T _.— I 1 G5 £8 21 - §0 ‘auoydaya
NHVINIQ — D SnuJeY 0008 ¥G — epebeyunyy AN

ALISHIAINN SNHEVYY

m _I_l_.._ — - jusuwiedaq 2aua19g JeINdwon

|

861 Aely
G41-9d INIVA

uaspnuy aoyspury uaSie[
UIsWOoY I, pIeSnolg JunsLy

$3583001q [enuanbag-nmpy yirm

sofenSue] SurwwreiSoxrg 1oy Awouoxe], y

L148-S010 NSSI

Thomsen & Knudsen: A Taxonomy

PB-175

NVI3H/INIYA HAHL

A TAXONOMY FOR PROGRAMMING LANGUAGES
WITH MULTI-SEQUENTIAL PROCESSES

Kristine Stougard Thomsenr and
Jorgen Lindskov Knudsen

Abstract

The purpose of this paper is to describe a high level conceptual
framework - a taxonomy - for programming languages with language
constructs for specification of co-sequential and concur-
rent/interleaved processes.

Using a semi-formal model for processes we identify the major
differences and similarities between co-sequentialr interleaved
and concurrent processes. We discuss the essential aspects of co-
sequential processess concerning different patterns in which con-
trol can be transferred between the processes. Moreoverrs we
discuss the important common properties of co-sequential and con-
current/interleaved processes: Synchronization and communication.
The form of this taxonomy is a tree of orthogonal aspects where
each aspect may be further subdivided into orthogonal aspects.
Each aspect 1is precisely defined and can be discussed without
reference to the other aspects. This makes it easy to use the
taxonomy when analyzing and comparing language constructs.

We find that the taxonomy is useful in at least three areas: When
choosing a language for a specific application: when designing a
language for a specific application arear and when teaching high
level languages with multi-sequential processes.

Authors' addresses: Kristine Stougard Thomsen and Jgrgen Lindskov
Knudsenr Computer Science Departmentr Aarhus Universityr Ny
Munkegader DK-8000 Aarhus Cr Denmark.

(0(0)]

Introduction
A model for processes

2.1 Sequential composition
2l Nested composition

2.3 Co-sequential composition
2.4 Concurrent composition
255 Discussion

Special characterization of co-sequential processes
3.1 Freedom of changeover points

3.2 Choice of successor

Common characterization of multi-sequential processes
4.1 Synchronization

4.2 Communication

Extended examples

5ed Analysis of CSP

5+2 Analysis of PLITS

543 Analysis of SR (Synchronizing Resources)
Relation to other works

Conclusion

References

W 00 0~ o oy oy U U

W W w Mo D NN
= N H oo oy W NN

1l Introduction
The purpose of this paper is to develop a conceptual frame-

work - a taxonomy - for programming languages with language con-
structs for specification of multi-sequential processes.

The issues discussed are: Compositions synchronization and com-
munication of multi-sequential processes.

Traditionallyr programming languages are described either infor-
mally by means of natural languager for example in a reference
manual for the languager or formally by means of a description of
the language syntax and semantics using some formalismr e.g. BNF
and denotational semantics.

The disadvantage of an informal description of a programming
language 1is that the language is described using inherently am-
biguous natural language and primarily on its own premisesrs which
makes it very difficult to compare it with other languages.
Howevers the informal description has the advantage of being able
to point out the important conceptual properties of a language
before describing the details of the language.

A formal description has quite the opposite advantages and disad-
vantages: The formalism provides a common framework by means of
which languages can be understood and comparedr but the details
of a formal descriptionr especially its semantics, will often be
so overwhelming that comparison beyond the detailed level of ab-
straction is nearly impossible. An excellent example of this is
the semantic description of Ada given in [4]. The conceptual dif-
ferences between languages are extremely difficult to isolate
from superficial differences between the ways in which concep-
tually similar language constructs are modelled.

This paper takes a middle course in an attempt to combine the ad-
vantages of the informal and the formal way of describing
programming languages. The idea is to focus on high level concep-
tual properties of programming languages and thereby develop a
conceptual framework at a higher 1level of abstraction than
traditional semantic models for processes.

Approach

Our approach to the development of the taxonomy is to identify a
number of orthogonal aspects of languages for multi-programming.
Each aspect involves a number of categories and can be thought of
as a dquestion about some specific property of the language:
together with a number of possible answers to that question. By
orthogonality of the aspectss we mean that the answers of dif-
ferent questions are independent - i.e. all combinations of an-
swers make sense.

Different answers to the same question are not necessarily dis-
joint. That iss the same language may support several categories
of an aspectr normally by means of different language constructs.

A specific answer to a question sometimes makes it relevant to
pose further duestions. That iss for a category there may be a
number of orthogonal aspects related to this specific category.
We therefore get a hierarchy of aspects as our taxonomy .

We will illustrate our taxonomy graphically in the following way:
The taxonomy (or a part of the taxonomy) can be illustrated by
a graph with two different kinds of nodes: aspects and categori-
es. From an aspectr the graph can branch into a number of diffe-
rent categoriess whereas from a categoryr the graph can branch
into a number of new orthogonal aspects relevant for this catego-
ry. Such a graph is also called an AND/OR graph [15]. Example
of a taxonomy for data structures:

(Data structures)

predef. user def.
types types

A

(Integer) (bool.) ... (simple structured abstract
typés types types

T — ¥ |]
| &= = aspect I [mechanism | | inheritance |

e e i + (class) (none) (tree) (multiple)

Goal

The goal of this paper is to develop a high 1level conceptual
frameworkr but on the other hand we want the framework to be
detailed enough to distinguish between languages that we find
differ in important ways. How far to go is an act of balancer and
surely new aspects can easily be defined under the most detailed
categories of our taxonomy. Howeverr we feel that the chosen
level of detail suffices for many purposes.

