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0. INTRODUCTION

The aim of this paper is to present an introduction to the theory
of Petri nets. The subject matter of this theory is distributed systems
and processes. In our presentation, we shall emphasise concepts at the
expense of specific results and techniques. Applications of the
theory, though many and varied, will not be dealt with here. Even in
dealing with the concepts, we shall focus on those that we believe are
relevant t© the study of distributed systems in general (independent
of the specific framework one might choose). In the concluding part,
we will attempt a broader sketch of the scope and contents of net
theory.

A main feature of this theory is that, in the study of systems,
both states and changes-of-gstates are assigned egual importance. More-
over, both states and changes-of-states are viewed as distributed

entities. A marked net (we prefer to term Petri nets as marked nets)

looked upon a system model reflects these concerns. A net may be con-
sidered to be a directed bipartite graph with two kinds of nodes called
S-elements and T-elements. S—elements denote the local atomic states
and T-elements denote the local atomic changes-of-states (transitions).
The directed arcs capture the neighbourhood relationship between S5-
elements and T-elements. Markings are used to represent the states of
a system whose structure is modelled by a net.

A marking of a net is a distribution of objects called tokens
over the S-elements. In this sense a global state is composed out of
local states. In general, tokens can have a complex internal structure.
This fact leads to a variety of powerful system models [13, 22, 45] that
are at the forefront of applications. In this paper, given our purposes,
it is sufficient to just consider marked nets in which the tokens do

not have any internal structure and hence are indistinguishable from



each other.

The dynamics of a marked net are captured by a firing rule. It
states when and how the transitions associated with the T-elements can
transform the token distribution. In general, a number of (local)
transitions may proceed independent of each other at a state. In this
sense, change-of-state is also a distributed entity. The chief advan-
tage of marked nets is that they provide the means for clearly dis-
tinguishing between the three fundamental relationships that can exist
between the occurrences of two transitions t1 and t2 at a state:

1) t, followed by t (sequence, causal dependence)

1 2

2) t1 oK t2 but not both (choice, conflict, non-determinism)

3) t1 and t, but with no order (concurrency, non-sequentiality,

causal independence)

This ability of net theory to cleanly separate - in particular -
choice and concurrency has at least one important consequence. It is
possible to define various mixtures of non-determinism and non-
sequentiality and study the resulting sub-classes. It is this aspect
of net theory which we wish to bring out in our survey.

In the next section, the basic terminology concerning marked nets
is introduced. One can then identify a class of marked nets called
safe marked nets. Our review of net theory is essentially confined to
this sub-class. In Section 2, we discuss with the help of simple net
diagrams the fundamental situations that can arise in the history of
a distributed system. Sections 3 and 4 are the heart of the paper. We
identify, by syntactic means, a hierarchy of safe marked nets. We briefly
indicate the theories of well-known members of this hierarchy. Our aim
is to argue that this hierarchy represents one way of obtaining systems
that exhibit increasingly complex mixtures of choice and concurrency
in their behaviour. To establish this, in Section 4, we first review
the wvarious ways of defining the behaviour of a marked net. We then
adapt Milner's notion of behavioural equivalence [32] for our purposes.
Finally we show that the syntactically defined hierarchy of the pre-
vious section indeed agrees with our chosen notion of behavioural
equivalence. As mentioned earlier, in the concluding part we indicate

the wvarious portions of net theory that have not been dealt with in

this paper.



1. TERMINOLOGY

A (directed) net is a triple N = (S,T;F) where:

1) SUT # @; SNT = @.

2) F c (8xT) U (TxS) such that dom(F) U range(F) = SUT.

S is the set of S-elements, T is the set of T-elements and F is

the flow relation. Depending on the application, various interpreta-

tions can be attached to these three components of a net (see [41]).
Here, we shall use S-elements to denote the local atomic states, the
T-elements to denote the local transitions and the flow relation to
denote the extent of changes caused by the local transitions. In what
follows we will refer to S-elements as places and T-elements as

transitions or as done in the next two sections, refer to S-elements

as conditions and to T-elements as events.
In diagrams S-elements will be drawn as circles, T-elements as
boxes and the flow relation will be represented by directed arcs.

The following is an example of a representation of a net.

For the net N we use SN (TN,FN) to denote its set of S-elements
(T-elements, flow relation); XN = SN U TN is the set of elements of N.
The subscript N will be dropped if N is clear from the context.

It will be very convenient to work with a 'local' representation

of the flow relation. To this end let N be a net and x € XN‘ Then

"x = {yEX | (y,x)€F} - the pre-set of x
x° = {yex | (X,Y)EFN} -~ ‘the post-set of x.

In our example S, = {t4}, t4 = {51,32}.



