ISSN 0105-8517

KERNEL LANGUAGES

Brian H. Mayoch

DAIMI PB - 177
October 1984

Computer Science Department i I‘]’ﬂ I
AARHUS UNIVERSITY
Ny Munkegade = DK 8000 Aarhus C — DENMARK
Telsphone: 05 ~ 12 83 55

izl

KERNEL LANGUAGES

Brian H. Maych
Barhus University
There are many programming languages; each have their
advantages and disadvantages; none is completely adeguate for
all kinds of problems. In the ideal world a routine in any language
should be allowed to call a routine in any other language. In
practice most programs are written in a single language, but there

is a trend towards more flexibility

- separate compilation;

- distinction between interface and body of modules
(e.g. ADA packages, tasks, procedures and functions});

- use of library packages (e.g. PASCAL programs calling
subroutines in a FORTRAN graphics module) .

There is a need for a kernel language to link routines in
different programming languages (see fig. 1). Because this kernel
language should not be piased towards a particular kind of pro-
gramming language, any parameter and type checking should be
neutral and innocuous. At present the nearest approach to a
kernel language is UNIX with its pipelines of software tools

[KM], so its widespread popularity is not surprising.

Routine Typical Call Paramclers

PASCAL program from control language files

pASCAL function from program variables,expressions,
or another routine routines

ADA procedure from control language variables, expressions
or another routine

ADA task entry from another routine variables, expressions

PROLOG predicate from control language terms

or another predicate

Code subroutine from control language addresses, values
or another subroutine

Figure 1. Examples of routines

2

In the ideal world programmers shcould not have to learn a
complex and clumsy job control language before they can run their
programs on a computer. Consider the current trend towards inte-
grated software environments for developing programs at graphical
work stations. Sometimes these environments are designed for a
particular programming language and a modified version of the
language is used as the control language (ADA for MAPSE, PROLOG
for PSI). Sometimes these environments are designed to be lan-
guage independent and the control language is simple [H]. There
seems to be a case for replacing control languages with a kernel

language that can distinguish between

T messages to and from the user (integers, strings, lists
and the like);

- files of messages that can be kept in back up memory;

— routines that can be kept as code and executed on demand.

Such a kernel language should be powerful enough to serve as
arn "intermediate" language for portable compilers (P-code Eop
PASCAL, A-code for ADA ++..). In this bPaper we present the de-
sign of a kernel language KL that can link routines in other

languages and replace both control and intermediate languages.
The language KL is suitable for the casual user, who knows no

other language, because it is both simple and powerful.

In section 1 we distinguish between KL system and library
variables, and we describe how library variables are arranged in
modules. In section 2 the KL way of calling routines is explained;
in section 3 we describe how calls can be pipelined and how input
and output can be redirected; in section 4 we focus on KI, commu=
nications with the user. A general way of building new routines
from old is described in section 5; since this way of combining
routines captures recursive flow diagrams and there is a general
value assignment command, KL is powerful enough for the casual
user. One argument for asserting that KL is simple enough for the
casual user is that the complete syntax of KL is given by the
twenty rules in sections 1 to 5. The strongest argument for this
assertion is the concise PROLOG implementation in section 6. This
implementation is a straightforward modification of the formal
denotational semantics of KL in the original version of this paper.

3
In section 7 ports are introduced so that KL can handle non-
determinism and multiple I/O. Since ports in concurrent processes
can be linked, we can describe nets of communicating routines in
section 8. The KL approach to failing, interleaving and backtrack-
ing routines is described in sections 9 and 10; The KL approach
to local variables, declarations and scoping is described in sec-

tion 11. The last section gives a PROLOG implementation of the

KL features in sections 7-11.

#1 Variables, Modules and Libraries

In our kernel language KL we have an unlimited supply of

system variables and the simplest KL command
(R1) variable := wvariable

has the meaning: assign the value of the right variable as the
value of the left variable. This assignment command can also be
used with library variables. At any time during a KL session
there is a library of modules, and each module has a number of
variables. The modules in a library form a tree, and the library

variables are the leaves of this tree (see fig. 1.1). As the
paths in the tree identify the library variables, KL can have

the syntax rule

(R2) variable ::= {identifier .} * identifier
where identifiers before "." refer to modules. Note that library
variables have a "." and system variables have not. Note also

that R1 gives a KL syntax rule
(R1") command ::= variable := variable

although it was presented as particular KL command. We will
always confuse abstract and concrete syntax in this way, because
particular KL implementations may disagree on concrete syntax

and we do not want arbitrary conventions about escape characters,
graphical presentation of commands and the like to interfere with

our presentation of KL.

4

How can one create and destroy library variables in KL?

The destruction command is
(R3) variable :=

and this also destroys modules which become empty when "variable"

is removed (see fig. 1.1).

L
M N

L.M.X L.N.Y L.N.Z

i N ™)
1 N £ L.M.X L.N.Y L.N.Z L.P.W
he ¥ 7 W
|
Li.M. X
N
L
>
I8! P L.N.Y L.N.Z L.P.W
. A
#
Y 4 W
Figure 1.1. Trees of Modules and Library variables

The simplest way to create a variable is to use it in a KL com-
mand. When a new variable or module is mentioned in a command,
the library is modified to accomodate the variable or module

(see fig. 1.1). The library can also be modified by the compiler
for ADA and other languages, which allow separate compilation of
"packages" of variables and routines. The compilation of such a
package P may give a new module P and new library variables for
each package variable and routine. Note that a compilation, which
Creates variables, may also give initial values to the newly crea-
ted variables. Note also the close analogy between messages and
routines in module variables and the "abstract data types" so

prominent in the theoretical literature.

#2 Routines

If a kernel language is to have any chance of success, it
must have a simple but general way of calling routines. In KL
routines are called by commands like

(R4) variable (message)

If the value of "variable" is not a routine, the command (R4)

has no effect on the values of KL variables, but an error message
may be sent to the user in some KL implementations. If the value
of "variable" is a routine, then the value consists of a code

and an introduction. KI, uses the introduction to interpret
"message” in the command (R4), then it executes the code. The way
messages are interpreted depends on the programming language used
to define the routine. Let us leave this language dependent issue
to a later section on definition of routine values and introduce
a particular routine value EVALUATE. The introduction of EVALUATE
tells KL not to interpret its message, and the execution of the
code of EVALUATE causes

— computation of message-value by substituting values
for variables in "message";

— computation of result-value from message-value, inter-
preting & in "message" as string concatenation and

+, x, -, / and brackets in "message" as usual.

Fig. 2.1 shows the execution of EVALUATE for particular messages.

message |message-value | result-value | when variable has value
17 1.7 17
2+3 243 5
2+a 2+7 9 a 7
2ia 2+a 2+cat a cat
2+a 2+3x7 23 a 3x7
LZ‘lil 2&a 161 a 3x7
=]

Figure 2.1 Evaluating particular messages.

