| | S5 €8 2t — 90 ‘duoydaye
ﬁ AHVWNIQ — D Snusew 0008 NO - epeBaxunyy Ay

|_. 1l NVI3H/INIVO NAML

ALISHIAINN SNHUVYY
~ _IE _ weawyedaq sousdg sendwon

861 1ady
€41-9d TNIVA

yodey "H ueLig

STOVAINVT ONINKNVIODO0Ud 10
SOLLNVIIS JALLVAVAINOD

B.H. Mayoh: Comparative Semantics

L198-90T0 NSSI

PB-173

COMPARATIVE SEMANTICS
OF PROGRAMMING LANGUAGES

The flood of new programming and specification languages

shows no sign of abating, but very few of these languages have

a formal definition. The advantages
is specified in a specification and

behave are obvious, but none of the

methods are completely satisfactory.

idle, but they have concentrated on

of knowing precisely what
exactly how a program can

existing formal definition
Theoreticians have not been

problems that are not

immediately relavant to language designers (algebraic and categoric

structuring of definitions, refined

notions of concurrency and the

like) . In the belief that the answer to some of the language

designers' problems is "use different formalisms to define frag-

ments of the languages precisely", we advocate the study of

comparative semantics. This paper is a contribution to this study,

prompted by the fact that the parallel aspects of ADA seem to

require a quite different kind of formal semantics from that used

for sequential ADA in [A].

ii

CONTENTS
Ta QUITLINE sescnsmemsninifinsmsminamsmimsmsssnsmime 1
2. PROGRAM AND SPECIFICATION MEANINGS «:ccevcvecn.. 2

2.1 Relational Meanings 2
2.2 Functional Meanings 7
2.3 Set Meanings 11

CONCRETE PRESENTATIONS: s srs sus o s oa 5 ¢ 5% 508 500 2 fun 14
3.1 Relational Presentations 14

3.2 Functional Presentations 15

3.3 Set Presentations 16

A CANONICAL PRESENTATION @ 4t eeeecoocosanansoeness 18
4.1 Canonical Relational Semantics 18

4.2 Canonical Functional Semantics 19

4.3 Canonical Set Semantics 22
INDIRECT PRESENTATIONS wwwswcnsis o imsiss e s eues 26

COMPARISON OF SEMANTICS @ ¢ vceeocconsonsennennnns 31
6.1 Comparison of Relational Semantics 32

6.2 Comparison of Functional Semantics 33

6.3 Comparison of Set Semantics 35

6.4 Translations and Implementations of
Semantics 36

THE MINILANGUAGE BED ¢ttt eecececcansaenseccnncess 38
7.1 Relational Semantics for BED 41

7.2 Functional Semantics for BED 47

7.3 Set Semantics for BED 52

7.4 Diagrams for BED Commands 59

REFERENCES swww e i ow 68 600 504 05 68 808 £ 35 ¢ 5% 008 58 5ne ous 65

APPENDIX v .vve.. et e eeteee e e 67

1. OUTLINE

Most of the important answers to the question "What is the
meaning of a program/specification?" are classified in section 2.
When one has fixed the meaning of programs/specifications, one
has to decide how the semantics should be presented. Several
possible ways of presenting meanings are described in section 3,
while ways of presenting semantics without revealing meanings
are described in section 5. When a language can have several
semantics or different fragments of a language have different
semantics, one needs semantic transformers like those described
in section 6.

Since real programming/specification languages have complex
features, their formal semantics may be complicated and language
users need conceptual models for programs/specifications like the
graphs, nets and diagrams in section 4. Because a wide variety of
semantics can be defined from such models, they can form a basis
for comparing semantics. In section 7 diagram models are used
in the comparison of three very different formal definitions of
a semantically challenging mini language. If one only reads sec-
tion 7, one will have an impression of the current "state of the

art" in formal semantics.

2. PROGRAM AND SPECIFICATICN MEANINGS

In this section we will describe 23 natural meanings for pro-
grams and specifications. These meanings can be divided into
relational, functional and set meanings. Relational and functional
meanings are natural for programs and specifications in languages
with an explicit notion of state, but set meanings are natural
for languages which focus on events like messages passing between
processes.

We shall not mention specifications hereafter, because the
similarity between programs and specifications has been emphasized

enough by now.

2.1 Relational Meanings

What is the meaning of a program? What kinds of questions about
the behaviour of a program should be answered by a formal semantics?
Figure 1 shows a way of thinking about the behaviour of programs
in which the only questions a semantics has to answer are of the

form "can the program produce result r when started with data 4".

Program
P

Data - - Result Meaning (P)cDataxResult

Fig. 2.1 Data-Result Relational Semantics.

The syntax of a programming language determines how a program

is built from primitive fragments using combinators like

;loop, both, either, if, ...

If one gives a meaning to every possible fragment, and one
specifies a way of combining meanings for every combinator,
then every program gets a meaning. For most programming lan-
guages it is easy to define a set of internal states, then give

the meaning of a primitive fragment F as

M1(F) < State x State

Example

Once primitive fragments have been given a relation as a meaning,
we must specify a way of combining these relations for each com-
binator in the language. Consider the compositional combinator
";". The usual specification for this is

ANGELIC RS1;82(X,Z) o= Hy[Rs1(x,y)&Rsz(y,z)]

but another possibility is

fil

DEMONIC R (x,2)

S1;82 EYR-S1 (x,y) &VY[RS'] (X’y)_)R'Sz (Y,Z)]

[u]
DEMONIC composition 1s realistic because it recognises that

unfortunate choices can lead to the jamming of computations.

Other kinds of relational composition are natural in a semantics

which can answer questions like

- can the program P go into a loop, when started on data d
- can the program P jam, when started on data d
- can the program P terminate without giving a result,

when started on data d?

In such a semantics there might be states like divergence, jammed,

stopped and the meaning of a primitive fragment F might be

M2(F) < State x ExtendedState
M3(F) c ExtendedState x ExtendedState

Example

Consider the program "loop random;exit when (0)." in a language

with random assignments, loops and exits. Suppose the meaning

of the primitive fragments in the program is

. TRUE

s' =0 =g

M1(random)(s,s')

MT(exit when (0)) (s,s")

where s and s' range over the set State = (0,1,2,3,...). The
angelic combinator would give
M1(random;exit when(0)) (s,s8') .=. s' =0
because the random assignment may give s' = 0. The demonic
combinator would give
MT(random;exit when(0)) (s,s') .=. FALSE
because the random assignment may give s' = 1. To get a loop
combinator we can define
ExtendedState = State + (0,1,2,...)
Mz(random)(s,s') =. s' € State

M, (exit when(0)) (s,s") =. (s=s'&s'#0)v(s=0&s'=0)
M, (random;exit when (0))(s,s") =, s'=0 vs'E€ State - {0}
M, (loop random;exit when(0).) (s,s').=. s'=0

Mz(loog C.) (s,s") .= MZ(C;looE C) (s,s")

This semantics is unsatisfactory because

M2(100p random;exit when(0)random.) (s,s') .=. FALSE

If we assume a strictness - 012... are terminal states -
M3(C)(s,s') .=. MZ(C)(s,s') vs=s5' & g€ (ExtendedState-State)

we get a natural semantics.

\
>
e | Program Meaning (P) < (Data™ «x Result™)
e P
P =

Fig. 2.2 Source Sink Relational Semantics.

Most programming languages have a file mechanism which
allows a program to receive data from many sources and transmit
results to many sinks. The semantics of such a language should be
able to answer guestions like "Can the program P give the result
TpeeTy at the n sinks when started with data d1"'dm at the m
sources?". In such a semantics the meaning of a primitive frag-

ment might be

My (F) < state™ x State™
MS(F) c State™ x ExtendedState™

MG(F) c ExtendedState™ x ExtendedState”

In M4—M6 we implicitly assume that there is a datum at each
fragment source and a result at each fragment sink. Sometimes
this assumption is unnatural and the semantics should be able
to answer questions like "Can program P give results (r1,r3,r5)
at (sink1,sink3,sink5) when started with data (d2,d3) at
(source2,source3)?". If we define a pattern as "all subsets of

(1,2,...,m) for some m", then more general relational semantics

are possible:
o (F) < State” x StatePf

Mg (F) < State” x ExtendedState®
M9(F) o ExtendedStateTT x ExtendedStatep

where m and g are patterns.

Example

Consider the program "loop either First or Second;exit when(0)."

in a language with alternatives, loops and exits. Suppose the

meaning of the primitive fragments in the program is

M4(Firstn(s1,32,53),(s1',52',s3')) .=, 83'=s1 & s2=g2'!

M4(Second)((51,52,33),(51',52',33')) s3'=s2 & sl1=s1'

M4(g§£E when(0)) ((s1,82,s83),(s1',s2'",s3"'")).=. (0=s3=s51'=s52'=83")v
(0#s2 & s1=s1' & s2=s52' & s3=s53')

The program merges the values of s1 with the values of s2 if we

define the combinators

M4(either Cl or C2.)((s1,82,83),(s81',82',83"))

: M4(C1)((51,52,53),(31',82',53'))VM4(C2)((51,52,83,),(s1',52',s3'))
M4(C1;C2)((S1,S2,S3),(81',52',83')) .=. 3s1",s2",83"...81#0vs2#0v
(M4(C1)((51,82,83),(s1",52",s3")) & M4(C2)((31",52“,53“)As1',52',53')))
M4(loog Ce) ((81,824,83)4(81",82',83"))

il

M4(C;looE C)((s1,82,83),(81',82",83"))

This semantics is simpler if we use patterns;

n
I

s3'
s3'

M7(First)((s1),(s3')) .
M7(Second((52),(53'))

s1

52

1l
I

and we agree that M4 and M7 have the same exit-, either-, loop-,

and ;-combinators.

There are useful programs which give a stream of results
when supplied with a stream of data. The semantics of the
corresponding programming language should be able to answer
guestions like "Can the operating system program P give result

stream (r1,r .) when started with the data stream (d1,d2,...)?".

o1

Data Stream - Program | - Result Stream

Fig. 2.3 Stream Relational Semantics.

Among the various possibilities for stream semantics of fragments

we mention

Mig(F) c S* x s*
Myq (F) < g 5 @>°

where S is State or ExtendedState, S* is the set of finite
S-sequences, and S” is the set of finite or infinite S-sequences
(N) .

ExamEle

The meaning of a program fragment F which merges two finite

streams might be given by

(((p1,p2,---,p2),(q1,qz,.--.qm)),(r1,r2,---.rn)) € Myq(F)
.=. (n=g2+m) & (r1,r2,...,rn) is an interleaving of

(P1 rpzr .o rp_g) and (q1 ECTARE rqm)

2.2 Functional Meanings

The analogy between executing a program and evaluating a function
is very close. We shall describe various ways of preserving the
analogy in the presence of parallelism and non-determinism. The

first way is the power domain approach, "The meaning of a program

is a function from the initial data to the set of possible
results":

MTZ(F) € State -» SubsetofState

Another popular way of preserving the analogy between the execution
of a program and the evaluation of a function is the predicate

transformer approach:

M13(F) € Predicate -» Predicate

where Predicate = SubsetofState.

