ISSN 0105-8517

A Discussion of Prototyping
within a Conceptual Framework

John Kammersgaard

DAIMI PB-169
December 1985

This paper was presented at the GMD/ACM/NCC/SERC Working Conference on
Prototyping, Namur, Belgium, October 1983. The proceedings of the conference will be
published by Springer Verlag.

A Discussion of Prototyping
within a Conceptual Framework

by John Kammersgaard
Computer Science Department
University of Aarhus, Denmark.

1. Summary
2. A Conceptual Framework
2.1 Basic Concepts
2.2 Fundamental Structures
2.3 Programmers
2.4 The Programming Process
3. Prototyping
3.1 Techniques
3.2 Programmers
3.3 The Problem Area
3.4 The Vision
3.5 The Machine and other Tools
4. Conclusions
5. Notes
6. Literature

1. Summary

In this paper the notion of prototyping is discussed. The first part of the
paper contains a presentation of a framework[1] used in this discussion.
A discussion of programming viewed as a social activity is complex and
requires an elaborated set of concepts by which we can express our opinions.
The framework provides us with a set of such concepts.

In the second part of the paper prototyping is viewed »through the
spectacles« introduced by the framework. This is done partly to express
more precisely what is meant by the term »prototyping«, and partly to point
out some problems that might rise if the prototyping-literature is used as
a guideline for programming. Finally some relevant ideas and experiences
from the UTOPIA-project are presented.

To sum up, the paper contains:
(1) A presentation of a framework to be used when discussing program-
ming.
(2) A demonstration of the strength of having a framework when
programming is discussed.
(3) A discussion of what is meant by the term »prototyping«.

(4) A presentation of some problems that might rise if the prototyping-
literature is used as a guideline for programming.

(5) A presentation of some ideas and experiences from the UTOPIA-
project.

2. A Conceptual Framework

Normally vague and unprecise terms are used in discussions of programming
and programming techniques. As far as we know, no coherent framework,
reflecting our world picture, exists for that purpose. In this section such
a framework is presented. The framework is based on a dialectical world
picture[2] expressed through the general concepts process and structure as
they are defined by Lars Mathiassen [Mathiassen].

2 2. A Conceptual Framework

The purpose of the framework is to create a richer language to be used
when discussing programming, by providing us with a set of concepts for
that purpose. Such concepts are useful when discussing how programming
is done in practice, as well as when discussing different programming
techniques.

2.1. Basic Concepts

To create a coherent framework, we base it on some basic concepts reflect-
ing our perspective of the phenomenon we consider. In this chapter we will
present the concepts process, structure, and function, and we will discuss
two different conceptualizations of concepts.

2,1.1. Process and Structure

Systems approaches[$] or process approaches[4] are often used as the basis
for describing a phenomenon. Both of these approaches lack the possibility
to consider contradictions as a central element. In dialectical thinking
contradictions are central. To be able to reflect that in our framework, we
introduce a process-structure approach considering contradictions between
processes and structures.

The concept process is used to characterize properties of a phenomenon
which we percieve as related to change; change in time and space, as well
as development or transformation.

The concept structure is used to characterize properties of a phenomenon
which we percieve as fixed and steady. We focus on the temporary stability,
at the same time maintaining that the percieved properties are changeable.

On the basis of these two concepts it is possible to choose two different
types of process-structure views on the relationship between processual and
structural properties of a phenomenon.

Focussing on some processual properties of the phenomenon, we can il-
lustrate that

(a) the process affects and changes inferior structures,

(b) the process may affect and change superior structures,

2. A Conceptual Framework

(c) the superior structures may limit and restrain the process.

These relationships are illustrated in fig. 1, where relation (a) is illustrated

by the paranthesis, relation (b) is illustrated by the arrow, and relation (c)
is illustrated by the broken arrow.

superior structures
[}

v

process (inferior structures)

fig. 1:Focussing on a process.

Focussing on structural properties we can illustrate that

(a) inferior processes are going on inside the structure,
(b) the structure is affected by superior processes,

(c) the structure may limit and restrain the superior processes.

Corresponding to fig. 1 these relationships are expressed in fig. 2.

2. A Conceptual Framework

superior processes

D
]
!
L]
]
structure (inferior processes)

fig. 2:Focussing on a structure

2.1.2. Function

In the framework programming is considered as a work process. Work
processes are carried out with certain intentions. This fact is expressed
by means of the intended function. A function is an abstraction that
expresses the intended result of one or more work processes, independent of
how the processes actually are elaborated and carried out. A work process
may contribute in carrying out one or more functions, and a function may
be carried out in one or more work processes.

2.1.3. Two Conceptualizations of Concepts

Concepts are central in a discussion of programming because concepts are
being realized during the programming process. We need a view on con-
cepts that reflects the fact that ambiguities exist in different interpretations
of a given concept.

Generally a concept is perceived by means of its extension, intension, and
designation.

The extension of a concept is the collection of phenomena covered by the
concept.

The intension of a concept is the collection of properties characterizing
phenomena in the extension of the concept.

The designation of a concept is a common name for all phenomena in the
extension of the concept.