The KL command for evaluating messages is

(R5) variable := message

and this command causes the result value given by the call of
EVALUATE to be assigned to "variable". Because a kernel language
should accommodate functions as routines, KL also has the

command

(R6) variable := call

for assigning the results of routine calls to system and library
variables. In KL all routine calls either loop or they have a
result, but the result of a procedure, predicate or program might
be an artificial message like: SUCCESS, FAILURE, ABORTION,

TIMEOUT ... This convention allows us to rewrite (R4) as a syn-
tax rule
(R4") call ::= variable (message)

where "message" might be interpreted as a list of actual para-
meters separated by commas. In the next section we introduce more
complicated calls than those allowed by (R4'). All calls are KL
commands, and particular KL implementations may tell the result
of the call to the user when it is not assigned to a system or
library variable.

NOTE: EVALUATE has been defined in such a way that the meaning

of (R5) does not conflict with that of (R1). In section 4 we
reveal how the user can learn the result of evaluating a message;
the command EVALUATE (2+3x4) is allowed by (R4) but KL interprets
EVALUATE as a system variable.

#3 Sources, Sinks and Pipelines

Usually programs are written on the assumption that there
are standard input and output files. A kernel language should
allow redirection of input and output; if a routine assumes input
from a terminal keyboard and output to a terminal screen, then
the kernel language should allow the routine to take input from
any source file and/or send output to any sink file. In KL we

have the commands

(R7) variable > call

(R8) variable := variable >—— call

(R9) call —> variable
(R10) variable := call —> variable
(R11) variable >—— call —> variable
(R12) variable := variable >—— call —> variable

If there is a variable "source" before >——, then input to the
called routine is taken from "source" instead of the keyboard;
if there is a variable "sink" after —>, then ocutput from the
called routine is sent to "sink" instead of the screen; if there
is a variable "destination" before :=, then the result of the
called routine is assigned to "destination". Intuitively infor-
mation streams from the source through the code to the sink.

This intuition suggests the introduction of pipelining in
a kernel language. In KL one can avoid temporary files by writing

commands like

(R13) variable (message) >— call
(R14) call —> variable (message)

where (R14) corresponds to the UNIX pipeline mechanism. The
effect of (R13) is

- the call is executed;

- when the call is complete, its result is the result of
(R13)

- when the call needs input, "variable (message)" is

executed until it produces output.

This is subtly different from the effect of (R14) :

The

- the call is executed;

- when the call is complete, its result is taken as the
result of (R14);

- when the call produces ocutput, "value(message)" is

executed until the output is consumed.

reason why KL has both (R13) and (R14) is that pipelines

must have a driver, a routine which determines how active the

other routines in the pipeline must be. From the syntax rules

(R15)
(R16)

call ::= variable (message) »>—— call

call ::= call ——> variable (message)

we see that the driver of a pipeline can be identified as the

unique "variable(message)" where >—— changes to —> (see fig.

3.1).

and

its

Note also that (R15) (R16) permit pipelines to have sources
sinks different from keyboards and screens.

A{) >— B() >— C() terminates when driver C terminates
A() >— B() —> C() terminates when driver B terminates
A() —> B() —> C{() terminates when driver A terminates
source >—— A() —> B{) —> C() —> sink has driver A

Figure 3.1. Pipelines and their drivers

The execution of a pipeline can be interrupted when one of

components consumes a value produced by its predecessor. The

termination of any KL command can be interrupted; in a multi-user

envi

ronment any KL command can be interrupted by the timesharing

mechanism. Some KL commands have other interrupt points:

- commands with no source (R4, R6, R9, R10) can be inter-
rupted after requesting a keyboard input;

- commands with no sink (R4, R6, R7, R8) can be inter-
rupted after sending a screen output.

Particular KL implementations may send particular messages to
the user at interrupt points. As the user may have several ac-
tive KL commands, an interrupt message for a traditional ter-
minal should indicate which command has been interrupted (see
Fig. 342).

X >— 16 -- active command X:=A{(...) receives input 16
L.N.Y —> "dog" -- active command L.N.Y:=B(...) sends output "dog"
>— 7 -- active command C(...) receives input 7

X:="cat" ~= active command X:=A(...) sends result "cat"

Figure 3.2. Typical KL dialog with a traditional terminal

The reason why we allow many KL commands to be active concurrent-
ly, is because "a window for each active command" is the natural

modus vivendi at a graphical work station (see fig. 3.3).

X := A() L.N.Y:=B{() Cille ne:)
>—{7e] o] 1 - B0 |
— 3 —[@ .

Figure 3.3. Typical KL dialog with a graphical work station

Usually a KL command becomes active as soon as it is entered, but
we do impose the restriction: if the source, sink or destination
of a command C is the source, sink or destination of an active
command, then C is delayed. Particular KL implementations may im-—
pose stronger restrictions that further reduce indeterminacy and
conflict, but it seems unwise to impose the strongest restriction:
sequentiality.

10

#4 Communication with the user
—————==2-70n With the user

There are four ways KL can send a value to the user

(1) Sending a file when a command has no explicit sink;
(2) sending the result of a call, when there is no explicit
destination;

(3) sending a value when a command is interrupted;
(4) executing the command

(R17) variable —>

to KL implementation. However we do recommend that the output
form of a variable vreveals clearly if v contains a file, a
routine or just a message value. Whatever the conventions of a
bParticular KIL implementation, the output form of a value is a
message so (R17) coerces file and routine values into message
values. Because KL has this coercion, it can alsc have the
command

(R18) variable —» variable

for delaying user output or Coercing (the contents) of files and

routines into call bParameters.

11

Example 2

If the variable befores>— in (R20) has the value
PASCAL function f end;

then (R20) uses the Pascal compiler to set the value of the
variable after >— to the compiled code for f with an intro-
duction telling KL how to convert a functional value and an
actual parameter message. The conversion rules depend on the
particular Pascal compiler used by KL, but most Pascal compilers
follow the rules in fig. 4.1. If the reader feels we have skated
over the real complications of separate compilation like type
checking, use of exXternal variables and routines ..., she might
consult [KMMN]

Concept Cell Contents EEQELIEfHI“U?Q
local variable top of stack value dircct

local routine = - direct jump
external variable on stack value via display
external routine = = direct jump
value parameter top of stack wvalue from direct

actual parameter

address from indirect

variable parameter on stack
actual parameter

address from indirect jump

routine parameter on stack
actual parameter

functional value top of stack value to result assignment

Figure 4.1 Code conventions of typical PASCAL compiler

Example 3

If the variable before>— in (R20) has the value

PROLOG predicate member (X,S8) has rules
member (X,[X|Y]).
member (X,[Y|Z]):- member (X,2).

end.

then (R20) sets the value of the variable after >—— to code
for member with an introduction telling KL how to convert an
actual parameter message into two PROLOG expressions.