This dot notation 1s extended to sub-sets of Xy in the obvious
way. Now it is possible to identify various sub-classes of nets by

suitably (and locally) restricting the dot relation. For example the

net N is said to be puxe iff vx € Xgt "x N x" = @. N is said to be
simple iff Vx,y € Xg: X = 'y Ay =x" = x =y. Our example above is

both pure and simple.
In the two sections to follow we will encounter more interesting

sub-classes of nets.

A marking of the net N = (S,T;F) is a function M: S - ]NO =
{0,1,2,...}. In diagrams, M is represented by placing M(s) tokens
(small dark dots) on each s. The transition t is enabled at the marking

M iff for each s € "t, M(s) > 0; in other words each input place of t

should carry at least one token at M. The fact that t is enabled at M
will be denoted by M[t>. An enabled transition may fire (occur). When

t fires at M, a new maxking M' is reached which is given by:

M(s) - 1, if s € "t ~ t°
¥s € S: M'(s) = M(s) + 1, if s € £° ~ “t

M(s), otherwise.

The transformation of M into M' by the firing of t at M is denoted

as M[t>M'. Consider our example above with marking M?' given by

M1(S1) = Mq(sz) = 1

M1(S3) = M1(s4) = M1(55) = 0
We then have M1[t1>M2 where

MZ(SZ) = M2(S3) = 1

M2(S1) = M2(54) Mz(ss) = 0

The set of markings one can reach in this way, starting from M is

called the forward marking class of M. More precisely, for the net N

and a marking M of N, the forward marking class of M is denoted as

[M> and is the smallest set of markings of N satisfying:

1) M€ [M>

2) If M' € [M>, t € T and M" is a marking of N such that
M'[t>M", then M" € [M>.



Our system model is a marked net. Formally, a marked net is a

quadruple Z = (S,T;F,MO) where the net NZ = (8,T;F) is called the

underlying net of X and MO is a marking of Ny called the initial marking

of £. Liveness and safety are two behavioural properties of marked nets

which have traditionally received a great deal of attention in net
theory. It is possible to define and study various forms of these two
properties. Here we choose the 'strongest' versions.

The marked net = = (5,7;F,M°) is live iff wM € [M%>, vt € T:
3M' € [M> such that t is enabled at M'.

Thus in a live net no transition ever loses the possibility of
becoming enabled.

The marked net X = (S,T;F,MO) is safe iff VM E [MO>, Vs € S:
M(s) £ 1. Consider our example above with initial marking M1 (exactly
one token on S4 and 52). This marked net is then safe but not live.

In a safe net no place will ever contain more than one token. As a
result, in a safe net each place can be viewed as a propositional
variable. A marking is an atomic boolean valuation (1 ~ true, 0 ~ false)
which then extends uniquely to a boolean valuation of the formulas
puilt up from the propositional variables in the natural way. This
view coupled with the presence of events gives rise to some useful
and pleasant links with propositional logic (see [11]) but we digress.

What is of interest here is that the basic concepts of net theory
are best brought out at the level of safe marked nets. Consequently,
in what follows we shall just concentrate on safe marked nets. To con-
clude this section, we shall adopt a few conventions. In line with
tradition, we will from now on denote a safe marked net as
r = (B,E;F,MO) and call B the conditions and E the events. The elements

of [MO> are sometimes referred to as cases. Since for each M € [MO>
M: B » {0,1} we can and shall represent M by the set of conditions that

hold at M, i.e. {b € B
e is enabled at M iff ‘e < M and so on. We conclude this section with

M(b) = 1}. Accordingly, we say that the event

an example of a live and safe marked net (shown in fig. 1).




2. FUNDAMENTAL SITUATION

Causality, concurrency, conflict and confusion are four basic
notions of net theory.. They can be brought out with the help of safe

marked nets as follows.

Sonpel e O——-O0—{—0

At the marking shown the occurrence e, must be preceded by the

occurrence of e, .

Concurrency

e, and e, can both occur at the marking. More importantly they
can occur without 'interfering' with each other. No order is specified
over their occurrences. Thus in general the occurrences of events and

the resulting holdings of conditions will be partially ordered; our

systems can exhibit non-sequential behaviour. One way to bring in the
flavour of concurrency in the firing rule is to introduce the notion
of a steép.

Let 3 = (B,E;F,M") be a safe net M € [M0> and ¢ # u < E. Then
u is a step at M (denoted by M[u>) iff

1) Ve € u: "'e c M (or equivalently M[e>)

2) ve,se, € u: e, = e, = 'e1 n 'e2 = @. {e1 and e, can carry
out the changes-of-states attributed to them without

interfering with each other).

We say the events in u occur concurrently at M. As might be expected,

M[u>M' iff M[u> and M' = (M ~ \gf “e) \y/ e’.
ecu egu

Conflict

o) : ©)




At the marking shown e, and e, can occur individually. But {e1,e2}
is not a step due to the shared condition b. We say e1 and e, are in
conflict at this marking. Non-determinism enters the picture at this
stage because the choice as to whether €4 will occur or e, will occur
is left unspecified. One way to explain how conflict is resolved is to
postulate that the environment will supply the system with the required
bit of information. Conflicts and their resolutions may be thought of
as the means for modelling the flow of information across the border

between the system and its environment.