2. A Conceptual Framework

Traditionally concept structures have been defined by means of Aristotelian
logic. In the Aristotelian view on concepts, the intension is considered as
a collection of properties common to all phenomena within the extension.
As a consequence of this view, concepts can be ordered hierarchically.
Furthermore the intension gives a complete definition of the concept, which
means that it is always possible to determine whether or not a given
phenomenon belongs to the extension of a concept.

The Aristotelian view on concepts does not correspond to empirical obser-
vations on human communication and language use [Larsen]. First of all,
it is not always possible to determine whether a phenomenon belongs to
the extension of a concept. Secondly, different phenomena are more or less
typical members of the extension of a concept, which means that different
members of the extension might have different intensions.

A good example is the concept vegetables. Is the phenomenon garlic mem-
ber of the extension of this concept? Probably biologists would say yes, but
how about a cook? He would never think of garlic as a vegetable but as a
spice.

These observations motivate another view on concepts where the intension
is thought of as a collection of properties not necessarily valid for all
phenomena in the extension. All that is required is that each property is
valid for some phenomena in the extension of the concept.

In this fuzzy view on concepts, determination of membership of the exten-
sion of a concept is based on assessment, which means that individuals can
percieve concepts differently.

The two views on concepts are not incompatible. On the contrary, the
fuzzy view is an augmentation of the Aristotelian view in the sense that
Aristotelian concepts are covered by the fuzzy view.

6 2. A Conceptual Framework

2.2. Fundamental Structures

A discussion of programming by means of the fundamental concepts process
and structure requires that we are able to identify and characterize some
fundamental structures related to the programming process. In this chapter
we will identify and describe some of these structures, namely

— the problem area,
— the techniques,

— the tools,

— the machine,

— the vision.

2.2.1. The Problem Area

Programming requires knowledge. A part of the required knowledge is
independent of the intended function of the product, e.g. knowledge about
computers, programming languages, operating systems, etc. Another part
of the required knowledge depends on the intended function of the product.
This second type of knowledge is denoted the problem area. Often the
product of a programming process is intended to be used to change parts
of an organization. In these cases it is valuable to be able to talk about the
object area as the part of the organization influenced by the change.

Thesis 1: The problem area is defined by one or more
functions carried out in the object area.

From thesis 1 follows that the problem area is expressed through technical
terms (concepts) related to the object area.

Concepts with relation to the problem area, which we denote problem-
oriented concepts, are important because some of these concepts are going
to be realized during the programming process. Problem-oriented concepts
are not necessarily Aristotelian.

2. A Conceptual Framework

2.2.2. Techniques and Tools

Guidelines for carrying out programming is, among other things, given by
means of techniques and tools [Mathiassen].

A technique indicates how a certain work process can be carried out. A tech-
nique focuses on the performance of a function; it ties knowledge about the
product to an understanding of how to carry out the process. Techniques
ignore to a great extent problems related to the context in which the process
is to take place (e.g. ressources, conflicts etc.). Introducing a new technique
means creating a new type of work process.

By this definition a programming technique is a guideline that ties
knowledge about programs to an understanding of how to carry out
programming processes.

Tools are facilities supporting work processes. Techniques make use of a
number of tools elaborated to support one or more subprocesses. Tools are
constructed as means to optimize work processes, which means that tools
are connected to one or more techniques.

Thesis 2: The development of techniques and tools
takes place in dialectical interaction.

Thesis 2 expresses that the construction of a tool requires a notion about
a technique as well as the introduction of a new tool leads to experiences
changing the foundation on which existing techniques are formulated.

2.2.%. The Machine

The machine is a special tool in the sense that we always use a machzne
during a programming process. By the notion machine we do not only
mean the physical machine(s). On the contrary, machine is a common
notion for the available hardware and software.

The machine is understood by means of concepts. Among these concepts
some can be interpreted automatically (i.e., executed). These concepts are
denoted realized concepts.

Thesis 3: Realized concepts are Aristotelian.

8 2. A Conceptual Framework

Thesis 3 points out the fact that a single unambiguous interpretation of
concepts realized on a computer exists.

Realized concepts are primarilly defined by the programming language(s)
used. A secondary source of realized concepts is existing programs (source
code) relevant to the programming process.

The machine can be more or less general in relation to the problem area.
The generality depends on the amount of problem-oriented concepts among
the realized concepts (i.e., the amount of realized, problem-oriented
concepts).

For many purposes, the so-called high level languages will lead to relative
general machines, whereas profession oriented languages [Nygaard] will
lead to rather specialized machines.

2.2.4. The Vision

As pointed out by Dahl and Hoare [Dahl et al.], programming means bridg-
ing a conceptual gap between a machine and a vision about program execu-
tions. Bridging this conceptual gap is done by developing realized, problem-
oriented concepts in a process where problem-oriented concepts are defined
in terms of realized concepts, thereby giving them an Aristotelian interpreta-
tion.

At any time the vision denotes our notions about program executions related
to the problem area. The wision is not fixed; it develops in interaction with
the development of descriptions of the wision as we permanently seek to
bring the descriptions and the wésion into correspondence.

