjunc-
tion of u. Note that the abbreviation after the last equals-sign
of the closure definition is permissable. However, the final step
"u = {d|h(u) €h(d)}" is incorrect! To understand this, consider
0 = g{di}, where d, = {[x-£1(2) 1}, Here h({di reeerdy }) #¢ for
all {d; ,...,d;, } = u, but h(u) = @. Observe 'that th8 closure-

L] n ;
operation preserves the groundexpansion.

The cd-domain of substitutions is the set of deductively closed
cds's ordered by information contents, i.e. setinclusion. The
finite elements of |S| are those which may be represented by a

finite cds: {EICEHE}.

1o is the only uninformative element of [S|. Every conjunct of
ls offers at least one alternative (disjunct), which is uninforma-
tive, i.e. has no named variables. h(LS) =Tg = SO and ls £ LS

for any set of variables v. 1 b

T is the only finitely inconsistent element of |S|. To understand

this, it should be remembered that a finite inconsistent cds entails

everything. h(TS) = lS = @ and P =T g for any set of variables V.
1 v

Let us now illustrate some properties of the above definitions with

an example.

Example 7 (Full abstractness)

The opening example indicated that the cd-domain should have more
structure than the groundsubstitution-lattice. We are illustrating
here that this has been achieved: In the cd-domain the notion of

finiteness (computability) is incorporated in the structure.

Compare the incopsistent element T with the element s={dfd2,.“,..},
where di = {[X»£f1(2)1}. Both elements are expanded into the empty
set: h(TS) = h(g) = @. This result means that taking a global,
infinite perspective s is inconsistent, but seen from a computa-

tional point of view, we may look at finite portions only and

Sp = {dqr..,d,} certainly is consistent: h(sn)étﬁ.

26

If we remove the finiteness restriction in the definitions of
entailment and closure, we obtain a (non-domain) structure iso-

morphic (by h) to the groundsubstitution lattice.

The property of finiteness has further implications. In general

restriction and expansion do not commute: For the above element

’ h = = ’ b t h - h - = h 2 =ﬂh P
s, h(s) |y = 8|, = 8, but h(s|y) ((gsl)ig) (Lij(sl'a)) fafe])
= N(h(s.)|) =n SO= S.. We have used the results of the next
i 1 @ 3 O

; 1
theorem to perform the computation.

For finite elements, however, there is a law of commutation,
which is stated in the theorem to follow, together with some other

results.

For future use, we state some essential properties of the cd-domain

IS] in a theorem:

Theorem 3

i) Least upper bounds and greatest lower bounds in |S| may be

expressed in terms of setoperators. For SqrS, €1s]: 51U s,

s; Us,, Sqflsz = s, ﬂsz. If s, C s, C. ... is an increasing
chain in |S| then lUs, = Us,. If s, 3 s, ... is a decreasing
i 1 i 1 1= "2 =
chain in |S| then [ls, = ps..
il il

ii) A finite element s € |S| may be represented by a single dis-

junction, i.e. we can find s1,...,sn€£DS such that

g = {{51,...,sn}}.

iii) When s,,s, € IS| are finite, so are s1U s, and s,[] s,.
Furthermore h(s1U52) = h(s;) Nh(s,) and h(s1ﬂ52) = h(s;) Uh(s,)

iv) When t1, t2 are any terms, then unifyB(t1,t2) is finite and

h(unify3(t1,t2)) = unifyz(t1,t2).

v) When s € |S| is finite and V is any set of variables, then

S|y is finite and h(s|) = h(s)]| .
\Y% |V

21

vi) If {sn} < |S| is an increasing chain of finite elements,
s € |S| is finite and V is any set of variables, then:
{sn| } is an increasing chain
v
Us,)| =Utsy|)
n v n v

s] (E 8, = lﬁl (sUs,)

n

sl Wsy) =U(sls)
n n

h(ls,) = Nh(s)
n n

wil}y . Xf {Sn} < ISl is a decreasing chain of finite elements,

s €S| is a finite element and V is any set of variables,

then:
{s | } is a decreasing chain
n
A%
(Mfs.) =H(S|}
n ‘V n "ly
s (s =Tl(sys))
n n
s (N s,) = [(sMs)
n n
h([] sn) s U h(sn)
n n
Proof
i) Observe that s, Ns, = s, Ns_.,, Us = Us and Ns_ = Ns .
1 2 1 2 n n n n
n n n n

ii) The argument is tedious, and has been transferred to form an

appendix to this paper.