Confusion

Let M, = {b1,b2,b3}, M1 = {b4,b5} so that MO[{ei,e3}>M1. Here there
could be disagreement over whether or not a conflict was resolved in

going from MO to M1. Two honest sequential observers O1 and O2 could

report:
O1 e, occurred first without being in conflict with any other
o event. And then e, occurred.
O2 e, occurred. e, and e, got into conflict. The conflict

was resolved in favour of e1.

This is a confused situation. Confusion arises whenever conflict
and concurrency 'overlap'. This phenomenon appears to be basic in nature
and can be at best swept under the carpet (i.e. to a lower level of
description) through temporal assumptions. In asynchronous switching
circuits confusion is called the glitch problem or more appropriately
the synchronisation failure problem [47].

There is a second form of confusion known as symmetric confusion.

Here is an example.



Here e, is in conflict with e. {e1,e2}is a step. If e, occurs then
e, is no longer in conflict with e. In other words e, gets out of
conflict because of the occurrence of e,5- The whole argument of course
applies to e, w.r.t. e,. Hence the term symmetric confusion. Note that
if the step {e1,e2} occurs then there is confusion over which conflict

{(between e, and e or e, and e) was resolved.

3. A HIERARCHY OF SAFE NETS

We now wish tb combine choice and concurrency by syntactic means
and examine some of the resulting sub-classes. To this end it will be
convenient to assume that our nets are finite (i.e. the set of elements
is finite) and connected (in the graph theoretic sense).

S-graphs can be used to capture the structure of non-deterministic
sequential systems. An S-graph is a net N = (S,T;F) in which
¥t E T |7k lE"
lying net is an S-graph. It is easy to verify that the marked S-graph

£ 1. A marked S-graph is a marked net whose under-

¥ = (S,T;F,MO) is live and safe iff N_ is strongly-connected and

2
x Mo(s) = 1. Here is an example of an 1ls (live and safe) S-graph.

SES
Since 1liveness and safety make sense only in the presence of markings,

we will from now on drop the term "marked" whenever possible.

A safe S-graph can get into conflict situations; it can exhibit
non-deterministic behaviour. However no two events can ever occur con-
currently. In this sense safe S-graphs model non-deterministic sequen-

tial systems. Automata theory has a good deal to say about these



systems. Viewed as a sub-class of distributed systems, a more appro-
priate theory of this class is the one constructed by Milner [32]. Note
that due to the absence of concurrency, safe S-graphs are free of con-
fusion.

It is a happy circumstance in net theory that, structurally speaking,

there is a duality relation between non-deterministic sequential systems

and deterministic non-sequential systems. A T-graph is a net N = (S,T;F)
in which vs € S: |°s|,|s"| £ 1. A marked T-garph is a marked net whose

underlying net is a T-graph. Marked T-graphs are often called marked
graphs and sometimes synchronisation graphs. Below we show an example

of an 1s T-graph.

v

N
e

The theory of marked T-graphs is well-understood [6, 10 , 23 ,241].

Here we will just mention a characterisation of ls T-graphs. Details

of the proof and other results can be found in [ 6 ,10].

The marked T-graph I = (S,T;F,MO) is live iff Vs € S: "s # @
and every directed circuit of Nz contains at least one S-element which
0

is marked (i.e. carries at least one token) under M-.

The live T-graph I = (S,T;F,MO} is safe iff every S-element of
NZ is contained in a directed elementary circuit T that carries exactly
one token under MO. In other words if S' is the set of S-elements that
M passes through then I MO(S) = 1.

ses!

In a safe T-graph two events may occur concurrently; the behaviour
can be non-sequential. But no two events can ever be in conflict. Thus
safe T-graphs model deterministic non-sequential systems. Due to the
absence of choice, safe T-graphs are also free of confusion. The class
of systems represented by safe T-graphs is an interesting one. This
class has appeared under vary many disguises - with some variations on

the expressive power - in the literature and will probably continue to
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do so. To mention just a few here, Muller [33] in his work on speed
independent switching circuits was the first to identify this class.
This was followed by Karp and Miller [23] who explicitly used the term
'determinate'. The well-known stream-processing networks of Kahn [54]
are one more appealing manifestation of this class and in Milner's

CCS [31] they are christened confluent systems. Finally in the land of
VLSI systems, they travel under the name of systolic arrays. Clearly
the reason for this commonality is that, in the presence of concurrency,

deterministic non-sequential systems represent the most elementary step

of departure from sequential systems. Indeed we would claim that a good
test for a formalism dealing with distributed systems is that it should
be able to identify this sub-class in a natural way.