13 :
The framework can be of value at least in the following three
situations:

1) When choosing a language for a specific application. The
potential languages are analyzed and easily compared using
the frameworks which will highlight the conceptual differen-
ces between the languages. Moreoverr the focus on the cen-
tral aspects of the languagess identified by the framework:
makes it easier to decide which properties of the language
are important to the considered application.

2) When designing a language for a specific application area.
The framework can be useful when trying to get an overview
of the features wanted in the languager and when evaluating
which goals are achieved by different potential language
constructs.

3) When feaching high level languages for multi-programming.

The framework can be used to convey a very useful overview
of similarities and differences between languages.
Our own experiences with use of the taxonomy at a graduate
course on programming languages are encouraging. The tax-
onomy directs the attention directly to the central aspects
of languages for multi-programmingr and it is our impression
that the students use the concepts from the taxonomy when
recalling properties of the languages discussed at the cour-
se.

How to use the taxonomy

When using the taxonomyr it is important to understand that the
taxonomy is intended as a tool for analysis of programming
language constructss not for specific programs or program ex-
ecutions. That iss we want to discuss the direct semantic proper-
ties of language constructs independently of a concrete use of
the construct or a special discipline in the use of the con-
struct. Often one language construct can be simulated by means of
a disciplined use of another construct. For instancer semaphores
can be used to simulate critical regionss whereas the T"™yhen"
statement in Edison [7] supports critical regions directly.

We only regard a language construct to support a given concept
(e.g. abstract datatypes) if the semantics of the construct
gives the properties of the concept (e.g. encapsulation of data
and operations) independently of the discipline in the use of
the language construct.

Organization of the paper

In section 2 we introduce a model for processes and define the
terms: sequentials nestedr co-sequential and concurrent com-
position of processes. The term multi-sequential composition will
be used to cover the last two. In section 3 we discuss the es-
sential features of co-sequential process sequencing. The prime
issue here is a discussion of various ways in which control may
be shifted from one co-sequential process to another.

Section 4 deals with synchronization and communication between
multi-sequential processes.

Throughout the papers we illustrate our concepts by giving exam-
ples of analysis of language constructs from a number of dif-
ferent programming languages - e.g. Simula67 [9]. Concurrent
Pascal [5]+ Distrubuted Processes [6] and Ada [14]. 1In section 5
we give a full analysis of three programming languages: CSP [12].
PLITS [10] and SR [1]1 to illustrate the strength of this tax-
onomy. We assume that the reader is familiar with the languages
mentioned.

In section 6 we discuss the relation between our taxonomy and

related works by others.

2 A model for processes

One of the problems involved in establishing a taxonomy is to
define the fundamental concepts upon which the taxonomy will be
based. One of the drawbacks of other taxonomies is that they tend
to define their fundamental concepts rather imprecisely. We have
chosen to define our fundamental concepts in terms of a model for
processes based on the notion of events.

An event is an atomic and instantaneous change of state. The
events are partially ordered in time. We will talk about the
ordering as a "comes before" relation and write: el<e2r if el
comes before e2 in time. If two events are unordered: they may

occur simultaneously.

We consider processes as being composed of events in the fol-
lowing way: A process 1is a coherent set of partially ordered
events. That iss a process is a set of events that we have chosen
to consider as a conceptual unit.

A process can at a higher level of abstraction be considered as
composed of a number of other processes. Compositions of proces-
ses can be formed in different ways resulting in different
orderings of the events in the processes.

We distinguish between four ways of composing processes: sequen-
tial compositions nested compositionr co-sequential composition
and concurrent composition.

n n -

In a sequential composition of a number of processes: the proces-
ses are executed one after the other in strict order.

In terms of the partial order of eventss this can be expressed as
follows: Two processes are sequentially composed if all events

from one process - say Pl - comes before all events from the
other process - say P2. '
Formallyr Pl is sequentially composed with P2 if

¥el in Pl: (¥e2 in P2: el<e2)

2.2 3 2
In a nested composition of two processes: the one is executed as
part of the other, like a procedure call.

In terms of the partial order of eventsrs P2 is nested in Pl if P2
is executed as a whole between two events of Pl.

Formallyr P2 is nested in Pl if
Wel in Pl: ((¥e2 in P2: el<e2) or (¥e2 in P2: el>e2))

20 =

In a co-sequential composition of a number of processesr ex-
ecution alternates between the processess so that their partially
ordered sets of events are mergedr but only one process is ex-
ecuting at a time.
In terms of the partial order of eventss any two events el and e2
from two different processes in a co-sequential composition are
ordered either (el<e2) or (e2<el)r but as opposed to sequential
compositionr not all such pairs need to be ordered in the same
way .
Formallyr Pl is co-sequentially composed with P2 if

¥el in Pl: (¥e2 in P2: ((el<e2) or (el>e2)))
Shift of execution from one process to another is made at the so-

called changeover points.

In a concurrent composition of a number of processes: the proces-
ses are executed overlapping in time.

In terms of the partial order of eventsr every pair of events
from two different processes are unordered.

2.5 D .

We have defined four composition forms but how are they inter-
related? If we consider sequential compositionr it is easy to see
that it 1is a special case of nested composition and furthermore
it is easy to see that nested composition is a special case of
co—-sequential composition.

Howevers the nature of both sequential and nested composition is
that the processes involved conceptually share one single thread
of control.

We say that sequentially and nested composed processes are
uni-sequential (shares one thread of control) whereas co-se-
quential and concurrent processes are multi-sequential (the

processes have individual threads of control).