In the literature various kinds of predicate transformers have
been proposed to deal with the problem of programs that may not
always terminate. For the same reason many kinds of power domains
have been described, and we made the distinction between State

and ExtendedState in section 2.1.

The most popular way of preserving the analogy between programs

and functions is the continuation approach:

M. (F) € Continuation - Continuation

14

where Continuation = State - Answer.

Note that there is no essential difference between continuations
and predicates when Answer has just two elements. The power of
the continuation approach is partly due to the introduction of
the set Answer, so one can expect similar power from the intro-
duction of a set Oracle in the oracular approach:

M (F) = Oracle x State -» State

15
Introducing the set Oracle to take care of non-determinism and
parallelism is no different from introducing a set Environment
to take care of the "context" of a program fragment in any of

relational or functional meanings for program fragments.

Example

Consider a language which allows random assignments. A program

fragment "x = ?" could have the relational meaning
R(s,s') .=. 3an(s' = s[n/x])

where s[n/x] is the result of assigning n to x in the state s.

In the power domain approach we might have

Mio(x = 2)s = {s[0/x],s[1/x],...}

12
In the predicate transfer approach we might have

s € M13(x = ?)P(s) .=. v¥n.s[n/x] € P
In the continuation approach we might have

Mig(x = 2)o(s) = 0(s[0/x]) n e(s[1/x])n....
whereas the oracular meaning might be

Myg(x = 2?)(n,s) = s[n/x].
If our language with random assignment also has block structure,
the meaning of the fragment "x = ?" may depend on which block
context is given by an environment p, the oracular meaning of
our fragment might be

Myg(x = 2)p(n,s) = s[n/p(x)]
result of assigning n to g in
state s where § is the location

given by p to x.

Environments can be introduced in meanings M1—M14 in just the

same way.

10

We have described functional meanings as if they could
not capture the more elaborate relational meanings in the
last section. However there is no reason why the set State in
M12—M15 could not be replaced by ExtendedState or State™ or

State™ or State* or State .

Example

We can capture the well known connection between random assign-

ment and fairness by defining

Mig (F) € Oracle x State” - State”

M15(x = ?)((n1,n2,...),(51,52,...)) = (s1[n1/x],sz[n2/x],...)

and requiring that oracles be fair, i.e. all possible values of
n occur in any infinite oracle (n1,n2,...). In a language with

a merge operator one could insist on fair oracles and define

M15(merge)((n1,n2,...),(d11,d12,...,d21,d22,...,d31,...))
= M15(merge)((nzf---).r(d11rdo}zr---rd21l---rd31r---))
where
dij = if i = n, then di+1,j else dij

There is a natural connection between oracles and communi-
cation histories; one way of looking at the semantics for Hoare's
language for communicating sequential processes CSP [F] is to
view communications with each individual sequential process as
messages from an oracle to the process. In this view the essential
problem in the semantics of CSP is the matching of oracles. The
natural connection between oracles and schedulers in operating
and multiple processor systems should not be forgotten. An
oracular semantics for important new languages like ADA may well

suggest a practical way of implementing the languages.

11

2.3 Set Meanings

There have been several voices claiming that the subtleties

of languages with true parallelism cannot be captured by program
meanings like those we have considered hitherto. The notion of

a global state is dubious when a program may consist of many
fragments, which can be executed on different computers in places
far from one another. Figure 2.4 illustrates an alternative

view:

- events correspond to program fragments reading data,

writing results, or communicating with one another;

- events are partially ordered by a relation that can be

interpreted as "causes" or "earlier in time".

.
o

RESULTS

)
e
H
H

4

[
e

Fig. 2.4 Event Semantics.

Definition

An event sequence is a linearly ordered set of events. An event

tree is a set partially ordered by £ such that e,e'sf - ese' v e'Ze.
An event trace is a partially ordered set of events.

The distinction between event sequences, trees and traces

prompts various ways of giving meaning to program fragments.

M16(F) < EventSequences
M17(F} € EventTrees
M18(F) € EventTraces
M19(F) < EventTrees
M20(F) < EventTraces

12

In the literature event sequences have been studied under the
name computation histories, event trees have been studied under

the name behaviours, and event traces have been investigated under

the name event structures [W2].

ExamEle

There are languages where the fragments

(F1) either P; Q or P; R.
(F2) P; gither { or R.

have different meanings. The two fragments have the same

meaning in a sequence semantics

M16(F1) = Mga gl = {<P,0Q>,<pP,R>}

but they have different meanings in tree and trace semantics
/,/P~Q
“\P-R

Q
_ _ . B
Mi7 (Fy) =M g (Fy) "¢P\\R

Mg (Fy) =M g (F) = ¢

Mg (Fy) =My (F)) = (Mo (F)} = (Mg (F))

M19(F2) =M20(F2) = {M17(F2)} = {M18(F2)}

The distinction between F1 and F2 is similar to that between

internal and external choice in CSP [F].

The disadvantage of many set semantics is that set composition is
more awkward than relation composition and function composition.

There are set semantics which do not have this disadvantage.

13

M21(F) < EventSequence x Accept x Refuse

where Accept = Refuse = SubsetofEvents

M22(F) c EventSequence x Future

where Future EventTrees

Subsetof (Event x Resumption)

1}

M23(F) < Resumption

Accept-refuse and future semantics were introduced in [R], but

resumption semantics are much older.

Examgle

For the fragments in the last example we have

<P, (Q), (R)> € My, (F 1) = My, (Fp)

<P,Q> € M22(F1) - M22(F2)
— Q _

<P'¢“‘-R> € M22(F2) M21(F1)

So both accept-refuse and future semantics distinguish between
the two fragments. The natural resumption semantics also makes

this distinction:

M23(F1) = {<P,r1>,<P,r2>}

where r, = {<Q,¢>} and r, = {<p,¢>}
M23(F2) = {<P,r3>}

where r_, = {<Q,¢>,<R,¢>}

3

14

3. CONCRETE PRESENTATIONS

There are many ways of presenting the semantics of a programming
language. In this section we shall describe presentations that
are concrete in the sense that they use information about the

kinds of meaning the semantics gives to programs.

3.1 Relational Presentations

In the area of relational data bases two ways of presenting
relations dominate. In the relational algebra approach one pre-
sents a relation as a combination of other relations, using
powerful combinators like union, composition, join and projection.
In the relational calculus approach one presents a relation as
a logical formula, using logical operators like conjunction, dis-
junction, implication, negation and quantifiers. An interesting
variation of the calculus approach is to use a logical programming
language instead of logical formulae. If the relational semantics
of a language. L is given in PROLOG, then L-programs can be
executed by a PROLOG interpreter and the only reason for having
L-compilers and L-interpreters is efficiency.

Perhaps the most elegant way of presenting a relation is

by proof rules; some instances of the relation are given by proof

rules without premisses, and all other instances can be derived
using proof rules with premisses [P1]. Figure 3.1 illustrates

our four ways of presenting relations.

algebra Cl;C2 is composition of Cl1 and C2 either Cl or C2 = Ccl uUc2

calculus Cl;C2(x,2z).=.3y(Cl(x,y)8&C2(y,z)) ELfhEr £f or €8 Geyl
=. Cl(x,y)veC2(x,y)

either Cl or C2(x,y)<C2(x,vy).

PROLOG Cl;c2(x,z) <« Cl(x,y),C2(y,z). either €G1 or €2 (x%,y)*Cllx;v).

Cl,% +ue C2,y-2 Cl,x-y
proof rules Cl;C2. ,x%x>z either Cl1 or C2.,x>y
C2,x2y

either Cl or C2.,xwy

Fig. 3.1 Comparison of Relational Presentations.

15

So far, our relational presentations have been denotational,
but each of them becomes cperaticnal if one has to take the
transitive closure of the presented relation to get the meaning
of a program. Just as the usual composition of relations may not
be appropriate in a relational semantics, the definition of

transitive closure may be unusual.

Comment: Since relations form a complete lattice, presentations
can use fixpoints - one can define the relation [loop C.] as the

least solution of [loop C.I = [C; loop C.].

3.2 Functional Presentations

The natural way to present a functional semantics of a programming
language L' is to specify functions in a known language L. If
L is a programming language, then an L-compiler can be used to
execute L'-programs and efficiency is the only reason for writing
L-compilers and L-interpreters. This advantage of choosing a real
programming language L is usually outweighed by the disadvantage
that [-functions are obscure because they contain much irrelevant
detail. A cleaner presentation is given by identifying L' and L;
the LISP interpreter in LISP is elegant, and the ADA semantics in
ADA [A] is not inelegant. However such "circular" presentations
have the serious disadvantage of concealing precisely the obscure
features of a language that should be revealed by a presentation.
When presenting a functional semantics, it is very tempting
to use a special mathematical language for specifying functions.
The lambda calculus is often chosen, and the calculus of combina-
tors has also been used. Other possibilities have been unfairly
neglected: logic can be used to present predicate transformer
semantics: attribute grammars specify functions from inherited
attributes to synthesized attributes and they reflect the syn-

tactic structure of programs.

16

Examgle

A mathematical presentation of the functional meaning of C1;C2

is
Ic1;cal (s) = [c2l(Ic1l(s))
whereas an attribute grammar presentation might be

[C1;c2] (¥s,1s)) = [C1D (¥s,+s")[C2] (¥s",4s"').

So far all functional presentations have been denotational
but each of them becomes operational if one has to take the tran-
sitive closure of the presented function to get the meaning of
a program. Transitive closures of functions are sometimes very
obscure, and occasionally they may not even exist; one must be
careful with composition and recursion in presentations of func-
tional semantics; power domain semantics are particularly

notorious.

3.3 Set Presentations

The literature on set semantics contains many small examples to
illustrate the subtle distinctions made by particular semantics,
but says little about presentations. An indirect way of presen-
ting a set semantics is to invent a model, to give a general
definition of the meaning of a model, and to describe general ways
of building large models from small models. Graphs are natural
models of programs, graph grammars can be used to generate large
graphs for small graphs, and graphs can be given a set meaning by
identifying events (configurations) with edges (vertices). Petri
nets are also popular program models, and they give a set meaning
if one identifies events with the firing of transitions. Equation
schemes are another much studied kind of program model, and with
some ingenuity they too can be given set meanings. Figure 3.2

shows graph, net and scheme models for two small programs

17

call P; either call Q or call R. either call P; call Q or call P; call R.

P
graph B e

net
2] N,

scheme a="Pb b=Q:c + R:d a = P:Q:c + P:R:d

Fig. 3.2 Comparison of Program Models.

In the next section we introduce diagrams as general models of
programs. Graphs, equation schemes and most versions of Petri

nets are particular kinds of diagrams [M2, M3]. None of these
models prejudge the decision between "interleaving", "synchronous",
and "true parallelism" semantics; all of them allow moves (events)

to be either "single computation steps" or "appearances of a

datum at a port".

18

4., A CANONICAL PRESENTATION

The task of presenting and comparing the semantics of programming
languages would be much simpler if everyone could agree on a
canonical model for programs. Many program models have been
suggested in the literature; the process nets in [P2] seem to be
suitable for canonical program models, but we will choose the

somewhat similar diagram models.

