ISSN 0105-8517

COMMON CLASS
- a tool for programming the access
to shared data

Peter Moller-Nielsen
Jergen Staunstrup

DAIMI PB-170
December 1983

Computer Science Department [
AARHUS UNIVERSITY

]]
Ny Munkegade — DK BOOO Aarhus C — DENMARK B
Telephone: 06 — 12 83 55 ﬂ_

COMMON CLASS

= a tool for Programming the access

to shared data

Peter Mgller-Nielsen and Jgrgen Staunstrup

Abstract

The Monitor concept in Concurrent Pascal is too restrictive
to express e.g. the "Readers-Writers" kind of access control to

shared data. In order to make it possible to measure how the

performance of a multiprogram changes when the access control
to shared data is refined, we have added a construct, called a
Common Class, to the Concurrent Pascal implementation on our

multiprocessor system.

1. MOTIVATION
—_ - VAIIUN

Our experience with a number af actual multiprograms
written in Concurrent Pascal shows that the Monitor concept
is often much too restrictive. In connection with access to
shared data saturation occurs when more than 1+T1/Tm pro=-
Ceéssors are used, where Tm is the time spent inside - and T1
the time spent outside a critical region, i.e. the region for
which mutual exclusion is guaranteed [1]. In order to increase
the point of saturation to a satisfactory number of Processors,
it seems necessary to add a construct to Concurrent Pascal,
which allows simultaneous access of processes to shared data
to be expressed in a more refined manner. An example is the
"Readers-Writers" kind of access control to a shared table.
"Readers-Writers" cannot be programmed in Concurrent Pascal.
The shared data must be eéncapsulated in a Monitor, and this im-
plies that all accesses to the shared data are treated as
"Writers",

Section 2 of this report offers a construct called a Shared
Class, which seems to be a natural modification of the Monitor
construct. Like the Monitor; the syntax of a Shared Class en-
Sures that the data that are represented by the Shared Class
and the access control mechanisms to the data (i.e. semaphores
and associated operations) are always correctly associated.
Section 3 offers another construct called a Common Class. This
construct is much simpler to add to an existing implementation
of Concurrent Pascal. It is shown how 4 program, which is using
Shared Classes, can be transcribed into 4 program which uses
Common Classes and Monitors. Section 4 shows a sequence of pro-
grams. They all solve the same problem, but the access control
to a shared table shows different degrees of refinement. Sec-
tion 5 shows how a Shared Class can be transcribed into a Common
Class and a Monitor without using Delay=- and Continue-statements.

2. THE CONCEPT OF A SHARED CLASS

It would be possible to express "Readers-Writers" (and
other strategies for controlling access to shared data) if the
Monitor concept in Concurrent Pascal was substituted by the
Shared Class. A Shared Class has the following form:

sh = shared class (< parameters >);
var state Vs: ... ; '"access to an entry is granted

based on the variables Vs."
data vd: ... ; "the shared data."

procedure entry Pi(< parameters >);
entry if Bi(Vs) then ENTRY_STATEMENTi (Vs);

"Bi(Vs) is a boolean expressionof the variables Vs,
and ENTRY_STATEMENTi is a statement, which manipu-
lates the variables Vs. The index i indicates that
this boolean expressionand statement is particular
for the entry procedure Pi."

begin "The body of the entry procedure Pi."
51 (vd) "The manipulation of the shared data."
end

exit EXIT_STATEMENTi (Vs);

begin
"Initialization of Vs and vd."

end;