There are four ways KL can receive a value from the user
(5) receiving a file when a command has no explicit source;
(6) when a message is typed as parameter to a call;
(7) during a dialog after interruption of a call;
(8) executing the command
(R19) >-— wvariable
What the user actually sends may vary from KL implementation to
KL implementation. However we do recommend that the answer to
(R19) clearly indicates if a message, file or routine value is
being sent. Whatever the conventions of a particular implementa-
tion, the input form of a value is a message so (R19) converts
a message value into a file value, a routine value or another
message value. Because KL has this conversion, it can also have
the command

(R20) variable »>—— variable

for delaying user input or compiling routines and programs.

Example 1

If the variable before >

in (R20) has the value
PASCAL program P end.

then (R20) uses the Pascal compiler to set the value of the
variable after >—— to the compiled code for P with an appro-
priate introduction. In section 2 we described the role of "code™
and "introduction" in routine values. If the program P has only
INPUT and OUTPUT as external files, the appropriate "introduction"
is empty because KL has other mechanisms for redirecting input

and output; otherwise the "introduction" tells KL that actual
parameters must be file names.

13
Example 4
If the variable before>—— in (R20) has the value
ADA package P is end P;

then (R20) uses the ADA compiler to set the value of the variable
after >—— to the message "ADA package P" and create a module
named P. For each package procedure, function or task T there is
a new library wvariable P.T containing an appropriate introduc-
tion. For each (initialized) package variable V there is an

(initialized) library variable P.V.

Example 5
If the variable before>—— in (R20) has the value
ADA package body P is end P;

then (R20) uses the ADA compiler to set the value of the
variable after >—— to the message "ADA package body P" and add

code to the procedure, function and task variables in the module P.

Every KL implementation should have some way for the user
to stop the presentation of a command - e.g. by pressing a BREAK
key on the terminal - and start a dialog with KL. During this

dialog the user should be able to discover

- what modules exist

- what wvariables a particular module has

- the value of a particular wvariable

- the parameters of a particular routine

- the input conventions for a particular parameter of a

particular routine.

The user should be allowed to end the dialog by naming a variable
with a message value. If this value is added to the interrupted
KL command before the user resumes its presentation, then KL will
have a convenient macro mechanism. Whatever the dialog conven-
tions of a KL implementaticn, they should not depend on whether
the user started the dialog by interrupting the presentation of
a command or the machine started the dialog by interrupting the

execution of a command.

#5 New routines from old 14

A powerful kernel language should not rely on other pro-
gramming languages for defining routines, it should provide ways
of constructing new routines from old. The simplest way of com-~
bining routines is the straight line sequencing we find in the

command files of most operating systems. Suppose we can input the
message

com] s, com2 >e_Comn o
to KL whenever coml,com2,...,comn are KL commands. In the same

way that Pascal programs, Pascal functions, PROLOG predicates,
ADA packages and ADA package bodies were converted to routines

in the examples of section 4, this message can be converted to
a routine value:

(*) DO comi1, THEN com2, THEN ... THEN comn.

If the variable "straightline" has been given this value, then
the effect of the KI, command

destination := source >— straightline() —> sink
is (#*) except

- default input in coml,com2,...,comn is taken from
"source" instead of the keyboard;

- default output in coml,com2,...,comn is sent to
"sink" instead of the screen;

- default results in coml,com2,...,comn are given

to "destination" instead of the user.

A natural generalisation of this is to allow variables in
coml,com2,...,comn to be parameters. If the variable "straightline"

has been given the routine value for the message
parameters: f?,f2,...,fk-—9991—>-k5292—>-...-—9959—>-
then the effect of the KL command

straightline(al,a2,...,ak)

is (*} except al,a2,...,ak are substituted for E1vf 2% enisfke

The introduction part of the value of "straightline" tells KL
@

that messages must name precisely k variables that can be

substituted for £1,f£f2,...,fk; the code part is just (*). Notice

is different from the concurrency

then "comn"; notice also

that the sequencing of (*)
given by typing "coml1" then "com2"
that the sequencing of (*) is different form any possible pipe-

lining of coml,com2,...,comn.
As users of preogrammable pocket computers well know,

"straightline" composition of routines is rather limited and
"flow diagram" composition is to be preferred. The KL way of

combining routines uses labelled graphs like

(+) com3 comn
0 e conl > true » 2 L 44

N\\\\\ESTE,/: false

A ¢

In this paper we want to pake the semantics of KL as simple as
so we restrict the acceptable labelled graphs by:
if an edge has more than one sink,

possible,
a single start node marked 0;
then its sinks have different KL wvalues as labels. For a graph

satisfying this restriction the corresponding routine value is

deterministic; for the graph (+) the corresponding routine value

is

»(**)- Stepl: DO coml; GOTO CASE result OF true: step3ofalse; step2;

Step2: DO com2; GOTO Stepl;
Step3: DO com3; GOTO Stepd;

If the variable "graph" has been given this value, then the

effect of the KL command
destination := source >—— graph(} —> sink

is (**) except default inputs, outputs and results in coml,com2,

"source", "sink" and "destination"”
. . rCOmnN

..., comn are replaced by
respectively. As before we allow variables in coml,com2,.

16
to be parameters for which one can substitute when (**) is called.

When a routine is called in KL, its parameters are new copies

of system variables that die when the call ends, so RECURSION is
possible. The PROLOG semantics in the next section will give

the expected meaning to calls like: graph (graph) .

Although our "recursive flowchart" way of defining new
routines from old is extremely powerful, there is a case for other
routine combinators. In a later paper the KL routine combinator
will be extended by

- allowing non-deterministic graphs and accepting ANY
successful path;

~ allowing non-deterministic graphs and following ALL
successful paths;

- allowing simultaneous recursion so a set of routines
is given by a set of graphs;

- following the generalisation in [M] from graphs to
to diagrams so routines can rendezvous and pass messages

to one another.

#6 An implementation

In this section we give a precise definition of the meaning
of every KL command by describing a PROLOG implementation. This
implementation of KL would be very inefficient in practice,
because we make various assumptions that make the meaning of KL
commands as clear as possible. The most important of our simpli-

fying assumptions is (see fig. 6.1):
Environment State
L.M.X, 11 11, 17
Loty 332 12, [[a] | code]
L.N.Z, 13 13, “&ag"
L.P.W, 14 14, garbage
a, 15 15, 7
G eaie wiwees f e 0 SRR B
MATCH ([a],[L.M.X.]...) RUN (code,...)
from RUN(L.N.Y(L.M.X}...)
——A.._‘_.‘_._‘__\
L.M.%X, 11 1% "dog"
S [O 12, [[a]lcode]
L.N.%, 13 13; "cat"
Voo Blcld, -39 14, garbage

1 15, 7

Figure 6.1 Changing environments and stores

17
- there is an infinite list "st" of location-value pairs;

- there is an infinite list "env" of variable-location
pairs;

-~ there are functions GET and PUT for handling these lists.