Definition

A diagram consists of a set C of configurations and a set M of

moves. Each move in a diagram (C,M) has a label, a source and a

sink; each source and sink is built from C, using + and x.

Example

In the diagram model of a program configurations correspond to
control points, and moves correspond to combinations of program

statements that must be executed concurrently. In the three move

diagram

c = (a,b,c,d) M= (c 3 a, axb 3 cxd, d % b)

the v-move models a program rendezvous in just the same way

as the v-transition in the corresponding Petri net.

O
© ()

4.1 Canonical Relational Semantics

Diagrams acquire a relational meaning by

- assigning sets to configurations;
- defining + and x on the assigned sets;
- assigning relations to move labels;

- defining composition of relations.

19

The semantics, M1 to M11, in section 2.1 differ only in
the sets assigned to configurations; they agree in defining

+ and * as disjoint union and cartesian product of sets.

Example

Consider our three move diagram. Let us assign the integers
to each of its configurations. Let us assign unnatural relations

to each of its moves.

Ru(c,a) LS. (c<a)
Rv(a,b,c,d) .=. (c = min(a,b)) A (d = max(a,b))
R, (d,b) .=. (d>b)

Let us agree on the usual meanings of +, x and composition. For
any sequence of moves in the diagram we can derive a relation
on integers; the meaning of the move sequence (v,u,w) is the

relation

R{a,b,a',b') .=. (min(a,b) < a')& (max(a,b) > b'")

4.2 Canonical Functional Semantics

Diagrams acquire a functional meaning by

- assigning sets to configurations;
- defining + and x on the assigned sets;
- assigning functions to move labels;

- defining functional composition.

In a power domain semantics M12 power sets are assigned to
configurations, the functions assigned to move labels are spe-
cified in strange ways, and functional composition is unusual.

In a predicate transformer semantics M13 one also assigns power
sets (= predicates) to configurations, but the functions

assigned to move labels are specified normally. In a continuation
semantics M14 continuation domains are assigned to configurations,

functions assigned to move labels are specified normally, but the

20

definition of +, x and composition may be problematic. In an
oracular semantics M15 functions assigned to move labels may

have an extra argument domain for the oracle.

Example

Consider the relational semantics for the three move diagram in
section 4.1. This becomes an oracular semantics if the moves

are assigned the following functions

fu(c,n) = ¢C + n
fv(a,b) = <min(a,b), max(a,b)>
fw(d,n) = d - n

where the oracular argument n ranges over the positive integers.
For any sequence of moves in the diagram we have an integer

function; the meaning of the move seguence <v,u,w> is the function
f(a,b,n1,n2) = <min(a,b) + Ny max (a,b) - n2>
Suppose now that we assign the family of subsets of the integers

to the diagram configurations, not just the integers. We get a

forward semantics, if the diagram moves are assigned the functions

Fu(P) = \\,} (a | c<a)

cePp
F._(p) = \\«} (<min(a,b), max(a,b)>)
¥ (a,b)€P
F _(P) = \,/hb | d>b)
W dep

we get a backward semantics, if the diagram moves are assigned

the functions

21

U(c | c<a)

B_(Q) =
u aceQ
BV(Q) = (<a,b> | <min(a,b), max(a,b)> € Q)
BW(Q) = k\._,}(d | d>b)
b€Q

For any sequence of moves in the diagram we have a forwards and
a backwards function from integer predicates to integer predicates;
the forwards meaning of the move sequence (v,u,w) is the predicate

transformer
F(P) = \x,) (<c',b'> | min(a,b) < a' .&. max(a,b) > b')
(a,b)€P

the backwards meaning of the move sequence (v,u,w) is the pre-

dicate transformer
B(Q) = Kﬁﬂ) (<a,b> | min(a,b) < a' .&. max(a,b) > b')
(a',b")EQ

The forward predicate transformer semantics becomes a power

domain semantics, if one specifies the move functions by

fu(c) = (a | c<a)

fv(a,b) (<min(a,b), max(a,b)>)

£, (d) (b | d>b)

The backward predicate transformer semantics becomes a con-

tinuation semantics is one specifies the move functions by

£,0(c) = Ule(a) | c<a)
fve(a,b) = f(min(a,b), max(a,b))
£.61(d) = (J(6(b) | d>b)

In these function specifications J is join in the "answer"
domain, not set union, because in the continuation semantics

configurations are assigned sets of functions from integers to

22

"answers". Notice also that the continuation equation for fv

assumes the following definition of x:

it c, is assigned S1+A and 5 is assigned SZ#A,

then c xc, 1s assigned S1XS2€A.

4.3 Canonical Set Semantics

Diagrams acquire a set meaning when one interprets the occurrence
of a move as an event. In the simplest interpretation M16 the
meaning of a diagram is the set of move sequences that can occur.
In other interpretations M17—M23 the set of move sequences that

can occur 1is structured in various ways.

ExamEle

The set of move sequences that can occur in our three move

diagram D is given by the paths in the graph

This set of move sequences can be structured as an event tree

/u1 Y1 - 2

Myz(D) = ... V1\
_ Falk
Y3 By == Yo as

Mig(D) = (M, ,(D)).

The set of move sequences can be structured as an event trace

in two ways

(D)

|
<

18

~
N

MZO(D) {sns ¥

23

e W

where the second way corresponds to the scenario approach [B1].

One can divide the

set of move sequences in four parts and

give a future semantics M22(D)

past event sequence future event trees
ends in v u, — W, — V é w, — u, — Vv /
1 1 2N 1 1 2\
‘ PR
ends in v,u w1 —_ V2 .
_ . LE mEE
ends in v,w U, v2\\‘ .
//’u1 — W, — v,
ends in u,w or w,u v1%\\
Wo — Uy — v,
or an accept-refuse semantics M21(D)
past event segquence accept refuse
ends in v u,w v
ends in v,u w u,v
ends in v,w u W
ends in u,w Oor w,u v W

24

These four kinds of past event sequence become four resumptions

in the resumption semantics M23(D):

r, = (<u1,r2>,<w,r3>)
r, = (<w,r4>)
ry = (<u,r4>)
r, = (<v,r1>)

Diagrams also acquire a set meaning, when one interprets "coming

to a configuration" as an event.

ExamEle

The set of configuration sequences that can occur in our three

move diagram D is given by the paths in the graph

This set of configuration sequences can be structured as an

event tree

cxb — axb — cxd::

~
M17(D) = ... axb — ¢cxd

axd — axb — cxdi:

Mg (D)

I

(M, (D))

The set of configuration sequences can be structured as an event

trace
// c1Xb2\\
M.]8(D) = ... aij1 — chd1\ axb — cxd
axd
My (D) = (M, g (D))

25

One can partition the set of configuration sequences and give
an accept-refuse semantics, a past-future semantics and a resump-
tion semantics. Instead of giving these semantics, we give another

trace semantics

This trace semantics is natural if one thinks of moves as

processes and configurations as ports.

26

5. INDIRECT PRESENTATIONS

Some semantics of programming languages are presented so indirectly
that the meaning of programs is never revealed. In algebraic
presentations one specifies a relation = between program fragments
by equations, and one agrees that fragment p has the same meaning

as fragment g when one can derive the equation p=q. In term
rewriting presentations one specifies a relation - between program
fragments, and one agrees that fragment p has the same meaning as
fragment g when both p and g can be rewritten as the same fragment r.
If the rewriting system does not have the Church-Rosser property,
this definition of "has the same meaning as" does not give an

equivalence relation, and there is much confusion.

Example

Consider a programming language with syntax
<term> ::= 0 | S <term> | (<term>+<term>)

The natural semantics has the algebraic presentation

(t + 0)
(t + Su)

t
S(t + u)

As an example of programs with the same meaning we can give

(Sss0 + sss0), (ssss0 + s0), SSSSO

but it is not clear whether the common program meaning is the
whole equivalence class, the reduced representative SSSS0, or
the abstract number 5.

If we replace = in our two equations by -, we get a term
replacement presentation with the Church-Rosser property. The
resulting notion of "having the same meaning" is the same as
that for the algebraic presentation. But what if we had chosen

the term rewriting presentation

et

t - (t + 0)
(t + Su) > S(t + u)

so we have the rewriting sequences

(1) (850+55S0) - S(SS0+SS0) - SS(SS0+S0) - SSS(SS0+0)
(2) (SS550+S0) - S(SSSS0+0)

(3) SSSSS0 -» SSS(SS0+0)

(4) SSSSS0 -» S(SSSS0+0)

Sequences (1) and (3) give " (SS0+SSS0) and SSSSS0 have the same
meaning"; sequences (2) and (4) give " (SSSS0+S0) and SSSSSO0 have
the same meaning"; yet (SS0+SS0) and (SSSS0+S0) do not have the

same meaning, because they have no common descendant.

The most subtle form of indirect presentation is the
axiomatic approach. This presupposes a language [for expressing
properties of program fragments, but the logicians have given
us the predicate calculus and many other suitable languages,
while the computer scientists have suggested algorithmic logic,
dynamic logic, temporal logic and much else. Let ¢ (p) denote a
formula in a language L that expresses a property of a program
fragment p. If the language L has a proof theory, then we can
use T F ¢(p) for "¢ (p) can be proved from assumptions T". Now we

can define a partial order £ on program fragments by

psq .=. 1f T | ¢(p) then T F ¢ (q)
and we can agree on psq .&. g<p as the criterion for: fragment p
has the same meaning as g. If the language L has a model theory,

then we can use M k ¢(p) for "¢(p) is satisfied in structure M".

Now we can define a partial order < on program fragments by
p¢q .=. if M F ¢(p) then M E ¢ (g)

and we can agree on p<€g .&. g<€p as the criterion for: fragment p

has the same meaning as g. Most languages have both proof and model

28

theories and no disagreement between the fragment orders = and
< would be welcome. We want the language L to be both socund

- p2q implies p<€q - and complete - p<q implies p<qg. This use of
the traditional terms, sound and complete, is natural because

in most languages with a material implication ">" we have

F ¢(p) 2 ¢(gq) for all ¢
F ¢(p) 2 ¢{g) for all ¢

T T
A IA
Q Q
moom

Note that one usually has limits of £-chains and <-chains because
theories T and structures M form complete lattices. Note also

that many semantics M give a partial order on program fragments
plg .=. M(p) approximates M(q)

so an axiomatic presentation of the semantics may be available

and informative.

Example
Consider the language L with syntax
<term> ::= | S <term> | (<term> + <term>)

0
<formula> ::= p = <term>

A structure of the language consists of a particular natural
number M. The formula p=<term> is satisfied in the structure M

if and only if M is the value of term when one interprets 0, S and
+ by the number zero, the successor function and addition respec-
tively. Note that each formula is satisfied in exactly one struc-

ture, and we have

<term1> € <term2> .=, p=<term1>is satisfied in the same

structure as p=<term2>

Programs have the same meaning in this axiomatic presentation if

and only if they have the same meaning in the algebraic presentation.