Systems that are both non-deterministic and non-sequential are
difficult to analyse. Where confusion is present they are also diffi-
cult to synthesise. In net theory there is one particular way of com-
bining choice and concurrency that leads to a class of non-trivial and
yet manageable systems. The idea - due to commoner as far as we know -
is to find a common generalisation of T-graphs and S-graphs in which
choice and concurrency do not 'interfere' with each other.

A free choice net (fc net) is a net N = (S,T;F) in which

Vs € S ¥Vt € T: (s,t) € F=>s" = {t} v {s} = "t.

Stated differently, in an fc net, if two transitions share an
input place then it is the only input place for both the transitions.
Thus by definition, every S-graph (T-graph) is also an fc net. And the
converse is clearly not true. For easy reference we show below the sub-

structures that are not allowed in the three sub-classes.

Vg

S-graph T-graph fc net

A marked fc net is a marked net whose underlying net is an fc net.

An example of an lsfc net is shown below.
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Note that a safe fc net can exhibit both non-deterministic and non-
sequential behaviours. However their very structure guarantees the ab-
sence of confusion. The interested reader might wish to verify this claim.

The theory of lsfc nets is also well-developed. Indeed it is the
largest sub-class of safe nets whieh has a relatively complete theory.
Here we shall bring out a characterisation of liveness and safety. For
dealing with liveness we need to identify two structural notions called
deadlocks and traps. Let N = (S,T;F) be a net and S' € S. Then S' is a
deadlock iff "(S') < (s')". Thus in a deadlock every T-element which
could increase the token count on S' must, for doing so, remove at
least one token from S'. The 'opposite' notion is called a trap.

S' < S is a trap iff (S8')" < *(5'). Every T-element which would decrease
the token count on S' must, for doing so, put at least one token on S'.

A deadlock which is free of tokens can never acquire a token again.

A trap which has acquired a token can never become free of tokens

again. The liveness theorem for fc nets is:

The marked fc net ¥ = (S,T;F,MO) igs live iff every deadlock S' < S
contains a trap S" which is marked under M%. In other words s" < S'

and Z MO(S) > 0.
SES"

Once again we omit all proofs and the details can be found in [17].

For characterising safety, we need the notion of SM-components.
Let Z = (S,T;F,MO) be a marked net and N' = (s',T';F'} be a sub-net
of N. In other words, N' is a net; Ss'' c s; T' ¢ T; F' = FN {S'xT'UT'xS").

Then N' is called an S-component of I iff

1) N' is a strongly connected S-graph.
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2) The environment of each S-element in N' is complete
relative to Ng. More precisely, Vs € S': "s U s° (in N') =

s U s" (in NZ)‘

The key property of an S-component is that the total number of tokens
distributed over its S-elements remains invariant through transition

firings in the composite net. Finally, an SM-component of ¥ is an

S-component N' = (S',T';F') which satisfies I Mo(s) = 1. We can now
]
state when a live fc net is safe. BES
The live fc net ¥ = (S,T;F,M%) is safe iff it is covered by its

set of SM-components. In other words Vs € S (and hence vt € T) there

is an SM-component N' = (S'T';F') such that s € S*.

1sfc nets admit an elegant and powerful decomposition theory. The
classic work of Hack [171 contains the central results in this area.
He identifies S-components and their dual called T-components as the

major structural constituents of an lsfc net. One important consequence

of this theory is that lsfc nets are, in a behavioural sense, a common
generalisation of 1ls S-graphs and ls T-graphs. A second consequence

is that in this sub-class conflict and concurrency are dual notions.
In fact since we have used the term 'dual' repeatedly it might be

helpful to nail it down properly.

The reverse dual (or just dual) of a net N = (§,T;F) is the net

&% = (§,7;F) where 8 = T, T =85 and F = F_1. It is easily verified that

the reverse dual of an S-graph (T-graph) is a T-graph (S-graph).
Interestingly enough, the reverse dual of an fc net is an fc net.

Hack's decomposition theory leads to the following beautiful result.

An fc net has a live and safe marking iff its reverse dual has a

live and safe marking.

Based on these results a number of additional structural and be-
havioural results concerning lsfc nets have been obtained in [48]. At
present what is lacking is a synthesis theory. There is however a
fairly satisfactory synthesis theory for a sub-class of lsfc nets
called well-behaved bipolar schemes [14 which properly include ls
S-graphs and ls T-graphs. These schemes also admit a computational

interpretation which leads to a class of "well formed" concurrent

programs [15].
At present not much is known about larger classes of safe nets

(see [ 7, 5 ] for a few results). The reason we believe is the inter-

play between choice and concurrency resulting in varying degrees of

confusion.
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We shall conclude this section with a proposal to classify the

remaining safe nets.
For n21, we shall say that a net N = (S,T;F) is an n-5 net

(pronounced as "n-shared net") iff

A
o

vt € T: |{s € "t]||s"| > 1}]

We say a place is shared if it serves as an input place to more than
one transition. Note that shared places provide the means for modelling
conflict. Thus in an n-5 net every transition can have at most n
shared input places. It is easy to verify that an fc net is a 1-5 net
and that the converse is not true. (Consider the marked net of fig. 1.)
More generally, one readily obtains the following syntactic hierarchy

of nets and hence safe nets (where the ofdering relation is inclusion).