We do not discuss uni-sequential processes further in this paper
but focus our attention on multi-sequential processes.

We want to use the concepts co-sequential and concurrent com-
position of processes to characterize programming languagesrs and
not individual processes or individual implementations of a
language. That iss we want to be able to determine whether a
language supports co-sequential or concurrent composition of
processes by considering only the semantics of the language and
not the implementation. For instancer we will say that Concurrent
Pascal [5] supports concurrent composition independently of
whether the language is implemented by means of interleaving on a
single processor or by means of true parallelism using several
processors. An interleaved implementation could be thought of as
a co-sequential executionr but the changeover points are not part
of the semantics of the lanquage (and thereby not determinable
by the programmer). We will therefore say thats conceptually:
Concurrent Pascal only supports concurrent composition.

In generals we decide to consider a language as supporting co-

sequential composition of processes only if the chaggeover points

are explicitly specified in the process descriptor .

We will first discuss the special aspects of co-sequential
processes due to the explicit changeover poinfs: and afterwards
we will discuss the common aspects of all multi-sequential
processes due to the presence of multiple control flows and the
need for the processes to interact.

3 oacial { oty w5 g -

We will characterize co-sequentially composed pProcesses by two
orthogonal aspects of the specification of changeover points:
Freedom of changeover points and choice of successor.

3.]l Freedom of changeover points

When we consider the freedom of changeover points we focus on the
intra-process control aspects of the point; that isr we want to
capture the control behaviour relative to the process itself. The
possibilities are that the control always leaves the process in
the changeover point or that the control may leave the proces in
the changeover point. Intuitivelyr in the first case the process
states that it 1is unable to progress until another process has
been in control whereas in the latter case the process just al-
lows the other processes to take over control.

More formally speakingr a language construct may support
specification of changeover points as either obligatory or op-
tional.

A. A changeover point is said to be specified as obligatory if
it will always cause a shift of execution when an instance
of the process descriptor reaches the changeover point.

B. A changeover point is said to be specified as optional if it

*) A descriptor is a template from which instances are created.
For exampler a procedure 1s a descriptor for procedure in-
vocations.

may cause a shift of execution when an instance of the
process descriptor reaches the changeover point.

3.2 Choice of successor

When we consider the choice of successor in a changeover point we
focus on the inter-process control aspects of the point. That isrs
we focus on how the successor is determined. We find that there
are two important cases. In the first caser the choice is totally
under the control of the process reaching the changeover point.
That isr the process knows the exact identity of the successor
process. In the second caser the choice is only partially under
the control of the process reaching the changeover point. That
isrs the process does not know the exact identity of the successor
process.

This can be precisely stated by distinguishing between language
constructs that support deterministic choice of successorr and
language constructs that support non-deterministic choice of suc-

Cessor.

A. The choice of successor is said to be specified as deter—
ministic if the successor is unambiguously determined from
the state of the process when it reaches the changeover
point.

Variabili .

The process may reach the same changeover point in the
process descriptor several times in different states. If the
choice of successor 1is deterministics it is of interest
whether the same process is chosen each timer or not.

We say that a language construct may support constant or
variable successor specification.

a. The successor at a changeover point is said to be
specified as constant if the same successor is chosen
each time the process reaches the changeover point.

b. The successor at a changeover point is said to be

specified as wvarijable if different successors may be
selected each time the process reaches the changeover

point.

B. The choice of successor is said to be specified as
non-deterministic if the choice is not determinable from the
state of the process when it reaches the changeover point.
It is important whether the language provides any means for
the programmer to restrict the set of processes among which
the successor is chosen or whether the semantics of the
language restricts the set of possible successors in some
way .

We will not try to give an exhaustive discussion of possible
ways in which languages provide mechanisms for control of
the non-determinismr but as an example we can mention that
the programmer may be able to specify that control may be
transferred to any process within some group of processes:
or to some process satisfying some condition (e.g. maximum
priority). An example of a language restrictions is that
control may only be transferred to one of the processes in
the same scope as the currently executing process: or agains
to the process with the highest priority.

Noter that if the choice of successor is non-deterministic
then it is obviously also variable in the sense defined

above.

Examples: The bodies of class instances in Simula67 [9] are co-
sequentially composedr and the changeover points are described by
means of "detach" and "resume" statements. The changeover points
are obligatory. Resume is parameterized by a reference to the
receiver of the controls whereas detach always returns control to
the surrounding program unit. That iss the choice of successor
at a resume is deterministic and variabler whereas the choice of

successor at a detach is deterministic and constant.

In Distributed Processes (DP) [6]1, the initial statement of a
process and the external requests to the process are co-sequen-

10

tially composed. The changeover points are located at the "when"
and "cycle" statements. If the condition in a when- or cycle-
statement 1is trues there will be no transfer of controls, so the
changeover points are optional. The choice of successor is non-

deterministic.
- 000 -

We can illustrate our characterization of co-sequential processes

graphically as follows (cf. section 1):

co-sequential

processes
I B
freedom of choice of
changeover successor
points
(obligatory) (optional) (deterministic) (non-deterministic)

variability of
successor

(constant) (variable)

11

4 Common characterization of multi-sequential processes

The purpose of composing processes multi-sequentially is either
that they must co-operate to do some taskrs or that they must
share some resources or a mixture hereof.

In a multi-sequential compositionr the processes must be mutually
controlled in time. Besidesr they often have to transfer infor-
mation to each other.

We will characterize multi-sequential processes by characterizing

their mechanisms for synchronization and communication.

4.1 S] . ;
When two processes are multi-sequentially composedr their ex-
ecution has to be mutually controlled.

When processes share some resources (e.qg. processor:
I/0-devicess data structures: etc.)r each process often requires
exclusive access to the resources in order to avoid collision
with the other processes. If such exclusive access is ensureds

the processes are said to be synchronized by mutual exclusion
with respect to the resource.