29

The language L has a proof theory if we agree on the rules

p=(t+0) p=t p=(t+Su) p=S (t+u)
p=t p=(t+0) p=S (t+u) p=(t+Su)

The formula p=<term> can be proved from the assumptions T if and

only if there is a sequence of formulae ¢1 ¢2 i ¢n such that
¢1 e T, ¢n is p=<term>
!
. 1 is a proof rule for i=1,2,...,n-1
1+

One can easily check that the partial order

<term, > £ <term2> .=. T | p=<term

1 > if and only if T F p=<term2>

1

is the same as <term1><<term2> so the language is sound and

complete.
Suppose we add material implication to the language L by
changing the definition of <formula>
<formula> ::= p=<term> | <formula>=<formula>
The satisfaction rule for the new formulae is:
M E ¢1 o ¢2 .=. M E ¢2 or not M E ¢1
and the provability rule for the new formulae is:

T E ¢, = 0, .= {¢1} F ¢y

The partial orders < and £ have not changed because we have the

equivalence chains

30

F ¢(p) o> ¢(q) .=. MF ¢(q) or not M E ¢(p)
=. if M F ¢(p) then M F 4 (qg)
F o(p) 2 ¢la) .=. {o(p)} F ¢(q)

. if {¢(p)} I ¢(p) then {¢(pP)} F o(q)
. if T F ¢(p) then T F ¢(q)

I

The extended language is still sound and complete, it has not
changed the meanings of programs, but it can now express more.

The true and provable fofmula
p = (SS0 + SSS0) > p = (S8SSs0 + 50)

expresses the fact that (SS0+S5S0) and (SSSS0+S0) are programs

with the same meaning.

31

6. COMPARISON OF SEMANTICS

{

How can we compare two semantics, two ways of giving meaning
to programs? One way of comparing a semantics 31:P-->M1
with another semantics SzzP—>M2 is to see whether they agree

on when two programs have the same meaning - to check whether

o}
.
io)
il

S, (@) = S, (@)
pry ' wm Sylp) = 8,(p")

are the same equivalence relation. If these equivalence relations

are the same, we say that 31 and 32 are transforms of one

another. Semantics that are transforms of one another convey

the same information about programs because we have

Lemma

Semantics, §,:P3M, are transforms of one another

1 1 27
if and only if we have functions, d':M1+M2 and d:M24M1, such that

81 =d e 82 and 32 = d' o 81.

and 82:P+M

Proof

(«) We have the chain of implications
51(p)=31(p') 2. d'°S1(p)=d'°S1(p') 2. Sz(p)=52(p')

S,(P)=S,(p') 2. deS,(p)=d *S, (') .2. S, (p)=S,(p')

32

(») Choose any m, in M1 and define d:M2—>M1 by

d(mz) = iif- m2 = 32 (P) then S,I (p) else m1

This function is well defined because Sz(p) = Sz(p') implies
31(p) = S1(p'). Clearly we have 31 =d 032 and a similar argument

gives 82 = d°S1 for a well defined d':M1+M2.

Definition
A set M1 can be embedded in a set M2, and we write M1—~(M2 if and

only if there are functions d':MT»M2 and d:M2—>M1 such that
d,ﬂd'(m1) = m, for all meM, .

Embedding Theorem

If a set M1 can be embedded in a set M2, then any semantics

S,:P>M, has a transform SzzPeMz.

Proof
Let d':M.I-->M2 and d=M2—>M1 be such that ded' is the identity on
M,. Define S2:P*+M2 by 82 =d'e 81. Because d °32 = ded'e 81 = 31,

the lemma ensures that 31 and 32 are transforms of one another.
(]

6.1 Comparison of Relational Semantics

In this section the embedding theorem is used to give information
about transformations between the relational semantics in section

2.1. The embedding "State —(ExtendedState" gives

State x State —={ State xExtendedState — ExtendedStatex ExtendedState
m n m n m n
State xState == State xExtendedState == ExtendedState xExtendedState

m
State1T XStatep:::{ State XExtendedStatep===(ExtendedStateWxExtendedstatep

where S =—=(S' abbreviates: Subsets of S —(Subsets of S'.

The embeddings "8 —(8™ —(8" —(s* —(S™" give

33

State X State State x ExtendedState ExtendedState x ExtendedState

1 i 1

n
StatemXStaten StatemXExtendedState ExtendedstatemxExtendedStaten

1 | |

State XStatep StateTTXExtendedStatep ExtendedstatewxExtendedstatep

1 1 1

State*xState* State*xExtendedState* ExtendedState*xExtendedState*

1 1 1

[e=] oo oo co oo o0
State xState State xExtendedState ExtendedState xExtendedState

For the semantics M,I-M11 in section 2.1 we have

=
~J
~ l‘ -
= z:%mafzk— ==
1
=
o

-
=]

—_
-

These transformations of relational semantics can be useful
when different semantics are appropriate for different parts
of a programming language - M1 might be appropriate for simple
language features, while M10 might be suitable for more compli-

cated features.

6.2 Comparison of Functional Semantics

In this section the embedding theorem is used to give transfor-
mations between functional semantics. First we note that power
domain semantics and relational semantics M1 can be transformed

into one another because

34

s' € f(s) .=. R(s,s')
gives the mutual embedding
S -» Subset of S)— Subset of SxS.

Next we note that a relational semantics M1 can be transformed

into a forward and a backward predicate transformer semantics

because
R(s,s') .=. s'eF({s}) s'€eF(P) .=. (3Is€P)R(s,s')
R(s,s'") .=. s€B({s'}) s€B(Q) .=. (3s'€Q)R(s,s"')

both give embeddings for
Subset of S$xS —(Subset of S - Subset of S

Warning
This transformation to a backward predicate transformer semantics
should be used with care, because a more natural semantics is

given by s€B(Q) .=. (¥Vs')(R(s,s') o s'€Q).

Predicate transformer semantics can be transformed into
continuation semantics because taking A = (true,false) gives an
embedding

Subsets 0of S —(S - A

To get a result about oracular semantics, we need an "undefined"

element S in order to define the embeddings

f(syn) = if {s' | r(s,s")} has fewer than n elements

then s0 else n-th element of Q

for Subset of 5xS —(SxQOracle = §S.

35

I.et us summarise our results for the functional semantics

in section 2.2 in a schema
Myg H My —C My —(My

M15

6.3 Comparison of Set Semantics

In this section the embedding theorem is used to give information
about transformations between the set semantics in section 2.3.
The embedding "Event Sequence —(Event Tree —(Event Trace"

gives
Event Sequence =—(Event Tree =(Event Trace.
We have the trivial embeddings

Event Sequence —(Event Sequence x Accept x Refuse

Event Tree —{ Past x Future

and [B2] gives a transformation between most Accept-Refuse
semantics and Event Trace semantics. A mutual embedding for Event
Trees and Resumption semantics is given by identifying resumptions

with tree vertices and agreeing on:
(e,r') € r .=. edge labelled e from r to r'

For the semantics M16_M23 in section 2.3 we have

M3 Hfﬂ — f18
Mig —{ Mg —L Myg

Ll

M21 M22

36

From [W1] one can infer that most event trace semantics

can be transformed into event tree semantics.

6.4 Translations and Implementations of Semantics

It is natural to say that a semantics 32:P2»M2 implements

a semantics 31:P1—>M1 when 81 can be recovered from 32.

v v
M, «—— M

From the diagram we see that a suitable criterion is:

81 = d 032 ¢ e for some e:PT—>P2 and d:M2+M1. This definition is
more general than most definitions of implementation of data
types, but slightly less general than that in [M1]. But why

have we introduced the idea of one semantics implementing another?
The answer is that the natural semantics for part of a complex
programming language may be very different from the natural
semantics for another part of the language; implementing one

semantics by another is a useful way of merging various semantics.

Examgle

The natural definition of the expression part of most languages
is given by a semantics 31:E+(Sev), but this semantics can be
implemented by a semantics SZ:Ea(S+VxS) to allow for expressions

with side effects.

ExamEle

The formal definition of sequential ADA [] is given by a con-
tinuation semantics 31:PA{C+C). Because C = S-A and the domain A
is never specified, the continuation semantics can be implemented
by a semantics SZ:Pa(SﬂS). It is much easier to define the

parallel features of ADA by extending 52, rather than 81.

37

Suppose semantics, S1 and 52, are transforms of one
another. By the lemma in section 6.1, S1 implements 32 and
82 implements S1. Another particular case of semantic imple-
mentation is given by the canonical presentations in section 4:

a semantics S,:P»M is defined as the composition of a translation

e:P-Diagrams ;nd a semantics SzzDiagramseM.

This report is just a small beginning in the study of com-
parative semantics as further investigation of transforms, trans-
lations and implementations should illuminate practical problems
just as much as the study of abstract data types has illuminated
the practical problems of modularity in programming and specifi-

cation languages.

38

7. THE MINILANGUAGE BED

In this section we introduce a minilanguage BED as an aid in
comparing the many ways of giving meanings to programs. Real
programming languages are not suitable for comparing semantics,
because the advantages and disadvantages of the various seman-
tic methods are obscured by much irrelevant detail. The
published semantics of more compact languages like CSP give
a better basis for comparing various ways of giving meaning to
programs, but every existing compact minilanguage omits some
important but semantically challenging language feature. In our
minilanguage (test-) BED we focus on such semantically challen-
ging features and ignore well understood features like block
structure, scoping, expressions and their side effects.

The syntax of the minilanguage BED is given in figure 7.1,
while the rest of this section is devoted to the description

of the formal semantics in figures 7.2, 7.3, 7.9.

<command>::=<identifier>:=<identifier>|pause|delay<command>.

| loop <command>.

lexit when <command>.

| <command>; <command>

|either <command> or <command>.
|both <command> and <command>.
|call <identifier>

|accept <identifier> do <command>.

Fig. 7.1 BED syntax

In our informal description of the intended meaning of BED com-
mands we assume an unlimited supply of identifiers and a map

STORE which takes

39

- each identifier into a value and an action

- the reserved identifiers, external and internal,

into the improper value and improper action.

The assignment command "2:=r" has the usual meaning when £ and

r are not reserved identifiers; the value of ¢ is changed to the
value of r. The assignment "f:=external" inputs some value to &

from the context; the assignment "external:=r" outputs the wvalue
of r to the context; the assignment "f:=internal" gives a random
value to £&; the assignment "internal:=." gives the value of ¢ to
all unreserved identifiers.

The execution of a BED command C begins with a control point

before the command; during the execution there may be zero, one

or many control points before subcommands of C; if the execution
of C terminated, it ends with a control point after C. Every
execution of an assignment command consists of one step in

which a contrel point moves over the command. The execution of

a pause command may have several steps in which a control point
rests before the command. Every execution of the command "delay C."
is like an execution of C but it may have several steps in which

a control point rests before a subcommand of C.

Sometimes the execution of a BED command is futile in that
it makes no change in the values and actions associated with
identifiers (pause is always futile, and "%:=r" is futile when
2 and r have the same value). This possibility allows us to avoid

conditions in BED; we can define the meaning of exit when C. as:

leave the enclosing loop

if and only if executing C is futile.

The command "loop C end." has the usual (ADA) meaning: repeat the

execution of C until exit is possible.