2— S nets

1- 8 nets

/fcn\ets

S-graphs - T-graphs

In the next section we shall argue that for safe nets, under a
reasonable definition of behavioural equivalence, this is also

behavioural hierarchy.

4. REPRESENTATIONS OF BEHAVIOUR

A variety of tools are available for representing the behaviour
of a safe net. Before we begin discussing these tools, we would like
to extend somewhat the notion of a safe net. We do so because it will
enable us to provide a uniform framework for discussing behavioural
notions such as processes and unfoldings. Moreover, the suppleness of
the equivalence notion that we introduce is best brought out by the

extended model.
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The main change we propose is to consider labelled events. We
assume a countable set of actions A = {a,a1,...,b,b1,...,c,c1,...} and
consider labelled safe nets of the form I = (B,E;F,MO,L) where

L:E - A is the labelling function. One question that arises at once

is what restrictions, if any, should be placed on LY Tf T is reguired
to be injective we are back where we started. On the other hand there
is something strange about two events carrying the same label occurring
concurrently. If nothing else, one will have to use multi-sets (bags)
rather than sets to handle steps. Hence we will compromise and demand

that the labelling function L should satisfy:

_ 0. . ’
Veq,e2 € E: L(eT) = L(ez) A e1#e2 = YMe[M >: {eT,e2} is not
a step at M,

One way to ensure this would be to require all the events that
carry the same label to lie on an SM—componentt Anyway, in this section
we will just consider labelled safe nets whose labelling functions
satisfy the above requirement. For convenience we will say just 'safe
nets' and drop the term 'labelled'.

The simplest representation of behaviour is in terms of firing
sequences. Let Y* be the free monoid generated by the set ¥Y; A the null
sequence. Then FS(X), the set of firing sequences of the safe net
r o= (B,E;F,MO,L) is smallest sub-set of E* given by:

1) rers(x); Mora>MO.

2) Let o€FS(X) and MOHG>M.
If M[e>M' for e € E then ge € FS(Z): MOEGe>M'.

Thus [ > is the three place relation [ > extended to sequences of

events in the natural way. The language generated by X is defined as:

L(£) = {L(c) | o € FS(2)}

where L is the obvious extension ¢f L to E*,
In general, this method of representing behaviours loses informa-
tion (akout concurrency and conflict). The three systems shown below

will have the same set of firing sequences.

+ In this context, it is better to weaken the notion of an SM-
component somewhat; instead of demanding strong-connectedness
of the underlying S-graph, just demand connectedness.
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A considerable amount of work has gone into the study of languages
generated by marked nets in general. The interested reader may wish to
consult [18, 37, 49]. Though unsatisfactory as a representation of
concurrency, firing sequences are an indispensable tool for proving
properties of marked nets.

One generalisation of firing sequences consists of considering

sequences of steps. One then obtains what 'is called a sub-set language.
The idea should be clear and we will omit the details. Since a sequence
of singletons in the sub-set language can be interpreted as a firing
sequence, one gets, using the sub-set language, a finer behavioural
representation (in case concurrency is present). The first of the above
examples will be distinguished from the two others using this repre-
sentation. Nevertheless the appraoch is very much rooted in formal
language theory. Results concerning sub-set languages can be found in
[46 1.

An elegant generalisation of firing sequences is the notion of a
trace due to Mazurkiewicz [29]. Here one retains the power of string
manipulating operations and yet obtains a faithful representation of
concurrency. Unfortunately it would take us too far afield to explain
this notion in more detail. The reader is urged to consult [30] where
the full power of this concept is exploited to obtain an algebraic
behavioural representation of safe nets.

In net theory corresponding to the notion of a trace, we have a

partially ordered set of events. It will however be more convenient to

first define the notion of a deterministic process (d-process for short).

Loosely speaking,a d-process of a system I = (B,E;F,MO,L) is a record
of a non-sequential run on ¥ where conflicts are resolved as and when
they arise. The record will thus consist of partially ordered

occurrences of events and conditions. An example of a d-process of the



system of fig. 1 is shown below.
e, H

e

e

e

C;E;:Ej::::f)

For putting down 2 definition we need a fe
fok short) is & T-graph

W notations. A deter”

ministic occurrencs net (d-occurrence net,

. w oa
N = (B,E;F) in which F*, the transitive reflexive closure of Fi is

acyclic. F* is usually

partial ordering relation. In other words N is
ped whenever N is clear

written as éN and as usual the subscript ig drop
from the context. )

Let N= (B,E;F) be a d-occurrence net and xﬂ.xzfixN- Then X4 €© Fe
iff x, ¥x, and LN X' c X. Then X' = {y € % | 3xeX’ s.t. ¥ é-x};
gefinition of a net Jjus

- (0,09

Finally, for convenience, Wwe shall relax the

enough (drop the demand SUT 4 @) to permit the enpty net @y

and the corresponding 1abelled safe net (Q,@;@,@,@)l..Here and in

i i s of
what follows wherever necessary both F and 1, will be viewed as set

ordered pairs.