When a number of processes co-operate to do some tasks they may
sometimes need to agree about their state of execution. We say
that two multi-sequential processes Pl and P2 synchronize by
mutual admission at two points pl in Pl and p2 in P2, if Pl is
not allowed to continue execution after pl until P2 has reached
p2r and vice versa.

Examples: In Concurrent Pascal: mutual exclusion of processes is
enforced with respect to monitors.

Mutual admission is involved in synchronous communication as will
be discussed later.

T2

4.2 Communication

Several principles of communication between multi-sequential
processes have been proposed. In the followingr we will present a
scheme for classification of communication principles.

The following discussion will be eased if we introduce the con-
cepts: Communication points initiator and recipient.

. A communication point in a process is a point where the next
possible event may involve communication between the process
and some other process/processes.

- The Jinitiator of a communication is the process that sup-
plies the stimulus (see below) that causes the com-
munication to take place.

. A recipient of a communication is a process that receives
the stimulus.

To classify languages with respect to principles of com-
munication, we identify five major orthogonal aspects of a com-
munication: The medium and the timing of a communicationr the
choice of partner: the choice of message or operations and the
visibility of communication points.

R 1 : . .

The stimulus of a communication is a message that is sent from
the initiator to the recipient. The recipient decodes and reacts
upon the stimulus.

By decoding we mean identifying the semantic contents of the
stimulus. The semantics of the programming language defines the
semantic domain of the stimulus (e.g. whether it is a bit-
streamrs an integerr a compound messager an abstractionrs etc.).
The decoding is often specified using the type-system of the
programming language.

By the reaction upon the stimulus we mean the events of the
recipient that happens as a direct consequence of the reception
of the stimulus (e.g. computing values based on the received

13

information).

A language construct may support communication by means of either

messages or operations. The two different media of communication

differ in that they cause different reactions upon the stimulus.

14

A.

In a message communicationr the involved multi-sequential

processes transfer information by means of a message that is
sent between them or by means of shared data structures in
which messages are placed.

The initiator of a message communication is the process that
delivers the messager whereas the recipient receives or
reads the message. That isr we consider the message as the
stimulus of a message communication.

An important property of a message communication is that the
reaction upon the stimulus is the responsibility of the
recipient. That iss the reaction upon the stimulus is not
defined by the semantics of the language construct but must
be programmed explicitly for the recipient.

An interesting aspect of a language construct for message
communication is what kinds of messages it allows. For in-
stancer simple valuess references to variables: typesr
proceduress classess etc.r and composite messages.

In an goperation communicationr the involved multi-sequential

processes request operations to be executed by each other.
Information may be exchanged by means of the parameter
mechanisms for operations.

The initiator of an operation communication is the process
that requests the operation to be executed. That isr we con-
sider the request as the stimulus of an operation com-
munication. The recipient is the process that accepts the
request.

An operation communication can be considered as a message
communication in which both the decoding and the reaction
upon the stimulus is defined by the semantics of the
language. The decoding of the stimulus is defined to be an

operation name and possibly some parameters. It is clearly
of interest which parameter modes the language allows (e.g.
inrs outr etc.) and which kinds of parameters are allowed
(e.g. valuesr references to variables: types:s etc.).

The reaction upon the stimulus of an operation communication
is execution of the operation named in the stimulus. We
call the execution of the operation the response of an
operation communication.

: ; i

The execution of an operation associated with an operation
communication can be considered as constituting a process.
The communication can be further characterized by the way in
which this process is composed with the initiator and the
recipientr respectively. 1In both casess the following pos-
sibilities exist.
a. nested
Note that sequential composition is a special case of
nested composition.
b. co-sequential
C. concurrent

Examples: Concurrent Pascal uses message communication. The
values involved are accessed through monitors.

Both Ada [14] and DP use operation communication. In Adar the
operation is executed as a procedure call from both the recipient
and the initiator; that iss the operation is nested with both the
recipient and the initiator.

In DPr the operation is executed alternating with the recipient
(and perhaps a number of other operations); that isr in co-se-
quential composition with the recipient. This co-sequential com-
position was further characterized in section 3. The composition
with the initiator is nested.

15

i 5.6 i - o

When we consider the timing of a communication we focus on the
relative timing of the initiator and the recipient as they reach
their correponding communication points. It is of interest
whether a communicating process knows anything about the state of
its partner at the communication point.

A language construct may support either synchronous or asyn-
chronous communication.

A. A communication is said to be synchronous if the com-
municating processes must be synchronized by mutual admis-
sion at their corresponding communication pointsrs and the
stimulus is delivered and received before any of them con-
tinue execution. That isr both the initiator and the
recipient may be delayed at their communication points.

It is a property of synchronous communication that infor-
mation received by a communicating process may mirror the
state of the communication partner at the time of the recep-
tion.

Noter that a synchronous operation communication does not
require that the response 1is completed before the com-
municating processes can continue.

B. A communication is said to be asynchronous if the com-
municating processes need not be synchronized by mutual ad-
mission at their corresponding communication points.

If a process in an asynchronous communication receives in-
formation it cannot conclude anything about the state of its
partner at the time of the reception.

To implement an asynchronous communication some shared data
structures are needed to store the stimulus of the com-
munication.

We characterize an asynchronous communication further by
considering two orthogonal aspects of these shared data
structures: The visibility of the shared data structures and
the influence on process progression.

