NYI3L/INIVA “HAHL

A : + S5 69 21 - 90 ‘ouoyderey
NHYWNIQ ~ D Snuiey 0008 NGO - speBaxunpy AN
ALISHIAINN SNHYVYY
I _ 11 _ _ — ewnedsq 8ouBidg JeIndwon

¥861 1290120
181 - 9d INIVA

UISPIN qoxe[

JUIWUOITAUY
SurmrwrerSorg MIN ® YIIA\ pPade]
sIowwer301g Jo sanMIIyyI(Y Suruaes|

J. Nielsen: Learning Difficulties ...

PB - 181

L1G8-G010 NSSI



Learning Difficulties of Programmers

Faced With a New Programming Environment

Jakob Nielsen
Aarhus University

Denmark

Abstract

When faced with a totally new environment composed of a
new interaction paradigm and a new programming toolr
programmers exhibited many of the same learning dif-
ficulties as novice users learning to use an ordinary

word processor.

Keywords and phrases:
Learning Difficultiess Programmers versus Novicesr

Structure Editingr Interaction Paradigms.



1. Introduction

When discussing software ergonomics it is common to make the
distinction between programmers on the one hand and non-program-
mers on the other hand. Programmers are usually assumed to be
able to quickly learn how to use a new computer system and to

have less trouble than other users in general.

Many studies on learning difficulties have focused on novice
users without programming experience. In this study we have in-
vestigated the learning problems of programmers when they are
placed in a situation analogous to that faced by naive users. Our
learners had to use a system with a functionality that was un-
familiar to them and at the same time they had to use a computer
system based on a totally different interaction scheme than the
one they were used to. These two aspects of the new environment

are described in sections 2 and 3 respectively.

2. Structure aoriented editing and the EKKO-editor

The experiment described in this paper was carried out with
the EKKO-editor (Borup et al. 1983, Normark 1985) which is a
structure oriented editor. The present version of EKKO is an
editor for Pascal. Structure editors for specific programming

languages are often called syntax directed editors.

A structure oriented editor knows the syntax of the program-
ming language it is used for and it can only generate syntac-

tically correct programs.



Several other syntax directed editors exist but they have
usually not been the object of formal software ergonomics ex-
perimentation. Since the intended users of such an editor are
programmers and since the editor designers are themselves
programmerss the designers may feel that they are justified in
doing the human factors evaluation of their editor using themsel-

ves as subjectss see e.g. (Zelkowitz 1984).

The editor developers and the editor users are two different
kinds of programmers however. In the course of designing and im-
plementing their editorsr the developers form a detailed actual
conceptual model of the editing principles implied by a structure
editor as opposed to a text editor. The users do not have this
models and the present experiment showed that ordinary program-
mers may indeed have several problems when faced with a totally

new way of editing.

The basic principle of structure editing is that the editing
process follows the underlying structure of the object being
edited (e.g. the syntax of a program) and not the textual sur-
face view of the object. This principle is sufficently new to
present learning problems to the programmers. Usually they only
have to learn a new command language of some computer system wor-
king in essentially the same manner as they are used to. But in
this experiment they have to learn both a new command language

and a new basic functionality at the same time.

3. The paradigms of interaction

EKKO runs on a PERQ graphical workstation and uses the



modern interaction paradigm with windows as output medium and the

combination of a mouse and a keyboard as input media.

We may according to (Card et al. 1984) classify computer
displays according to which one out of several described types
of windowing is used. We could actually make an even more fun-
damental division into several paradigms of interactionrs even
though these paradigms turn out to be connected to the windowing

mechanism used.

We will describe four interaction paradigms. Each paradigm
is the foundation for lots of different computer systems: but it
is usually quite easy to classify a given system as based on some
specific paradigm. Closely coupled with each paradigm is a set
of basic rules for how to communicate with the systemr and once
a user has learnt the rules for some paradigmr they form the
framework for rapidly learning how to use other systems based on

the same paradigm.

When a user has to learn a system based on some other in-
teraction paradigms the user cannot rely on the existing
framework but has to build another. Therefore some additional
learning difficulties may be expected until the user has acquired
a working actual conceptual model of the new interaction paradigm
and can use this model as a basis for learning the systems im-

plemented in this paradigm.