iii) Assume s, = {EI} according to ii). If so S1LJ52 = {dj'dz}
and 51[152 = {d, Ud,} are both finite. Furthermore h(s,|j s,)
h(d1)l1h(d2) = h(s1)r1h(52) and h(s1[1sz) =hld1Ud2) =
h(d1)iJh(d2) h(s1)th(S

1l

2)

iv)

v)

vi)

vii)

28

The finiteness of unify3(t1,t2) follow from iii). The
equality h(unify3(t1,t2)) = unifyz(t1,t2) is proved by

induction on the structure of t1,t2.

Assume s = {d} according to ii). We may then compute

sy = T@[,[R(Dch (@)} = (@[, [R@ [, h@7 [y} =

L] L} = .] .
{a 'Vlh(d y) Shid 1)} {d V}' Hence s|V is finite and

h(s = h(d‘v) = h(d) lv = h(s) 1\7'

v

Assume s _ = {5;}, s = {d} according to ii). It is easy to

verify that {sn } is an increasing chain. We compute

v

([_an)|V = {d1,...}|V = {div]ai1’...’in.h({di1,...,din})gh(d)} =

(@[, [3.R({q, Nc h{@)} = U(Ta;}]v) = Un“"n\v"

sl WUs,) = {d,4,,4,,. }—{dd}U{d }U...=U(sl_lsn).
n n

sl Us,) = {ai] {a,,4,,...1 = {dua ,dud,,. =U(sflsy) .
n n
hU(s)) = h(ld,,d,,...3) = nh(d) = nh(s).
n n
Assume s_ = {5;}, s € {d} according to ii). It can be easily

verified that {sn|v} is a decreasing chain.

(QS“)|V = {ng}lv - {Wr} = {u“(mv—} = n(.cg [

sU s)) = {arl{a,ua,v...1 = {d,d1}ﬂ{d,d2}ﬂ... =[1(sls,)
n n

sl (@s,) = {aud,ua,u...} = {dud }] {dUd,}(]... = [(sf]s)
n n

h(f]s,) = h(ua) = Uh(d) = Uh(s).

n n n

29

Theorem 3 ii) and the abbreviation following the definition of

closure for cds's both suggest that the present exposition

exhibits redundant structure. Future work might seek to find

a simplification or explain the failure to do so.

In the meantime we put the present cd-domain to use in another

semantics for logicprogramming.

5. Semantics and the cd-domain of substitutions

We are going to define a semantics in terms of the cd-domain of

substitutions. In order to establish intuition we will translate

ex. 3, treating of groundsubstitutions, into domain terminology.

Example 8

We use program, question and answer, unchanged from ex. 3.

Cd-Domain of substitutions

The answer [X=hans] is represented by the domain

Meaning of a question

In a sense the domain is a reverse of the ground
lattice (Th. 3 iii). It appears natural, that we
of a guestion as a greatest fixed point. Yet, we

characterization only in this example:

Q3Elﬂp STT(unify3(l:hd(GW)uLJ Q3Ul']p)

element f{[X=hans]}}.

substitution-
define the meaning

take a recursive

c€p 1'etl(c) var(l).

We may compute the following:

30

Q.0 married (Y, Y,)lp= {{[Y,> pia, Y, W]}}
3 132 1 2 l{YT’Y2} _

({[v,> piall}.

Q3W cousins (Z1,Z2)Bp= {{[Z1€>grethe,22€>hans]}}

{21,22} &

{{[ZT€>grethe,Z - hans] }}

2

Q.0 family (grethe,X) Ip=({ {Y1—> grethe,Y,-> X]}}

u Qg lmarried(v,,v,) Ip) l{x}

rT({{[Z1€>grethe, Z2€>X]}}UQ3H cousins(Z1,Z2)ﬂp)‘{X} &

T N({{[2,~> grethe,Z,> X, X hans] ey -

{{[X~> hans]}}.

We wish to define a formal counterpart of ex. 8 and to accomplish
this aim we translate the previous groundsubstitution-results into

our new domain-framework.