Let us turn to the BED distinction between sequencing,
nondeterminism and parallelism. The executions of "C1;C2" are
the executions of C1 concatenated with the executions of C2.
The executions of "either C1 or C2." are the executions of C1,
together with the executions of C,- The executions of "both <4

and C2." are the executions of C1 synchronized with the execu-

40

tions of C2 by a matching rule. The BED matching rule is like
the CSP and ADA rendezvous rules: executions can be interleaved
except that an entry call must be synchronized with an accept
command for that entry.

The accept command is the BED way of declaring an entry
or procedure; the meaning of "accept p do C end" is: assign the
command C as the action of identifier p. The call command is the
BED way of activating an entry or procedure; the meaning of
"call p" is: obey the action associated with the identifier p.
The BED distinction between procedures and entries is syntactic;
the command "call p" is a procedure call if it is nested within
a block containing an accept p command, otherwise it is an entry
call. The command "both C, and C, end" in some block B introduces

C1 and C2 as subblocks nested within B.

Examples
In the appendix we give a relational, function and set meaning

to the following BED commands
(1) delay 2L:=r.

(2) both L:=r and pause.

(3) eithexr L:=r or f:=4.

(4) exit when either L:=r or 2:=4%..

(5) loop either f:=r or f:=%..

(6) loop exit when either L4:=v or Ls=L...

{7) accept Q do &4s=r.5; call QO

(8) weither accept Q do L:=r. or accept Q0 do Li=L..; call O

(9) both accept Q do f:=r. and accept Q do Li=d «+} call 9

(10) both accept 0 do &:=r. and call Q.

(11) both either accept Q do f:=r. or accept Q do %:=%.. and call Q.

(12) both both accept Q do f:=r. and accept Q do %:=2.. and call Q.

(13) accept P do pause.;
both loop call Q; exit when call P..

and accept Q do external:=internal..

41

Commands (4)-(6) illustrate exit and loop, commands (7)-(8)
illustrate procedure calls, and commands (10)-(12) illustrate
entry calls. Because call P in command (13) is accepted by an
outer block command, it is a procedure call; because call Q
can only be accepted by a parallel inner block, it is an

entry call.

Do not worry if the informal semantics seems vague and
imprecise, in spite of the fact that it has been formulated
with great care. The main aim of formal semantics is to replace
vagueness with precision. This paper will not have been in wvain
if it convinces the reader that there are many equivalent formal
ways of presenting the semantics of a programming language, once
the vagueness of an informal semantics has been resolved in the

mind of the language designer.

7.1 Relational Semantics for BED

In this section we give an M1—semantics to BED. Since we want
the meaning of a BED command to be a relation on states, the
first step is to define the set of states. The natural choice

is the set of functions from identifiers to value-action pairs:
States = Identifiers - Values x Actions

Having made this choice, we have the functions

Fetch Value(r,s) first component of s(r)

Fetch Action(r,s)

second component of s (r)
Ais 1f i#% then s (i)
else <n, Fetch Action(%,s)>

Store Value(n,%,s)

Store Action(c,%,s)= Ai. if i#2 then s (i)
else <Fetch Vvalue(%,s),c>

These functions can be converted to relations in a way that

captures the special role of the reserved identifiers

42

” L B =. (Fetch Value(r,s)=n)v(r=external)v(r=internal)
5 £ > C =, (Fetch Action(r,s)=0C)
SV

n,%,s ——=s'

. (L=external & s=s')
v(f=internal & Spread(n,s)=s')
v(2#external & fL#internal & Store Value(n,#,s)=s')

b . (Store Action(C,%,s)=s")

cC,%,s >s!

where Spread(n,s) = Xi. if(i=external v i=internal) then s(i)

else <n,Fetch Action(i,s)>

Now we can give the meaning of an assignment command by the

proof rule

r,;s -EEL>11 o wiw D ers SV > s’
R:=1r,s >g!
where ... separates the premisses of the rule.

There are no premisses in the two proof rules for the BED

pause command:

pause, s > S pause,s > pause,s

There are three proof rules for the delay command

C, s8-8 C,s-»C',s'

delay C.,s-s' delay C.,s»delay C'.,s' delay €.,s-»delay C.,s

but a useful convention allows the first two rules to be

combined

C,s-»[C',]s'
detay C.,s-»[délay C*.,Is'

43

This convention can be used to combine two of the proof rules

for the BED loop command:

C,s=>[C',]s"
loop C.,s=[C';] loop C.,s’

The other two proof rules for loop commands

failure; [C';] loop C.,s=s

use a pseudo command "failure" that is introduced by the proof

rules for exit commands

s —§—>s' s S=g! s —£L>s'...s#s'
exit when C.,s-»failure,s exit when C.,s-s

These two rules use the state relation —£L> that is the meaning
of a command C; the proof rules we are gathering define this
relation recursively.

Let us turn to the semantics of sequencing nondeterminism
and parallelism in BED. The proof rules for the sequencing

command are easy:

€l 1e
Cl1;C28+[or;]C2 . 8"

The proof rules for the choice command are also straightforward:

Cc1,s-[C',]s’ C2,Sﬁ[C',]S'

either C1 or C2.,s-[C',]s' either C1 or C2,,s-»[C',]s’

Parallelism is more tricky, and we need syntactic distinctions
like our earlier distinction between procedures and entries.

One can define a syntactic predicate, Freel(C), for "the first
subcommand of C is not an entry call or accept" and introduce

the proof rules

44

Cl,s=[C',]s'" ... Free{(C1)
both C1 and C2.,s»[both C' andlC2[.],s’

C2,s-»[C',]s'" ... Free(C2)
both C1 and C2.,s-»[both] C1 [and C'.],s'

One can also define a syntactic predicate, Match(C1,C2) for

"the first subcommand of C1 is an entry call and the first

subcommand of C2 is an accept of the same entry". This predicate

is used in the rules

Cl,s-»[C'",]s' ... C2,s8'-C",s" ... Match(C2,C1)

both C1 and C2.,s-[both C' and]lC"[1,s"

C1,s->[C',]s" ... C2,s8'"»s" ... Match(C2,C1)

both C1 and C2.,s-[C',]s"

Cl1,s'-C",s" ... C2,s=[C',]s"' ... Match(C1,C2)

both C1 and C2.,s-»[both C" and C'.],s"

Cl,s's»s" ... C2,s>»[C',]s' ... Match(C1,C2)

both C1 and C2.,s->[C',]s"

Note how the rules force entries to be accepted before calls,

while also enforcing the call and the acceptance to take place

in one single rendezvous step. Because of this subtlety the proof

rules for the remaining BED commands are surprisingly simple

p,s FA>C v 4 i s—gés' s A>s'
call p,s-s' accept p do C.,s-s'
Example

Consider the three block BED command (13) in the last section.

Assume SO,S1,S2,S3 satisfy:

45

SA

(1) pause,P,s, > s,

(2) external := internal,Q,51 SA‘>52

(3) external := internal,52 > s,

(4) pause,s; —> s,

Appropriate proof rules give

(5) accept P do pause.,s; —>s, —-— EHEGH 1)
(6) accept Q do external := internal.,s1 —>s, -~ from (2)
(7) call Q; s, >s3 == from (3)
(8) exit when call P.,s3 ———->failure,s3 == from (4)
(9) call Q; exit when call P.,52 ——>exit when P.,s3 -= from (7)

(10) loop Q; exit when call P.,52

~+ exit when call P.; loop call Q; exit when call P..,s3

-— from (9)

(11) both loop call Q; exit when call P..

and accept Q do external := internal .18,

- exit when call P.; loop call Q; exit when call P..,s3

-— from (6,10)
-» failure; loop call Q; exit when call P..,s; -— from (8)
—>S3
Corresponding computation has four steps - (5) and the three
steps in (11) - and the proof shows that 5 and s; are in the

relation that is the meaning of the BED program.

Presumably one is only interested in the input-output behaviour
of the program, but this can be extracted from the assignment
steps which use the reserved identifier external. The only such
assignment in our computation is explicit in (3) and implicit in
(7,9,10,11), so our program has no input and outputs a random value.

m}

46

The formal relational semantics for all of BED is given
in Figure 7.2. ExXtracting the input-output behaviour of a pro-
gram from its relational meaning is an obscure process. There
is another problem, which we have glossed over - the syntactic

predicates, Free and Match, use the notion of "first subcommand”,

but what is the first subcommand of "both C1 and C2." and
"either ¢, or C2."?
B Fv.)n .. N, 4,8 SV > g
:= r,s-s'
pause,s-[pause,ls
C,s=[C',]s! .
delay C.,s»[delay C'.,ls’ delay C.,s»delay C.,s
C,s»[C',]s"
loop C.,s+[C';]loop C.,s" failure;[C;]loop C.,s-s
s —E—>s' -k s =gt «.. S¢s’
exit when C.,s-»failure,s exit when C.,s-»s'
C1,8+[C",]8"
c1:Cc2,s-»[C';]C2,s'
Cc1,s-[C',]s' C2.s->[C',]s"
either C1 or C2.,s=»[C',]s’ either C1 or C2.,s=[C',]s"'
Rules for "both C1 and C2 end" are in the text.
P,S Ea D e w s B —£L>s'
call p,s-s'
C,p,s >s'
aceept p do Q. ys»s’

Fig. 7.2 Relational Semantics for BED.

47

7.2 Functional Semantics for BED

In this section we shall describe an M15—semantics that gives
an oracular function as the meaning of every BED command.

These function meanings belong to
Oracle x State - Oracle x State

where Oracle = (T,F)* and State was defined in section 7.1.
The oracular function for the BED assignment command could be

presented as

Vsn
sv

f2:=r]] (w,s) = (w,s') where r,s

>g'!

and n,4%,s

but we prefer a neater way of presenting complicated functions

[S]. The basic idea is that functions operate on argument streams

and complicated functions can be built from simpler functions

using combinators like

E1gly, «or Yopqr¥e «o0 X)) = (o2 ool 2g)
where f(xk x1) = (yR
and g(yn L y1) = (zn 5§

The functional meaning of the assignment command can now be

presented by

where

FV r (w s) = if (r=external v r=internal)

™ F w' in (w',s,m)

then let w
FvV

> n

else let m unique n such that r,s

in (w,s,m)

N
-

48

zAld >g'.

and SV & (s,n) = unique s' such that n,%,s

The non-determinism in the BED pause command is resolved

by consulting the oracle:

[pausel = PEEK(ID,[pausel)

where
PEEK(f,qg) (Tw,s) = £ (w,s)
PEEK (f,q) (Fw,s) = g(w,s)
and ID(w,s) = (w,s). The combinator PEEK is also used in the

function for the loop command

[loop C.I = ENTER | [l | LEAVE | PEEK(ID,[loop C end]

where
LEAVE(T,s,w,s') = (Tw,s)
LEAVE(F,s,w,s') = (Fw,s')
and ENTER (w, s) = (F,s,w,s).