Thesis 4: Ambiguities and conflicts characterize the vision.

Thesis 4 expresses, that normally no agreements on changes in the object
area exist.

Descriptions of the wision are important documents in a programming
process. A lot of different types of such descriptions exist (like “systems
requirements”, "systems specifications”, etc.). All of these are interesting
because of their effect on the wvision. Descriptions which can be executed
directly are denoted programs. Execution of a program leads to realization
of a vision.

2. A Conceptual Framework

When we study a specific programming process, we choose to consider a
vision as the initial vision. Visions are characterized by their generality,
precision, form, and conceptual distance to the machine. For the instial
vision these characteristics are especially interesting.

Generality is relative to the problem area. One vision is more general than
another, if the problem area of the second is part of the problem area of
the first.

Precision has to do with our understanding of the product. The more
precise the initial wision is, the better is our possibility to imagine the
product. Precission increases with the degree of detail, and the degree of
formality [Munk-Madsen].

The initial viston can be presented in different forms. Sometimes it only
exists inside a human brain, and sometimes it is presented either orally or
in some solid form (e.g., paper, film, magnetic tape, etc.).

The conceptual distance to the machine (i.e., the size of the conceptual
gap between the initial vsizon and the machine) indicates how hard it is to
express the initial vision in terms of realized concepts.

In a discussion of programming it can be useful to distinguish between the
structural and the functional part of the wision. The functional part of the
wiston denotes our notion about the function of the product. It is expressed
and understood by means of problem-oriented concepts. The structural
part of the wvision denotes our notions about the structure of the product.
During the programming process we build up an understanding of the
structural part at least partly based on the problem-oriented concepts that
we are trying to realize,

10 2. A Conceptual Framework

2.3. Programmers

A programmer is 2 human-being, who takes actively part when program-
ming is carried out. Programmers bring knowledge into the programming
process through their skills as well as through investigations made during
the process.

Insight into the problem area and knowledge about the vision, the machine
and relevant parts of computer science are prerequisites for performing
programming. If this knowledge and insight is not present, it must be build
up. Knowledge about the vision and insight into the problem area and the
object area are normally not present beforehand, so it must be build up
during the process. Knowledge about the machine and other relevant parts
of computer science is normally brought into the process by the program-
mers, but further investigations within this area might be (and often are)
necessary. An important part of these types of qualifications is knowledge
about techniques that may be used to bridge the conceptual gap between
the vision and the machine.

The above observations lead to the formulation of thesis 5, expressing
that the programmers build up new knowledge during the programming
process.

Thesis 5: The programming process is a learning process.

The sum of qualifications present is important, but also the distribution
of qualifications between the programmers plays a role, because it sets
limitations to how programming can be organized.

2.4. The Programming Process

As mentioned, one way to characterize a process is by the intended function.
Saying that programming means carrying out the programming function
does not tell very much about what is going on. If we want to speak more
explicitly about the contents of the programming process, it is insufficient
to speak about the programming process as a whole - we need to make
distinctions between various subfunctions.

2. A Conceptual Framework

11

In the following we postulate and describe some subfunctions, which in-
dependent of the actual elaboration of a programming process, necessarily
must be carried out during the process. Furthermore we use the process-
structure diagrams to describe the relations between the structures described
in chapter 2.2 and the processes in which the described functions are carried
out.

2.4.1. Subfunctions

In choosing subfunctions we intend to capture as much as possible of
the totality involved in programming. Furthermore we intend to choose
subfunctions, which can be separated conceptually, although they do not
have to describe separatable parts of the programming process. Finally
we intend to choose subfunctions which relate to substantial parts of the
programming process.

On the basis of the above criteria we make two basic distinctions. On one
hand we distinguish between elaboration of descriptions using or not using
realized concepts. On the other hand we distinguish between elaboration
of descriptions that determine either the functional or the structural part
of the vision. These distinctions make it possible to postulate formulation,
specification, and realization as subfunctions of programming. We define
the subfunctions by the scheme shown in fig. 3. So for instance formulation
is defined to be a function in which the functional part of the vision is
described by means of concepts that are not realized on the machine.

12 2. A Conceptual Framework

subfunction description by means of description of

the functional part

" formulation concepts not realized

of the vision

the structural part
speciﬁc‘ation concepts not realized

of the vision

the structural part

realization realized concepts

of the vision

fig. 3.: Chosen subfunctions

Formulation

Formulation takes pla(':e on the basis of a vision. By performing formulation
the functional part of the vision is elaborated and described by means of
concepts that are not realized on the machine. Typically a lot of these
concepts are problem-oriented.

Programming requires knowledge. Insight into the problem area and under-
standing of the object area are prerequisites for performing programming.
Formulation is carried out to build up this knowledge, thereby emphasizing
that the programming process is a learning process.

2. A Conceptual Framework

Formulation is carried out in a wide variety of subprocesses, e.g., generation
of systems requirements, communication with professionnals with relation
to the problem area and/or the object area and literature studies. It is
common to all these processes that the intension is to increase the knowledge
of the participants. Furthermore they contribute to the development of the
functional part of the vision.