L es
Let Z = (B:E?F,MO,L) be a safe net. Then the set of d-procesS

i by :
of I is denoted DPR(X) and 1is the smallest set of safe nets given i

1) @d = (@r@?@l@r@) is a d-—process;
Rest (Bg) = {(0:®) | b € mO3.

2) Let dPr1 = (B1'E1;F1'M?’L1) be a d'pIOCESS.
(Part + —wncess 18
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2a) B, = B, UB,, U {(b, {e}] UB,, U4B;,) | b € e"}.
(Once again + is w.r.t. 21)
2b) E, = E; U {(e,By, U +By)}.
2c) Fy = Fju{((b,xb),(e,xe)){(b,xb)EB11UB12,(e,xe)eEZ\E1}
U{((e,xe),(byxb))|((erxe)EE2\E1,(b,xb)EBz\(B1UB12)}
24d) Mg = M? U B,,
2e) v(e',xe.) € EZ: L2((e',xe,)) = L(e').

2f) Rest(dpr2) = Rest(dpr1)\B12.

Thus each element of a d-process is an ordered pair. The first
component is an element of NZ' The second component represents its
'past' in the run modelled by the d-process. In diagrams, the second
component can be suppressed as done in the example shown above. We have
departed violently from well established conventions in introducing the
notion of a d-process. Normally what we call a d-occurrence net is
called an occurrence net or a causal net. What we call a d-process is
called just a process. The reason for introducing a new name is that
we also wish to discuss a more general behavioural representation
called the unfolding. And the unfolding of a safe net is based on a
type of net which is called - yes! - an occurrence net. Moreover we
wish to build up the unfolding through finite approximation which we
wish to call processes. So much for terminology.

d-processes are normally defined as a mapping from a d-occurrence
net to the underlying net of I which preserves the labels and the
neighbourhood of events. For details see [12] . d-occurrence nets can be
studied in their own right as a model of non-sequential processes. The
fundamental ideas in this area are set out in [42] where an intuitively
appealing density property called K-density is identified. Results
concerning K-density and related density properties can be found in
[ 3 ]. Notice that in d-occurrence nets, conflict is banished and the
causality relation is particularly easy to handle, and its interaction
with the concurrency relation is transparent. (Consider our definition
of co.) Conseguently, one can focus on the concurrency relation. Petri
has made an impressive attempt to axiomatise his intuition concerning
concurrency in [44]. A study of the properties identified by Petri's
axioms is reported in [ 8 ]. The relationship between the properties of
a system and the properties of its d-processes has been initiated in
[ 16 1. 1In this work, finite marked nets (i.e. the underlying nets are

finite but not necessarily safe) are considered and the notion of a
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d-process is extended to this larger class. The major resuit here is
that the finiteness of the state space (i.e. the set of reachable
markings) of a marked net is equivalent to the K-density of its d-
processes. Based on this result, a kind of liveness property of tokens
at the system level has been related to a density property called
D-continuity (a generalisation, to posets, of Dedekind's definition of
continuity of the reals) at the level of d-processes in [4].

Given a d-process dpr = (B1,E1;F1,M?,L1) of the system I one can
strip away the conditions and obtain the labelled poset of just events
(E1;25,L1) where gi is §1 restricted to ET' Such structures are called

elementary event structures. A more general notion is called an event

structure. Event structures are obtained by stripping away the condi-

tions from an occurrence net. Occurrence nets can be used to define the

processes of a safe net and a fundamental object associated with a safe
net called the unfolding. This representation of behaviour is the finest

and the last we shall encounter.

In going through the definitions to follow it might be helpful to

consider an example of a process of the system shown in fig. 1.

An occurrence net is a net N = (B,E:F) which satisfies:

13 Vb € B: |'b| = 1 (no backward sharing)

2) F*# = £ is a partial ordering relation (N is acyclic)
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Thus every d-occurrence net is an occurrence net but the converse is

clearly not true.
Let N = (B,E;F) be an occurrence net. The conflict relation

iy © X x X associated with N is given by:

1) ¥b € B Ve1,e2 € b: e, # e, = e, #N e,.
2) X1#N Y, A Xy S Xy A Yy Sy, = X, #N Yoe (£ = F* as before)

Thus # is an irreflexive, symmetric relation. Note that X4 # Xy A
X, <y would imply that X, # v.

