18USIBAIUN SNYIBY IMIISU| YSpewalep
YP 1oSNE€E L9/ PG X33) ‘GG E8 T (90) "M
2 snyiey 0008 - epeBauniy AN - opg BuuBAg
ONIN3Adv MSID0Iviva

_.— Il NVI34/INIVA “¥AHL

Bl
H
E

|

G861 Ley
¥L1 - dd INIVA

uasuaf Jmy
uasda[" JIo
uasuaf ‘A sury
1aqny 12394

SI9N 119 [2AJ[-YSI X0}
$39X], AII[IqeYIEIY SPIEMO].

Huber et al.: Reachability Trees for HL-Nets

PB - 174

L1%8-9010 NSSI

CONTENTS

1. Intreduction
2. A brief review of HL-nets and definition of w-bags
3. Informal introduction to reachability trees for HL-nets
4. Definition of reachability trees for HL-nets
Algorithm to produce HL-trees
5. What can be proved by means of HL-trees?
Proof rules for HL-nets
6. Examples of the use of HL-trees

References

APPPENDIX 1: Proof of Lemma 1-6

Lemma 1

Corollary to Lemma 1
Lemma 2

Proposition a) - e)
Lemma 3

Corollary to Lemma 3
Lemma 4

Lemma 5

Lemma 6

APPENDIX 2: Examples of the use of HL-trees

Data Base System

Producer-Consumer System

APPENDIX 3: An Algorithm to determine whether two

markings are equivalent or not

PAGE

10
11
14
17

19

Al
A2
A4
A6
A10
A17
A18
A21

A22

A23
A23

A28

A33

TOWARDS REACHABILITY TREES FOR HIGH-LEVEL PETRI NETS

by
Peter Huber, Arne M. Jensen, Leif O. Jepsen, and Kurt Jensen
Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Aarhus C, Denmark

1. INTRODUCTION

High-level Petri nets [1, 4, 5, 6, 9] have been introduced as a
powerful net type, by which it is possible to handle rather complex
systems in a succinct and manageable way. The success of high-level
Petri nets is undebatable when we speak about description, but there is
still much work to be done to establish the necessary analysis methods.
In [1,4,5]it is shown how to generalize the concept of place-invariants
(s-invariants), from place/transition-nets (PT-nets) to high-level
Petri nets (HL-nets). Analogously, [9] shows how to generalize
transition-invariants (t-invariants). Our present paper constitutes the
first steps towards a generalization of reachability trees, which is
one of the other important analysis methods known for PT-nets [2, 7, 8].

The central idea in our paper is the observation, that HL-nets
often possess classes of equivalent markings. As an example the HL-net
describing the five dining philosophers in [4] has an equivalence-class
consisting of those five markings in which exactly one philosopher is
eating. These five markings are interchangeable, in the sense that
their subtrees represent equivalent behaviours, where the only difference
is the identity of the involved philosophers and forks. If we analyze

one of these subtrees, we also understand the behaviour of the others.

This paper presents a proposal how to define reachability trees for
HL-nets (HL-trees). For PT-nets the reachability trees in [2,7,8] are
kept finite by means of covering markings (introducing w-symbols) and by
means of duplicate markings (cutting away their subtrees). For HL-trees
we reduce by means of covering markings and by means of equivalent
markings (for each equivalence-class we only develop the subtree of one
node, while the other equivalent nodes become leaves of the tree). Re-
duction by equivalent markings is a generalization of reduction by dup-
licate markings. We describe an algorithm which constructs the HL-tree.
The algorithm can easily be automated and we will soon start the work on
an implementation. The constructed HL-trees turn out to be considerably
smaller than the corresponding PT-trees (reachability trees for the
equivalent PT-nets, obtained from the HL-nets by the method described in

[41).

The rest of the paper is organized as follows. Section 2 reviews
the formal definition of HL-nets and w-bags. In section 3 HL-trees are
intreoduced by means of an example. Section 4 contains the formal defi-
nition of HL-trees and the algorithm to construct them. Section 5 dis-
cusses how to establish proof rules, by which properties of HL-nets can
be derived from properties of the corresponding HL-trees. Section 6 con-
tains two examples where HL-trees are constructed and compared with the

corresponding PT-trees.

2. A BRIEF REVIEW OF HL-NETS AND DEFINITION OF w-BAGS

In this section we review the basic concepts of HL-nets [6] and
we generalize bags (allowing their elements to have multiplicity w,
representing an unlimited number of occurrences). Bags (multisets) are
represented as formal sums as shown in [6]. By BAG(S) we denote the set
of all finite bags over a non-empty set S. By [A—»B]L we denote the set

of all linear functions with domain A and range B.

Definition An HL-net is a 6-tuple H=(P,T,C,I_,I+,m0) where

(1) P is a set of places

(2) T is a set of transitions

(3) PNT = @, PUT # @

(4) C is the colour-function defined from PUT into non-empty sets

(5) I_ and I, are the negative and positive incidence-function
defined on PxT, such that I (p,t), I+(p,t)€[BAG(C(t})+
BAG(C(p))]L for all (p,t) € PxT

(6) My r the initial marking, is a function defined on P, such that

m, (P) € BAG(C(p)) for all pe€P. =

Throughout this paper we assume P, T, C(p) and C(t) to be finite for all
pEP and t€T. A marking of H is a function m defined on P, such that
m(p) € BAG(C(p)) for all p€P. A step of H is a function x defined on T,
such that x(t) € BAG(C(t)) for all t€T. The step x has concession in the

marking m iff Vp€P: ¥ I (p,t)(x(t)) =m(p). A marking is dead iff only
telr
the empty step has concession in it.

When x has concession in m, it may fire and thus transform m into

a directly reachable marking m', such that

YpER: m'(p) = mip) = Z T _(p;t) (xt)] +# I I {p,t)lxlt)).
teT tem

We indicate this by the notation m[x>m'. In this paper we will only
consider steps which map a single transition t€T into a single firing-
colour ceC(t), while all other transitions are mapped into the empty
bag. Such a step is denoted by (t,c), where we sometimes omit the
brackets. When for nz0, m[t1,c1>m1[t2,c2>m2...mn_T[tn,cn>m' the sequence
a =(t1,c1)(t2,c2)...(tn,cn) is a firing sequence at m and m' is (forward)

reachable from m, which we shall denote by m[g>m'. By R(m) we denote the
set of all markings which are reachable from m. An HL-net is bounded on
place peP and colour ceC(p) iff akENVmGR(mO): m(p) (c)£k, and it is bounded

iff it is bounded on all places and all colours.

Definition An w-bag over a non-empty set S is a function b: S-NU{y}

and it is represented as a formal sum I b(s)s, where b(s) eNy{y}. =
SES
b(s) represents the number of occurrences of the element s. If b(s) = w

the exact value is unknown and may be arbitrarily large. An w-bag b over
the set S is finite iff its support {seS | b(s)#0} is finite. The set

of all finite W-bags over the non-empty set S will be denoted by w-BAG(S).
Summation, scalar-multiplication, comparison, and multiplicity of w-bags
are defined in the following way, where b1,b2,b€Zw—BAG(S), nelN and

memy {wls

Ww+m = w w > n LUl_f m#0
mw =
W=m = w w%m 0£ m=0
b1+b2 = I (b1(s)+b2{s))s mxb = I (mb(s))s
SES SES
b1 2 b2 < VSES: b1(s) 2 bz(s)
> o
b1 > b2 TS (b1=b2) A (3s€S: b1(s) > bz(s))
When b12b2 we also define subtraction: b.]—b2 = I (bq(s)—bzts)}s.

SES
A function F€[S-BAG(R)], where S and R are non-empty sets, can be
A
extended uniquely to a linear function F€[BAG(S)-BAG(R)], called the

A
bag-extension of F: vb € BAG(S): F(b) = I b(s)xF(s).
SES
Analogously we define the w-bag-extension of F€[S - w-BAG(R)] to be
Fe[w-BAG(S) = W-BAG(R)], where Vb € w-BAG(S): F(b) = X b(s)xF(s).
' SES

An w-marking of H is a function m defined on P, such that
m(p) € w-BAG(C(p)) for all peP. The concepts of step, concession and
reachability are generalized from markings to w-markings by replacing

the word "marking" by "w-marking". An w-marking m1covers another w-

marking M Mz, iff ypeP: m1(p)2m2(p), and it strictly covers, m,>m,,
iff Mmyzm, A mT#m2.

3. INFORMAL INTRODUCTION TO REACHABILITY TREES FOR HL-NETS

In this section we give, by means of an example, an informal intro-
duction to our notion of reachability trees for HL-nets. The basgic idea
of a reachability tree is to organize all reachable markings in a tree-
structure where each node has attached a reachable marking, while each
arc has attached a transition and a firing-colour (which transforms the
marking of its source-node into the marking of its destination-node) .
Such a tree contains all reachable markings and all possible seguences
of transition-firings. By inspection of the tree it is possible to
answer a large number of questions about the system. However, in general

the reachability tree described above will be infinite. For practical
use it is necessary to reduce it to finite size. This is done by

covering markings and by equivalent markings which is a generalization

of duplicate markings. Reduction by covering markings and duplicate mark-
ings are well known from PT-trees. Reduction by equivalent markings is,
however, a new concept suitable for HL-trees and this idea is the pri-

mary result of our paper.

Covering markings. When a node has a marking m,, which strictly

covers the marking m, of a predecessor, the firing sequence transforming
m, into m, can be repeated several times starting from m2+. Thus it is
possible to get an arbitrarily large value for each coefficient which
has increased from m, to m,. In the tree we indicate this by substituting
in My the w-symbol for each such coefficient. The situation is analogous
to the idea behind the "pumping lemma" of automata theory and it means
that some of the places can obtain an arbitrarily large number of tokens
of certain colours.

This kind of reduction results in a loss of information. In [8] it
is shown, that if w occurs in a PT-tree, it is not always possible to

determine from the tree whether the net has a dead marking or not.