The problem area, the object area, and the vision are all conditioning
factors when formulation is performed. On one hand the problem area and
the object area set limitations to the possible ways in which the elaboration
af the functional part of the vision can take place; on the other hand
Sformulation might result in demands for changes in the object area, or
in a changed understanding of the problem area. The vision restrains
Sformulation. On one hand new visions must be consistent with the existing
vision, but on the other hand existing ideas might be rejected. By means of
process-structure diagrams these relationships can be expressed as shown in
fig. 4.

the object area, the problem area, the vision
[]
]

performing formulation (the vision)

fig. 4.

Specification

Specification takes place on the basis of the functional part of the vision.
When performing spectfication, the structural part of the vision is described
without use of realized concepts. Typically a lot of these concepts are
problem-oriented. Specification results in descriptions of how to realize the
vision, without using realized concepts.

14 2. A Conceptual Framework

Conceptualization and elaboration of descriptions are important subpro-
cesses in which specification takes place. It is common to all such sub-
processes that creativity is required and that the amount of insight into the
problem area is important in relation to the quality of the product.

Through specification new knowledge is build up, as it becomes possible to
understand the structural part of the vision by means of problem-oriented
concepts.

The problem area and the vision are conditioning factors when specification
is performed. On one hand, the problem area restricts the possible ways of
describing the structural part of the vision using problem-oriented concepts;
on the other hand specification might result in a changed understanding
of the problem area. The vision restrains the development of the structural
part of the vision, but nevertheless specification might result in changes in
the existing understanding of the vision.

By means of process-structure diagrams these relationships can be expressed
as shown in fig. 5.

the problem't area, the vision

]
[}
8
- ' -
performing specification (the vision)

fig. b.

Realization

Realization takes place on the basis of the structural part of the vision
described without using realized concepts. By performing realization the
structural part of the vision is described by means of realized concepts.

2. A Conceptual Framework

Decomposition and classification [Mark] are essential techniques when
realization is carried out. Concepts that are going to be realized are
identified with realized concepts through classification (e.g., identifying a
problem-oriented concept with a procedure). Descriptions of the intension
of a concept can be made by decomposition (e.g., creation of a procedure
body). Programs and program executions, which are the results of realiza-
tion, are intended to realize the vision.

The machine is an important conditioning factor when performing realiza-
tion. On one hand the machine represents the given realized concepts
that can be used when carrying out realization; on the other hand the
machine is augmented with new realized concepts through realization. As
for specification the vision represents a conditioning factor.

By means of process-structure diagrams these relationships can be expressed
as shown in fig. 6.

the machine, the vision
]
(]
]
[]

¢

performing realization (the vision)

fig. 6.

16 2. A Conceptual Framework

The Main Direction of the Programming Process

As part of each programming process the intended function of the resulting
program executions is formulated. Descriptions containing not-realized con-
cepts are developed through specification, and finally realization results
in executable programs realizing the vision.

As indicated above the programming process has a main direction. This is
expressed in thesis 6.

Thesis 6: The programming process follows the main direction
formulation ey specification smsprealization

The main direction does not indicate a cronological separation of the func-
tions. The main direction indicates: (1) how the importance of the functions
displaces as the process goes on, and (2) a time dependence between the
functions. As an example it is possible that formulation might take place
even at a time where realization is the dominating activity, for instance
as an effect of the discovery of ambiguties in existing descriptions of the
functional part of the vision.

3. Prototyping

From the way prototyping is presented in the literature[McNurlin, Floyd81,
Falster, S6derstrom] it seems reasonable to claim that the activities involved,
with a few exceptions as for instance education of users, are covered by the
view on programming presented in section 2. With this observation in mind
we can discuss prototyping by means of the framework. This will be done in
the following by describing techniques, programmers, problem area, vision,
machine and other tools in relation to prototyping.

Each of the following subsections consists of four parts. The four parts
contain descriptions of:

1) The intentions behind the use of prototyping.
2) The prerequisites for using prototyping.

3. Prototyping

17

3) Some advantages and drawbacks related to the use of prototyping.

4) Experiences from, and intentions in the UTOPIA-project.

To support the reader, and to make the strength of the framework more
explicit, the concepts defined in the framework are highlighted in dtalics
throughout this section.

3.1. Techniques

As pointed out by Floyd[Floyd83] »prototyping« is an ambigous term, which
has been used in literature to denote different types of programming tech-
niques. In the following we will discuss different alternative techniques by
focussing on the products intended to be developed during the process.

3.1.1. Intentions

In our view all prototyping-techniques suggest that the end-product is
produced in a sequence of programming processes, each resulting in a
prototype. So, to develop a prototype formulation, specification, and realiza-
tion are carried out.

Remark that, although I am aware of the inconsistent use of the term com-
pared to the use within engineering, I use the term »prototype« to denote all
computer systems intended to be provisional. This is also inconsistent with
the way in which the term is used by Rzevski[Rzevski], who distingushes
between prototypes and pilot systems.