The list "st" gives the current KL state, the list "env" gives
the current KL environment (context, symbol table), and the
effect of a KL command is to change the state. The meaning of the
simplest KL command is given by the PROLOG rule:

(S1) RUN{left:=right,env,st,st')
:- GET(env,left,l)GET(env,right,r)GET(st,r,v)PUT(st,1,v,st").

This rule defines the state st', which is given by executing the
command (R1) in the state st with the envircnment env. We dc not

have to worry about creation of library variables, because we

have assumed GET and PUT are total functions - all possible variables

exist but their values may be garbage. Thus the meaning of the KL

command for destroying variables is given by:

(83) RUN (variable:=,env,st,st'):-GET(env,variable,l)
PUT(st,l,garbage,st').

Let us postpone the general PROLOG rule for balling a routine,

and give a particular case instead:

(S5) RUN(variable:=message,env,st,st')
EVALUATE(message,env,st,result_value)

= SUBSTITUTE(message,env,st,message_value)
VAL (message_value,result value).

The PROLOG implementation of routine calls in KL places
the result of the call in a special state location, so the meaning

of the command (R6) is given by

(S6) RUN(variable:=call,env,st,st')
i~ RUN{call,env,st,st")GET(st",result,v)GET (env,variable,1)
PUT (st",1,v,st').

The implementation of routine calls has analogous conventions
about special state locations, "input" and "output", so the
meaning of the commands (R7-R12) is given by

:=- EVALUATE (message,env,st,v)GET (env,variable,l) PUT(st,1l,v,st"').

(S7) RUN({variable >—— call,env,st,st')
e GET(env.variable,l)GET(st,l,v}PUT(st,input,v,st“)
RUN (call,env,st",st').

(58) RUN(destination:=source >—— call,env,st,st')
:- RUN (source >—— call,env,st,st")GET[st“,result,v)
GET(destination,env,l)PUT(st",l,v,st’).

(89) RUN(call —> variable,env,st,st')
1= RUN(call,env,st,st")GET(st",output,v)GET(env,variable,l)
BUT (st";lyv,st%).

(ST0)RUN (destination:=call ——> sink,env,st,st')
i- RUN{call —> sink,env,st,st")GET(st",result,v}
GET(destination,env,l)PUT(st",l,v,st'].

(511) RUN (source >— call —> sink,env,st,st"')
:= RUN(source >~——-call,env,st,st"}GET(st",output,v}
GET(env,sink,l)PUT(st",l,v,st‘).

(S512) RUN (destination:=source >—__ call —> sink,env,st,st')
:— RUN(source >— call —> sink,env,st,st")
GET(st",result,v)GET(destination,env,l)PUT(st",l,v,st').

The meaning of the KL pipeline commands is given by
(S1B)RUN(variable{message} >—— call,env,st,st')
1= RUN(variable(message),env,st,st")PIPE(st",st"}
RUN (call,env,st" ,st).
(S514)RUN (call —> variable (message) ,env,st,st')
:—RUN[call,env,st,st")GET(st",result,v}PIPE(st",st"‘)

RUN(variable(message),env,st"',st"")PUT(st"",result,v,st').

where PIPE(st,st'):- GET(st,output,v)PUT(st,input,v,st‘).

The PROLOG implementation of routine calls uses the

predicate

(815) APPLY ([introduction|code],m,env,st,st")
1= MATCH(introduction,m,env,st,env')RUN(code,env',st,st')

where MATCH creates the appropriate environment for the execution
of the routine code. When the introduction indicates "call by
reference used for parameters", the formal parameters are aliases
for the actual parameters in this new environment (see fig. 6.1).
This is how we implement "parameters are new system variables,
created when the call is made and destroyed when the call is over".
After this preamble we can give the meaning of a KL routine call by

(S16)RUN (variable (message) ,env,st,st')
t- GET(env,variable,l)GET(st,l,V)APPLY{v,message,env,st,st‘).

We can complete the description of the PROLOG implementation of
KL by giving the meaning of the four commands for communication

with the user:

(S17)RUN (variable —>,env,st,st")

g GET{env,variable,l)GET(st,l,v)COERCE(v,w)PUT(st,OUTPUT,w,st‘).

(518) RUN (source —> sink,env,st,st')
:— GET(env,source,l)GET (st,1,v)COERCE (v,w)
GET{env,sink,1'}PUT(st,l"',w,st').

(S19)RUN(>—— variable,env,st,st')

= GET(env,variable,l)GET(st,INPUT,V)CONVERT(v,w)PUT(st,l,w,st‘).

(520) RUN { source >—— destination,env,st,st')
:— GET(env,source,l)GET(st,1,v) CONVERT (v,w)
GET (env,dest,1'")PUT(st,1"' ,w,st').

20

Not only does our description of the PROLOG implementation

use five undefined predicates - SUBSTITUTE; VAL, MATCH, COERCE
and CONVERT - but it also reveals nothing about the possihle
codes in a routine value.

It is not unreasonable to ¢xpect a precise definition of

the KL way of building a new routine from old routines (see #5) .

Suppose the new routine is given by the labelled graph

com] com3
s C0 > true,] —/= > =

com?2 false

The paths in this graph are captured by the predicate R defined
by

R(O,?,env,st,st'):—RUN(com1,env,st,st')GET(stUresult,true).
R(G,2,env,st,st'):kRUN(comi,env,st,st')GET(sthresult,false}.

R(O,w,env,st,st'):—RUN(com],env,st,st')

NOT GET{sturhsult,true)NOT GET(stUresult,false).

P(2,0,env,st,st'):fRUt(comZ,env,st,st').
R(T,m,cnv,st,st'):—RUN(comB,env,st,st'J.

R(i,l',env,st,st'):—R(i,i",env,st,st”)R(i",i',env,st",st').

From this example it should be c¢lear how every graph ¢ gives a
predicate R which can be used to give the meaning of a routine

which has G as its code

{*) HUN(codo,onv,sL,st'J:~R(O,~,env,st,stf).
Parsamoters are also allowed in the KL way of building new

routines from old, =0 we should also say more about the parameter
passing prodicale MAICH. T we assume actual and formal parameoters

are PROIOG lists, we can define MATCH by

HATCH (L J,[],env,st,env).
MATCUO([Ep)T] lapiT'],env,st,env')

1= GHT(env,ap,l)PUT(env,fp,l,env")MATCH(T,T',env",st,env').