The independence relation &y S X x X associated with N is given by:

X & Y iff x co y and (x # y)-

Finally, X' < X is a &-set iff vx,y € X': x & y. We can now generate
the processes of a safe net. The set of processes of the safe net
r = (B,E;F,MO,L) is denoted as PR(X) and is the smallest set of safe

nets satisfying:

1) Qpr = (¢,0:0,0,0) is a process and Rest(@pr) = {(b,®)| b € MO}_
2) Let pr, = (B1,E1;F1,M?,L1) be a process of Z. (As before,

part of the inductive hypothesis is that every process is a
safe net whose underlying net is an occurrence net with the
associated relations £, # and &).

Suppose e € E, B11 is a &-set of pr, and B12 = Rest(pr1)
such that

e = {b | (b,xb) € B UB12} and {e,B12U+B11) ¢ E1

11
0

Then pr, = (BZ,EZ;F2,M2,L2) is also a process of X where:
2a) B, = By U ByyU {(b,{e}UB;,U¥B ) | b € e}.
2b) E, = E, U {(e,B12u+B11)}.
2c) F, = Fy Ul ((b,xp), (e,x)) } (b,x,)) € Byy U By,
(e,x ) € E; > E1},
Ul ((e,x ), (b,xp)) | (e,x ) € Ey ~ Eyy
(b,x.) € By ~ (B, U 812}}.
2a) Mm% =M% u B
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2e) V(e',xe,) € E2: L2((e',xe.)) = L{e').

2f) Rest(pré) = Rest(prq) ~ B12.

Let pr, = (BT,E1;F1,M?,L1) be a process of ¥. Then it is quite
easy to verify pr, is a safe net whose underlying net is an occurrence
net. Moreover pr, (assuming that it is not the 'empty' process) has
a very pleasant property. Namely Ve € E,: M € [M?> such that M[e>
and Vb € B,: iM,M' € [M?> such that b € M and_b ¢ M'. In other words in
a process we just record those events and condition holdings that have

an occurrence (and hence the term occurrence net). The unfolding of a

safe net is now obtained by 'summing up' all its processes. To nail

this down, first note the set of processes of a safe net Z, as we have

defined it, is a countable set:PR(Z): {pro,prq,...}). Assume for i = 0:
pr. = (B.,E.;F.,MQ,L.). Then the unfolding of ¥ is denoted as £ and is
i i TR s T <
given by:
> = (ﬁ,E;F,ﬂO,i) where

A similar route can be followed to obtain (if they exist) the
infinite d-processes of a safe net. The notion of unfolding is due to
the authors of [35]. Given a process (Bq,E1;F1,M?,L1) one can strip

away the conditions and obtain an event structure of the form

(E;;55,#3,&]) where ii (#i,&%) is <, (#1,&1) restricted to E,- Building.
on the results of [35], Winskel has worked out a substantial theory of
event structures and employed them to provide 'non-interleaved' seman-
tics of CCS-like languages [51, 52].

This brings to an end our discussion of representations of

behaviour. We can now define an equivalence notion.

_ R 0 _ . 0
Let X1 = (816E1'F1’§1'L1) and 22 = (B2,E2,F2,M2,L2) be two safe
nets. Then R c {M1> x [M2> is called a bisimulation (between 4 and

22) ifFf

0 .0
1) (M1,M2) € R
" : 1 X t
MT[u1>M1 (in 21) = 3M2[u2>M2 (in 22) such tha

L1(u1) = L2(u2) and (M',Mé) € R.

2) (M,,M,) € R= a)

: i ! i h that
b) M2[u2>M2 (in 22) = 3M1[u1>M1 (in 21) suc

= E L R
L1(u1) L2(u2) and (M ,Mz) €
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We say that 21 and 22 are (bisimulation) equivalent and write

21 %'22 iff there is a bisimulation between them. Bisimulation is a
refinement discovered by Park [36] of Milner's notion of observational
equivalence. The bisimulation relation has very useful properties.
Chief among them of course is that it is an equivalence relation.

It is easy but important to verify that S~ where ¥ is a safe net
and £ its unfolding. The crucial feature of bisimulation is that through
it one is forced to keep track of all the potential behavioural possi-
bilities (which might lie in the distant future). A simple example
might illustrate this point. The two systems shown below are not equiv-
alent though all the behaviours (except processes) we have considered

here would identify them.

O
a a a
Jiu i b, b, } b,
1 2

For more interesting and subtle examples the reader should consult
[31]. Here we have slightly strengthened the definition in terms of
steps in order to block the possibility of representing concurrency
through interleaving. Given two classes of safe nets N1 and N2’ let us

define the ordering relation < as follows:

< N2 iff VZ.1 € N1: 322 € N2 such that ZTRfZ2.

N1 < N2 iff N1s;N2 and N2 < N1.
For convenience we will let NT (NS,Nfc) to denote the class of safe
T-graphs (safe S-graphs, safe fc nets); and for n 2z 1, Nn—S will stand
for the class of safe n-S nets.