Apart from the development of the first prototype, formulation is intended
to be supported by evaluations of a running prototype. By using the
prototype, users can check to which extent the vision is realized, and at the
same time be motivated to formulate new wvistons. By means of prototypes,
users have the possibility to check whether the Aristotelian interpretation of
problem oriented concepts, made during the development of the prototype,
corresponds to their own interpretation.

Contrary to traditional programming processes, specification is a subfunc-
tion intended to have minor importance when prototypes are developed.
The machine is expected to contain a lot of problem-oriented concepts
which make it possible to describe the structural part of the vision nearly

18 3. Prototyping

exclusively by means of realized concepts, making specification nearly su-
perfluous.

When prototypes are developed, realization is intended to be done relatively
fast because of a relatively small distance between the vision and the
machine.

One way to distinguish between different prototyping-technigues, is to
consider different intended end-products. The two basic alternatives are:

a) Production systems. Development of a sequence of prototypes
finally results in a production system, i.e., a computer system
ready to be used for production within the object area.

b) Concrete visions. Development of a sequence of prototypes finally
results in a system realizing (parts of) the functional part of the
vision.

Another way to distinguish between the different techniques, is to consider
the intended nature of each prototype. Here the following categories seem
appropriate:

1) System sketches, intending to exhibit selected functional properties
of the end-product. System sketches are only intended to realize
parts of the vision.

2) Models, intending to exhibit all functional properties of the end-
product as they can be formulated without experiments in the
object area.

3) Realistic systems, intending to exhibit all functional properties of
the end-product. Realistic systems are based on experiments in the
object area.

3. Prototyping

19

Each of the programming processes carried out to produce the end-product
may in principle result in prototypes in any of the three categories. If the
end-product is intended to be a vision, the following prototyping-technigues
may be used:

Formulation by sketching
The end-product is a vision, and all involved programming processes result
in a system sketch. Formulation by sketching is illustrated i fig. 7(b1).

Formulation by modelling

The end-product is a vision, and models are produced at least in some of
the latter programming processes. Formulation by modelling is illustrated
in fig. 7(b2).

Formulation by piloting

The end-product is a vision, and realistic systems are produced at least in
some of the latter programming processes. Experiments in the object area
are done in parallel with normal production. Formulation by piloting is
illustrated in fig. 7(b3).

Using the terms introduced by Floyd[Floyd83], we can say that use of the
above techniques leads to exploratory prototyping.

If the end-product is intended to be a production system, the following
prototyping-technigues may be used:

System modelling

The end-product is a production system, and models are produced in
at least some of the latter programming processes. System modelling is
illustrated in fig. 7(a2).

System piloting
The end-product is a production system, and realistic systems are produced
at least in some of the latter programming processes. Experiments in the

20 3. Prototyping

object area take place in parallel with the existing production system.
System piloting is illustrated in fig. 7 (a3.1).

Versioning

This technique is similar to system piloting apart from the nature of the ex-
periments in the object area. In versioning the production takes place on the
»experimental system«. Although versioning covers traditional technigues,
where systems are used for a period, then changed and so on, we only want
to denote versioning as prototyping if other prototyping-techniques have
been used before the system is brought into the object area, and if there
is consciousness about the production system as a prototype. Versioning is
illustrated in fig. 7(a3.2).

Using the terms used by Floyd[Floyd83] we can say that, use of versioning
leads to evolutionary prototyping, whereas use of system modelling or
system piloting leads to experimental prototyping.

In each of the following figures there are different levels, each indicating
a state in the development process. At the level vision, we are in a state
where a vision is formulated. At the level computer system, the vision is
realized on a machine as a prototype. At the level pilot experiments, the
computer system is used for pilot experiments, and at the level production,
the computer system is used for production in the object area.

Each figure illustrates moves between the levels as time goes by, thereby
describing a technique. Shaded areas mean that any of the preceeding
techniques might be used an arbitrary number of times. The figures are
inspired by Bansler and Bedker[Bansler et al.].

fig. 7(bl):Formulation by sketching

vision N
computer system ' i\j\\. b

3. Prototyping

21

fig. 7(b2):Formulation by modelling

-

. = o -
V1S101 .I \‘
] \‘

N\

computer system

fig. 7(b3):Formulation by piloting

s o~
vision Q 4 \‘
£)
é
3 Y
computer system 4)
\ J
pilot experiments *

fig. 7(a2):System modelling

vision Q ’a" % “

computer system e T
pilot experiments

production

22 3. Prototyping

fig. 7(a3.1):System Piloting

vision

ot - &,
o \
P
y 1
) 1}
computer system
\ \ s
rd
L »

pilot experiments

production

tig. 7(a3.2):Versioning

vision

N\

pilot experiments

production

3.1.2. Prerequisites

All the described prototyping-techniques require some kind of user involve-
ment. Formulation by sketching may for instance be done with rather
few users involved, whereas versioning requires involvement from all users
working in the object area.

3. Prototyping

23

Requirements to the organization are also different for the different tech-
niques. Most organizations will be able to do formulation by sketching,
whereas production with unfinished versions as required by versioning
might cause a lot of changes in the object area, making this technique
unsuitable for many organizations.