Duplicate markings. If there are several nodes with identical mark-

ings only one of them is developed further, while the others are marked
as "duplicate". This reduction will not result in a loss of information

t* If m, already contains ® the situation is more complicated, and it
may “be necessary to involve some extra firings, cf. the proof of
lemma 3 in appendix 1,

because we can construct the missing subtrees from the one developed.
Due to reduction by covering markings, two such subtrees may not be
completely identical, but they will represent the same set of markings

and firing sequences.

Eguivalent markings. To introduce our notion of equivalent markings,

we will now look at the HL-net for the five dining philosophers in [4]:

B @ Pl PH={Ph1 :Ph2 rph3 rph4 rphs}
F :{fl,fz,f3,f4,f5}
ph
T1 left(phi) = fi
fork i =
e fetkn 16£¢ (ph) sxight(ph) T onelph)= £,
ph
ki - @ P2 P3 T1 T2 m0
ph PH PH
T2 left (ph)+right (ph) Pl | PH | —id id ZPH
put down
forks P2 | PH | id -id
-left left
P3| F
k—————-‘] ~¥ight <right 2

Fig. 1: HL-net for the philosopher system.

We will now analyze the following markings:

m, = (ph2+ph3+ph4+ph5, ph1 ’ f3+f4+f5)
m, = (phy+phy+ph,+phg, ph, i Bty tie)
mg = {phy*phgtphs » Phy*phas £g)
m, = (ph2+ph3+ph4+ph5, ph1 . f2+f4+f5)
mg = (ph3+ph4+ph5 7 ph1+ph2, f5).

By intuition we want m, and m, to be equivalent. The point is that
we do not need to know the identity of eating philosophers, because all
philosophers "behave in the same way". The marking my contains a diffe-

rent number of eating philosophers and thus it is not equivalent to m,

or m,. However, two markings may be non-equivalent even though they

have the same number of eating philosophers and the same number of free

forks. In m, and m, the non-free forks are those belonging to the eating

1
philosopher. This is not the case in My, and thus m, is not equivalent

to m, or my. In mg the two eating philosophers are neighbours. This is

1
not the case in My, and so these markings are not equivalent either.

To obtain equivalent markings we must demand that the identity of all
philosophers and forks are changed by the same rotation. As an example,
m, is obtained from m, by the rotation which adds 4 (in a cyclic way)
to the index of each philosopher and fork.

To formalize the notion of equivalent markings we associate to the
colour set PH the symmetry type "rotation" and we define a bijective
correspondence between F and PH by a function re[F-PH], where r(fi)=phi.
Two markings m' and m" are equivalent iff there exists a rotation Ppy

of PH, such that

m' (p) = 5;; (m" (p)) for p = P1,P2

(*)
=]

m' (P33} r Qg er (m" (P3)) .

In our example the markings m, and m, are equivalent because the rota-

tion wPHE[PH»PH], defined by wPH(phi) = phi$4, satisfies (*). On the
other hand m, and m, are not equivalent. From the place P2 it is de-
manded that ph2 = wPH(ph1), i.a, wPH(phi) = phi®1, but this does not

work at P3:

_"Io(p °
PH

mZ(P3) = f1+f4+f5 # f1+f3+f5 = r ¥ (m4(P3)}.

As a generalization of reduction by duplicate markings we will now re-
duce the reachability tree by equivalent markings: Only one element of
each class of equivalent markings is developed further, and when a
marking has several direct successors which are equivalent, only one of
them are included in the tree.

Figure 2 shows an HL-tree obtained for the philosopher system. In
the initial marking transition T1 can fire in all colours of PH producing
five equivalent markings of which only one is included in the tree, while
the existence of the others are indicated by the label attached to the
corresponding arc. If we only reduced by covering markings and duplicate
markings, the tree would have had 31 nodes (and exactly the same tree
structure as the PT-tree corresponding to the equivalent PT-net).

The relation of equivalent markings is determined by the persons
who analyze the system, and it must respect the inherent nature of the
system. In the philosopher system, rotation is the suitable symmetry
type. But in the telephone system of [6] arbitrary permutation would be
the suitable symmetry type (since there is no special relation between
a phone number and its nearest neighbours). In general, several symmetry
types (rotation, permutation or identity-function) may be involved in

the same system (for different colour sets).

#1{:Eh1+ph2+ph3+ph4+ph5
S Bt By Ve

(T1:Ph1]l(T1rph23(T1,ph3)(T1,ph4)[T1,ph5]

#2 ph2+ph3+ph4+ph5
{ph1 }
f3+f4+f]

5

(T1,ph3)l(T1rPh4) (T2rph1)1
?’ph2+ph4+ph5 #4 [ph,+ph,+phy+ph,+ph.
ph, +ph =
i
L Ey+E 4F o vke

5
EQUIVALENT TO 1

lT2,ph1) (12,ph5)

#5 ph]+ph2+ph4+ph5
phg
1*E5+Es

EQUIVALENT TO 2

Fig. 2: HL-tree of the philosopher system. It is reduced by
covering markings (none in this tree) and equivalent
markings.

When the relation of equivalent markings is defined in a sound

way (to be formalized in section 5), the reduction by means of covering
markings and equivalent markings does not result in a loss of more in-
formation than reduction by covering markings and duplicate markings
only. This means, that all net properties which can be proved by means

of the PT-tree of the equivalent PT-net can also be proved by means of

our (much smaller) HL-tree.

4. DEFINITION OF REACHABILITY TREES FOR HL-NETS

In this section we consider a fixed HL-net H=(P,T,C,I_,I+,m0).

Definition The set of colour sets {C(x) | x€PUT} is partitioned

into three pairwise disjoint classes:

1) A is the set of atomic colour sets, where each CacA has attached

t

a symmetry type: sym(Ca)é&{permutation,rotation’,identity}.

2) R is the set of Eglated colour sets, where each CreR is related

to an atomic colour set Ca by a bijective function re[Cr-Ca].

3) M is the set of product colour sets, where each Cnell is the
cartesian product of atomic and related colour sets. =
Definition A symmetry (allowed by the given partition) is a set of

bijective functions ¢ = iwC}CEAURUﬂ where wCEZ[C%C] for all C and

(1) For all Ca€A Oca is a function of the kind specified by sym(Ca).
; -1
(2) For all CreR, with re[Cr-sCa] Oop = L 0Q, OF.

(3) For all Cmw€l, with Cn = C1xC2x...xCn
Con = Poi*Pgp* w=+XPpp s

The set of symmetries (allowed by the given partition) is denoted by 9.
It is finite since P, T, C(p) and C(t) are assumed to be finite for all

pEP and teT. @

The definition of o, Can be visualized by the following commuta-

tive diagram:

P
cr Cr > Cr
r l Ir_1
Ca » Ca
Pca

Since r is a bijection it follows that oy is a function of the kind

specified by sym(Ca).

Technical remark: The definition of partition is here presented in its

simplest form. In scme cases (cf. the database example in section 6) it
may be convenient/necessary to allow 1T to contain subsets of cartesian
products. If Cn = el tapls s e | a€Cc} we define L. = (@ x wo x
e X0 o)}cn,r yielding a bijection on Cr as requested. Secondly, in

special cases, there can be sets in use to construct products in T

T When an atomic colour set has rotation as symmetry type it must be a
finite set, indexed by 1,2,...,n where n is the cardinality.

which are not themselves ordinary colour sets in the HL-net. These sets

have to be included as atomic or related sets.

Given an w-marking m, a firing sequence o0 = (t1,c1)(t2,c2)...(tn,cn)

and a symmetry ¢€®, we define an equivalent w-marking ¢ (m) by
= 11 peP
¢ (m) (p) mc(p)(m(p)) for all p

and an equivalent firing sequence @(g) by

(o) = (t1,©C(t1)(c1}}(tz,wc(tz)(cz))...(tn,wc(tn)(cn)).
Definition Two y-markings, m1 and m,, of H are equivalent, m1~m2,

iff there exists a symmetry €y such that m, = $(m2). It is easy to

show that ~ is an equivalence relation.]

We will draw attention to the fact, that given a net there are
often several meaningful ways to define a partition. It is the user,
who decides the partition and this choice determines the possible symme-
tries, and thus the relation of equivalent markings. In section 5 we
define two soundness criteria for partitions and we establish four proof
rules, which for sound partitions allow us to deduce properties of HL-
nets from properties of the corresponding HL-trees.

Given the notions above we are now able to formalize the definition

of reachability trees for HL-nets:

Definition The reachability tree, HL-tree, for an HL-net with an
equivalence relation, ~, (specified by a partition) is the full reach-
ability tree’ reduced with respect to covering markings and equivalent

markings:

(1) If a node y strictly covers a predecessor, z, then we assign

my(p)(c)::w for all peP and céC(p) satisfying my{p)(c) > mz(p)(c).

(2) Only one node in each (reachable) equivalence class of ~ is devel-
oped further. Only one node in a set of equivalent brothers is in-
cluded in the tree. The other nodes are removed, but the arc to

the included brother node contains information of their existence.

(3) Associated to each node is an w-marking and a node-label.
The node-label is a (possibly empty) sequence of status infor-
mation, which may indicate that the marking is equivalent

+ The full reachability tree contains all reachable markings and all
firing sequences.

10.

to the marking of an earlier processed node, covering the marking

of a predecessor node, or dead.