The four existing interaction paradigms are:
1) No interaction! This corresponds to batch systems.
2) TTY. This is one-line-at-a-time systems. They usually employ

traditional command languages based on keywords etc.



3) Full screen. The whole of the display screen forms the unit
of interaction. Screen layout is an important discipline for
designers in this paradigm. Often a very hierarchical menu struc-
ture is employed for controlling the interaction.

4) Window systems. The display is divided into several windows
so that different kinds of information is displayed in different
windows. Control if often via pop-up menus and the interaction
style is as mode-less as possible. A mouse or other non-keyboard
device is used for pointing which is the selection method instead

of naming. Icons and other non-animated graphics are used.

It is interesting to consider how the fifth interaction
paradigm will look. It may include voice I/0 and animated pic-
tures instead of still graphics. But this is not the topic of the

present paper.

4. Experimental method

Three computer science students used the EKKO editor for
five days each and two professional programmers from industry
used the editor for two days each. All 5 subjects were men. None
of the test subjects had used either a structure oriented editor
or the PERQ workstation before. They had had experience with
several different kinds of text editorsrs both line oriented and

full screen editors.

The small number of subjects precluded the use of
statistical measurements but made possible a more detailed
analysis using such methods as thinking aloud and interviews.

Also we wanted to have each test subject use the editor for so



long that he became comfortable using it so that we could study
both learning behavior and stady state performance. All input
made by the test subjects was recorded on a f£ile with a
timestampr making a complete replay of a session possible so that
problems could be studied in detail (Neal et al. 1984). Since
mouse movement is a continuous processs it would have required
quite a lot of data to record the total movement accurately. In-
stead we chose to record the position of the cursor on the

display only when some mouse operation was carried out.

Each test subject first read the editor manual (for ca. 1
hour) and then for ca. 2 hours followed a self paced practice as-
signment that covered all important aspects of the editor. After
this the three student subjects all carried out the same ex-
periments consisting of a mixture of three types of tasks:

1) The creation of program text from common existing paper
manuscripts using the editor.

2) Online programming to solve common specific problems.

3) Making specified changes to their own programsr generated by

one of the other two types of experiment.

An example of a type 1 experiment was to reproduce a program
that counted the number of lines in a file. An example of a type
2 experiment was to program a simple payroll application. A type
3 experiment was then to change the payroll program to include
days of absence due to employee sickness. The programs were of

a size of between 20 and 200 lines of Pascal code.

The professional programmers also carried out a mixture of

the three types of tasks but only had time for a subset of the



experiments carried out by the students.

5. I ; Jifficul ki

Our subjects had to learn the editor by unaided self-study.
We found that they had almost the same problems as those found
by Mack et al. (1983) even though they investigated computer
naive typists learning a simple text based word processor. The
main difference was that our learners had the courage and prere-
quisites for charging ahead whenever they got stuck. They simply
generated sufficiently many alternative possible solution

procedures for each problem until one of them worked.

We will report some of the observed learning difficulties
using the classification of 8 headings from (Mack et al. 1983)
to structure the discussion. One further category is presented:s

namely "Over-estimating the computer".

The 9 categories of learning difficulties are not disjoint.
Several problems belong to more than one categoryr but in the
discussion to follow we will place concrete examples of learning

problems in the category where they seem most fitting.

H.l. Learning is difficult

Mack et al. report that their learners became frustrated and
complained about the amount of material to read. They took quite
a long time to learn. Our participants were not able to use the
editor "fluently" the first day and they did have problems ac-
quiring the relatively large number of new concepts in both
structure editing and window-based user interfaces at the same

time. On the other hand our learners did not experience nearly



the same frustrations as the learners in the Mack et al. ex-
perimentr since our learners had experience with the acquisition
of many different computer concepts. Frustrations are a function
of both the actual trouble experienced by people and of their ex-
pectations. Our subjects had already learnt to expect some
problems when faced with a new computer systems so they did not

become frustrated.

2.2. Learners lack basic knowledge

When faced with a new interaction paradigms learners lack
general knowledge of the way the interface works and they fail
to understand basic ideas and jargon. Since any interaction
paradigm is new to computer-naive learners:s they could be expec-
ted to experience especially serious problems in this category

as shown in (Mack et al. 1983).