A detailed work on organizational prerequisites for prototyping is done by
Nosek[Nosek].

Techniques, by which production systems are intended to be developed,
require tools, which make it possible to keep a reasonable program struc-
ture during the process, whereas techniques intended to produce concrete
visions may be used without such teols.

3.1.3. Advantages and Drawbacks

A main advantage of prototyping is the possibility to let formulation be
supported by evaluation of running prototypes. By doing that, users can get
a more concrete understanding of the proposed computer-system, making it
realistic that users and data processing professionals can build up knowledge
by common efforts.

Floyd[Floyd81] points out that no techniques are known to do such evalua-
tions. In our opinion no formal technigues for doing that can be given, as
too many individual considerations must be taken. Interviews and dialogues
seem to be sufficient.

Only by bringing the system into the object area, all functional demands
can be tested. First of all, because some functional demands may not show
up before work organization is tried out; secondly, because some functional
demands like response time, security, etc., cannot be realistically evaluated
unless the system is running in its real environment. Finally, as pointed
out by Helms Jorgensen[Helms Jorgensen], users are less likely to notice
shortcommings in the system, if experiments are made in artificial environ-
ments. These observations point out that some piloting and/or versioning
must be done.

A main drawback is that techniques for prototyping in the object area
are nearly unknown. At least no attention is paid to such technigues in
literature.

24 3. Prototyping

5.1.4. UTOPIA:Experiences and Intensions

In the UTOPIA-project we have done formulation by sketching to be
able to formulate more precise visions about isolated parts of computer-
based systems for newspaper production. In the comming year we will
continue doing that, especially in relation to the interaction between man
and machine. Up till now the experiences are very limited because of the
lack of a machine close to the problem area.

A technique denoted stepwise structuring[5] has shown to be helpful in
our experiments. To be able to do experiments as easy and fast as possible,
we have chosen not to structure information more than required for a
given experiment. This means that some information only is represented
as bit-maps, making a lot of operations extremely troublesome; but some
fundamental aspects can be tried out anyway. As more insight into the
problems is gained, we can do structuring stepwise by going from bit-maps
to text representation, and maybe even to more complex data structures,
allowing some operations to be done easily, but at the same time restricting
the possibility to do other operations.

Some kind of piloting is intended to be done during the comming year.
In the project we have worked out descriptions of demands on parts of
an integrated text- and image processing system for newspaper production.
These demands are at least partly taken into account in the development
of a commercial system called TIPS[6]. During the next year the TIPS-
system will be tested on different newspaper plants in Sweden, and the
UTOPIA-project is guaranteed to be allowed to make experiments with the
organization of work. In this way we hope to be able to formulate visions,
which we were unable to imagine without bringing the system into the
object area.

3. Prototyping

25

3.2. Programmers

3.2.1. Intentions

One of the characteristics of prototyping is the intention to let users act as
programmers, although data processing professionals normally are intended
to be involved too. A machine very close to the vision, makes it possible for
the users to participate when performing all subfunctions, whereas more
general machines might allow them only to participate when formulation is
carried out.

The degree of user involvement also depends on the prototyping-technique
used. Techniques, in which the intended end-product is a vision, make it
possible for the users to participate in performing all subfunctions, whereas
techniques, leading to a production system, reserve some of the necessary
specification and realization to the data processing professionals.

3.2.2. Prerequisites

Data processing professionals with other qualification than usual today
are required, because prototyping leads to a situation where more discus-
sions with the users and less coding is needed. The primary qualifications
required from the data processing professionals are the ability to discuss,
question, and re-think wisions formulated by the users. Furthermore, as
pointed out by Helms Jorgensen|Helms Jargensen], it is required that data
processing professionals are willing to discard their own work, if experiments
show that the users want a completely different system.

When using prototyping, users are not required to be able to give a com-
plete formulation of their visions in one shot. Instead users are required to
be able to evaluate running prototypes, and to formulate new visions on
the basis of the experiences gained. More extensive user involvement might
even require that users are familiar with the machine, as well as with some
techniques and tools.

26 3. Prototyping

3.2.3. Advantages and Drawbacks

A main advantage of prototyping is the intention to let users participate
during the programming process, making it possible to build up knowledge
by common efforts from users and data processing professionals, but a
drawback in literature on prototyping is that no explicit considerations is
taken as to which users to involve, and how to handle contradictions in user
demands. According to literature, managers might represent users giving
no real influence to the groups of people affected by the systems developed.
Furthermore, literature ignores the possibility of conflicts in user demands.

Another serious point is the way prototyping affects the work of the data
processing professionals. It is not possible to predict what will happen vet,
but some possibilities can be pointed out.

As machines directed towards specifik problem areas are being developed
more and more work in application development will become almost trivial.
If some data processing professionals are supposed only to do that kind
of work, then prototyping leads to dequalification. Another possibility is
that users will take over a great deal of application development, leaving
development of tools as a job for data processing professionals. Finally, as
pointed out earlier, prototyping might be used by users and data process-
ing professionals together, leaving a lot of that kind of work to the data
processing professionals.