(4) Associated to each arc from node n, to n, is an arc-label which is
a list of firing information. Each element is a pair (t,c) where
teT and ceC(t). Each pair in the list has concession in the
marking of ng. Firing the first pair in the list results in the
marking of N,y whereas firing of the other pairs results in mar-

kings which are equivalent to the marking of n,. =

Now we will describe our algorithm to produce the HL-trees. To
create a new node we use the operation "NEWNODE (m,%)", where m and &
are the w-marking and node-label of the node. A new arc is created by
"NEWARC(n1,n2,Q)" where ng.n, and § are the source-node, destination-
node and arc-label. It is possible to append new information- to an
existing label, ¢, by the operation "APPEND({,new-inf)". The w-marking
and the node-label of a node x is denoted by m and Rx’ respectively.
The arc-label of the arc from node x to node y is denoted by ny' By
"NEXT (m,t,c)" we denote the w-marking obtained by firing transition t

with colour c€C(t) in the w-marking m.

ALGORITHM TO PRODUCE HL-TREES

UNPROCESSED := {NEWNODE(mO,empty)}; PROCESSED := @
REPEAT
SELECT scome node x€UNPROCESSED
IF mx~my for some node y€ PROCESSED
THEN APPEND(RX,"equivalent to y")
ELSE IF no pair (t,c) has concession in m
THEN APPEND(QX,"dead"}
ELSE BEGIN {x is non-eguivalent and non-dead}
FOR ALL (t,c) having concession in m DO
BEGIN
m := NEXT(mg,t,c); 2:=empty
FOR ALL ancestors z with m>m,, DO
BEGIN
FOR ALL pt&P,ceC(p) where m(p)[c)>mz(p)(c) DO
m(p) (c) := w
APPEND (L, "covering of z")
END
IF mm for some node u being a son of x
THEN APPEND(L,.,"(t,c)")
ELSE BEGIN
v := NEWNODE (m, %)
UNPROCESSED := UNPROCESSED U {v}
NEWARC {x,v," (t,c)")
END
END
END
UNPROCESSED := UNPROCESSED~{x}; PROCESSED := PROCESSEDU {x}
UNTIL UNPROCESSED = @

i "

The algorithm works in the following way: as long as there are
more unprocessed nodes, one is selected and processed. The processing
of a node starts with a check for equivalence with an already processed
node, i.e. only the first processed node in each equivalence class of
~ 1is developed further.If no equivalent node is found, the node is
checked for being dead. If it is not dead, for each pair (t,c) with
concession a son is produced and included in the tree (unless it is an
eguivalent brother). Each HL-tree is a subtree of a PT-tree for the
equivalent PT-net, obtained from the HL-net by the method described in
[4]. In [2, 7, 8] it is shown that each PT-tree is finite. Thus each

HL-tree is finite and our algorithm always halts.

Technical remark: The constructed HL-tree normally depends on the order

in which the nodes are processed. This means that each HL-net may have
several corresponding HL-trees. Normally an implementation enforces an
ordering-rule for the processing of nodes, and this rule then determines

the actual HL-tree, constructed for the HL-net by that implementation.

Technical remark: In an implementation of the algorithm it is crucial to

minimize the time spent on testing for equivalence. In appendix

3 we describe a fairly effective algorithm to test two w-markings

for equivalence. Moreover our implementation will use hash coding to
divide markings into subclasses in such a way, that equivalent markings
always belong to the same subclass. This hash coding drastically de-

creases the number of pairs to be tested for equivalence.

5. WHAT CAN BE PROVED BY MEANS OF HL-TREES?

In this section we discuss how HL-trees can be used to prove pro-
perties of the corresponding HL-nets.

A proof rule is a theorem by which properties of HL-nets can be
deduced from properties of HL-trees (or vice versa). For PT-trees [2,8]
describe a number of such proof rules, from which it is possible to
deduce information concerning: boundedness, coverability, reachability,
liveness, etc. Some of the proof rules are total, in the sense that the
gquestion concerning presence or absence of the particular net pro-
perty always can be answered by means of the proof rule. Other proof

rules are partial, in the sense that the question only sometimes can be

answered.

12.

For HL-trees the situation is a bit more complicated, since the
observed tree properties in a crucial way may depend on the chosen par-
tition, which determines the relation of equivalent markings. Hence it
is necessary to introduce the notion of a sound partition, which intui-
tively means that the partition respects the inherent symmetry proper-
ties of the HL-net. If for the philosopher system we allowed arbitrary
permutation, instead of just rotation, this would be a typical example
of a non-sound partition, since it neglects the fact that in this system
there is another relationship between neighbours than between non-
neighbours. Analogously, it would be non-sound to have both PH and F as
atomic colour sets, since this would neglect the fact that there is
another relationship between a philosopher and the two nearest forks

than between the philosopher and the three remote forks.

Definition A partition is sound iff it satisfies the féllowing cri=-
teria:
" N
.] ” = 0 .
(sC1) VPEPVLETVYE D wC(p) Ii(p t) Ii(p,t) wC(t)
(SC2) VQE §: my = w(mo).]

SC1 can be visualized by the following commutative diagram:

il
BAG (C (t)) Ct) . pag(c(t))
I,(pst) ey lli(p:t)
o
BAG (C (p)) C) . pac(cip))

SC1 demands that the chosen partition for the HL-net and hence the set
of allowed symmetries must agree with the firing of transitions in the
sense that equivalent colours have to be treated in the "same" way.

SC2 demands, that the initial marking has to be symmetric. In practice
it is often nearly trivial to verify the soundness criteria by means of

the following rules:

(R1) Due to the linearity of the functions, SC1 can be verified by
checking only steps of the form (t,c).

(R2) If Ii(p,t) is an identity-function or a zero-function SC1 is

always satisfied.

13.

(R3) When Ii(p,t) is a sum of several functions, SC1 can be verified

for each of them, separately.

(R4) When a function appears in Ii(p,t) for several places/transitions

it needs only to be considered once to verify SCI1.
(R5) When the symmetry type of C(t) is identity, SC1 is always satisfied.

(R6) When the symmetry type of C(t) is rotation it is enough to con-
sider the "one step forward" rotation to verify SC1.

(R7) When the symmetry type of C(t) is permutation it is enough to con-

sider transpositions (interchanging of two elements) to verify SC1.

(R8) SC2 is satisfied iff
VpEP[sym(C(p)) # identity = 3k€m0:m0(p) = kxZC(p))]
where ZC(p) denotes the bag which contains exactly one occurrence

of each colour in C(p).

As an example, soundness of the partition, chosen for the philosopher
system in section 3, can easily be verified. We only have to prove the
following properties, where r is the function relating F to PH, while

@ is the "one step forward" rotation on PH:

PH

_1 _
r owPHoreleft = left°®PH

r_TnmPHaroright - right°wPH
To formulate our proof rules we need some notation. R(mol is the set of
markings which are reachable from mg - R(mo)(p) = {m(p) (c) | meR(mD} A
c€C(p)} is the coefficients appearing at place pr, while R(mo)(p)(c) =
{m(p) (c) | mER(mO)} is the coefficients appearing at place p for colour

c. T(mO) is the set cf nocdes in the HL-tree having m, as root. T(mo)(p)

0
and T(mo)(p)(c) are defined analogous to R(mo){p) and R(mo)(p}(c), re-
spectively. Furthermore we define the function mapc(p)E[C(P) - P (C(p))]

as follows

mapc(p)(c) = {c'€C(p) | 3ped: wC(p)(Cl) = @b
Observation
v {c} if sym(C(p)) = identity
mapc(p) (c)

C(p) if sym(C(p)) € {rotation,permutation}

We now formulate our four procf rules for HL-trees. They are gene-

ralizations of the proof rules for PT-trees given in [8].

14.

PROOF RULES FOR HL-NETS

(PR1) H is bounded & VpeP: w ¢ T (my) (p)
prerequisite: SCI1

(PR2)

sup R(mo)(p)(c)+ = max W/ T(my) (p) (')
c'Emapc(p)(c)

prerequisite: SC1, SC2

(PR3) HQET(mO): “dead"EQu = HmER(mO): m is dead

prerequisite: none

(PR4) 3m€R{m0): m is dead =
(3a€T(my) : "dead"EQQ) v (3p€P: w € T(my) (p))

prerequisite: SC1

As an example on how the proof rules can be used, we again turn to the
philosopher system with the HL-tree shown in figqure 2. By applying PR1
we derive that the net is bounded, and from PR2 we see that 1 can be
used as a uniform bound for all places and all colours. PR4 tells us
that no reachable marking is dead. '

To prove the correctness of our proof rules we need the following

four lemmas:

Lemma 1 Assume SC1, then V@€d: m1[a>m2 = w{m1)[w(ﬁ)>w(m2) for all
w-markings and all firing-sequences. -
Proof See appendix 1.
Corollary Assume SC1 and SC2, then
a) m,~m, = [m1€R(m0) & m2€R(m0)]
b) m,~m, = [m1 is dead « m, is dead] . o

Given an w-marking m, and a marking m we define that m ~agrees with m,
m »>m, iff
w

VpEPYcEC(p) : m (p) (c) Fws= m (p) (c) = m(p) (c)

i.e. for each pair p and ¢ the coefficients in m, and m are identical

or that of m is w. It is easy to prove the following:

+ By convention sup A = w, for AcilN, when vkeNJacA: azk.

15.

Observations

(02) m >m = @(mm) > @ (m) for all ped

(03) mw>m A mlo>m' = ami: mw[o>m$ A m$>m' for all firing sequences o.

Lemma 2 Assume SC1, then Vm€R(m0)3w€® auET(mO): ma>w(m).

Proof See appendix 1. -

Given an w-marking m and k€N, then we define mk as follows:

k if m(p) (€) = w

k
m™(p) (c) m(p) (¢) otherwise

for all p€P and ceC(p).

Lemma 3 VuET(mO)VkGN HmER(mO): ma>m;:m§'
Proof See appendix 1. . The proof of this lemma is by far the

most complicated and it involves several induction arguments.

Corollary a) wET(mO)(p)(c) = supR(mO)(p)(c) = w

b) kET(mO)(p)(c} - keR(mO)(p)(c)- u
Lemma 4 Assume SC1 and SC2, then
sup R(my) (p) (c) = maxc'em;\) (C)T(mo)(p)(c')
- Pc(p)
If only SC1 is assumed we get "<" instead of "=".
Proof See appendix 1. m
Theorem The four proof rules PR1-PR4 are valid, under the given

prerequisites.