Our users were certainly not computer naiver but several
problems were nevertheless noted in this category. Many problems
were due to the use of an interaction paradigm using windows and
mouse-controlled menus. For exampler all our users had problems
the first time they created a long line in a program. The line
would not fit inside the window and part of the line was
therefore invisible. It took some time for our learners to
realize that the missing part of the line had not been dropped
by the editor but was still present inside the computer and could
be worked on. They had trouble thinking of the concept of
horizontal scrollingr which of course may also be due to their
considering a program an one-dimensional structure that can only

be scrolled vertically.



5.3. Learners make ad hoc interpretations

Users try to make sense of what they experience by construc-
ting and elaborating ad hoc interpretations of their experiences.
An example: Instead of typing in an identifier you may in EKKO
copy it from an existing occurence. The intended conceptual model
of tbis operation is that "you may always copy a name". One of
our learners acquired the following somewhat more complicated ac-
tual conceptual model instead: "You may always copy a name unless
the destination is the procedure identifier in a procedure call".
The modification was due to his normal way of typing in the proc-
dure identifier which he ended by hitting RETURN. The RETURN sig-
naled the editor that the name was finished and that the actual
parameters were nextr so he got a menu asking for them. When
copying the name he did not hit RETURN and so did not get this
menu (since it was possible to modify the name after the copyingrs
the editor did not automatically continue to the parameters after
the copy operation). He did try to get to the parameters by
selection. This worked but gave him another menu with some ad-
ditional optionss so he did not recognize it as the parameter-
menu. After this he concluded that he could not copy the name of
procedures. Since he was able to continue working with the only
partly correct models he did so for several days until he

discovered the correct model.

5.4. Learners generalize from what they know

While the learners in the Mack et al. experiment generalized
from their knowledge of typewritersr our learners generalized
from their knowledge of traditional "glass-TTY" interfaces (in-

teraction paradigm no. 2). For exampler one learner was puzzeled



10

that the editor as explained above did not show very long lines
in full and proceeded to look through the user's guide for infor-
mation on how to switch on the "word wrap™ mode. The editor did
not have such a mode and the user was supposed to use scrolling

instead. But it took him a long time to realize this.

2.5. Learners have frouble following directions

Our learners certainly had the tendency to "jump the gun"
and to try to do more than was expected in the step by step in-
structions for the self paced practice assignment. For exampler
when told to create an enumeration type with 15 elements and to
put a "1" in the first elementr many of our subjects carried on
and also put a "2" in the second element and so on. This may be
due to their unfamiliarity with the syntax editing concept of
leaving placeholders unexpanded and return to them later. They
felt uncomfortable about having an only partly finished programs
but this gave them problems at later points in the practice in-
structions because their program did not have the presupposed

contents.

2.6. Problems interact

Our learners were computer science students and professional
programmers and did not have much difficulty with this aspect of
learning to use a computer system. They were quite adept at
isolating problems and not to carry on until they had solved each

problem.

L.1. Interface features may not be obvious
Agains the interaction paradigm employed in a system implies

a specific way of interpreting the interface features. But as



1d

long as users have not internalized the paradigmr they may have
trouble with features that were considered obvious by the system
designers and therefore are not explained in the user's guide or

in the help system.

For exampler EKKO has a window called the fragment window
that can be in one of two modesr called 'survey' mode and
'detail' mode respectively. The name of the opposite mode of the
current mode was always displayed as a soft function button that
could be activated via the mouse to change mode. The concept of
a soft functin button is not part of the earlier interaction
paradigm known to our learners. One of our test subjects was
able to carry out this mode shift operation but he thought that
the mode name displayed was a status indicator and as such the
name of the current mode and not of the opposite mode. He
therefore formed the wrong mental model of the meaning of the
mode names and would have had trouble if he had tried looking
them up in the manual. He never did this however and so did not

experience any trouble.

5.8. Help facilities do not always help

The EKKO editor does not include an online help system. The
only help available was the user's guide which admittedly was
rather poorly written. The test subjects practically did not use
this guide at all after the first day. This may be because it was
a poor guider but it is likely also because the editor interface
was so dynamic that further explanations were not needed once the
underlying principles were understood. At the start of their
learning periodr our subjects had some problems using the manual

because they were unfamiliar with the basic interaction paradigm



12

used. They looked for information in the wrong sections of the
manual because they were not aware whether some problem was
described under the heading of general interface description or

under some specific functionality.