The conclusion is that it is too early to say how prototyping will affect the
work of the data processing professionals. It will be extremely dependent
on the division of labour within the organizations using prototyping.

3.2.4. UTOPIA:Experiences and Intentions

In the UTOPIA-project skilled workers participate. As no machine directed
towards the problem area is present, the graphical workers only participate
in the evaluation of prototypes and in the formulation of wvisions based
on these evaluations. The rest of the programming is done by computer
scientists and computer science students.

3. Prototyping

27

3.3. The Problem Area

3.3.1. Intentions

According to literature prototyping is intented to be used in connection
with all types of problem areas. As the basic idea behind prototyping is to
support formulation, the approach will be especially useful in connection
with problem areas where formulation of wisions cannot be done without a
lot of investigations.

3.3.2. Prerequisites

Prototyping requires a machine close to the vision. This means that prototyp-
ing is hard to do without a machine directed towards the problem area.

3.3.5. Advantages and Drawbacks

The majority of experiences with prototyping have up till now been gained
in the development of computer-based systems for information storage and
retrieval. This fact can be explained by the above-stated prerequisite.

Due to the development of information management systems[7] with a
lot of facilities like file-management, security control, recovery control,
screen layout design, sorting, non-procedural query-languages, and report
generators, this prerequisite has been fulfilled to an extent that has made
prototyping possible in relation to problem areas containing potential vi-
stons about information storage- and retrieval systems.

In relation to most other problem areas nearly no experiences in develop-
ing commercial systems have been gained yet, but some experiments in
developing so-called expert systems have been going on within research
laboratories|8].

A main drawback is the lack of machines directed towards special problem
areas. As explained below, this is one of the main problems in the use of
prototyping within the UTOPIA-project. To solve this problem, research
in[9] and development of profession oriented languages is necessary.

28 3. Prototyping

3.3.4. UTOPIA:Experiences and Intentions

In the project, where the problem area is connected to printing and setting,
we are using prototyping to support the formulation of visions about alter-
native electronic text- and image processing systems. The main problem
in doing that is the lack of a machine directed towards the problem area,
and the lack of a powerful programming environment. In the current
situation we have to develop the machine ourselves making prototyping very
cumbersome.

3.4. The Vision

3.4.1. Intentions

Traditionally a lot of descriptions of the vision are made on paper. When
using prototyping it is intended that the different prototypes shall represent
the (only) materializations of the vision. Furthermore it is the intention that
Sformulation of new wisions shall take place when evaluating realizations of
existing visions.

3.4.2. Prerequisites

When developing production systems, prototyping requires, either that the
structural part of the initial vision can be neglected, or that very powerful
tools are available. The reason for that is, that it must be considered
very troublesome to take structural considerations when production systems
evolve from a series of prototypes, if traditional tools are used. As neglection
of the structural part of the viston might lead to products that are hard
to develop further, development of more powerful tools is necessary, if we
want to use prototyping to develop production systems.

Another prerequisite is a small conceptual distance between the vision and
the machine.

3. Prototyping

29

3.4.3. Advantages and Drawbacks

A main advantage of prototyping is the possibility of visualizing some
aspects of the realized vision, making a concrete understanding of the vision
possible earlier than when using traditional techniques. Furthermore nitial
visions in a non-solid form and with a low degree of precision may be
handled without having to write a lot of documents.

Getting a lot of spontaneous reactions on a prototype seems to be an advan-
tage at first sight, but a possible drawback is, that this strategy will lead
to a situation where noone thinks about the long-term consequences of the
proposed system.

3.4.4. UTOPIA:Experiences and Intentions

Formulation of wisions on the basis of evaluation of prototypes developed
by ourselves has, as described earlier, only been done as formulation by
sketching in relation to very limited parts of our visions. Our formulation
has instead been based on studies of different commercial systems, and
evaluation of aspects tried out on "wood and paper prototypes”, i.e., mock-
ups.

These techniques have made it possible for us to formulate wvisions on a
general level on systems for page make-up and systems for image processing.
To be able to formulate more precise visions we intend to do formulation
by sketching, especially in connection with our discussions about man-
machine interaction.

3.5. The Machine and other Tools

3.5.1. Intentions

Prototyping intends to reduce the number of necessary tools by letting the
machine support formulation as well as realization.

30 3. Prototyping

3.5.2. Prerequisites

Although prototyping might be done with traditional computer systems
supporting file-handling, compiling, text editing, etc., in a non-integrated
way, the new integrated programming environments, removing a lot of
the troublesome administrative programming jobs, will make the approach
more attractive. By using such systems a lot of tools are integrated into a
single tool - the computer making automation of a lot of the necessary work
possible.

3.5.3. Advantages and Drawbacks

Given a machine directed towards the the problem area, an integrated
programming environment and a reasonable environment for experiment-
ing, prototyping has the potential to support the integration of development
and use. The main drawback is that these prerequisites at present only are
fulfilled within very restricted areas.