Proof
PR1: The proof is by contradiction. Assume that H is bounded, and 3JpP€P:
wET(mONp). Then mET(mO)(p)(c) for some colour c€C(p) and by the corol-
lary of lemma 3 R(md(p)(c) is unbounded - contradiction with H being
bounded.

Next assume that wﬁT(mO)(p), and H unbounded, i.e.

16.

(1) JpEP 3cEC(p) VKEN BmER(mO}: m(p) (c)>k.
For each of these m, by lemma 2,

(2) Ja€T (my) 3@T€d: m >0 (m) .

We then get

(3) my(p) (0g () (e)) 2 97 (m) (p) (0g () (e)) = m(p) (c)>k

for each k in (1). "z" follows from (2), "=" is an immediate consequence
of the way ©™(m) is defined, while ">" follows from (1). Since T(mo)

and ? are finite it follows from (3) that Bu'ET(mO): md,(p)(mm(c)) =
- contradiction with wQT(mO)(p).

PR2: Identical to lemma 4.

PR3: Assume that 3&€T(m0}: “dead"EQa. By lemma 3, HmER(mO}:mu>m. The

marking m, is dead, and since m is smaller it is dead too.

PR4: Assume that 3m€R(m0): m is dead, and VaeT(mO}: "dead" ¢ Qa. By
lemma 2, 3¢0€d 3&€T(m0}: ma>@(m). The marking ¢(m) is dead, by the co-
rollary of lemma 1. m, is not dead and thus we conclude ma>w(m), which

together with mu>w(m) yields ma(p}(c) = w for some p€P and cEC(p).
o

The following two lemmas are not necessary to establish the proof rules,

but they provide useful insight in the structure of the reachability

tree:
Lemma 5
Va1,a2€T(m0) with (t,c)€2a1 "
3m1,m26R(m0) with m1[t,c>m2:
(1) M4 >m, A
m, if (t,e) = head(l&mI a2)
(ii) mOcz >

w(m2) for some @E® otherwise.

Proof: See appendix 1. []

17

Lemma 6 Assume SC1,. then:
Vm1,m2€R(m0) with m1[t,c>m2
Jped

3@1,&26T(m0) with @(t,c) € 2@1 02

(1) myq = @lm) A

al

(i1) m >Iw(m2) if oltse) = head(lyy o)
o Lw‘ow(mz) for some ¢'€? otherwise.

Proof: See appendix 1. =

6. EXAMPLES OF THE USE OF HL-TREES

This section contains two examples which together with the system
of the five dining philosophers, treated in section 3, illustrate a
spectrum of the problems concerning the construction and analysis of
HL-trees. The first example is a system, where the equivalence relation
involves permutation, identity and products. The second example illu-

strates covering markings.

Data base system In [4] the system is described and analyzed by means

of the invariant method. We define a partition by

atomic DBM:permutation; E: identity

product MB:subset of DBMxDBM.
An HL-tree for the data base system is shown in figure 3.
It is easy to verify that the chosen partition is sound (see appendix
29y By applying PR1 we derive that the net is bounded, and from
PR2 we see that 1 can be used as a uniform bound for all places and all
colours. PR4 tells us that no reachable marking is dead.

The leaves of the tree are identical with #1 and #6, respectively.

This is, however, a coincidence and it changes if the nodes are proces-
sed in another order. As mentioned earlier, an alternative to the HL-net
is to construct the PT-tree for the equivalent PT-net. In the following
table we compare the size of the HL-tree with the size of the PT-tree
(for different sizes of DBM). Normally, the HL-trees are not just smaller
than the corresponding PT-trees, but they also grow slower when the sizes

of the involved colour sets increase.

18..

number of number of nodes | humber of nodes
elements in DBM in the HL-tree in the PT-tree
2 5 9
3 9 43
4 14 225
5 23 >1400
#1 ¢ IpeM IMB
(T1,a) I(Tl,b)(Tl,c)
#2 IDBM-a IMB-((a,b)+(a,c))
a. (a,b)+(a,c)
(T Lol 1 (T3, (a,c))
#3 LDBM-a-b IMB-((a,b)+(a,c))
a (a,C)
b (a,b)
(T3,(a,C)) 1 (T4r(arb)}1
#a4 ¢ - IMB- ((a,b)+(a,c)) #5(IDBM-a IMB-((a,b)+(a,c))
a - a (a,C)
b+c (a,b)+(a,c) - -
- - - (a,b)
(T4,(a,b))J (T4, (a,c)) (T3,(a,c))1
#e LDBM-a-c IMB-((a,b)+(a,c)) #7 ¢ EDBM-a-c IMB-((a,b)+(a,c))
a - a =
{ c (a,c) c (a,c)
a (arb) - (arb)
EQUIVALENT TO 6
(T4.r (a;C))l
LDBM-a IMB- ((a,b)+(a,c))

5 _
- (a,b)+(a,c)

(T2,a)l

#8 {
#9 { IDBM IMB
€ i
EQUIVALENT TO 1

Fig. 3: HL-tree for the data base system.

19%

Producer—-consumer system We have also constructed an HL-tree for a

system, where two producers send two different kinds of messages to a
consumer via an unbounded buffer. The HL-net and HL-tree for this system
can be found in appendix 2. Again, the chosen partition is sound,
and the expected properties of the HL-net can be derived by means of the
proof rules. The HL-tree has 30 nodes of which 17 are coverings (some

of them even cover two other markings). As in the two other examples of
this paper, the HL-tree for this system is remarkably smaller than the

corresponding PT-tree, which has 93 nodes.

Acknowledgement Some of the ideas in this paper are founded on a

student project at Aarhus University with the following participants:
Arne M. Jensen, Peter A. Nielsen, Erik Schjgtt, Kasper @sterbye and

Kurt Jensen (Supervisor).

References

[1] H.J. Genrich and K. Lautenbach: System modelling with high-level
Petri nets, Theoretical Computer Science 13 (1981), 109-136.

[2] M. Hack: Decidability questions for Petri Nets. TR 161, MIT, 1976.

[3] P. Huber, A.M. Jensen, L.O. Jepsen and K. Jensen: Towards reach-
ability trees for high-level Petri nets. Proceedings of 5th European
Workshop on Applications and Theory of Petri Nets, Aarhus University
1984. Identical to the present paper, except that the 3 appendices
are omitted.

[4] K. Jensen: Coloured Petri nets and the invariant-method. Theoretical
Computer Science 14 (1981), 317-336.

[5] K. Jensen: How to find invariants for coloured Petri nets. In:
J. Gruska, M. Chytill (eds.): Mathematical Foundations of Computer
Science 1981, Lecture Notes in Computer Science, vol. 118, Springer-
Verlag, 1981, 327-338.

[6] K. Jensen: High-level Petri nets. In: A. Pagnoni and G. Rozenberg
(eds.): Applications and Theory of Petri Nets, Informatik-
Fachberichte vol. 66, Springer-Verlag 1983, 166-180.

[7] R.M. Karp and R.E. Miller: Parallel program schemata. Journal of
Computer and System Sciences, vol. 3 (1969), 147-195.

[8] J.L. Peterson: Petri net theory and the modellings of systems.
Prentice-Hall 1981.

[9] W. Reisig: Petri nets with individual tokens. In: A,Pagnoni and
G. Rozenberg (eds.): Applications and Theory of Petri Nets,
Informatik-Fachberichte vol. 66, Springer-Verlag 1983, 229-2409.

AT,

APPENDIX 1: Proof of Lemma 1-6

In the following A denotes the empty firing-sequence.

Lemma 1:

Assume SC1, then Vop€d: m1[0>m2 = m(m1)[w(0)>m(m2) for all

w-markings and all firing-sequences.

Proof:

Let @€ and assume m1[0>m
the length of o:

5 The proof is by induction on

Basis: lo|=0.

Then o=A and m,=m,. Since @(A)=A we have to show w(m1}[k>w(m2),

which is trivially satisfied.

Bkep: 4130,

Then let o=¢'(t,c), m1[c'>m' and m'[t,c>m, as shown in the

2
left part of figure 4.

@ "

m, @ (m,)

o! w(c')

N v

m' 2 >@(m')

J\/ AN
©

m, ~ ><p(m2)

Figure 4. The connection between the markings in the proof

of lemma 1.

AZ.

By the induction hypothesis w(m1)[®(0')>w(m') and thus we

are finished if we can prove m(m'}[t,wc(t)(c)>$(m2} i.e.:

(1) Vpe€EP: i) ¢(m') (p) 2 I_(p,t)(wc(t)(c))
ii) o(m,) (p) = o(m') (p) - I_(p,t) (@, (pfc))
From m'[t,c>m2 it follows that
(2) VpEP: i) m'(p) > I_(p,t)(c)
idl) m,(p) = m'(p) - I_(p,t)(c) + I (p,t)(c).
To show (1i) take p€P. Then
U’m'(p)g I.(p.t} (c) by (21i)
wc(p)om'(p)}g ®o(p)® I-(Pst) () = wc(p)ol_(P:t)(C)

lL //\\ (c)

e(m') (p) 2 I_(p,t)od, (4, = I {pethey (c)

c(t)

where we have used that the linear w-bag-extension of mc(p)

preserves ">" for w-bags (for the first implication) and
used SC1 (for the second implication).

Analogously (1ii) follows from (2ii).

Corollary:
Assume SC1 and SC2, then

a) m,~m, = [m1€R(m0) s m ER(mO)]

1T 72 2

b) m,~m, = [m,I is dead e m, is dead].

Proof:

To show a) assume m ~m,, (with mzzw(m1)) and assume m ER(mO)

1 1

(with m0[0>m1). Using SC2 and lemma 1 we get:
my= m(mo)[w(c)>w(m1) = M, i.e. m2ER(mU).