16

B.1 Visibilit f g 1 dai I

Though shared datastructures are necessary to implement
asynchronous communicationr they are not necessarily concep-
tually part of the programming language. By the visibility
aspect we want to distinguish between languages in which the
shared data structures are explicitly referencedr and
languages in which the shared data structures are part of
the implementation of the language only. This aspect is in-
teresting because it implies different conceptual com-
munication patterns between processes.

a. The shared data structures are said to be yisible if
they are directly referenced by the communicating
processes. That iss by naming of the data structures.
Often this implies that the partner need not be
specified at all.

Vigsible shared data structures give a conceptual com-
munication pattern as illustrated below.

Pl

Shared data

structure

That isr the shared data structure is a visible com-

ponent in the communication system.

b. The shared data structures are said to be hidden if
they are never directly referenced by the communicating
processes. Usuallyr programming languages that support
hidden shared data structures require some kind of
partner specification instead (see section 4.2.3 for a
further discussion of partner specification).

Hidden shared data structures give a conceptual com-
munication pattern as illustrated below.

Pl P2

That 1iss the processes are the only components in the
communication systemr connected by communication lines.

17

B.2 Tnfluence on process progression

The second aspect of the shared data structures is whether
they can delay the progression of the initiator and the
recipients respectivelyr at a communication point.
Especially in a real-time environment it is of great impor-
tance to the overall performance of the program that the
programmer is aware of any potential delay caused by the
shared data structures.

a. Shared data structures are said to be blocking if the
state of the data structures may cause any of the com-
municating processes to be delayed at its communication
point. There can be several reasons for such a delay.
For exampler the delay may be due to protection of the
shared data structures by mutual exclusionr or it may
be due to a full or empty buffer. We have considered a
subdivision of asynchronousr blocking communication
with respect to the reason for the blockingr but we
have not been able to give an exhaustive classification
of possible reasons. Stills the reason for blocking is
important so we will talk about "blocking caused by

'some reason'".

b. Shared data structures are said to be non-blocking if
they never cause any of the communicating processes to
be delayed.

Examples: In Adar the rendezvous is a synchronous operation com-
munication. Both in and gQut parameters are available.

In Concurrent Pascalr asynchronous communication is used with
monitors as visible shared data structures. The communication is
blocking caused by mutual exclusion both for the initiator and
the recipient.

In an article by Roper and Barter [16], a programming language
derived from CSP 1is described. Here we see an example of asyn-
chronous message communication with hidden shared data struc-

18

tures. Furthermorer the communication 1is blocking for the
initiator caused by limited buffer capacity (the buffer capacity
is implementation defined) and blocking for the recipient since
messages must be sent by the initiator before they can be
received by the recipient.

4.2.3 Choice of partner

When we consider the choice of partner by a process we focus on
how flexibly a language construct allows a communication to be
specified. We want to distinguish whether the process specifies
one specific or several possible partners. In the first caser it
is totally under the control of the process which partner is
chosens whereas in the second case we can say intuitively that
the process is relatively indifferent to the choice of partner.
The choice of partner must be considered both for the initiator
and the recipient.

Noter that the following discussion is similar to the discussion
of the choice of successor in co-sequential processes (cf. sec-
il 3«2 Ja

We distinguish between language constructs that support deter-
ministic and non-deterministic choice of partner in a com-

munication.

A. The choice of partner is said to be specified as deter-—
ministic if the partner is unambiguously determined from the
state of the process when it reaches the communication

point.

Variabili E i)

The process may reach the same communication point several
times in different states. If the choice of partner is
deterministics it is of interest whether or not the same
partner is chosen each time the process reaches the com-
munication point.

The most tightly connected communicating processes are ob-

19

tained in the case where the same partner is chosen each
time. That iss the process is at that communication point
constantly connected to one specific process. A more flex-
ible situation occurs when the process has the possibility
of specifying different partners each time it reaches the
communication point.

a. The partner in a communication is said to be specified
as constant if the same partner is chosen each time the
process reaches the communication point.

b. The partner in a communication is said to be specified
as wariable if different partners may be selected each
time the process reaches the communication point.

B. The choice of partner is said to be specified as non-deter-—
ministic if the process is unable to determine its partner
from its own state when it reaches the communication point
It 1is important whether the language provides any means for
the programmer to restrict the set of possible partners or
whether the semantics of the language restricts the set of
possible partners in some way. In the first «caser the
programmer may have the opportunity to specify that the
stimulus of the communication must satisfy some conditions
or that the partner must satisfy some condition (e.g.
highest priorityr belonging to some specific group of
processes - say printers). Examples of restrictions im-
proved by the language semantics are that the partner is
chosen among processes in the scoper or the processes with
the highest priority.

Noter that if the choice of partner is non-deterministic it
is obviously also variable in the sense defined above.

Examples: Let us consider communication in Ada. The communication
points in a initiator looks like this:

{TaskName>.<EntryName>[(<Parameters>]
The partner is uniquely named, which implies that the choice of

partner by the initiator is deterministic and constant. However:

20

if the task is an instance of a task access type or a component

of an array of taskss then it is possible for the initiator to

have a variable choice of partner.

The communication points in a recipient is specified like this:
accept <entryname>[(Kparameters>)] do <block>

The partner of the recipient 1is non-deterministically chosen

among the processes in the scope.

1.2.4 Choi - .
By choice of message or operation we consider the flexibility
avaiable when specifying the message or the operation involved in
the communication. The discussion of the choice of message or
operation 1is equivalent to the above discussion of choice of
partner. We will therefore carry the discussion through only for
the choice of partner as the discussion of the choice of message
or operation can be obtained by substituting ‘"partner" with
either "message" or ‘T"operation" depending on whether the com-
munication under consideration is message or operation oriented.

Examples : In Adar the choice of operation in the initiator is
non-deterministic since the entry name may be associated with
different blocks depending on the state of the recipient. That
isr the choice 1is not determinable from the state of the
initiator.