3.5.4. UTOPIA:Experiences and Intentions

Formulation by sketching is done on a Perq graphical work-station. Using
this work-station requires a lot of programming to create a machine close
to our wisions. Furthermore the programming environment lacks a lot to
support us well, first of all because no integration of the different tools is
done, but also because some of the tools, as for instance the debugger and
the source-code library facilities, are of poor quality.

3. Prototyping

31

4. Conclusions

To conclude this paper we relate to the purposes. First of all prototyping is
presented by describing intentions and prerequisites using the framework.
By doing that we also intended to demonstrate the strength of the
framework - we will leave it to the readers to judge whether we were
successful or not.

Secondly we pointed out some advantages and drawbacks. The main draw-
backs were:

— The lack of explicit considerations in literature as to which users
to involve, and how to handle contradictions in user demands.

— The lack of machines and other tools to support prototyping when
realizing visions about other systems than information storage- and
retrieval systems.

— The lack of techniques for prototyping in the object area.

The main advantages of prototyping pointed out were:
— The possibilities of letting users participate in performing all sub-
functions.
— The possibility to integrate development and use.

— The possibility to build up knowledge by common efforts from
users and data processing professionals.

— The possibility to give users a concrete understanding of the
proposed computer-system.

32 4. Conclusions

5. Notes

[1]: The framework represents a summary of the substantial part of a

master-thesis by John Kammersgaard and Troels Moller Jorgensen
[Jorgensen et al.].

[2]: The dialectical world picture can be expressed by the following three
rules

reality is an organized and structured totality,
reality is undergoing a continous process of transformation,

contradictions are central and incentive for the process of change.

[3]: See for instance »System description and the Delta language«, Holbzek-
Hanssen et al., Norsk Regnesentral, Oslo 1975.

[4]: See for instance [Munk-Madsen].

[6]: This designation is due to a research group at the Software System
Research Center, Institute of Technology, Linképing, Sweden. See
»Stepwise Structuring - A style of Life for Flexible Software«,
Sandewall et al., Proceedings of the 1983 NCC Conference, IEEE

1983.
[6]: The TIPS-system will be marketed by Liber System AB.

[7]: As for example ADMINS devoloped at MIT.

[8]: As for example the diagnose-system MYCIN and the machine on
which it is based - EMYCIN,

[9]: Some such research will be done within the SYDPOL research-

project. A project description is to be published by NORDFORSK,
the Nordic co-operative organization for applied research.

5. Notes

33

6. Literature

Bansler og Bedker: Experimentelle Teknikker i Systemarbejdet, (Danish)
Master-thesis, Comp. Science Dept., University of Copenhagen, 1983.

Dahl, Dijkstra and Hoare: Hierarchical Program Structures, in: Structured
Programming, Academic Press, 1972.

Falster: Eksperimentel Systemudvikling - 80’ernes edb Fremgangsmade?
(Danish), Technical University of Denmark, 1981,

Floyd: On the Use of »Prototyping« in Software Development, HP3000 Int.
user meeting 1981.

Floyd: A Systematic Look at Prototyping, Proceedings from the GMD
/ACM/NCC/SERC Working Conference on Prototyping, Springer Lecture
Notes, 1984.

Helms Jergensen: On the Psychology of Prototyping, Proceedings from the
GMD/ACM/NCC/SERC Working Conference on Prototyping, Springer
Lecture Notes, 1984.

Jorgensen og Kammersgaard: Et Begrebsapparat til Karakteristik af
Programmeringsprocesser (Danish), DAIMI IR-38, Comp. Science Dept.,
University of Aarhus, 1982,

Larsen: Egocentrisk tale, Begrebsstruktur og Semantisk Udvikling (in
Danish), Nordisk Psykologi 1980, 32(1).

Mark: Repreesentation (in Danish), DAIMI IR-40,Comp. Science Dept.,
University of Aarhus, 1982.

34 6. Literature

Mathiassen: Systemudvikling og Systemudviklingsmetode (Danish), DAIMI
PB-136, Comp. Science Dept., University of Aarhus, 1981.

McNurlin: Developing Systems by Prototyping, EDP-analyzer vol 19,9,
1981,

Munk-Madsen: Systembeskrivelse med Brugere (Danish), DUE-note nr. 9,
Comp. Science Dept., University of Aarhus, 1978.

Nosek: Organization Design Choices to Facilitate Evolutionary Development
of Prototype Information Systems, Proceedings from the GMD/ACM/NCC
/SERC Working Conference on Prototyping, Springer Lecture Notes, 1984,

Nygaard: Systemspecialistenes Situasjon i 1980-arene (Norwegian), Data
nr. 6, 1979.

Rzevski: Prototypes versus Pilot Systems: Strategies for Evolutionary Infor-
mation System Development, Proceedings from the GMD/ACM/NCC/SERC
Working Conference on Prototyping, Springer Lecture Notes, 1984,

Soderstrom: Experimentel Systemudveckling - ESU som Metodik (Swedish),
Data nr. 3, 1982,

UTOPIA: The UTOPIA-project - On Training, Technology and Products
Viewed from the Quality of Work Perspective, Comp. Science Dept.,
University of Aarhus, 1982,

6. Literature 35