Substitution answers

B=L-> |S| The lattice of substitution domain-answers, canonically
ordered, i.e. b1gb2 e V1, b1(l)§b2(l).

h:B=> A The expansion operator extended to comprise B:
h(b) (1) = h(b(1)).

The top- and bottom-elements of the lattice B are characterized
by v1.J.B(l)=ls and V1. TB(l) = T

The meaning of a question will be defined in terms of an inference

operator:

34

Inference operator: I3p: B=> B

(b) (1) ={l(unify; (1,ha(c*))ull b))

L3
B cep 1'etl(c'}

var (1)

where c' denotes c¢ with variables renamed properly so:

var (l)nvar(c')=9.
As for I2 so for I3p: The restriction var (1) means ignorance
of specific choices of renaming, which therefore lose their

importance.

By generalizing th. 3;), we may easily observe that B is a
complete lattice. Furthermore it is evident that I3p is a mono-
tonic function, and so has least and greatest fixed points. The

following result is importantly different from theorem 2:

Theorem 4

, f o .
i) h(IBP(LB)) = I2p (TA)' for any ordinal n<u.
. n _.n .
ii) h(I_3p (TB))— I2p (LA), for any ordinal n<uw.
iii) 1fp(I,)=I, “(L.)
= P 3p 3p A"
iv) fp (I,)=I. “(T.)
i 9P (I5,) =I5, 7 (T4) -
_ W - | T W
V) lg;I3p (Lg) lfp(I3p)§gfp(I3p) I3p (TB)gjga,and any of

the above "inclusions" is proper for some program.

32

Proof:
i) This is demonstrated by induction
Basis: h(LB):qh.

Successor step for finite ordinals: h{I3g+1(LB))(1)

h(13g+1(¢3)(1))

h([l(unify; (1,hate DU 500050 (1)) ()

cEp 1tetl(c') var (1)
Th. 3. -
= U(unifyj{l,hd(C'))nﬂ h(I3p(.LB))(l'))
c€p 1'etl(c’) var (1)
Ind. n
= U(unifyz(l,hd(c'))nn IZP(TA)(l'))
CcCEp 17&t]{ct) var (1)
= Izpn+1(TA)(1).

Limitstep: h(130“(¢B))(1)

&L

i

W
h(I," () (1)

h(lU 1,.2(L,) (1))
n<w 3p B

Thy3

R n
= 0Ty T (Lp)) (1)

© 2" Tl)

w

= Izp

(1) (1)

ii) This is similar to i).

a3

; n
1i4) 1M 1, "))

= (unifyB(l,hd (c"))ul % I,

n '
p (g (1))]

CEp 1V€£1 (¢ ') var (1)
a3 n
- %(gggnify3(l,hd(izééi%01}3 (L5) (11)) .
= g 13p(13p“(l3))(1)
U I3pn(lB)(l}

iv) This is similar to iii).

v) The result follows from i)-iv) and theorem 2.

We are now ready to specify the meaning of a question:

Meaning of a question:

Q3: L=> P> |5| The positive meaning of a guestion:
Q;[11p =gfp(I3p)(l).

N3: L=> P=> |S] The negative meaning of a question:
N3[lﬂp:=lfp(I3p)(l).

We may immediately obtain:

Corellary 23

1) h(40llp) = 0,010p.

1

ii) h(N,010p CN2ﬂlﬂp.

We have now fulfilled what was previously promised and conclude with an example:

34

Example 9:

Consider the program P (p2 of ex. 4):

P: reg(Y)
g(£(X))=g(X).

We may compute:

I3P(J.A) (1) =1 L=rs
1=9(2)

n = =1
L0 (L) (1) = { 1=r:

1=g(Z):

I3£f (lA) (l)= | l=rs
1=g(2) :
w+1 _ w
I3p (J.A) (1) = 13p (Jj_\) (1

w —
Observe that I3p (LA)(q(Z)) * T, and lfp(I3p) = &

th. 4.

J‘s'gﬁ - J's

>t I,

L
s

{dn}, where d.rl

4
S

{d1,d2,....}, where dn

W
3p

(L,)

{{[z>£(X)1}}

7 _
{[Z2>f (g{_n)]}

n.
{[z>£7(x)1}

in agreement with

35

6. A denotational semantics

The semantics of logic programming was connected to the cd-domain
of substitutions in the previous section. This result hides a

denotational semantics, which will be unfold now.