21

This definition is appropriate for a KL implementation that
only supports programming languages in which parameters are
called by reference. If the implementation supports languages
with other parameter passing mechanisms, the definition of
MATCH must be modified. Note that definition (*) - the meaning
of "executing code" - must also be modified when a KL implemen-
tation supports other programming languages, More will be said

of these modifications in a later paper.

22

#7 Non Determinism

Any kernel language should allow non-determinacy because
routines with several possible results can be defined in PRO-
LOG and many other programming languages. So far the only non-
determinacy allowed in KL is that routines can be defined by
graphs with more than one edge from a node. When such a routi-
ne is called, KL does not guarantee any particular result. Ex-
perience with Prolog implementations shows that it is unrealis-

tic to insist on any of the desirable properties:
(CONVERGENCE) if the routine can terminate, then it will;

(REPRODUCIBILITY) repeated calls of the routine give the

same result;

(PROGRESSIVE) repeated calls of the routine give succes-

sive results;

(FAIRNESS) all possible results are given, if the routine
is called sufficiently often;

(EQUIPROBABILITY) all possible results are given equally
often, if the routine is called infini-

tely often.

However it is realistic to suppose that all choices in a non-
deterministic routine can be determined by the successive va-
lues in a "control" file in the same way that choices in a
deterministic routine can depend on successive values in an
"input" file. Fer the KL commands we have given so far, the
user has to supply control values from the terminal to any non-
deterministic routine calls. As this is frequently inconvenient,

we introduce the KL commands:

e

213

(R21) variable >>—— call
(R22) variable >>—— variable >—- call
(R23) wvariable:= variable >>— call
(R24) wvariable:= variable >>—— variable >—— call
(R25) variable »>>— call —> variable
(R26) variable >»>—— variable >— call —> variable
(R27) wvariable:= variable >>—— call —> variable
(R28) wvariable:= variable »>—— variable >— call —> variable

These commands can be used to give computations of non-determinis-
tic routines the desirable properties of convergence, reproduci-

bility, progressiveness, fairness & equiprobability.

Example

Suppose R is a non-deterministic routine and £ is a system
variable. Consider the routine RR given by the graph

f >~ Reset —-> £ f >>— R()

Set(f) — £
—_—F > true >4 > false

where Set and Reset output a file of control values. A call of

the routine RR causes a stream of R-results to be sent te the u-
ser. The particular set of R-results received by the user depends
on the routines Set and Reset; since choice patterns in non-deter-
ministic routines vary greatly, every KL implementation should
have a variety of Set and Reset routines. In the special case

when Set and Reset generate "random" numbers between 1 and n,

and all computations of our non-deterministic routine R use a

single such number, the routine RR will have the desirable pro=

perties of fairness and equiprobability.

We have not yet explained how

- reading of input and control values

- writing of output values and results

can be expressed in the graph definition of a KL routine. Now we
allow boxed edges in graphs for communication; and fix the KL

meaning of some boxed edges:

26

guence of the fact that files are bounded and contain only fini-
tely many values. Values are read from a XL file by moving a
pointer and the contents of the file are not destroyed, whereas

values received from a user or a pipeline are evanescent.

#8 Communication

Our Kernel language must have a process communication mecha-
nism if it is to support Ada and other popular languages with pa-
rallelism. The KL mechanism is similar to that in CSP [H] and
CCs [Mi]. The basic idea - synchronization of matched boxed edges
- is seen at its simplest in a KL pipeline.

The command A()—>B()—>C() starts three processes that can
run concurrently; the OUTPUT edges in the A-process are synchro-
nized with the INPUT edges in the B-process; the OUTPUT edges in
the B-process are synchronized with the INPUT edges in the C-pro-
cess. This explanation alsoc applies to the commands:

A() >—B() —>C() ' A() >—B() >—cC().

The difference between these 3 pipeline commands is that they give
different driver processes. In KL several processes may be created
simultaneously, but there is always one of the new processes that

is the driver. The new processes may be run on separate processors,

but they all die when the driver dies.

As we need a more general way of creating new processes than

that given by pipelines, we introduce the net definition of rou-

tines with the examples in figure 8§.1.

. 5)
% 5ol ; auTy W, _
G 2 Yhur Z; soTPul

Siop l

Al alel sy /. B : B AQ=>B()~->C()

A()>-B()—>C()

A()>=B()>=<()

Figure 8.1 Routines defined by a net

27

The net definition of a routine consists of directed links
between process boxes. Every bkox in the net is labelled by a
system variable, and the boxes may have several labelled ports.
EBach link in the net goes from a port in one process box to a
port in another process box. One of the boxes in the net is dis-
tinguished as the driver - the box with the net port STOP in
figure 8.1; (ports, which are in no link, are called net ports).

What is the effect of the KL command R(ap) when the rou-
tine R is given by a net definitior? The command has no effect
if some variable, labelling a process box in the net, does not
contain a routine value. If there is a routine for each box, a
process for executing that routine is created. Only one of these
routines receives parameters, the driver routine is passed the
message ap that was given to the routine R. From time to time
the created processes will meet a boxed edge, which must be syn-
chronised with another boxed edge, before the process can con-
tinue. The label in the box gives the port of the process to be
used for synchronisation, and the net link gives the other pro-

cess to be synchronised with.

Clearly processes should be allowed mort ports than INPUT,
OUTPUT, START and STOP. In our Kernel language KL we allow any
system variable to be the label of a boxed edge and we adopt the

conventions:

E ﬁiEEl> sends the message ap over the link
(call) away from port E.

kE > receives a message ap over the link
(accept) towards port E and interprets it as

the actual parameters for the routi-

ne value of variable E.

With these conventions KL graph definitions can easily cap-
ture ADA entry calls and rendezvous.

28

Example (Producers and Consumers) .

Consider a buffer for values received from many producers
and sent to many consumers.
Figure 8.2 gives the appropriate KI net definition. Note that KL
allows the producer and consumer ports to be named P and C, where
ADA would insist on Buffer. Receive and Buffer. Send respectively

1 ‘P
jProducer 1 P\T\' Consumer 1
TR
1 N
i 13\
FEEY

% s

{ e
///, BUFFER

' T |

i !

—
B

i Consumer n

! Producer m

Figure 8.2 Producer and Consumer Net

Example (Robot Arm Controller)
Suppose we have a robot arm with:
- a platform on which objects can be placed and later
removed .

~ separate motors for adjusting the x-y- and z-coordinates
of the platform position. |

L]

— an operator who gives a seguence of platform positions
(XTJY1IZ1)1(XZIY2122)1 === (O:O:O)

that ends with the home position (0,0,0).