5.9. Qver-estimating the computer

Users have a tendency to feel awe for the computer. They do
not have a clear understanding of exactly how 'clever' a given
computer system isrs and therefore they often will tend to believe
that the system has more power that is actually the case. One

should think that this problem would only manifest itself in
naive userss but it turned out that some of our programmers

showed the same behavior.

For exampler when text was typed from the keyboard it would
according to the user's guide be interpreted as either program
text or comments according to "what makes sense". This was
probably an unfortunate wording but it exposed a misconception
on the part of most of our learners. They were not aware that
"make sense" should be seen relative to the syntactical category
of the place that was selected when the text was typed. Instead
they believed that the editor would understand the text they ac-
tually typed in and place it as program text if it was in the
form of legal program text and as a comment otherwise. In other
words they empowered the editor with a capability it did not

have.

6. Conclusions

Our programmers had learning problems because they were



13

faced with three new issues at once. 1) They had to learn the
commands of a new computer system. 2) They were not familiar with
the functionality of the system in advancer so they had to learn
that too. 3) The interaction paradigm through which they used the

tool also was newe.

Novice users who learn how to use a computer for the first
time also have these three problemsr so it is only natural that
our programmers should manifest the same type of learning dif-
ficulties as novices do. Usually programmers and other experien-
ced users are lucky and only have to face two or even only one

of the three issues at a time.

Even though our test subjects as described had rather many
learning difficulties they were nevertheless able to learn to use
the editor in a few days. After this learning period they used

the editor with great speed and without any serious trouble.

This experiment showed that programmers are able to move
from using a text editor to a structure editor relatively easily
even if they have not had training in the theory of formal gram-
mers. An interesting problem would be whether programmers who
had learnt programming using a structure editor would be able to
make the reverse switch to a text editor with the same ease. This
may not be the case. We could take driving automobiles having
manual and automatic exchanges respectively as an analogy that
shows that the switch is easy only in the one direction. Our
conjecture is that the switch is easy when the system takes over
functions that you had to do yourself before but difficult if you

all of a sudden have to actively do something that the system



14

used to handle.

The structure editor used in the experiment was programmed by
Kurt Nermark. He programmed the replay facility mentioned in sec-
tion 4 as an addition to the editorr and he also actively took
part in running the described experiment. The original design of
the EKKO system was done by Karen Borupr Kurt Ngrmark and Elmer
Sandvad. This work was done with support from the Danish Natural
Science Research Council (grant 11-4296). The Danish computer
company Christian Rovsing A/S kindly provided the two profes-
sional programmers who participated in our experiment. Helpful
comments on earlier versions of this paper was given by Micheal
Mac an Airchinnigh and Brian H. Mayoh.

References

Borupr Karen; Neormarks Kurt; and Sandvadr Elmer. 1983.

EKKOQ - An Integrated Program Development System. Internal
Report 51, Computer Science Departmentr Aarhus University.

Cardr S.K.; Pavels M.; and Farrell, J.E. 1984.

Window-based computer dialogues. Proc. IFIP INTERACT'84 (Lon-
don 4-7 September 1984), pp. 1.355-1.359 (in the preprint
edition).

Mackr Robert L.; Lewiss Clayton H.; and Carroll, John M. 1983.
Learning to use word processors: Problems and prospects. ACH
Transactions on Office Information Systems lr 3 (July 1983)«
pp. 254-271.

Nealrs Alan S.; and Simonss Roger M. 1984.

Playback: A method for evaluating the usability of software
and its documentation. IBM Systems Journal 23+ 1lr pp. 82-96.

Nermarks Kurt. 1985.

Program development on graphical workstations. Proc. 1l8th
Hawaii International Conference on System Sciences.
Zelkowitz, Marvin V. 1984.
A small contribution to editing with a syntax directed editor.
Proc. ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Environments (Pittsburghs PAs
April 23-25, 1984), pp. 1-6.

Author's present address
Jakob Nielsenr Computer Science Departmentr Aarhus Universityr
Ny Munkegader DK-8000 Aarhus Cr Denmark.