Consider the following systems:
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Because of ZS (ZT) in NS (NT) we have NS £ NT (NT £ NS). From the

definitions it follows that Ng,No<N . < N,_g- Because of £, we have
NS' NT < Nfé' And because of 21_5, one can obtain Nfc < N1—S' Once

again from the definitions it follows that vn 2 1, Nn—S < Nn+1w5' To
show that this ordering is also strict, we consider the sequence of

safe nets 22,23,24,... where for 1 z 1, Zi looks as follows.

. T Ei+1. Conse=

quently under <, we can get the following hierarchy.

Then it is straightforward to verify that VI € Ni

It would be nice to give some quantitative arguments to support
our intuition that this hierarchy represents increasingly complex mix-
tures of choice and concurrency. Unfortunately, we do not have any
results at present along this direction. We do wish to point out though
the event structures of the form (E;<,#,&) 'contained' in the varijous
subclasses will display more and more intricate webs of £, # and & as
one moves up through the hierarchy. And this fact might be helpful in
obtaining the kind of result we would like to see.

We are content however that we have exhibited at least one such
classification scheme. As stated in the introduction, our main aim has
been to bring out some aspects of net theory while using the interplay
between choice and concurrency as the topic of discussion. We hope to
have succeeded in achieving this aim. We shall conclude this section
with an, we think, interesting example. Actually, it is an element of
a sequence of examples Zé,Zé,Z',... and here we show Zé. It should be
easy enough to guess how the rest of the sequence looks. This sequence

of examples essentially shows that our hierarchy remains intact, if one

adds liveness as an additional property.
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5. CONCLUSION

The interplay between causality, conflict and concurrency leads to
a bewildering variety of distributed systems. We feel that the chief
attraction of net theory lies in its ability to represent - conceptually,
mathematically and graphically - these three phenomena and their inter-
actions. The selection of topics treated in this paper has been guided
by this theme.

A more ambitious aim is to construct a comprehensive theory of
distributed systems and processes based on nets. Petri - with several
of his group at GMD, St. Augustin - has been pursuing this aim. Apart
from initiating this systems theory [38] he has, over the years, identi-
fied a number of fundamental constructs of this theory: Information
flow [39]; net morphisms [40]; completions ~f safe nets to obtain in-
variants concerning condition-holdings and event occurrences [40]; as
already mentioned non-sequential processes [42] and concurrency axioms
[ 44 ]. The aims and scope of this theory of systems are set out in
[ 43 ] and the major details are reported in [12]. A second significant
attempt to construct such a theory has been made by A.W. Holt, whose in-
fluence is less transparent (than Péetri's) but nevertheless crucial. The
seminal work reported in [19] is still one of the best introductionsto net
theory and continues to impress with its breadth and depth. Holt was
also one of the first to identify confusion as a deep source of diffi-
culties in the study of distributed systems. Finally, Holt has made a
valiant - but not entirely successful - attempt to construct a theory
of systems in which the continuous ('duration') and the discrete

('instant') hang together gracefully [20].
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A good deal of effort has gone into the study of decision problems
associated with marked nets. The classic work and results in this area
are once again due to Hack [18]. The mést famous problem in this area
is the reachability ?roblem (given a marked net X and a marking M of
Nz, is M reachable in £?) and was solved recently [26 ,28]. The inter-
ested reader may also wish to consult [50] for some additional deci-
dability results.

Marked nets in which the tokens have internal structure are often
called high-level Petri nets. Predicate/Transition nets [13] and
coloured Petri nets [23 are the most popular versions and a related
model has been proposed in [45] . A different but elegant generalisation
of marked nets are called FIFO nets where the places are viewed as \
queues. For an introduction and a nice application see [9]..High-level
nets are crucial in applications because marked nets, when used as a
modelling tool, yield descriptions that are too detailed and unwieldly.

The best developed analysis tool available for both marked nets

and high-level nets is S-invariants (and the related T-invariants).

The notion of an S-invariant for marked nets was identified in [27] and
later lifted to Predicate/Transition nets [13 and coloured nets [22].
Yet another analysis tool is the so-called reachability tree and a
promising extension of this tool for high-level nets has been achieved
in [21].

The ability to transform one net description into another in a
consistent fashion is a crucial one. Net theory proposes to employ net
morphisms for this purpose. So far though, net morphisms have been
mostly used for definitional purposes (in particular, for defining
d-processes) and is an important unexplored area of research. Winskel
has proposed a different notion of a morphism which preserves the token
game and hence several crucial behavioural properties [53]. This notion
of a net morphism leads to a number of interesting results. In particular
one obtains an elegant (category-theoretic) characterisation of the
unfolding of a safe net and several useful operations on safe nets.

As mentioned in the introduction, we will not make an attempt to

survey applications. A sample of the literature in this area can be

found in [ 1, 2, 34].

Acknowledgement We wish to thank Karen Mgller for producing, as usual,

an excellent manuscript under difficult circumstances.
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