A Petri net specification of a controller for this rebot
arm, and implementing programs in the languages - Pascal Plus,
Occam, and Edison - are given in [KS]. The corresponding KL net

definition is

29

SAET s,
| | -
OPELAToA] ‘ Cor/T/ .
$Taf éTi
— J’ M. S)_ >\ i =y \
AP
~ AR T w = =
i "i IT {z N s >
p P Sr ¥ s

&)
= 8
<

Figure 8.3 Net for Robot Arm Contrcller

The graph definition for the operator routine is:

wagg—[::false _ﬁﬁ%:%%égj arm passive

l true

|

run:=(x=0 & y=0 & z=0) o

P

4“—’——

&mom o () JINPUT !~ '

The graph definition for the motor routines is even simpler:

1 (x) (v (z)
——OUTPU OUTPU OUTPUT, ¢
r

-

6 sTART L(Step number)
™™

\-ﬁ,,mﬁ,‘ A e R it _______,_(_!__. STOP

ISTART H51gn)> Move Arm

30

The graph definition for the controller routine is more complex:

(new x) (new y) (new z)

4 Compute Steps

(step x) (step y) (step z)

Compute Signs

I (:9 (sign x) (sign y) (sign z)

old x:= new x old y:= new ¥ ©0ld z:= new z
| C () (()
R L L Ry KENR
‘\ .

— ()441 STOP }

Later we will explain how the local variables in these routines

are initialised.
#9 Failure

Any kernel language should allow routines to fail in a well
defined way because failing routines are an integral part of
SNOBOL and other pattern matching languages. If a KL routine R
is defined by a graph, then a call cf R can fail in 6 ways:

(Divergence) endless looping in the graph,

(Starvation) waiting on a boxed edge for a communication

that never comes;

(Death) reaching a sink vertex in the graph without

producing a result;

(Jamming) following an edge gives a result that is dif-
ferent from all the labels on the edge tips;

(Internal) following an edge that calls a routine that fails.

{Incoherent) following an edge that calls an undefined routine.

3

If a KL routine R is defined by a net, then a call of R can only
fail because the driver of R fails.

When KL detects a failure, it gives the reserved value fail as
the result of the routine call and it writes fail at the sTOP
port of the process. As the following example shows, this allows

graceful recovery from failure.

Example
Reconsider our net definition of a robot arm controller. It
contained graph definitions cof five routines and all of them can
fail. If any of the three motor routines fail, the wvalue igii is
written at the STOP port of the routine. Since these STOP ports
are linked to the In ports of the controller routine, a handler
for motor failure can be part of the graph definition of the con-

troller routine.

If we substitute:

—-AJ:;;:LgbVAJ—;EE_L—>—{EEE:F=9for INx F—%——{;;;fl—ar—:INz —
I .
&

fail fail fail

we get the simplest possible handler - motor failures are lumped
together with controller failures.

If the controller routine fails, the value fail is written at its
STOP port. Because this port is linked to the INPUT port of the
operator routine, a handler for motor or controller failure can
be part of the graph definition of the operator routine.

If we substitute:

INPUT
fail “arm failed" ., .. INPUT >

we get a natural handler - user is told of the failure, then all
net processes die.

The operator routine terminates properly when this handler is used,
but it may fail for other reasons; if it dces, fail will be the
result of activating the 5 processes.

32

#10 Interleaving and Backtracking, Events and Activities

KL ought to support the common form of non-determinism,
known as interleaving: obey each of the commands c1, c2,cn
but these commands can be obeyed in any order. Interleaving arises

in many programming situations:

— Programming languages with co begin and co end constructs

- systems with fork and join combinators
- specification languages with and and or combinators

- languages with path or flow exprissions

Should KL support interleaving by allowing commands like

c1, el cn ? Because such commands mesh badly with the more

i v
usefulzpipeline commands, the increased complexity of KL is too
high a price to pay for the convenience of interleaving. Should

KL support interleaving by allowing net definitions without a
driver and interpreting them by: the net terminates when all of
its compcnents terminate"? This seems too high a price also. The
natural way for KL to support interleaving is to allow more flex-
ible graph definitions of routines. The argument for replacing
graphs by diagrams is given in [M]; here a less radical extension
will be represented: graphs can have "line"-vertices for forks and
joins, not just point vertices. The way line-vertices are inter-

preted should be clear from the

Example

The graph definition for the robot controller routine could

have been

O0————>| START .-,, START Hnew >j

Compute step numbers and signs

<5, (step x)
QUT x
> -

(ste)

(sign x) Joldx:=newx T 5

(sign v) joldy:=newy

OouT y

iOUT . |(step z)

: j’ STOP I—[

[(sign z) foldz:=newz
ouT =z
|

33

Now that the KL ways of defining a routine have been defineq
completely, we can explain what happens when a routine R is called.
This explanaticn must be done with care if the true parallelism of
net definitions is not to degenerate to interleaving.

When a routine R is called, many events can happen:

- values may be read from the INPUT port

- values may be read from the START port

- values may be written to the OUTPUT port

= values may be written to the STOP port

- value passing may occur through other ports

- shared variables may be assigned new values

The events at each port are linearly ordered (in time), but the
events for a particular all of the routine R as a whole are only
partially ordered. If the particular call of R terminates, there
is a last event in this partial order; if KL recognises that the
call of R fails, it forces a last event - the value fail is writ-
ten to the STOP port. A particular call of the routine R gives an
activity, a partially ordered set of events. Repeating the call
may give a different activity, and the meaning of the call is the
set of possible activities. Non determinism and interleaving are
reflected by "meanings are sets of activities"; true parallelism
is captured by "events need not be linearly ordered in activities."
However there is still a "shared variable™ problem - we have not
yet explained the effect of "shared variable assignment" events
when they are incompatible with other events in an activity. ADA
tasks are allowed to assign to non-local variables, but this is
problematic when such tasks are run in parallel.

What happens when a pipeline A() >— B() —> C() is called?
There are three kinds of events in this pipeline

- non-OUTPUT events of component A
= non-INPUT events of component C

- events of component B other than INPUT and OUTPUT events

34

The activities of the pipeline are given by
- an activity o of component Aa;

- an activity of component B such that OUTPUT events of
a are identified with INPUT events of B;

= an activity B of component C such that OUTPUT events
of B are identified with INPUT events of B.

If some call of the pipeline terminates, then the corresponding
activity has a last event, which is a STOP event in the driver

activity.