The other direction of the biimplication follows from the

symmetry of ~.

To show b) assume m1~m2 (with m2=w(m1)) and assume that m,l

is not dead (with m1[t,c>m'). Using lemma 1 we get:

m., = w(m1)[w(t,0)>w(m'),

i.e. m., is not dead. As before the other direction of the

biimplication follows from the symmetry of ~.

Ad.

Lemma 2:

Assume SC1, then VmER(mO)3@€® SGET(mO): makw(m).

Proof:

In order to deal with reduction by equivalent markings we have
generalized the corresponding proof for PT-trees in [2],

(lemma 3.7).

Let mER(mO} (with m0[6>m). We will use induction on the length

of o:

Basis: lol=0.

Then ¢=X and m=m . The root, ao, ¢an then be used as « and the

set of identity-functions, ID, as ¢, giving

mao = g, = m, = ID(mO}.

Step: 10l>0.

Then let o=0¢'(t,c), m0[0'>m' and m'[t,c>m as shown in the left

part of figure 5.

0
G'
Lig
m' 2 > p'(m') < m o
(t,c) @' (t,c) 'it,e)
JJ/ '
mn

m 2 > o' (m) < w 2 >

Figure 5. The connection between the markings in the proof

of lemma 2.

A5,

By the induction hypothesis 3m'€®aa'€T(m0):

(1) m,y >e'(m").

If "equivalent" € Rq, we will replace a' by the equivalent
node, which is further processed (and change ¢' accordingly).

Hence we can assume that "equivalent" € Ra"

Using lemma 1 on m'[t,c>m we get @' (m")[@'(t,c)>0"' (m).
From observation O3 it then follows that 3fi:
mye 0" (t,0)>M A > @' (m),

and since "equivalent" ¢ Ea, there exists an arc from a' to
another node a such that w'(t,c)ezu,a and mGNH (with mazm"(ﬁ)h
Observation 02 then yields ma:w"ﬁﬁ)>w"o ©"'(m).

The desired © is ©" ° @' and we are finished.

Let I=I -I_. Then for each firing sequence

G:(t1,cTXt2,C2) (tn,cn) with n 2 0
we define A(o) to be the change in marking caused by o:
n
VPEP: A(o) (p) = T I(p.,t;) (c;).
i=1

Analogously we define A and A_ by means of I, and I_ respectivelyT

+ In the terminology of [4] and [6]

A(o) = Ixo, where "x" is the generalized matrix product.

Ae6.

Propositions

Assume the following situation:

@ root
r~ ®
o .
B
(t,c)
— Y covering of «a
where:

i) "covering of a" € KY
11y (Epe) = head(ﬂBYJ

iii) ¢ consists of the heads of all arc-labels between

oa and Y.
Then the following propositions are satisfied:

> .
a) mY > mB + A(t,c) > m,

b) mB(p)(c') * 0w = A(g)(p)(c') > 0 for all p€P and c'€ C(p).

c) mY(p)(c') + 0w = A(o)(p)(c') = 0 for all p€P and c'€ C(p),

d) ¢ is a firing sequence at an w-marking, m, if

m, (p) (') if m (p)(c') * w

B
A_(0) (p) (c') if my(p)(c') = uw

m(p} (c') >

for all pEF and eVEC (p) »

A7.

e) If @y s85,...,0 are all nodes for which "covering of a; € EY

(with firing sequences G705 reees O where Gi consists of the

n
heads of all arc labels between oy and Y) we also get

e) (mB(pMC‘)¢ W A mY(p)(c') = W)
= 31 € 1..n : A(Gi)(p)(c') >0

for all peP and c'eC(p).

Proof:

Propositions a), b), ¢) and e) follow immediately from the

HL-tree algorithm.

To prove d) let 0 have the form
_ ' >
a (t1,c1)(t2,02}....(tk,ck) with k 2 1
and let 60,61,.... Sk be the nodes between a and ¥y:

® root

f o v =d
® 5

1
(t2,02)

®
e 2

® _
(£ o) O—17B
k' %k

L=(t,c) §.=Y covering of «
®

k

The proof is by inductionon Jj € 0..k, using the following
hypothesis:

A8.

There exists a marking m', such that
3]
i) m[{t1,c1)....(tj,cj) > m
rmé_{p)(c') if my(p)(c') + o
ii) m'(p) (chzd °3 —

LA_((tj+1,cj+1)..-(tk,ck))(p)(C')

if m,(p)(c') = w

for all p€P and c'€C(p) and j<k.

When j=k part i) of the hypothesis immediately yields that

0 is a firing sequence at m, and the proof of d) is finished.

Basis: j=0.

Then m can be used as m' in i). Part ii) follows immediately

from the assumpticn of 4).

Step: j>0.

By induction hypothesis there exists a marking m', such that
(1) m[(tT'c1)"'(tj—1'Cj—1) > m' and
‘mé (p) (c¢") if mB{p)(c'} £ W

(2) m'(p)(c')z = ol
B_((E5,05) o (5,0)) (B) (') if my(p) (0) = o

for all p€P and c'eEC(p).

Since (tj,cj) = head (¢ 5) it has concession at m ¢ and

6. ;
' =1 - 7] 3=1
by (2) it has concession at m' too, i.e. g m e

§3) m'[t.8, % "
[j Cj m',

Together with (1) this yields m [(t1,c1)...(tj,cj) > m", i.e.
part i) of the induction hypothesis for j.

Now let p€P and c' € C(p) and j<k to check part ii) of the

induction hypothesis for j. There are two cases:

a) EB(P)(C'} + w. Since j<k then 6j +# Y and since

mB(p)(c'} £ w there is not introduced an w at
place p and colour c¢' at any predecessor node

of B. Especially m_. (p)(c') # w and then

8

|
maj{p)(c b= msj_1(p)(c) + A(tj,cj)(p)(c)
Z m'ip) () # A(tj,cj)(p)(C') by (2)
=mn" (p) (c") by (3)
b) ‘EB(Q)(C') = w. Then
m'" (p)(c') = m'(p)(c') + A(tj,cj)(p)(C'} by (3)
g A_((tjrcj)(tj+1lcj+1)"'(tkrck))(p) (c')
+ A(tj,cj)(p)(c') by (2)
= A_((tjrcj)(tj+1fcj+1)"'(tklck)){p) (C')
e A+(tj,cj)(p)(c)} = A_(tj,cj)(p)(c)
2 A_((tj+1,cj+1)---(tk,ck))(p)(C').

A9.

A10.

Lemma 3:

VoET (m,) VKEIN 3mER(m~,): m_> m > mk.
O 0 (8 = o

Proof:

The proof is by induction on the number of arcs from the root

to a.

Basis: Number of arcs = 0.

Then « is the root node and ma=m0. We can use mo € R{mo) as m

for all k € IN.

Step: Number of arcs > 0.

The general situation can be pictured as follows:

[]
2 %
8 s 94
g, :
i < o B
(t,c)
L e & covering of oy
&,,*++*,a6_ are all nodes with "covering of o." € £ , and O,
1 n —_ i 0] 3

consists of the heads of all arc-labels between ai and o.

Now let k € N be given. The induction step is rather complicated.
The proof is divided into four parts, A-D, and the idea can be

visualized as follows:

mB > mp 2 m X
- - B
(t,c) <—— part A
W
(t,c) ~ ma {—— part B
k 5 kTl
g g mom By <—— part C
\\‘f \u/
m = m 2 m K {—— part D
o = (x p

By the induction hypothesis we get the marking mBER(mO)
corresponding to mB.
From mB (t,c) is fired to get the marking ma. Then for
each ‘"covering of ui" € ﬁa o4 is fired k times to get

the marking m corresponding to m, - When choosing mB we
k

have to ensure that (t,c) followed by G 0 can be
fired from mB.
Now let K1,K2 € W satisfy
(1) K1 > A_(t,c) (p)(c") for all pEP and c' € Cip)

k
(2) K, 2 A_(g1k"'cn) (p) (c¢') for all p€P and c' € C(p)
By the induction hypothesis 3 mp € R(mo):

k+K . +K

(3) VpEPVC'EC(p): mB(p)(c') >mB(p)(c') >m 1 72(p) (c")

B

The choice of K1 and K2 assures that (t,c) followed by 61

can be fired from mB, which can be a problem if mB(p)(c') is

infinite while mB(p) (c') is finite.

Al2.

Part A: To show

(t,c)

has concession at mp take p€P and c' €

There are two cases:

a) m,(p)(c') # w. Then by definition
PBk+K +K
mB 1 2(p)(C') mB(p)(C') and
mp (p) (c") = mB(p)(C') by (3)
2 A_(t,c) (p) (c')
since (t,c) has concession at mB.
b) mnm,(p)(c') = w. Then
—
mB (p) (c') > k+K1+K2 by (3)
s A (t,c) (p)(c') Dby (1)

Since (t,c) has concession at mB there exists a ma € R(mo)

satisfying mplt,c > ma, i.e.

(4) wvpepvc'eC(p):

Part B:

ma (p) (c')

= mB(p) (c') + A(t,c) (p)(c')

VpEPVYc'EC (p) :

(ma(p)(C')
(5) '
mu{p)(c)
(6) mB(p)(c')
N
mx (p) (c')
Condition (6)

v

> ma(p) (c') 2>

mB(p}(C') = w)

mak+K2(p)(C')

mB(p)(C') + AlE;¢) (p) (c")

follows immediately from (3) and (4).

The marking moa satisfies the following two conditions:

Al13.

To show (5) take p€P and c' € C(p) and assume

ma(p)(c') = we mB(p)(c') = w. Then

(7) m, (p)lc') = mB(p)(c'} + A(t,c) (p) (c").