We define semantic functions for each of the major syntactic com-
ponents of a logic program. Every program has two different mean-
ings (P+,PL) corresponding to the positive and negative conclusions

respectively, which may be drawn from the program in question.

Abstract syntax

I a countable set of identifiers

V a countable set of wvariables

T = IT* v terms

L =T literals

N = L* negative clauses
C = LN positive clauses
P = C* programs

0 =1L gquestions

|s| substitutions

A =0- |s| substitution-answers

36

Semantic functions

L : L ->AaA-> |s]
N: N->A-> |[S]
C: C->A->A
P+: P -> A
P+ P> A
LI1Ta = a(l)
"= Mg
NInla e [11 a
C[l-nlla = Xg.(mgu(l',q)y Nln'Ja) (*)
, var (qg)
P,Ipl = gfp(ra-l clcla)
cEp
P. [pll = 1fp(ra. M Cllcla)
’ CEp
(*}): (1',n') denotes (l,n) with fresh wvariables, not contained

in g. The specific choice of new variable names is unim-

portant, because the variables of (1% n') are made anon-

"

ymous by the restriction "
var (q)

The semantics contain no detailed specification of the most
general unifier (mgu). In section 4 we gave a recursive definition
of mgu, namely unify3. From this definition we may obtain a fixed

point characterization on request.

Logic programming has a procedural interpretation, in which a
positive clause may be regarded as a procedure declaration. This

view leads us to perceive substitution answers (A) as continua-

tions. The meaning of a positive clause (C), becomes a continuation-

transformation.

37

Unfortunately the above semantics is not entirely denotational.
A denotational semantics should only refer original syntactic
structures inside "[-]". Yet the occurrence of the renamed
structure n' inside the brackets of N[[-]], breaks this prin-
ciple. I have not found a satisfactory modification that is

able to repair the defect.

The correctness of the denotational semantics follows from the
observation that P _[pl = gfp(I3p) and P.[p] = lfp(I3p). We

state this equivalence in a theorem:

Theorem 5

P, [pl (1)

P, l[lpl (1)

1) Q4011
1) NjI1D

Theorem 5 guarantees that the denotational semantics is fully-

abstract in the sense of section 4.

38

7. Conclusion

For logic programming we have constructed a semantics which
emphasizes finite computability. By providing a detailed des-
cription of substitutions as dataobjects, our semantics is
nearer to an actual implementation than earlier fixed point
semantics. Simultaneously, any commitment to sequentiality is
avoided. Hence this semantics constitutes a basis for new paral-
lel as well as sequential implementations. Such implementations
remain to be constructed. In the process of building a domain
of substitution it seemed impossible to gear domain theory to
our specific needs without modifications. The result became the
cd-domain. It remains to be investigated whether the cd-domain
can be reduced to a simpler structure, as suggested at the end

of section 4.

Acknowledgement:

I am grateful to Mogens Nielsen for his valuable suggestions. In
particular I have received detailed comments from him on earlier

drafts of this paper.

My work has also benefited from discussions with Erik Meineche

Schmidt, Peter Mosses, Brian Mayoh and Glynn Winskel.

I wish to thank Julie Franks for correcting my English, although

I am responsible for any remaining errors.

This paper was typed by Angelika Paysen and Winnie S¢rensen.

They have done an excellent job in deciphering my manuscript.

Appendix

As promised previously, we are going to prove Th. 3 ii), which
is part iv) of the following lemma.

39

Lemma

id

ii)

If two terms tq,tzET equipped with a finite substitution
s€S (def(s) is finite) are mutually consistent
(h(s)n unifyz(t1,t) #@) , then we may construct their most
general unifier: the substitution unlfy{t1, 2,S)ES where
def(unify(t1,t2,s)) is finite and h(un1fy(t1, 2,s))-

h(s) n un1fy2(t1,t2).