In the recipients the choice of operation is deterministic if the
accept statement is standing aloner and constant since the block
is statically associated with the accept statement. If the accept
statement is part of a select statement: the choice of operation
in the recipient is non-deterministic among the operations invol-

ved in the select statement.

21

{0 & B : N .

A final important aspect of the specification of communication

points is whether the lanquage construct causes the communication

points to be specified implicitly or explicitly in the process

descriptor.

A. Implicitly specified communication points are communication

22

points that are invisible in the process descriptor. That
iss the implicitly specified communication points are con-
trolled by the implementationr not the programmer.
Implicitly specified communication points may at first sight
seem to be a useless construct and in fact make no sense for
the initiator. On the other hands implicitly specified com-
munication points in the recipient are very relevants
especially in a real-time environment. If the recipient
specifies communication points implicitlyr it renounces con-
trol of when the communication is to occur and states that
the communication is so urgent that it may take place at any
time. This corresponds to the interrupt mechanism in assem-
bly languages but we will later discuss high-level con-
structs supporting implicitly specified communication points
in the recipient.

Explicitly specified communication points are communication

points that are visible in the process descriptor. That iss
it is the programmer that controls the location of the com-
munication points in the process descriptors and this im-
plies that the process controls when to communicate.

5 " o .

A language construct that supports explicitly specified com-
munication points may be further characterized by whether
the communication points are specified as obligatory or op-
tional in the process descriptor.

The concept of optionally specified communication points are
especially important in a real-time environment in that they
make it possible for the programmer to specify communication

points in a more flexible manner and thereby hopefully
achive more efficient programs.

a. A communication point 1is said to be specified as
obligatory if a process must communicate when it
reaches the point.

b. A communication point 1is said to be specified as op-
tional if a process may communicate when it reaches the
point.

Several possibilities of optionality of communication
points exists. Let us mention two common examples.
First: the optionality may be such that the choice of
whether to communicate or not is an arbitrary choice
made by the implementation. (This is the case in
CSP [12]). Secondlyr the optionality may be such that
a communication will only take place if it does not
delay the process. (This is the case in Ada).

Noter that this discussion is similar to the discussion of

freedom of changeover points (cf. section 3.1).

Examples: In Adar the communication points are explicit and
obligatory in the initiators unless the entry call is a con-
ditional or a timed entry call in which case it is optional.

The communication points are explicit in the recipient and
obligatory wunless the accept statement is part of a select
statement with an elser delay or terminate alternative in which
case it is optional.

As an illustration of implicitly specified communication points
we can look at StarMod [8]. One of the ways in which processes
can communicate in StarMod is by means of activation of local
processes in each other. In our terminology this kind of com-
munication 1s an operation communication where the operation
(StarMod process) 1is concurrently composed with both the
initiator and the recipient. Howeverr in the case of result-
returning operations the composition with the recipient is

23

nested. The communication points are implicit in the recipient
meaning that operations may be called any time independent of the

state of the recipient.
- 00o -

We can illustrate our classification of communication principles

graphically as follows (cf. section 1).

J I I |

medium timing choice of partner choice of message visibility of
or operation communication
points

24

5 Extended examples

During the description of the taxonomy we have already given a
number of examples of analysis of language constructs. Partial
analysis has been given for language constructs in Simula67 [9]1.,
Distributed Processes [6]: Concurrent Pascal [5]1./ Ada [141«
Roper's variant of CSP [16] and StarMod [81.

We will not in this section complete all these examples:s since it
would be mostly to repeat ourselves. Instead we choose three new
languages for a detailed analysis. We will analyze the languages
CSP [12]r PLITS [10] and SR [1l]. The reason why we have chosen
these languages is that a comparative analysis of CSP and PLITS
very convincingly illustrates the ability of the taxonomy to
highlight the conceptual similarities and differences between
languages. SR is chosen because it illustrates how compactly and
precisely a complicated language can be described by means of the
taxonomy.

We assume that the reader is familiar with the example languages.

2.1 Apalysis of CSP
CSP supports concurrent composition of processes but not co-se-

quential composition.

Synchronization: Mutual admission is supported as part of the
communication mechanism.

Medium: Message communication. Messages are lists of simple

values.

Timing: Synchronous.
Choice of partner: The initiator specifies its wpartner by

means of a unique name or by indexing into an uniquely named
array of processes. That 1iss the specification is deter-
ministic and constant (or variable if process arrays are
used).

25

The recipient can do the samer but can also use a guarded com-
mand which gives a non-deterministic choice of partner. All
the possible partners are explicitly named by the recipient,
which gives the process control over the set of processes
among which the partner is chosen.

Choice of message: The initiator of a communication specifies

the message as an expression that may contain variables. That
isr the initiator specifies the message as deterministic and
either variable or constant.

The recipient specifies the type of the messager so the choice
of message is non-deterministic from the recipient with the
type specification as the means of controlling the non-deter-
minism. Further non-determinism can be obtained by use of the
guarded command implying that any among a specified number of
messages with different types may be selected.

Visibility of communication points: The communication points

are explicit in both initiator and recipient. Communication
points are obligatory in the initiatorr but can be optional in
the recipient by use of a guarded command with guards that
contain no input commands. The criterion for whether to com-
municate or not 1is not defined by the semantics of the
language.

5.2 Analysis of PLITS

PLITS supports concurrent composition of processes only.

Synchronization: Mutual admission as part of the communication

mechanism.

. .

26

Medium: Message communication. Messages are sets of pairs con-
sisting of a name and a value. The value may be a reference to

a process.

Timing: Asynchronous. The shared data structures are invisible

to both processes. Theyr are non-blocking to the initiator but
blocking to the recipient when no messages have arrived.