There are now two cases:

a) EG(P)(C') F W A mB(p)(c') ¥ w. Then

mg(p)(C‘) = mB(p) (c') by (3)
From (4) and (7) it follows that mG(P)(C') = ma(p) (c') and
since ma(p)(c') ¥ w we have ma(p)(c') = ma(p) (c') = mak+K2(p)(c').

b) m (p)(c') = w A mB(p)(c') = w. Then

ma(p) (¢') = mB(p) (c') + A(t,c)(p)(c') by (4)

v

mg(p) (c') - A_(t,c) (p) (c")

v

k+K1+K2-A_(t,c)(p)(c') by (3)

v

k+K, by (1)

and thus we have:

k+K2
ma(p)(c') = w0z ma(p)(c') 2 k+K2 = m () (e')s

A4,

k

Part C: We will now show that 9, ...Onk is a firing sequence at mo.

Let o k...d e 51 Ez. We will use induction on the length

1 n
of 51 and the induction hypothesis is as follows

mcx[i1 > mE,
where mE1 satisfies

i) m, (p)(c') # w

| B
mé, (p) (') 2 m,.(p) (c') for all i€l..n
= i
ii) mB(P)(C') = W

m£1(p)(c') >k + K, - A_{E1)(p)(C')

Basis of part C: |£,]| = 0,

Then 51 = A and m51 = ma.

i} Assume mB(p)(c') # w. Then

ma (p) (c') mB(p)(c') + A(t,c) (p) (c') by (86)

>m_ (pMc') for all i€1..n

The inequality follows from proposition a) used on

each of the involved coverings.

ii) Assume mB(p)(c') = W. Then

ma{p)(c') = w too and ma(p) (c') > k + K2 by (5)

Al5.

Step of part C: [E€,1 > 0.

Then let 51 = go e By the induction hypothesis we have:

(8) ma [EO > mEO

where m£0 satisfies

(9) -~ m, (p)(c') * w
@,B
mE, (p) (c') 2 ma_(p)(c') for all i€1..n
- i1
mB(p)(C') = w
(10) W

L "mgg (p) (c') 2 k + Ky - A_(Eg) (p) (c')

In the case of (9) it follows immediately that o5 is a firing

sequence at mEO, while in the case of (10) it follows since

v

me, (p) (') 2 k + Ky = A_(£) (p) (")

2
Ky = &_(£,) (p) (c")

k
2 A_(c1

6_(E4 £,) (P (c') - A_(,) (p) (")

v

0) (P (e') - A_(£)) (p) (') by (2)

v

A_(g) (p) (') = B_(E,) (p) (")

1l

a_(E,9) (p)(c") = A_(£4) (p) (c')

a_(5;) (p) (c*)

Thus let mE1 € R(mo) be defined by
(11) mEO [Ui o m£1.
Then mG[E1 > mE1 by (8).

Now m£1 satisfies i) and ii) of the induction hypothesis:

Al6.

i) Assume m,(p) (c') # w. Then

B
mg o (p) (e') = mEy(p) (') + A(0;) (p) (c") by (11)
2 mgy (p) (c') by proposition b)
> mai(p}(c') for all i€1..n by (9)
ii) Assume m,(p)(c') = w. Then
I
m€1(p}{C') = mEO(p)(C') * A(Oi)(p)(C') by (11)
> k + K2 - A_(EO)(p)(c')+ A(Gi)(pHC')by (10)
>k + K, = A_(51)(p)(c).
k k

We have now proved that GqleesOy is a firing sequence at ma
and thus we let m€R(mO) be defined by

(12) ma[01k...cnk > m.

Part D: To complete the induction step of lemma 3 we have to

k. .
prove that m. > m > ma 1.e. the following inequalities:

VPEPVC'EC (p) : ma(p)(c'} > m(p) (¢') 2 mak(p)(c').
Take p€P and c'e€C(p). There are three cases:
"a) gs(p)(C') F W A ma(p){c') = . Then
m(p) (c') = ma(p) (c') + Ao, -5 5) (p) (c") by (12)

> A(o1k...0nk)(p)(0')
> k- [2, 8(0,) (p) ()]
> k1 by proposition b) and e)

Thus m_(p) (¢') =w2 m(p)(c') 2 k = m (p)(c") .

Al17.

b) EB(p}(c') £ W A ma(p)(c‘) ¥ w. Then

m(p) (c') = ma(p)(c') + A(o1k---ank)(p)(c'} by (12)
= ma(p) (c') by proposition c)
= mg(p) (c") by (5) since m_ (p)(c') * w

Thus m_(p) (c') = m(p) (c') = m (o) (c") .

c) gﬁ(p)(c') = W A ma(p)(c') = w. Then
m(p) (¢') = ma(p) (') + Ao Xewv0 %) (p) (c) by (12)
k k E
>k + K, + A(5, .0 5) (p) (") by (5)
k k
>k + K, - A_(U1 HrEE) LB 18}
2 k by (2).

Thus m_(p) (c') = & > m(p) (c"')

v

s k (]
k =m “(p)(c').

Corollary:

n
g

a) wET(mO)(p)(C) = SupR(mO)(p)(C)

b) kET(mO)(p)(c) = kER(mO)(p)(c)-

A18.

Lemma 4:

Assume SC1 and SC2, then

k_j T(mo)(p)(c')

sup R(mo)(p)(c) = max
c'Emapc(p){c)

m_mn

if only SC1 is assumed we get "<" instead of

Proof:

Let p€P and ceC(p) be given. We will show the inequality

in both directions:

l‘!zll

Direction

a) Assume maxlﬁ}T(mO)(p)(c') =k € N
C:gmdpc(p){c)

Then we have, for some element c' € C(p) and some o € @,
that

(1) k € T(mgl(p)(c') and

(e') = g.

(2) e (p)

By the corollary to lemma 3 we get from (1), that

k € R(mo)(p)(C'), i.e. dm € R(m,):

0
(3) m(p)(c') = k.
Then 0(m) (p) (c) = @(m)(p)(wc(p)(C')) by (2)
= m(p) (c') see below
= k by (3)

The second equality can be seen by observing, that in the
first expression, we permute the marking and then take a
look at the coefficient of the image of ¢'. Instead we can

simply look at the coefficient of ¢' in the non-permuted

marking.

Since mER(m.) we get ¢(m) € R(mo) from the corollary to

0
lemma 1, hence k € R(mO)(p)(c).

A19,

b) Assume max\ JT(my) (p) (c') = w.

c'€mapc(p)(c)

Since T(mo) and mapc(p)(c) are finite there exist an element

c'e€C(p) and a symmetry €%, such that w € T(mo)(p)(c') and

' -
@c(p)(c) c.
By the corollary to lemma 3, R(mo)(p)(c') is unbounded, hence
(4) VKeEIN 3 mER(mO): m(p) (c') 2 k

Analogous to case a) we get
(5) o¢(m)(p)(c) 2 k and m(m)ER(mO), for each m in (4).

Thus R(mo)(p)(c) is unbounded, i.e. sup R(mo)(p)(c) = W.

Direction <

c) Assume sup R(mo)(p)(c) = kKEW .

We choose m such that

(6) m(p)(c) = k.

By lemma 2 3Jped 3 aET(mO): m, > @(m). Then in particular

(7) m_(p) ((DC(p) (¢)) 2 o(m) (p) (‘pc(p) (c))
= m(p) (c) see case a)
=k by (6)
Let o' = wc(p)(c). Then ¢ = mé}p)(c') and (7) yields
sup R(my) (p) (c) =k < m (p)(c') £ max\H/T(mO)(p)(c'}

c-emapC(P)(c).

d) Assume sup R(m,) (p) (c) = w.

Then p is unbounded on colour c, i.e.
(8) VKEN 3dmeR(mg) : m(p) (c) 2 k.

Analogous to case c) we have 3w€®ﬂaET(m0):

{9 ma(p)(®c(p)(0)) > m(p) (c) > k, for each m in (8).

Thus sup L}T(mo(p}(c') = w and since T(mo) and mapc(p)(c) are
c'EmapC(p)(c)
finite we get max L}T(mo){p)(c') = W
c'EmapC(p)(c)

A21,

Lemma 5:

Va1,02€T(m0) with (t,c)€£u1 o2

3m1,m2€R{m0) with m1[t,c>m

ok
(1) M1 > m,l A
m if (t,c}) = head (£)
(i4) m , > 2 = al o2
B w(mz) for some @€EP otherwise.

Proof:

Using lemma 3 with al for o and max{I_(p,t) (c) (c')| pEPAc'EC(p)}
for k we get an m1€R(mO) such that ma1>1n1 and (t,c) has con-

cession in m, (with m1[t,c>m2). If (t,c) = head (£a1a2

and (ii) follows directly from observation 03;

) we have

ma1[t,c>m02

otherwise we can get the deleted brother node by means of a

symmetry, such thattp_1(ma) = m

2

o and we finish by observation 02.

A2Z.

Lemma 6:

Assume SC1, then:

) with m1[t,c>m

Vm1,m2€R(m 2

0
Jped

301,G2ET(mO) with @(t,c) € Kai 0(2:

(i) m = w(m1) A

ol

¢(m,) if @(t,c) = head(£)

al o2

(ii) mO(2 >
@'ow(mZ) for some ¢'€d otherwise.

Proof:

The existence of ¢ and oy follows from lemma 2 and we have (i).

(As in the proof of lemma 2 we choose 01 to be the node in the

actual equivalence class, which is further processed).

Lemma 1 yields:

(1) ao(m1) [(t,c) > w(mz).

We can then use observation 93 on (i) and (1) and get

(2) ma1[@(t,c) >m A m > @ (m,) .

Hence we can select &2 to be that son of a1, which has

@ () € Ea1 o2, If ¢ (t,c) = head(£a1 o2
the second part of (2) gives (ii). Otherwise we have to apply

) we have m,, =1 and

a symmetry as in the proof of lemma 5.

AZ3.

APPENDIX 2: Examples of the use of HL-trees

This appendix completes the two examples described in section 6.