If two substitutions S1rS, €S are finite and mutually consistent
(def(s),def(s) are both finite and h(s)Nh (s)*@), then we

may construct thelr conjunction: the substltutlon conj(s1,s JeSs ,
where def(conj(ST,s)) is finite and h(conj(s1,s))=

h(s1)ﬂh(52).

i)

iii) If two dataobjects 81,52€9S are mutually consistent
(h(s1)nh(sz)¢ @) then we may construct their conjunction:
the dataobject conjd(awsz)EDs, where h(conjd(s1,52)):

h(Sl)ﬂh(sz).

iv) A finite element g€|S| may be represented by a single dis-
junction, i.e. we can find 51,...,snEDS(n20), such that
s:{{s1,...,sn}}.

Proof:

The unify-algorithm is defined recursively as follows:

unify(v,t,s) = Junify(s(v),t,s) r Vvedef (s)
slv=> t] , védef (s)

unify (it ,t,,s) = {fnify(tz,if1,s) » By€V
unify*(t1,t2,s) ; t2=it2

unify, (t, - 1,t tz,s} = unify*(f1,E2,unify(t1,t2,s))

unify, (nil,nil,s) = s,

40

The partial correctness of unify is easily established. The total

correctness follows from the preconditions of i).

ii)

iii)

The conj-algorithm is defined recursively as follows:

conj(sT,Sz) = /s, i def(s2)=®

unify(v,sz(v),conj(s1,32[v/v])), def(sz)¢®

and v is minimal in some order of def(sz).

The partial correctness of conj is proved by induction, based

on the following assumption: (and using i))

p(n): #def(sz) =R = h(conj(51,52)):h(s1}nh(s2),
def(conj(s1;52) isfinite.

The total correctness is trivial.
The conjd—construction is straightforward:

. g - : L] 1 = '
c.onj;d{,s,],52)—(V1UV2,conj{s,I 'S,)), where sT—(v,],s1) and
szz(v2,52).

Furthermoretheanonymousvariablesofsﬁ amiszhavebeenrenamed,

so as to avoid unwanted common variables, i.e. S1,82 fulfil:

[]]
a) Var(s1)ﬂvar(52)EVTUVZ
L]]
b) var(s1)ﬂv25v1, var(s2)ﬂv1gv2

where var(s)=ref (s)Udef (s).

We observe

hlconj(s,,s,))=h(conj(s, ,s,")) 1 o ii) (h‘s1"”h(52'”|v1w

1772 = 2

é) h(s1')lv uv f h(s2')|v Uv)

b) h(s,')|. Nh(s,') | =h(s,)h(s
= 19V i = 1oV 2 "M :

1 "’2 2

41

iv) This is proved by induction based on the following assumption:

P(n): y s:{d1,...,dn} for finite disjunctions diEEDs

There exist a single finite disjunction dg@s, such that
s={d}.

Basis:

s=@ means that s=lS and we put d:{AS}.

Inductionstep:

Assume s:{d1...,dn,dn+1} for finite disjunctions diEUS.

ol T .
then s={d1 ""dn}u{dn+1} = {d}U{dn+1}={d,dn+1}, where the finite

disjunction d exist due to the induction assumption.

Now let:

d={conjd(51,sz}Is1€d,52€dn+1, h(51)”h(52)*®}'
We compute:

Tr={a" 031D an4d ey .
{d}={d'Ih(@)ch(@")™= {a'In({d,a ,Nch(d")}={d,d_, .}, i.e.

s={d}.

References

(1]

[2]

[.3]

[4]

[5]

(6]

[7]

Apt, van Emden: "Contributions to the theory of
logic programming". JACM, Vol. 29, 1982,
pp. 841 -862.

Kowalski: "Predicate logic as a programming language" .

Proceedings of the IFIP 1974 congress, pp. 569 - 574.

Robinson: "A machine oriented logic based on the
resolution principle". JACM, Vol. 12, 1965,
pp. 23 -41.

Van Emden, Kowalski: "The semantics of predicate
logic as a programming language". JACM, Vol. 23,
176 Bp. 733~ 743,

Scott: "Domains for denotational semantics". A
corrected and expanded version of a paper prepared

for ICALP '82, Aarhus, Denmark, July 1982,

Lloyd: "Foundations of Logic Programming".

Springer Verlag, 1984.

Jaffar, Lassez, Lloyd: "Completeness of the negation
as failure rule". Proceedings of the IJCAI 1983
conference, pp. 500 - 506.