The meaning of the loop command is complicated by the fact that
exit commands cannot force exit from the loop. The functional

meaning of an exit command is
[exit when C.] = ENTER | [c] | FUTILE

where

FUTILE (b,s,F,s',w,s") = if s'#s" then (b,s,w,s")

else if b=F then (T,s",w,s")

else (T,s,w,s")

Note how close our functional presentations are to the code a BED

compiler might generate.
Let us now turn to sequencing, nondeterminism and parallelism

in BED. Sequencing is easy

49

[c1;c2l = [c1l ([c2]
and choice is also straightforward
Teither C1 or C2.1 = PEEK([c1l,[c2])
Parallelism is much more tricky, because commands have to be

divided into the "first subcommand" and the "rest".
Consider the ccommand "both C1 and C2." when C1 satisfies

the syntactic predicate Free. In this situation the appropriate

function is

f1 = if Free(c1) then [First(C1)]|[Rest1(both C1 and C2.)lelse UNDEF

where UNDEF is the never defined function. The function

£2 = if Free(C2) then [First(C2)]|[Rest2(both C1 and C2.)l else UNDEF

is appropriate for the situation when C2 satisfies the syntactic
predicate Free. If C1 and C2 satisfy the syntactic predicate
Match, then the function

g = if Match(C2,C1) then [First(C1)I|[First (C2)]|[Rest (both C1 and C2.

else if MATCH(C1,C2) then

[First (C2)]|[First (C1)]|[Rest (both C1 and C2.

else UNDEF

is part of the functional meaning of "both C1 and C2.". If we

consult the oracle to choose between our three functions we get
[both C1 and C2.]] = PEEK(g,PEEK(f1,£2))

This technigue gives the functional meaning of the BED delay

command as

[delay C.] = PEEK([First(C)]|[Rest (delay C.)1,[(delay C.1)

)1

50

The definition of the syntactic predicates - First, Rest1,
Rest2, Rest - is just as problematic as the definition of the
predicates Free and Match.

The functional meaning of the BED call and accept commands

is given by

[fcall PI = FA P
Taccept P do C.] = SA P C
where
FA plw,s) = let C' = unique C such that p,s —EEL> C
in [C'] (w,s)
SA p C(w,s) = 1let s' = unique S" such that C,p,s “EEL}S"
in (w,s")
Example

Consider the three block BED command (13) in section 7. For the

first command we have the function

[accept p do pausell = SA p pause

For the first inner block we have the function

f = [loop call Q; exit when call P.]

= ENTER | [call Q; exit when call P.]| LEAVE | PEEK(ID,f)

= ENTER | [call Qfl|[exit when call P.]|LEAVE | PEEK(ID,f)

= ENTER| FA Q | ENTER | [call P] | FUTILE | LEAVE | PEEK (ID,f)

= ENTER| FA Q | ENTER| FA P | FUTILE | LEAVE | PEEK(ID,f)

For the second inner block we have the function

[accept Q do external := internal.]

[le]
1l

SA Q external := internal

a1

Because the inner blocks are executed in parallel, complications

arise. We need the functions

Fh
]

ENTER | SA Q external := internal | FA Q

Hh
I

ENTER | FA P | FUTILE | LEAVE | PEEK(ID,f)
in order to express the function f3 for the parallel command

£, = PEEK(f1] f. ,PEEK (UNDEF , UNDEF))

3 27

The meaning of the whole program is the function

SA p pause | £,

The formal functional semantics for all of BED is given in
figure 7.3. It has the same disadvantages as the relational

semantics in figure 6:

- intricate syntactic predicates and functions are
left undefined

- extracting the input-output behaviour of a program from

its functional meaning is an obscure process.

[2:=r] = FV r | SV ¢

[pausel = PEEK(ID,[pause])

[delay C.I = PEEK([First(C)]]| [Rest(delay C.)],[delay C.])
[loop C.1 = ENTER|[CI |LEAVE | PEEK(ID,[loop C end])
lexit when C.] = ENTER|[C] | FUTILE

[c1;c2l = [c1] | [c2]

[either C1 or C2.] = PEEK([C1],[C2])

[both C1 and C2.] = function in text

[call pl = FA p
faccept p do C.] = SA p C

Fig. 7.3 BED Functional Semantics.

52

7.3 Set Semantics for BED

In this section we shall describe an M18~semantics that gives

a labelled event system as the meaning of every BED command.

A labelled event system consists of a set E, a function £:E-L
and a family F of subsets of E. The subsets of E in F are called

configurations, and they are partially ordered by set inclusion.

We shall follow [W1] and present labelled event systems by covering

diagrams with an edge from configuration y to y', if and only if
Y'EF & vy cyliol vy o=y

The labelled event systems for the BED commands "f%:=r",
"pause", "call P", and "accept P do C" are given in figure 7.4.
We see that the configurations of the system are given by labelling
the empty configuration with ¢ and the covering edge from Y to y'!
by the labels of the events in the set y'-y.

Events Labels Configurations Covering diagram

1 Lr=r 9, {1} o 2TE (.

1,2,3.7 1 o, {1},12} o —(——

1 call P ¢, {11 ® _call P

1 accept P do C ¢, (1} ¢ accept P do C T

Fig. 7.4 Event System for four BED Commands.

53

The meaning of the command "either C1 or C2." is the sum
of the labelled event systems for C1 and C2. The event system
<E1,IH,R1> + <E2,Fb,22> has E,UE, as its set of events, ﬂ UFZ
as its set of configurations, and 2(e) = 1f e in E1 then 21(e)
else £2(e) as its labelling function. Note that no Cl-event is a
C2-event, so this definition of + is adequate and we avoid the
minor complication of having to separate E1 and E2 when they are
disjoint.

The meaning of the command "both C1 and C2." is the product

of the labelled event systems for C1 and C2. Suppose the event
system <E1,F1,21> @ <E2,F2,22> has E11JE2 as its set of events,
{Y1Uy2| Y1€F1,Y2€F2} as its set of configurations, and

2(e) = if e in E, then %,(e) else %,(e) as its labelling function.

If we accept the1doctrine "events o% concurrent processes can be
interleaved freely", the combinator e can be used for the product
of event systems. In figure 7.5 we show how the combinator o gives
the meaning of the BED command "delay C" as the product of the
event systems for C and pause. The reason why "delay C" and

"both C and pause." have the same meaning is that there is no

possibility of a rendezvous between C and pause. Suppose we define

s Al DR 5 Rl 4 Events TR0 W L LN LI,
NN
('T(g cz‘(' . Labels i L0209 , ok
\\\\ Configurations {yU[n]|+y is configuration of C}
(0] = {1:2434:. 0}

Fig. 7.5 Event System for "delay C".

54

<E,F,%> = <E1,FT,£1> R <E2,F2,22> by

(1) 4if eEIE1UE2 does not have a rendezvous label, then e € E;

(2) 1if e1EIE1 has the rendezvous label call p and e, € E2 has

the rendezvous label accept p do C., then <e1,e2>€E has the

label rendezvous C.;

(3) 4if e, €E, has the rendezvous label accept p do C. and

e2€ E2 has the rendezvous label call p, then <e1,e2>EE has

the label rendezvous C.;

(4) the events in E are given by (1), (2), (3);

(5) a subset y of E is in F if and only if w1(E)€ F1 & WZ(E)E F2
where

e1€ w1(y) .=, e1€E1 & (e1€ Y v 3e2.<e1,e2> €v)

e, E'ﬁz(y) .

. e2€;E2 & (e2€ YoV 3e1.<e1,e2>€~ﬂ

How can we remove events with label rendezvous C. from <E,F, 4>

to get the product event system <E1,F1,21>X<E2,F2,22>?

The meaning of the BED command C is an event system <EO,F0,£O>
and we can replace the events <e rey> by <egreq,e,> where

e, €E,. For a subset v of E to be a configuration of the product

0 0
we must also have

{eg | <egreqgre,> €Y} € F

for every <e1,e2> in vy.

55

o 89 =2 &z,
acceEs \\\\\\\éa\\
¢ ~ @
\ go 1=
L7 %
9 aM

rendezvous f:=r

[accept Q do 2:=rJe[call Q]

[accept Q do fL:=r]®[call Q] o (©
faccept Q do f:=r]x[call QI [0 il (®

Fig. 7.6 Three Event System Combinators.

The meaning of the command "C1;C2" is the composition of the
labelled event systems for C1 and C2. The event system

<E1,F1,£ > @ <E2,F2,£ > is the same as <E1,F1,£1>0 <E2,F2,22

1 2
except that configurations incorporate sequencing

>

- a subset Yy of E, VE, is a configuration if and only if
YGF1 or y = Y1lJy2 for some YZELFZ and some terminal

Yy €F,

How can we remove procedure calls from <E1,FT,£1> ® <E2,F2,22>
to get the event system <E1,F1,21> : <E2,F2,22>? Suppose e2€iE
with the label call Q occurs in a configuration y = Yq U Yo-

2

If there is no event labelled accept Q do C. in Yqr €, cannot be
relabelled; if there is a last event labelled accept Q do C. then
the event e, can be replaced by the event system for C, just as
events with label rendezvous C were replaced; if there are
several last events labelled accept Q do C. then the event e, can
be replaced by the sum of the event systems for the C in these

last events labelled accept Q do C.

56

6 accept Q do %:=r ¢ call Q

laccept Q do 2:=r.]@lcall QI (0

accept Q do f:=r 7 Li=1

-

[accept Q do L:=r.l;0lcall QI ¢

[either accept Q do f:=r. or accept Q do pause.l@lcall QI

call Q {

accept Q do %:=r- :

%(22l 9 (.

[either accept Q do %:=r. or accept Q do pause.];[call QI

 accept g0 BiZtil—
6

— T T,
accept Q do pause. ({ (

¢

[both accept Q do 2:=r. and accept Q do pause.] @lcall QI

[both accept Q do %:=r. and accept Q do pause.];[call QI

£ Qdo k:7Y: (_accept g 4. a
¢> ”’:C/C’GL_’_/—'/’(= Q do pau‘s « =X t-
——=_Pause, , :=X-
ac //”"'(e
—-—-C:_?_P_i:‘_ Q _d‘_‘q %. 3 Q 51.9_ Q’:_'_‘r.

accept

Fig. 7.7 Event Systems for Sequencing Commands.

57

We have used the notion of a terminal configuration in
a labelled event system without defining it. We want terminal

configurations to be different from maximal configurations because

- any configuration of the event system for pause should

be terminal;

- any configuration of the event system for delay C. should

be terminal, if it contains all the events for C;

- maximal configuration in the event system for exit when C.
should only be terminal when the execution of C is not
futile.

When we define the meanings for BED commands in Fig. 7.9 the
terminal configurations will be specified precisely. The event
system for the command exit when C is the same as that for C but
some of the terminal configurations of [C] may no longer be termi-
nal. This distinction between the event systems for C and

exit when C is crucial to the meaning of loop C' end. The equation

[loop C¢'.l = C'; [loop C'.]

usually gives an infinite event system for loop C' end, but

we are only interested in the maximal configurations given by

the nonterminal configurations of C'.

[loop either g:=r or g:=% ..] 2 < |
w Q.."//
(' ‘e:::-
\2
(.
[exit when either fL:=r or f%:=%] p AL 5
— £,
w
(.
[loop exit when either f:=r or 2:=1] ;;:r (- j"q (
Se e
(© (o

Fig. 7.8. Event Systems for Loop and Exit Commands.