Example 1: Data base system

This example is taken from [4], but originally it was given

by Genrich and Lautenbach.

Three database managers, DBM = {a,b,c}l, communicate with each
other. Each manager can make an update to his own database.

At the same time he must send a message to each of the other
managers thereby informing them about the update. Having sent
this set of messages, the sending manager waits until all other
managers have received his message, performed an update and sent
an acknowledgment. When all acknowledgments are present, the
sending manager returns to be inactive. At that time (but not

before) another manager may perform an update and send messages.

Each manager can be in three states: "inactive", "waiting" (for
acknowledgments) and "performing” (an update on request of
another manager). The managers communicate via a fixed set of
message buffers, MB = {(s,r) | s,r € DBM A s # r}, where s repre-
sents the sender and r represents the receiver. Each message
buffer may be in four different states: "unused", "sent",

"received" and "acknowledged".

The system can be described by the HL-net in Figure 6. The

corresponding incidence matrix is shown in Figure 7.

A24.

update =
and send MINE (s)
messages
2 s MINE(s)
E |\ exclusion DEM waiting) MB MB sent
S et} P2 P5 P6
s
3 MINE(s)
receive 2
acknowledg-
s ments (s,r)
E(s)
receive
message
. " (s,x)
.1
DBM (performing. MB(received MB
P3 7 P8
r (s,x)
(s,x)
Y
send T4
L N
acknowledg-
ment
DBM = {a,b,c} MB = DBMxDBM~{ (u,u) | u€DBM} E = {e}
The function MINE € [BAG(DBM) —"%>BAG(MB)]L is defined by
MINE(s) = X (s,r) for all s€DBM

r#s

Figure 6. HL-net for the data base system

A25,

r
T1 T2 T3 T4
Mo
DBM DBM MB MB
P1 |DBM -ID ID -REC REC ¥DBM
P2 |DBM ID -ID
P3 |DBM REC ~-REC
P4 | E -ABS ABS £
P5 | MB -MINE MINE TMB
P6 | MB MINE -ID
P7 | MB ID -ID
P8 | MB -MINE ID
The functions
ID € [BAG(DBM) —> BAG(DBM)%J
ABS € [BAG(DBM) —> BAG(E)]L
MINE € [BAG(DBM) —> BAG(MB)]L
ID € [BAG(MB) —> BAG(MB)]L
REC € [BAG(MB) —> BAG(DBM)]L

are defined by:

ID(s) = s for all seDBM

ABS(s) = ¢ for all seDBM

MINE (s) = X(s,r) for all seDBM
r+s

ID((s,r)) = (s,r) for all (s,r)eMB

REC((s,r)) = r for all (s,r)eMB

Fig. 7, Incidence matrix for the data base system.

AZ6.

We define a partition by:
atomic: DBM: permutation; E: identity

product: MB: subset of DBMxDBM

Soundness criterion SC1 is verified by means of rules R1-R7,
given in section 5. By R1, R2 and R4 it is enough to check
that the incidence functions ABS, MINE and REC satisfy:

wc(p)° Ii(p,t)(c) = Ii(p,t)° ¢c{t)(0)

for each wed and ceC(t).

ABS: Let ©ed and se€DBM. Then

¢ (ABS(s)) = @E(a) = g = ABS(@DBM(S))-

MINE: Let 9€¢ and s€DBM. Then

O\ A\

© __(MINE(s)) © (Z(s,x)) = Z(0
L MBX*S X¥S

= Z(9ppm(s) ,y)= MINE(®p\y(s)).
{s)

(s),o (x))

DEM DBM

Y*PhpM

In this particular case we do not use rule R7, since it
is just as easy to prove the property for arbitrary per-

mutations.

REC: Let @e€® and (s,r) € MB. Then

REC = =
Oppy (REC(s,1)) = @ 0 (xr) = REC(9,, (s),0

(r)) = REC(@MB(s,r})-

A27.

Soundness criterion SC2 follows immediately from rule RS

in section 5.

Having verified soundness for the partition we can now apply

the proof rules on the HL-tree shown in section 6, figure 3.
PR1: The HL-net is bounded.

PR2: All places and all colours in the HL-net have 1 as

a uniform bound. This follows from the following

observations.

mapDBM(s) = DBM for all s€DBM - (by 01)

mapE(a) = {e} = E (by 01)

mapMB((S,r)) = MB for all (s,r)€EMB (from the
definition
of map)

PR3: Cannot be applied.

PR4: The HL-net has no reachable marking which is dead.

A28.

Example 2:

Producer-consumer system:

Two producers, A = {af,a2}, each produces their own kind of
message, which they repeatedly send to a consumer via an un-
bounded buffer. The consumer can only receive pairs of messages

consisting of one message from each producer).

The system can be described by the HL-net in figure 8. The

corresponding incidence-matrix is shown in figure 9.

(~
A P1 B P3
a al+az2 b
T T3
produce)
receive
a a b
A P2 A buffer\pP5
a
T2 o T4
send consume
—_— L)
A={a1l,a2}
B={b}

Figure 8. HL-net for the producer-consumer system.

T1 T2 T3 T4 m,
A A B B

P1 A -ID ID A

P2 A ID -ID

P3 B -ID ID B

P4 B ID -ID

P5 A ID - CONNECT

The function:
CONNECT € [BAG(B) —> BAG(A)]L

is defined by:

CONNECT (b)

Figure 9,

al+az

We definme a partition by:

atomic

A: permutation;

B:

identity.

A29.

Incidence matrix for the producer-consumer system.

Soundness of the partition follows immediately from rule R1-R8

in section 5. One of the corresponding HL-trees is shown in

figure 10.

A30.

(T2,a1)l
#51 a1l
a2
b
al
(Tl,al)l , (T2,a2)l
#a| - #10| a1+a2
zl+a2 COVERING ; COVERING
” OF 3 - oF 1
wal wal+waz2
{T2,a1)[(T2,a2)l (Tlral)J(Tl,aZ)
#15] al #16 | a2 #17] a2
a2 EQUIVALENT al COVERING al EQUIVALENT
b TC 6 b OF 2 b TO 16
- COVERING = - COVERING
wal OF 5 wal+wa2 wal+waz| oF 2
(Tl.aZ)l (T2,a1)l (T3,b)
#19| - #20| al+a2 #21 a2
zl+a2 COVERING ; fl
N OF 3, 9 N Y
wal+wa?2 wal+wa?2 wal+wa?2
EQUIVALENT
TO 10
COVERING
y 1 OF 1 T
(T-?fa“,(rrz,az) (TB,b)l (Tl,a2)l (T2,al)l (T4,b)l
#24| al #25] - #26 | - #27 | al+a2 #28| a2
az2 al+a2 al+a?2 - al
b - - - b
- b b b -
wal+wa?2 wal+wa? wal+wa? wal+wa?2 wal+wa?2
EQUIVALENT EQUIVALENT EQUIVALENT EQUIVALENT
TO 16 (T2,a1)1(T2,a2) (T4,b)| T0 25 TO 18 TO 16
COVERING COVERING
B #29 | a1 #30| - oF 2
az2 al+a?2
- b
b -
wal+wa?2 wal+wa?2
EQUIVALENT EQUIVALENT
TO 21 TO 19

COVERTNG

#1 at+a?
i B31s
(T1,a1) b (T1,a2)
#2 a2
al
b
|
(Tl,a2)I (T2,a1)l
#3| - #4 | al+a2
21+a2 ; COVERING
N ° OF 1
& wal
(T2,a2)l (Tl,ai)j (Tl,aZ)l
#6 | a2 #7| a2 #8 al
;1 COVERING Zl COVERING 22
N OF 2 " OF 2 d
wa?2 wal wal
| EQUIVALENT
(T1,a2) [(T2,a1)1 (Tlfa2)1 (r2,a1)] T 6
#11 | - #12 | al+a2 #13] - #14 | at+a2
. al+a? - al+a? -
b b b b
waz2 wal+wa?2 wal wal
EQUIVALENT EQUIVALENT EQUIVALENT EQUIVALENT
| TO 9 TO 10 TO 9 TO 4
(T3,b)l COVERING COVERING COVERING
OF 3 OF 1 OF 1
#18 al+a?
b
wal+wa?2
(Tl;al)l(m,az) (T4,b)l
#2211 a2 #2311 al+a?
al =
- b
b -
wa Hwa? wal+wa?
EQUIVALENT EQUIVALENT
TO 21 TO 10
COVERING
OF 1

Fig.

10: HL-tree for the producer-consumer system.

A32.

We can now apply the proof rules.
PR1: The HL-net is unbounded.
PR2: The places P1-P4 are bounded for all colours, with
1 as a uniform bound.
The place P5, which represents the buffer, is unbounded

for both colours in its colour set.

PR3: Cannot be applied.

PR4: The HL-net has no reachable marking which is dead.

L33,

APPENDIX 3: An algorithm to determine whether two markings

are equivalent or not

In this appendix we sketch an algorithm to test two w-markings
for equivalence.

The algorithm is an integral part of the algorithm to produce
HL-trees, presented in section 4. The equivalence-algorithm
consists of six steps. However, before presenting the individual

steps, we consider the internal representation used for w-bags.

When an atomic or related colour set is defined, we demand the
user to give it a finite, ordered set of element names

(e.g. PH = {ph1,ph2,---,ph5}). In the HL-tree constructor we
shall, however, always use small letters a,b,c,++°+ to represent
the different colours. Thus the bag ph2+ph3+ph4+ph5 (appearing
in node #2 of fig. 2) is represented as b+c+d+e. Moreover we
use a special representation of formal sums, which is convenient
for a computerized version of the algorithm. Although the con-
structor apply this internal representation, it should be noted
that the user always delivers input and receives output in the

usual bag representation (formal sums and original colour names).