Choice of partner: The initiator specifies the partner by

means of an expression that may be either a constant or a
variable identification of a process. That iss the initiator
specifies its partner deterministicallyr and the language sup-
ports both variable and constant choice of partner.

The recipient can specify its partner either deterministically
in the same way as the initiator or non-deterministically by
omitting the process identification in the communication
statement. Moreovers a key identifying the subject of the com-
munication can be specified to control the set of processes
among which the partner can be chosen.

Choice of message: The initiator specifies the message deter-

ministically and variably (or constantly) as in CSP.

The recipient specifies the message non-deterministically. All
name fields of the message must be known to the recipient: and
the corresponding values must match the specified types of
these names. If a subject key is specifiedr the non-deter-
ministic choice is limited to messages with this subject key.

Visibility of communication points: Explicit and obligatory in

both initiator and recipient.
= plo =

This analysis makes it easy to sum up the conceptual differences
between CSP and PLITS:

1) Communication in CSP is synchronous whereas it is asyn-—
chronous in PLITS.

2) The structure of messages differ a little in CSP and PLITS,
most importantly by the property that PLITS allows referen-
ces to processes to be transferred in a message.

3) The partner specification in the initiator is more flexible
in PLITS than in CSP. Both allow the choice of partner to be

24

variabler but in CSP only by a fixed array of processes. In
PLITS:s a process can communicate with a process whose iden-
tity has been received through a message.

4) The recipient's control of the non-deterministic choice of
partner differ 1in the two languages. PLITS allows a choice
among all processes that send messages about a specific sub-
ject. Subject identification is completely under the control
of the processess so this gives a very flexible control of
the non-determinism.

CSP is more restrictive in that the recipient must list the
unique names of all possible partners.

5) In CSP a communication point can be optional in the
recipient: whereas it 1is always obligatory in PLITS.
Howevers the semantics of CSP makes it completely arbitrary
whether or not a communication is made at an optional com-
munication point. If optional communication points should be
of any use in a real time applicationrs the choice of whether
to communicate or not should depend on whether or not any
communications are ready - perhaps within a timeout periodr
as in Ada.

o . T)

Only concurrent composition of processes is supported.

Processes in SR are grouped into resources: which are abstrac-
tions of physical processors. Different resources correspond to
distributed physical processors.

Synchronization: Mutual admission is supported as part of one of
the three communication mechanisms in SR.

Mutual exclusion 1is supported between processes in the same
resource with respect to common variables in the resource.

. o
Medium: Both operation communication and message communication
is supported in SR.

28

In an operation communication of SRs the operation is always
nested composed with the recipient. The composition with the
initiator may be either nested or concurrent depending on
whether the operation is "called" or T"sent", respectively.
Both "in" and "out" parameters are allowed, but in case of a
"sent" operations the "out"™ parameters are ignored.

Message communication in SR is only allowed between processes
in the same resourcer and messages are structured as arbitrary
data structures in SR.

Timing: The "call" mechanism for operations support syn-
chronous communication, whereas the "send" mechanism for
operations support asynchronous communication. Furthermorer
message communication in SR is asynchronous.

In the "send" operation communicationr the shared data struc-
tures are hidden in the implementation of the asynchronous
communications and whether they are blocking or not depends on
the implementation.

The message communication involves visible shared data struc-
tures that are blocking because of protection. The reason why
SR only allows this kind of communication between processes in
the same resources is the 1lack of common storage between
processes in different resources in a distributed system.

Choice of partner: In an operation communication (both "send"

and "call"), the initiator specifies its partner deter-
ministicallyr either constantly by means of a resource name
and an operation namer which uniquely determines a partnerr or
variably by means of a capabilityr which is an assignable
reference to a specific operation in a specific process.

The recipient specifies the partner non—-deterministically in
an operation communication. The non-determinism is controlled
by means of a scheduling expression. Only the processes with
the minimal value of the scheduling expression are considered.
In a message communication both processes choose their partner
non-deterministically. The non-determinism is controlled by
the convention that only processes in the same resource can be

29

30

partners.

Choice of message or operation: In an operation communication

the operation is chosen deterministically by the initiator.
The choice is either constant or variable depending on whether
or not capabilities are used.

The recipient in an operation communication chooses the
operation non-deterministically by means of a kind of guarded
command. That iss the operations among which the choice is to
be made are listed explicitly and the non-determinism can be
further controlled by a boolean synchronization expression.
Only operations for which the synchronization expression 1is
true are considered.

In the message communications the initiator describes the mes-
sage by means of an expression. That iss deterministically and
either constantly or variably depending on the kind of expres-
sion. The recipient expects a specific type of the variable
that contains the messager and thereby specifies the message
non-deterministically with type control.

Visibility of communication points: The communication points

are explicit in both initiator and recipient in all the three
different kinds of communications in SR.

A message communication point is obligatory for both proces-
sesr and an operation communication point is obligatory to the
initiator. Whether an operation communication point is also
obligatory to the recipient depends on whether or not the
guarded command in the recipient contains an else part. If
there is no else parts the point is obligatory. If there is an
else partr this may be selected instead of a communication if
no communications are ready. In this caser the point is op-—
tional.

6 Relation to other works

Other taxonomies exist but we find that they all serve a slightly
different purpose than ours. Lauer and Needham [13] present a
classification of communication principles into two groups:
"Message-oriented" and "Procedure-oriented". This approach is
followed by Andrew and Schneider [2] who augment the clas-
sification with one additional group: "Operation-oriented". We
find such classifications too simplified. They make it possible
to classify programming languages into two or three major groups
but is of no help when two programming languages from the same
group are to be compared. For exampler Ada and Distributed
Processes are both classified as operation oriented languages ac-
cording to Andrews and Scneiders concepts: and no means are
provided to distinguish Ada and DP though there are many impor-
tant differences between the two languages.