Pipelines give a useful form of backtracking; when a component
needs an input value, it forces the proceeding routine to back-
track until it produces a new output value. Many programming lan-
guages seem to allow choice commands with the possibility of

backtracking to the last point of choice if the computation fails,

In KL such a choice command can be captured by a pipeline com-
ponent which outputs a stream of "possible choice values". How-
ever there is still a "backtracking problem" - we have not yet
explained how assignments to variables are undone when an unfor-
tunate choice gives a computation that fails.

Example

Suppose A,B,C are binary predicates and we want a program
which computes z such that @ 3x.3y[A(a,x)&B(x,y)&C(y,z)].
In a backtracking language cne might write

choose x such that Al(a,x);
choose y such that B(x,y);

choose =z such that Cl(y,z); write (z);

In KL this is captured by the pipeline

AAh(a) > BB() > ced)

where the component routines have the graph definitions

35
AA(a) is Set (x) S Ala,x) S (x)
\lfalse

Reset (%)

Lt qgetd)lfng{x') >true

Reset (y)

BB() is

cc() is (y) >,Se_tgJ_Mf\m%:me>,

false

Reset (z)

The events in a call of this pipeline are

- on the link from AA to BB, writing values x1,x
such that A(a,xi) for all i;

- on the link from BB to CC, writing values y11,y12,..y21,..
such that B(xi,yij) for all i,5;

- at the STOP port of cc, writing either fail or a value zi,Jj
such that Clyij,zij).

#11 Local Variables

A realistic kernel language must allow local variables in
the definition of routines. In KL a routine has a local variables
for each parameter and each port. Since each routine has the stan-
dard ports - INPUT,OUTPUT,START,STOP = it also has the local va-
ribbles - input,output,result,oracle (see fig. 7.1). For each pa-
rameter of a routine there is a local variable L and

the routine ig called;

= if the routine terminates without failing, then Kr, assigns
the value of 1, to the actual Parameter,

The KL solution to the "shared variable" problem is: shared vari-
ables are parameters of the driver component in a net; the KL so-
lution to the backtracking problem ig: system variables are para-
meters to backtracking Components in a net,

Example

Consider a pipeline a() >—B{()—>C() where the components
share a variable, SV, ang each component may backtrack. Suppose
Components A,B,C - make assignments to variables - av,bv,cv -

able and perhaps an initial value. The initial value of a local va-
———=-dl VvValue

riable may be a message, a file or a routine. Before we delve into

the mysteries of nesting, let us look at an

Example

Consider the Robot Arm Controller in section 8. The graph
definition for the operator routine should have had the frame

X,¥,.2; run:=true;

where the only initialised local variable ig "run". The graph defi-
nition for the motor routines should have had the frame

stepnumber,sign; Move Arm >— Ay

where the local variable Move Arm is initialised to the routine

with the graph definition A,

the frame

37

newx ,newy,newz; oldx,oldy,oldz:=0;
Compute Steps >— A; Compute Signs>— Al;
Inx,Iny,Inz >— INPUT; Outx,Outy,Outz >— OUTPUT;

where the local port variables are initialised appropriately.
o

Remember our discussion of library variables in section 1,
Suppose R is a library variable with & routine as value and XL is
given the call R(ap). While this call is executing, the local va-
riables of R are new leaves of the library tree attached to the
"new module" R, Figure 11.1 shows the changes in the library for
& recursive call of a routine with three local variables. We woulg

have a similar

Library Tree R call R recursive

call call R
return a b ¢ return abcR
abc
g :

a

GLOBALS GLOBALS GLOBALS

Stack

Fig. 11.1 Librar changes when routines are callegd

ponents in a net: the components may well be running on separate
Processors, each of which has the corresponding branch of the cac-

tus stack in its local memory.

|

|

|

- 40

declarations, not just declarations of local variables which are

initialised to a routine with a fr

Example

ame .,

The graph definition for the controller routine could have

had the frame:

Compute Steps >— A; Compute Signs >— Al;

frame x is newx;oldx:=0;Inx>—kINPUT;Outx>——OUTPUT,

frame y is newy;oldy:=0;Iny>—RINPUT;Outy>——OUTPUT;

frame z is newz;oldz:=O;Inz)—-INPUT;Outz>——OUTPUT;

and the diagram representation in figure 11.4. Note how frame na-

mes become library module names when the controller routine is

called.

Controller()

Compute Steps(ﬂ Compute Signs()

Inx frame x is newx,oldx:=0 Out x

|

Iny frame y is newy;oldy:=0 Out y

[
L

Inz frame =z is mewz;oldz:=0 Qut z

=

Fig. 11.4 Diagram for direct frame nesting

/ S—
/ —

&

Controller

A NS

Z Comp. Comp.
Signs Steps

wZoldzInzOutz

newyoldyIny uty

Library tree after call

41

#12 More on implementation

In this section we extend the implementation in #6 so that

the KL constructions in the later sections have a precise meaning,

It is easy to give a PROLOG implementation of the new KI, commands

(521)

(522}

(S23)

(s24)

(525)

(S526)

(527)

(528)

RUN (control>>—call,env,st,st"')
:-GET (env,control,l}GET(st,1,v)
PUT(st,oracle,v,st")RUN(call,env,st",st').

RUN(control>>4ﬁsource>~kcall,env,st,st')
:=GET (env,control,l)GET(st,1,v)
PUT(st,oracle,v,st"]RUN(source>gfcall,env,st",st').

RUN(destination:=control>>ﬁ~call,env,st,st')
:=GET (env,variable,l)GET(st,1,v)
PUT(st,oracle,v,st")RUN(destination::call,env,st",st‘).

RUN(destination:=control>>ﬁ—source>gfcall,env,st,st'J
:=GET (env,control,l)GET (st,1,v)
PUT(st,oracle,v,st")RUN(destination:=source>ﬁ-call,env,
st",st').
RUN(control>>——call——>sink,env,st,st')
:=GET (env,control,1)GET (st,1,v)
PUT(st,oracle,v,st")RUN(call——>sink,env,st",st'}.

RUN(control>>——source>——call—*>sink,env,st,st']
:=GET (env,control,1)GET (st,1,v)
PUT(st,oracle,v,st")RUN(source>—call->sink,env,st",st').

RUN(destination:=control>>——call—>sink,env,st,st')
:-GET[env,control,l)GET(st,l,v)
PUT(st,oracle,v,st“)RUN(destination::call—>sink,env,
SEM 8EY) .
RUN(destination:=control>>——source>——callﬁ>sink,env,st,st')
:—GET(env,control,l)GET(st,l,v}PUT(st,oracle,v,st")
RUN(destination:=source>——call—>sink,env,st",st').