The internal representation saves space, by avoiding long element
names. But it also makes it much easier to work with related
colour sets. When a related coclour set is defined, the order of
the elements implicitly determine its relation to the corres-
ponding atomic colour set, in the sense that element no. i of the
related colour set is mapped into element no. i of the atomic
colour set. This implies, that the bag f3+f4+f5 over

P o= {fT’fZ"'..'fS} (appearing in node #2 in fig. 2) is repre-
sented as c+d+e, which immediately can be understood as a bag
over the atomic colour set PH. Thus bags over a related colour
set can be handled in exactly the same way as bags over the cor-
responding atomic colour set, except that the small letters are
translated into other element names when the final output is

generated.

A34.

In fact the only purpose of related colour sets is to allow
the system describer to attach mnemonic names to the elements.
Without related colour sets the describer would have to name
the token-colours representing the forks in the philosopher

system by PH = {ph1,ph2,--",ph5}.

The next question is whether we also can handle product colour
sets in the same way as atomic ones. Again the answer is confirma-
tive. The bag (b,a)+(b,c)+(c,a)+(c,b) (appearing in node #2 of
fig. 3) can be handled as two separate bags 2b+2c and 2a+b+c,
obtained by the projections mapping (s,r) € MB into s and r,
respectively. For each place with a product colour set, we will
have as many bags as there are components in the product. Each of
these bags will be handled in the same way as bags originating

from places with atomic or related colour sets.
We summarize:

Given an atomic colour set C, we get bags over C (represented

as bags over {a,b,c,++++}) in three different ways:

- from places, which have C as atomic colour set
- from places, which have a colour set related to C

- from places, which have a product colour set containing

C (or a related colour set) as a component.

However, we are able to handle all these bags in exactly the same

way, independent of their origin. *

t As we shall see later, this is not fully correct for bags
originating from products. For this kind of bags we have to

add an extra check.

A35.

We will represent bags in a rather special way, which turns out
to be convenient for our algorithm. The bag 3a+2c+wd+e+f+g+wh+2]

over {a,b,--++,j} is represented by :

(*) 2~10—Wé§ﬁ&}£ijefg0bi

\

number sum of the each of these groups contains, in alphabetic

of w. remaining order, those elements, which have the co-
coefficients. efficient immediately preceeding the group;
the groups are ordered by descending co-

efficients.
Alternatively,to save space we can choose the most frequent co-
efficient to be default, and remove the corresponding elements

from the representation:

(**) 2-10-1-Wdh3a2c]jObi

most frequent coefficient (if two different coefficients

occur equally often we choose the smaller one).

The two (three) opening numbers of our representation (2,10 (and 1)
in the above example) can be coded into a single integexr, while

the rest of the representation can be kept in a textstring.

A36.

We will now describe our algorithm to determine whether two
markings are equivalent or not. To understand the algorithm
it should be noted that all our symmetries consist of bijections.
This implies that they cannot alter the number of w-coefficients
in a bag, nor the sum of the remaining coefficients. Moreover if
we consider the coefficients as a bag (over WU {w}) this bag

cannot be altered by applying a symmetry.

The algorithm consists of a number of steps. In each step some
properties are checked. If a property is found to be unsatisfied
the markings in question are known to be non-equivalent, and there
is no need to perform the remaining steps. However, if all steps
are successfully performed the two markings are known to be
equivalent. We have tried to arrange the steps in such an order,
that the early steps take little time, but still have a large
probability to disclose non-equivalency.For this reason the steps
are not independent. Some of the early steps could be removed,
since their properties would follow from the properties of a later

step. This might, however, increase the computation time.

Let m, and m, be the two markings to be tested for equivalency.

We assume the two markings to be in the form (*). *

Step 1: Check number of tckens

For each place p€P, check whether m1(p) and mz(p) have the same
number of w and that their sums of remaining coefficients are

identical.

By the way we represent bags the checks above only involve a
single comparison of two integers (each representing number of w

and sum of remaining coefficients).

+ In step 1-3 the markings can be represented either in the form
(*) or (*¥*). In steps 4-6 they must be in the form (*), which

can be regenerated from (*%*).

B3

Step 2: Check coefficients

For each place p€P, check whether the coefficients in m1(p) and

mz(p} form the same bag (over W U {w})t.

By the way we represent bags we only have to read through two
textstrings, textl and text2, checking that in each position
i, either text1[i] and text2[i] are both small letters or they

are identical.

However, to make step 3 easier we shall, during the check above,
also record whether each pair of textstrings are identical or
not. We carry on with step 3 even if the pairs of textstrings are

not totally identical.

Step 3: Check identity colour sets

For each atomic colour set C with sym(C) = identity, check that

the bags over C++are identical in m, and m, .

This was already recorded in step 2.

+ If C(p) is a product set we check the coefficients for each

component bag.

1+ Obtained from places in the three different ways, described

on page A34.

A38.

Step 4: Check rotation colour sets

For each atomic colour set C with sym(C) = rotation, check that
there exists a rotation, which maps each bag over C in m, into

the corresponding bag in m, -

This check is performed in the following way. The number of
possible rotations equals the finite number of elements in C,
and thus we can use a boolean array to indicate which rotations

are still possible candidates.

Initially all rotations are candidates. For the first bag in m,
we consider each rotation, one at a time, and record whether it
maps the bag into the corresponding bag in m, or not. This can
be done by reading the two textstrings representing the bags and
checking whether they are identical when the elements of the
first textstring are rotated. The rotation may change the alpha-
betic order of a group of elements having the same coefficient.
Thus we must reorder each group after its rotation, before
comparison with the corresponding group in the other textstring.
The most efficient way is to rotate and compare one group at a

time. Then we can stop as socon as we find a discrepency.

When all rotations have been considered for the first bag, we
continue with the next bag,but this time it is of course only
necessary to consider those rotations which worked for the first
bag. In this way we continue until we either have no more rota-
tions as possible candidates (in which case the step fails) or
we have considered all bags (in which case we continue with the

next atomic colour set having rotation as symmetry type).

When we have finished a colour set the boolean array indicates
the possible rotations, which can be used to map m, into m, . i i
the bag originates from a product T, the possible rotations are

recorded for later use in step 6.

+ See page A34.

A39.

Step 5: Check permutation colour sets

For each atomic colour set C with sym(C) = permutation, check
that there exists a permutation, which maps each bag over C

in m, into the corresponding bag in m

1 2°

We could consider each permutation one at a time and thus proceed
in a way analogous to step 4. However, the number of possible
permutations grows with the square of C's size. Thus we shall
perform the check in another way.

Consider the first bag of m For each group of elements having

1°
the same coefficient we know that the elements by a possible

permutation must be mapped into the elements of the corresponding
group in the first bag of m,, .

As an example consider the two markings m and m, defined for

the philoscopher system in section 3, and let us for a moment
assume that sym(PH) = permutation. The first bag of m, is repre-
sented by the textstring 1bcdela while the first bag of m, is
represented by lacdeOb. This implies the following connection
between the elements, where each multiarc indicates that the
source elements must be mapped by the permutation into the target

elements:

N

Thus we know that 'a' must be mapped into 'b', but for the other

elements we only know that they are not mapped into 'b'.

A40.

When this has been done for the first bag, we continue with
the next bag, but this time we will have to elaborate on the
already constructed multiarcs by splitting some of the arcs

into one or more parts.

In our example the second bags of m., and m, are TaObcde and
1bl0acde, respectively. This yields no further information and
the multiarc diagram (1) is unaltered.

However, the third bags are 1cdeOab and ladeObc, respectively.

This yields the following multiarc diagram:

(2)

o &

@

YV
A A

and by combining (1) and (2), we obtain

(3)

e

\/
LN

If two multiarc diagrams cannot be combined into a single one,
because they contain conflicting information, no permutation

is possible and the step fails. If, however, all multiarc dia-
grams can be combined, the final diagram indicates the possible
permutations. In our example the diagram (3) tells us that there
are six possible permutations. T If the bag originates from a
product, the possible permutations are recorded for later use

in step 6.

T Exactly one of them is a rotation.

AdT.

When we have successfully considered all bags for a given
colour set, we continue with the next atomic colour set having

permutation as symmetry type.

Before we present step 6, we have to consider products more
closely. When a place has a product as colour set we obtain a
number of bags from that place, by means of projections (in the
way described on page A34).Until now we have handled these bags
in exactly the same way, as bags originating from places with
atomic or related colour sets. This introduces, however, a
problem. Consider a product {a,blx{a,b}, where the two compo-
nents represent the same atomic or related colour set. According

to our rules, each of the two bags
(a,b) + (b,a) and (a,a) + (b,b)
over {a,blx{a,b}, is split into two bags over {a,b}

a+b a+b
and

b+a a+b

Independent of the symmetry type for {a,b} it is obvious that
step 3-5 is successful for the upper set of bags and for the
lower set. There is, however, no identity, rotation OY per-
mutation which maps (a,b) + (b,a) into (a,a) + (b,b). Each
function in a symmetry is bijective, and thus it cannot map a
pair, (a,b) or (b,a), consisting of two different elements into
a pair, (a,a) or (b,b), consisting of the same element twice.
The problem arises because we have ilgnored that the product
binds elements together into tuples. By using projections to
create bags, over the components of the product, we split up

the tuples without considering this binding.

* The argument above can be elaborated also to cover products

consisting of unrelated components.

Ad42.

Step 6: Check products

Check whether any of the possible symmetries, calculated in
step 3-5, maps m, into m,

For each place p with an atomic or related colour set, the
construction method in step 3-5 guarantees that all possible
symmetries, which we have calculated, map m1(p) into m2(p).
Thus we only have to consider places, which have products as
colour sets, and this check is done by means of a backtrack-
algorithm, which stops as soon as we have found one symmetry

mapping m, into M, «

This step may, in the worst cases, take up a considerable
amount of computing time. It should, however, be remembered
that the check only involves the places with products. Moreover,
we conjecture, that in most cases there will be only a few

possible symmetries, or they will nearly all map m, into m, .