Our approach is more in the line of Bacon [3] and Filman & Fried-
man [11]1 with respect to the level of detail of the taxonomy.
Howeverr our classification differ substantially from theirs with
respect to both contents and form.

If we first focus our attention on Bacons paperr we observe that
concerning contentsr the most important difference is the em-
phasis in our taxonomy on the specification of a communication by
initiator and recipient. We discuss in detail different
strategies that give the processes different degrees of influence
on the timer sequencer partners and contents of communications.
These aspects are only superficially and imprecisely described by
Bacon.

The form of our taxonomy also differs considerably from that of
Bacons. Our consistent use of precisely defined orthogonal
aspects makes it clear how concepts may be combinedr independent-
ly of existing programming languages.

Bacons classification relates very closely to existing languages
for distributed systems. The concepts are not precisely defined
and it is unclear how they can be combined. Thereforer, Bacons

31

classification is less suited for analysis of other languages
than those considered when the classification was developedr, and
the classification is more 1likely to need changes to adapt to
each new language considered. Moreoverr it is less suited to use
in the design of new languages.

If we now look at the paper by Filman and Friedmanr we see first
of all that their form is very similar to ours. Theyr toor
develop a set of orthogonal aspectss but there are two major dif-
ferences. First:s their classification is mainly a one-level clas-
sification. That iss it is not possible to further classify a
given aspect. Secondlys their definitions tend to be impreci-
se - e.g. the concept of equal communicators is not defined.

If we look at the contents of their classification we see that
several of their aspects are similar to aspects in our taxonomy r
but we find that they lack treatment of some important areas:
Medium of a communications choice of partner: choice of message
or operations and visibility of communication points. On the
other hand, Filman and Friedman treat aspects 1like process
creations information flows fairness and failure, which we have
ignored. Lastlyr they lack any treatment of co-sequential com-

position.

1 Conclusion

We have described a taxonomy for programming languages with sup-
port of multi-sequential processes. The taxonomy focuses on high
level conceptual aspects 1like composition of processes:s syn-
chronization and communication. Besidesr special aspects of co-
sequential processes are discussed concerning the transfer of
control between the processes.

The taxonomy is structured as a hierarchy of orthogonal aspects
defined by means of an event based model for processes.

Examples of analysis of programming languages and language con-
structs have been shown. The examples show how the taxonomy high-
lights the conceptual similarities and differences between

32

programming languagesr: and it is seen how precisely and compactly
complicated languages can be analyzed by means of the taxonomy.
It is our view that the taxonomy can be useful when choosing a
language for a specific applications when designing a language
for some application area and when teaching programming languages
with multi-sequential processes.

Acknowledgment

The work reported here has benefited from many discussions with
Ole Lehrmann Madsen and Peter Mosses. Thanks are due to Brian H.
Mayoh for several comments and to the students who used an ear-
lier version of this article.

33

8 References

£2]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]:

[11]:

[12]:

(131

[14]:

[15]

[16]1:

34

: G.R.Andrews)
"The Distributed Programming Language SR -
Mechanismss Design and Implementation"
Software Practicé and Expeériencer Vol.1l2, 719-753 (1982)

: G.R.Andrew & F.B.Schneider)

"Concepts and Notationgs for Co Programming"
Computing Surveysr Vol.15, 3-

: J.Bacon))

"An Apg;oach to Distributed Software Syst%ms"
Operating Systems Reviewsrs Vol.15:, No.4 (Oct.81)

: D.Bjgrner & O.N,Oest (Eds.)
"Towards a Formal Description of Ada™
Lecture Notes in Computer Sciencer V0l.98, 1980

P.Brinch Hansen
"The Architecture of Concurrent Programs“
Eaglewood Cliff: Prentice-Hall, 1977

:"E’Bgi?ghtHSHS?gcess A C t. P i c e
istributec es: oncurren rammin once
Communications of the ACM, Vol.21:. 934—53? (1978? 3

: P.Brinch Hansen,
"Edison - a Multiprocessor Language"
Software Practice and Experiencers Vol.ll, 325-361 (1981)

: R.P.Cook
"¥Mod - A Langgage for Distributed Programming"
IEEE Transacfions on Software Engineefing,

Vol.6rs 563-571 (1980)

: 0.J.Dahls B Myhrhaug & K.Nygaard
"Simula67 Common Basé Language" ,
Publication no. S-22, Nofwegian Computing Center, Oslo 1970

J.A.Feldman) . .
"High Level Programming for Distribut
Communications of the ACM:, Vo0l.22s 3

R.E.Filman & D.P.Friedman . .

"Modelsr Languages and Heurestics for Distributed
Computing"

National "Computer Conferencer

AFIPS Conference Proceedings: vol.51:, (1982)

C.A.R.Hoare .
"Communicating Seguentlal Procesges"
Communications of the ACM: Vol.21l: 666-677 (1978)

: H.C.Lauer & R.M.Needham .
1On the_Dua11t¥ of Operatln% System Stru?tures"
Operating System Reviewss Vol.13r no.2 (Apr.79)

Military Standard

"Ada Pro rammlng Lan?uage"
ANSI/MIL-STD-1815A-198 _

American National Standards Instituter 1983

N.J.Nilsson . L
"Problem-Solving Methods in Artificial Intelligence"
McGraw-Hill, Incr 1971

T.J.Roper & C.J.Barter

"A Communlcatlnﬁ Sequential Process Language and
Implementation", .

Software Practice and Experiencer Vol.l1l, 1215-1234 (1981)