58

[€1gC2]

[accept P do C.]

[g:=x] = 227F
[pause] = ——(©
[delay C.1 = [C]
[locp C.1 = [C]

[exit when C.J] =

= [c1l

L R .

x [pausel ——

y Lloopg €l s -—

[cl e

[c2] e

[Ieither C1 or C2.1 =[C1l+[cC2] -

[both C1 and Cc2.1 =[c1lxIcz2] -—
[call pl .il]:_ﬂ_(©

accept P do C

® indicates terminal configqu-
ration

all configurations terminal

configuration is terminal iff
projection on [C] is terminal

maximal configurations are
terminal

configuration is terminal
iff its events change the state

configuration is terminal
iff projections on [C1land
[c2] are

configuration is terminal
iff it is terminal in C1 or C2

configuration is terminal
iff projections on [C1] and
[Cc2]lare

Fig. 7.

9 Set Semantics for BED Commands.

59

7.4 Diagrams for BED Commands

The relation, function and set semantics for BED are inter-
connected. In this section we specify a diagram for each BED
command and describe how the diagram is reflected in the three
semantics. The diagrams for the four primitive BED commands are
given in Figure 7.10. Unravelling these diagrams gives the

event systems in Figure 7.4; assigning relations to the move

labels gives the relational meaning of the four commands; assigning

functions to the labels gives their functional meaning.

Command Diagram

L:=r 0 —&ii£—>)

pause % > oo

call P 0 _Eél&;be oo
accept P do C. 0 accept P do C "

Fig. 7.10 Diagrams for four BED commands.

The diagram for the command "either C1 or C2." is the sum
of the diagrams for C1 and C2. If the diagram D1 has the moves
M1 and configurations S1, and the diagram ﬂz has the moves M2
and configurations 82, then the diagram D1+D2 has the moves
M1 U M2, and configurations S1U 82 - provided that the start
configuration in S1 is identified with the start configuration in
S2. Each of the diagrams for a BED command has a unique start
configuration 0, reflecting the fact that the event system for
each BED command has a unique start configuration ¢ (see figures
in last section). Unravelling the sum of the diagrams for C1 and
C2 gives the event system for either C1 or C2. Figure 7.11 shows
how the relational and functional meanings of either C1 or C2.

come from the command's diagram.

60

Moves in diagram :

Relational meaning:

Functional meaning:

(1) i -5 3 in C1
(2) k -Bs 1 in ¢2

Cl,s —>> [c',]s"

either C1 or C2,.s = [C',]s"

(1)

c2,s £ [c',1s"

either C1 or €C2.,8 = [C";]8"

(2)

(1) [either C1 or C2.](Tw,s) - [C1] (w,s)

(2) [either C1 or C2.](Fw,) - [C2] (w,s)

Fig. 7.11

Meanings of either C1 or C2.

The diagram of the command "both C1 and C2." is the product

of the diagrams for C1 and C2. If the diagram D1 has moves M1

and configurations S1, and the diagram 02 has moves M2 and con-

figurations S2, then the diagram D1XD2 has the configurations

S1xS2 and the moves given by

5 B e oy i X o & .
- igxi, ———>j1x12 when i, ———>31 is a move of D1 and o is

1

neither gcall P nor accept P do C.;

P B o 4 ; B o 4 .
1yxi, —>1,x3, when i, —>J, is a move of 02 and o is

neither call P nor accept P do C.;

. . rendezvous C . . ; call B .

i.x1i > J,%j, When i, ————————>j_. is a move
172 . 1°-2 1 1

of D, and i, gcpepe 9o C'>j2 is a move of D,;

) rendezvous C > 3,xj, when i accept P do C. >3
172 17-2 1 1

is a move of D1 and 12 —99££~E—>j2 is a move of 92.

Fig. 7.12 shows how the relational and functional
meanings of both C1 and C2 come from the command's
diagram.

61

Unravelling the diagram of both C1 and C2. gives the labelled

event system [C1] & [C2] and substituting the event system of C

for the events with label rendezvous C gives the event system

for both C1 and C2.

Moves in diagram

Functional meaning

Relational meaning:

(1) igxi, -g———>j1xj2 from i, —9-—>j1 in [C1]
(2) igxi, i>j1xj2 from i, -5 j, in [c2]

. ; rendezvous C . .
(3) ixi, — >3 4x3,
(1) Cl,s » [C1',]s'... Free(C1)

both C1 and C2.,s =[both C' and]C2[.],s’
(2) C2,s » [C',]s'" ... Free(C1)

both C1 and C2.,s - [both]C1[and C'.],s'
(3) four rules in section 7.1.
(1) [both C1 and C2.] (FTw,s) = f1(w,s)
(2) [both C1 and C2.] (FFw,s) = fz(w,s)
(3) [both C1 and C2.](Tw,s) = g(w,s)

with the functions f1, f2,

g from section 7.2.

FPig. 7.

13

Meanings of both C1 and C2.

The diagram for the command "C1;C2" is the composition of

the diagrams for C1 and C2. If the diagram 91 has moves M1 and

configurations S1, and the diagram Dz has moves M2 and configu-

rations S2, then the diagram DT;DZ has moves M1UM2 and configu-

rations S1US2 - provided that each terminal configuration in

S1 is identified with the start configuration of S2.

Figure 7.14

shows how the relational and functional meanings of "C1;C2" come

62

from the command's diagram. Unravelling the diagram of "C1;C2"
gives the labelled event system [C1] @ [C2] and substituting

the event system of C for calls of procedures with body C gives
the event system for C1;C2 - as we saw in section 7.3 the details

of this substitution are tricky.

Moves in diagram : (1) i —=> >9 in C1

(2) k —£>1 in c2

Cl,s » [C',]s"
Cc1;Cc2,s » [C',]C2,s

Relational meaning: (1)

Functional meaning: (1) [C1;C2l (w,s) = [c2] ([c1] (w,s))

Fig. 7.14 Meanings of C1;C2

We have used the notion of a terminal configuration of a
diagram without defining it. If we defined a diagram configura-
tion j to be terminal when there was no move with source j, then
we would have problems with exit when C., pause and delay C.

If we introduce the convention that terminal configurations
are labelled =, figure 7.10 gives the diagram for pause. The
diagram for delay C. is defined to be the same as the diagram for

both C and pause. Unravelling this diagram gives the event system

for delay C and figure 7.15 shows how the relational and functional
meanings of delay C come from the diagram.

63

Moves in diagram : (1) ix0 ~g;>jxo from i —9—>j in [CI

(2) ix0 ——>ix0

where jx0 is o when j is terminal in [C]

Relational meaning: (1) ¢,8 - [c',]s"
delay C.,S » [delay C'.]S’

{2)
delay C.,S -» delay C.,S
Functional meaning: (1) Idelay C.I (Tw,s) = f(w,s)
(2) [delay C.I (Fw,s) = [delay C.] (w,s)

where £ = [First(C)] |[Rest(delay C.)]

Fig. 7.15 Meanings of delay C.

The diagram for exit when C is the same as the diagram for
C but their terminal configurations differ, and this difference
is crucial to the diagram for loop C. If we identify the terminal
configurations of C with the start configuration we get the dia-
gram for loop C. when we agree that the terminal configurations
are given by: no move has this configuration as source. If
one compares the diagrams for loop either f:=r or &:=%..,

exit when either 2:=r or f:=4.., and loop exit when either #:=r

or £:=%.. . in figure 7.16 with the event systems in figure 7.8,

one sees how diagrams for exit and loop commands unravel to the

appropriate event systems.

command moves in diagram
loop either f:=r or L:=%.. 0 2iFr g g =2,
exit when either f:=r or f:=%.. o isr oo Ri=f,
i i _ Lr=r L:=40
loop exit when either f:=r or f:=4.. 0 >0 0 360

Fig. 7.16 Diagrams for loop and exit commands.

64

One should not expect a close connection between the diagrams

for exit/loop commands and functional/relational semantics
because of the difference between static program text and its
dynamic execution. In sections 7.1 and 7.2 we captured this
difference by ad hoc devices, but we could have used fixed points,

continuations and other clean techniques in the literature.

The diagram, relational, functional and set semantics of BED
are rather intricate, but the language has complex features and

there are more examples in the appendix.

65

REFERENCES

[A]

[B1]

[B2]

[F]

[(M1]

[M2]

[M3]

[N]

[27]

[P2]

"Formal definition of ADA", CII Honeywell Bull, 1981, Paris.

J.D. Brock & W.B. Ackerman: "Scenarios: a model of non-
deterministic computation" in "Formalisation of programming

concepts", ed. J. Diaz & I. Ramos, LNCS 107 (1981), 252-259,

S.D. Brookes: "On the relationship between CCS and CSp",
ICALP 83 proc. LNCS 154 (1983), 83-96.

N. Franchez, C.A.R. Hoare, D.J. Lehmann, W.P. de Roever:
"Semantics on nondeterminacy, concurrency and communication",
J. Comp. Sys. Sci. 19 (1979), 290-308.

B.H. Mayoh: "Datatypes as functions", MFCS 78, proc. LNCS 64,
(1978), 56-70.

B.H. Mayoh: "A computational model for ADA and other
concurrent languages", DAIMI PB-162, Aarhus University 1983.

B.H. Mayoh: "Program models, meaning and proof", DAIMI PB-157,
Aarhus University, 1983.

M. Nivat: "Infinitary relations", CAAP 81 proc., LNCS 112
(1981), 46-75.

G. Plotkin: "A structural view of operational semantics",

DAIMI FN-19, Aarhus University 1981.

V.R. Pratt: "On the composition of processes", POPL 9 proc.,
ACM (1982), 213-223.

W.C. Rounds & S.D. Brookes: "Possible futures, acceptances,
refusals and communication processes", FOCS 22 proc.,
IEEE (1981), 140-149.

66

[s] R. Sethi: "Circular expressions: elimination of static
environments", Science of Computer Programming 1 (1982),

203-222.

[Wi] G. Winskel: "Event structure for CCS and related languages",
ICALP 82 proc. LNCS 140 (1982), 561-576.

[W2] G. Winskel: "Synchronization trees", ICALP 83 proc. LNCS 154
(1983), 695-711.

LNCS abbreviates "Springer Lecture Notes in Computer Science".
Because the literature on semantics is so large, many relevant

and important papers have not been referenced.

67

APPENDIX

For thirteen BED commands we will give a diagram and the relational,
functional and set meaning of each command. The command (1)

delay %:=r. has the diagram with the moves:

0 =" 30 , 0 30 , o ~t3

The set meaning of (1) is the event system with covering diagram

¢ —— (o —(e——
\\\&:=;>\\&::;\\\&j=r
(B Bl =t .

The relational meaning of (1) is given by the proof rules

r,s—EyLbn § e n,Q,s—gzé-s'

delay 2:=r.,s - delay f:=r.,s delay %:=r.,s -» s'

If neither ¢ nor r is a reserved identifier,

r,s —£§L>n.& n,4%4,s SV‘>s'

implies s'=StoreValue (FetchValue(r,s),%,s)

so the result of executing (1) from s is uniquely determined. The

functional meaning of (1) is

[delay f:=r.] = PEEK([R:=r] ,[delay R:=r.])