42

In section 6 we gave a precise definition of the behaviour of a
routine given by a graph, whose edges were labelled by KL commands.
In the same way that an edge, labelled C, gave a PROLOG statement
like

R(i:jrenV,St,St'):—RUN(C,enV,st,St')

a boxed edge in a graph gives a PROLOG statement like

R(i,j,env,st,st') :-RUN (— P -(—m—),env,st,st')

The implementation of boxes with labels - INPUT,START,OUTPUT,STOP -
is given by

RUN (—{ INBUT (a)>,env,st,st‘) i
GET(st,input,[h,t])PUT(st,input,t,st")PUT(st",result,h,st"')
GET(enV,a,l)PUT(st"’,l,h,st'].

RUN (>,env,st,st') :-

GET(st,input,[hft])PUT(st,input,t,st")PUT{st",result,h,st‘).

RUN ((b}>,env,st,st'):-

GET(st,control,[hlt])PUT{st,control,t,st“]PUT(st",result,
HysE™").,

GET{env,b,e)PUT(st"',l,h,st'].

RUN (—] START 11 >,env,st,st'):~

GET{st,control,[h,t]}PUT(st,control,t,st")PUT(st",result,

hystt) «
RUN(),env,st,st‘) =
GET(enV,c,l)GET(st,l,h)PUT(st,result,h,st")
GET(st",output,t)PUT(st",output,[tlh],st').
RUN (—BUTPOT }-U's , env, st, st ') -
GET(st,result,h,st")
GET(st",output,t)PUT{st",output,[tlh],st').

RUN (—[8T0F 45 env,st,st') ;-

GET(env,d,l)GET(st,l,v)PUT(st,result,v,st').

RUN (s env,st,st) .

The implementation of local variables in routines, defined by graphs,
is given by a small modification of (s 4'")

43

(S 4") APPLY([[paramsllocals}lcode],m,env,st,st')

:—-MATCH (params,m,env,st,env'}
INITIALISE(locals,env',st,env",st")RUN(code,env",st",st')_

The predicate INITIALISE builds the new environment by adding a
location for each local variable, then it builds a new state by

putting initial values in these locations.

Now let us look at net definitions of routines. Without loss
of generality we can assume that each component routine in a net N
has a graph definition. The graph definitions for n component rou-
tines can be combined into a graph Gn for the whole net as follows

- the vertices of GN are n-tuples of component vertices;

- the initial vertex of GN is the n-tuple of component initial

vertices;

- the terminal vertices of GN are the n-tuples of component

vertices where the driver vertex is terminal;
- there is an GN edge
; : L S (] ’ 3
C<2 > —————m > <j...... >
7 i, <J1 an

if and only if CPE SR S is a permissible synchronisation

and for each component we have either the edge

d,, e O oy Jy er

The implementation of the net routine is given by the implementa-
tion of the graph Gy

- if i ok jk is an unboxed edge,

then lx..xlxakax - .x| is a permissible synchronisation

and R(<iy...1 >,<34...]1 >,env,st,st'} :-RUN(ak,env,st,st')...
- if i ok jk is a boxed edge and the label in the box

i a net port, then Ix..xlxakxlx x| 1is a permissable sy-

chronisation

and R(<i1..in>,<j?..jn>,env,st,st'):—RUN(ak,enV,st,st‘)...

44

- 1f there is a 1link from port Py in the k-th component to
a port Pl in the 1-th process,

o i ak . < i .
Mo e dgds R 5

L, —8L, g, s 4~ P s,

and 1, ——> Iy 1 i

then Ix..xfxakl..xlxalxlx..xl is a permissible synchronisation

and R(<i1..in>,<j1..j(n>,env,st,st'):—RUN(Pl[ap),env,st,st')...

when standard ports = INPUT,QUTPUT, STOP and START - are used
in net links.
If Pl is a standarg port, then

RUN(Pl{ap),env,st,st') in (%) is replaced by

g (a) ;
if i, > jl, then RUN(a:=ap,env,st,st"')
- if i, > jl, then RUN (result:=ap,env,st,st'}.

If Pk is a standard rort, then
RUN(Pl{ap),env,st,st') in (*) is replaced by
- if 4 —{pr pla) 3y

then RUN(ap:za,env,st,st")RUN(Pl{ap),env,st",st'}
S TR g

then RUN(ap::result,env,st,st")RUN(PI(ap),env,st",st')

If both Pk and Pl are standard ports, then the substitution for
Pk is made before that for Pl'

Example
In a pipeline output ports are linked to input ports and the
normal situation ig

45

(c)
. Ik g
i OUTPUT > i,

(<i,in>,<j,..jn>,env,st,st')

s g,

:—RUN(ap:=c,env,st,st")RUN(a::ap,env,st",st']...

The PROLOG implementation can be rewritten

R(<i1...%1\,<j1...jn>,env,st,st'}
(+) :-RUN(a:=c,env,st,st').....

Do we have the same implementation as that given earlier for pi-
peline commands (S 13-14 in section 6), with its predicate

PIPE((st,st'):HGET(st,output,v)PUT{st,input,v,st').

? Yes, because (+) shows that the events on a pipeline link are

a8 sequence of assignments and these can be separated into "writing
an output file" and "reading an input file". Notice that the dif-
ference between (S 13) and (5 14) is captured by "the terminal
vertices of the pipeline graph are given by the terminal vertices
of the driver graph".

[u]

The use of interleaving in our PROLOG implementation,instead
of true parallelism, is justified by the argument: the behaviour
of a routine does not depend on the speed of the underlying pro-
cessor so the partial order of events in an activity can be em-
bedded in a linear order without loss of generality,

The use of just one environment and one store in our imple-
mentation of net routines seems to conflict with our informal dis-
cussion of local variables and a cactus stack. However, there is
no conflict if the PROLOG implementation gives distinct "internal"
names to the component local variables and the local names in the

component graphs are renamed accordingly.

46

References-

[HO]

[HU]

[EM]

[KMMN]

[Ks]

[m]

[MI]

C.A.R. Hoare:

Communicating Sequentia]l Processes, Comm, aA,c.Mm, 21,
(1978) 666-677.

J.M. Hullot:

A multi-formalienm Programming environment,
Proc. 1FIP 83, Paris.

B.W. Kernighan g e Rv Mashey:

The UNIX Programming environment,
IEEC computer 14 (1981) 12-24,

E.B. Kristensen, C.L. Madsen, B, M¢11er—Pedersen, K.Nygaard:

Syntax Directeq Program Modularization, in
"Interactive Computing Systems" eq. P. Degano,
B Sandewall, North Hollang 1982.

J.M. Kerridge, p. Simpson:

Three solutions for 4 robot arnm controller using PASCAIL-
plus, OCCAM ang EDISon, Softw.pract.exp. 14 (1984) 3-16.

B.H. Mayoh:
Models of brograms and processes Inf, Prog.
Lit. 17 (1983) 211-214,

R. Milner.

A calculus of communicating Systems, LNCS v, P
Springer 1980,