[2:=x] (w,s) = FV r SV | (w,s)

1

[delay f2:=r.] (Tw,s)

SV L(FV r (w,s))

[delay 2:=x.] (w,s)

il

[delay f:=r.] (Fw,s)

where SV & and FV r are the oracular functions defined in sec-
tion 7.2. Note that the diagram and the set meanings of delay C
allows for "waiting after C" but the relational and functional

meanings do not.

68

The command (2) both f:=r and pause. has the same diagram
and event system as delay f:=r. The relational meaning of (2) is

given by the preoof rules

both %:=r and pause.,s - both %:=r and pause.,s

FV >N e hels —Ezevs'

r,S

both f:=r and pause.,s - pause,s'

so (2) is different from (1) because it can "wait after %:=r".

The functional meaning of (2) is

[both %:=r and pause.]] = PEEK (UNDEF, PEEK ([2 : =x] ,[pause]))

[both %:=r and pause.] (FTw,s) = [2:=r] (w,s)

I

[both %:=r and pause.] (FFTw,s) [L:=r] (w,s)

[both %:=r and pause.] (FFFw,s) [both &:=r and pause.] (w,s)

[both %:=r and pause.] (Tw,s) = undefined

so it cannot wait after L:=r.

1

The command (3) either fL:=r or %:={. has the diagram

The relational meaning of (3) is given by the proof rules

FV SV

PN s, Bplys FV SV '

>s' 2,8 —>n .. n,%,s > S

r,s

either f:=r or f:=%.,s - s' either L:=r or %:=2.,s -» s'

69

and the functional meaning of (2) is

[either f:=r or f:=0.]] = PEER([&:=x],[2:=2])
[Leither L:=r or Li=k.] (Tw,s8) = [Li=r] (w.8)

[2:=2] (w,s)

I

[either ¢:=r or f2:=2.] (Fw,s)

Note how PEEK uses the oracle to choose between alternatives.

The command (4) exit when either 2:=r or %:=%.. has the

diagram

and the set meaning

¢ Li=r (©

L=

The corresponding relational meaning of (4) is given by the proof

rules

ip] >N .o N,L,8 5y

r,s > g

exit when either f:=r or 2:=%..,8-s'

exit when either f:=r or f:=4%..,s-»failure,s

The functional meaning of (4) is

[exit when either %:=r or 2£:=1]

= ENTER | PEEK([%2:=r],[#%:=%] | FUTILE

and the relational meaning of (4) is given by the rules:

70

EV SV v SV

r,s >n .. Nn,4%,s > S r,s >n .. n,%,8 >s'..s¥s’
(4) ,s»failure,s (4) ,s->s'

£,s £y >n .. n,%,s SV > s ,s Fy ST wa Nslss gy >s'..s#s!
(4) ,s»failure, s (4) ,s-s"

Note how these two meanings capture the remote possibility that
2:=r might be futile or 2:=% might not be futile. The diagram
and event system approaches can be modified to handle such possi-
bilities, but we have not done so because futility is just an
artificial way of avoiding the tests and conditions in real pro-
gramming languages.

The command (5) loop either f:=r or £:=L.. has the diagram

The relational meaning of (5) is given by the proof rules

[2:=x],s> s I2:=21,s->s"

{5).,8>(5),s' (5),s-(5),s' failure; (5) ,s-s

and the functional meaning of (5) is

[loop either Li=r or L&=L..]

= ENTER | PEEK([%:=rl,[2:=2]) | LEAVE | PEEK(D,

[loop gither f:=r or fL:=%..])

1

Note how these two meanings do not reveal the fact that loops
without exit commands are eternal.
The command (6) loop exit when either f:=r or f%:=4.. has

the diagram

and the event system

6 g (- Re=r P L:=xr [
\\&; \\&;=2 \\{;=2
0] O] O]

The relational meaning of (6) is given by the proof rules

:=Y
(]

L:=r],s » s [2:=2],8 = s

(6) ,s»failure; (6),s (6) ,s»failure; (6),s failure; (6),s-s
[2:=x] ys=»s' .. s#s' [2:=2],5 -».8"
(6) ,s»(6),s' (6),s~(6),s"’

and the functicnal meaning of (6) is

[loop exit when either ¢:=r or f:=¢..]

= ENTER|ENTER|PEEK ([2:=r] ,[£:=4]) | FUTILE|LEAVE| PEAK (ID, (6))

Note how the relational meaning introduces an extra "recognition
of failure" step in computations.
The command (7) accept Q do f&:=r.; call Q has the diagram

accept Q do f:=r.

call Q o

0 >1, 1

and the event system

accept Q do f:=r (* L:=r ,

¢

72

The relational meaning of (7) is given by the proof rules

=L > g Q,s'’ o > f:=r .. R:=r,s' - g"

L:=r,Q,s

(7),s » call Q,s' call Q,s' -» s

m

and the functional meaning is
faccept Q do %:=r.; call QI = SA Q L:=r | FA Q
Note how close the functional meaning is to the code a compiler

might generate from (7).
The command (8) either accept Q do &:=r. or accept Q do

L:=%..; call Q has the diagram

accept Q do f:=r. accept Q do 2:=1L. call Q S oo

57, 0 $1, 1

and the event system

The relational meaning of (8) is given by the proof rules

SA

L:=r,Q,s —>g Q,s' >R:=r..%:=r,s' > g"

(8) ,8s>call Q,s' call Q,s' - s"

SA L1 g,sr FA

L2:=8,0,s > f:i=R..8:=L,8"' » g"

(8) ,8»call Q,s' call Q,s' - s"

and the functional meaning is

[either accept Q do f:=r. or accept Q do #:=%..; call Q]

= PEEK(SA Q %:=r, SA Q L:=1) | FA Q

13

Note how the functional meaning reflects the diagram, not the

event system of (8).
The command (9) both accept Q do %:=r. and accept Q do £:=2..;

call Q has the diagram

accept Q do 2:=48 call Q -

accept Q0 do f:=r 52 9
I >

0 >1, 1

0 accept Q do %:=1% >3, 3 accept Q do f:=r 52

and the event system

accept Q do %:=r (- accept Q do £:=2 (ga=g -
¢
dCcCce t
Q do 2:=g (accept Q do f:=f , _f&:i=r o
" ((

The relational meaning of (9) is given by the proof rules

SB 5 g R:=2,0,5" 225

2:=r,Q,s
(9) ,s~accept Q dof:=L;call Q,s" accept Q do #£:=L.;call Q,s"" -»call Q,s'

SA
> g™ Ra=E ;0 8"" —E§~>s'

2:=2,Q,8
(9) ,s»accept Q do f:=r.,;call Q,s"™ acceptQdo %:=f.;call Q, s™ -»call Q,s'

0;8" E& . :=8 ... L:=0,5">s" Q,s' L >0:=r ... R:=r,s'-s"
call Q,s' -» s" call Q,s' -» s"
and the functional meaning is
[both accept Q do R:=r. and accept Q do L:=f..; call Q]

= PEEK (UNDEF,PEEK(SA Q %:=r|SA Q £:=%,SA Q £:=%|SA Q 2:=2)

|FA Q

Note that none of these meanings reflects the fact that (8) and (9)

have the same behaviour.

74

The command (10) both accept Q do f:=r. and call Q has the

diagram

1l
H

0 rendezvous £: S o

and the event system

L:=r

o (o

The relational meaning of (10) is given by the proof rules

%:=r,Q,s > g't Q,s' >:=r ... L:=r,s'sg"
accept Q do &:=r.,s-s’ call Q,s'-»g"

accept Q do f%:=r,s-»s'..call Q,s'»s" ... Match(call Q,accept Q do %:=r)

both accept Q do f&:=r. and call Q,s-s"

and the functional meaning is

[both accept Q do %:=r. and call Q.1 = PEEK(SA Q f:=r| FA Q,UNDEF)

where UNDEF = PEEK (UNDEF,UNDEF) is the always undefined function.
The command (11) both either accept Q do f:=r. or accept

Q do £:=4%.. and call Q. has the diagram

rendez 1= =
0 endezvous L:=r S w0 rendezvous £:=8 -

and the event system

The relational meaning of (11) is given by the proof rules

75

L:=r,Q,s —#s'...Q,s' —=>L:=r .. f:=r,s'-»s" .. Matchicall Q,accept Q do L:=r)

(11) ,s —» s"

L:=%,0,8 —>s'.. Q,s' > R:=0 .. f:=0,s'»s" .. Match(call Q,accept Q do R:=1)

(1lYy8 =% g'

and the functional meaning is

both either accept Q do %:=r. or accept Q do 2:=f£..and call Q.

= PEEK(PEEK SA Q %:=r|FA Q,SA Q 2:=9,{:FA Q) ,UNDEF)

One would expect the meaning of (11) to be similar to the
meaning of (12) both both accept Q do 2:=r, and accept Q do %:=%..

and call Q. because the meaning of (8) was so close to the meaning

of (9). This expectation is frustrated because both accept Q do

g:=r. and accept Q do 2:={.. deadlocks when Q is an entry. For

this reason (12) "jams".The diagram has no move, the event system
has ¢ as its only configuration, no proof rules apply, and UNDEF
is the functional meaning. A both command jams when either of its
components Jjams, but an either command only jams when both its
components jam.

To get a true impression of the advantages and disadvantages
of the various BED semantics, let us lock at the larger command
(13)

accept P do pause.;
both loop call Q; exit when call P

internal ..

and accept Q do external

This command has the diagram

accept P do pause

rendezvous external:=interna%,m o I S 0
r

0 > 1,1

because pause is always futile and exit when call P terminates

the loop. The set meaning of (13) is the event system

accept P do pause , external:=internal T -
{ (o (® {©

¢

76

The relational meaning of (13) was analyzed in the example in

section 7.1; it is given by the proof rules

SA

pause,P,s0 > sl

(13),sQ both loop call Q; exit when call P.. and accept Q do external:=internal..,sl

SA
external := internal,sl ——s2 .. external:=internal,sZ-s3

both loop call Q; exit when call P.. and accept Q do external:=internal..,sl

exit when call P.; loop call Q; exit when call Pia,83

pause,s3 - s3

exit when call P.; loop call Q; exit when call P..,s3

failure; loop call Q; exit when e¢all P..,s3

failure; loop call Q; exit when call P.., s3 = s3

The functional meaning of (13) was analyzed in the example in

section 7.2; it was

[13] = SA P pause | PEEK (ENTER|SA Q external:=internal | FA Q
| ENTER|FA P|FUTILE|LEAVE|PEEK (ID,f)
+ PEEK (UNDEF , UNDEF))

where f = ENTER|FA Q|ENTER|FA P|FUTILE|LEAVE|PEEK(ID,f) .

From the examples in this appendix we might conclude

- set semantics handles parallelism best, but it must be
completed by an assignment of a relational or functional
meaning to events;

- relational and functional semantics require clumsy syntactic
predicates;

- functional semantics is closer to code than relational

semantics, but it is somewhat more complicated.