The meaning of the constructs in a Shared Class is the following.
When a process calls an entry in a Shared Class, access to the
body of the entry is not granted based on a mutual exclusion
principle, as it is for the Monitor, but access is granted as soon
as the booleanexpnxsidnBi(Vs} evaluates to true. Then the state-
ment ENTRY_STATEMENTi is executed, and after that the execution

of the statement Si(Vd) is initiated. The evaluation of Bi and

the execution of the statement ENTRY_STATEMENTi is done indi-
visibly, and excluding execution of other entry- and exit-
statements of the same Shared Class. When the execution of the
statement Si is completed, the statement EXIT_STATEMENTi is
executed in an indivisible manner, and excluding execution of
other entry- and exit-statements of the same Shared Class. Entry-
and exit-statements may only refer to state-variables (i.e. Vs)
and the bodies may only refer to the data-variables (i.e. Vd).
Using the above concept of a Shared Class, "Readers-Writers"

can be programmed as follows:

r_w = shared class;

var state n_readers, "The number of processes
executing Sr in the Read
entry."
n_writers "The number of processes
executing Sw in the Write
entry."
integer;
data t : table; "The shared table on which

the Readers and the Writers
are operating."

procedure entry Read(...);
entry if n_writers = 0
then
n_readers := n_readers + 1;
begin
Sr(t)

end

exit n_readers := n_readers - 1;

procedure entry Write(...):

entry if (n-readers + n-writers) = 0
then
n.writers := n_writers + 1;

3. THE CONCEPT OF A COMMON CLASS

begin
Sw(t)
In order to make it possible to measure how the perfor-
end I mance of a multiprogram changes when the access control to
exit n_writers := n_writers - 1; shared data is refined, we decided to add a suitable construct
to the current Concurrent Pascal implementation on our multi-
begin processor system [2]. The actual implementation of such a con-
. struct was based on the following considerations. The added
n.readers := 0; n_writers := 0;
construct should be seen as a tool by means of which we could
n 0 : 3 : "
Initialization of 't'. experimentally study the effect of different refinements of
end; access control to shared data. It should not be seen as a pro-

posal for the syntax and semantics of a new construct to be

A Monitor can be programmed in a similar way using a single included in the language Concurrent Pascal. It is our firm

boolean (a "gate") as Vs. The other extreme, which allows un-
restricted access to a set of shared data, can be obtained by
leaving the statements ENTRY-STATEMENT and EXIT-STATEMENT empty forms of access control refinement on programming complexity

and performance. Such a study is best conducted by programming

belief that such proposals should be postponed until the sub-
ject has matured through the study of the effect of different

and by using the constant true for the expression B.
and executing a wide variety of algorithms with different re-

finement of access control. For this reason, we wanted to add
a construct which implied as little change as possible to the
Concurrent Pascal compiler and the C-code interpreter on our
multi-processor system [2]. To implement the shared class pro-
posed above a rather extensive change is necessary. Instead we
chose to keep the Monitor construct unchanged and add a con-
struct called a Common Class. A Common Class is a Shared Class
with unrestricted access. From an implementation point of view,
a Common Class is a Monitor to which the gate is always left
open. For this reason a Common Class is translated as a Monitor
except at one point; the C-codes ENTER CLASS, EXIT CLASS, BEGIN
CLASS, END CLASS and INIT CLASS are generated instead of the
C-codes ENTER MON, EXIT MON, BEGIN MON, END MON and INIT MON
| (the meaning of the C-codes is explained in [3]). This means that
. no new C-code has to be added to the C-code machine, and the
C-code interpreter (and kernel) can be left unchanged. The changes

to the compiler are few and straightforward.

Programs written by means of the Shared Class construct
can be systematically transcribed into a program which uses only
Monitors and Common Classes. A Shared Class is represented by a
pair consisting of a Common Class and a Monitor, to which the
Common Class has access. The Common Class contains the shared
data (i.e. Vd) and the operations (i.e. Si(vd)). The Monitor
encapsulates a transcription of the entry and the exit state-
ments of the Shared Class. The Shared Class named "sh" is tran-

scribed into the following pair.

sh_mon = monitor;
var Vs: ... ;

"a pool of queue
- variables."
w-adm: waiting_room._adm; "administration

of the pool."

w: waiting_room;

procedure entry entry-to-Pi;
begin

while not(Bi(Vvs)) do
delay (w(. w-adm.vacant .));

ENTRY_STATEMENTI (Vs) ;

while not (w_adm.empty) do
continue(w(. w-adm.occupied .))

end;

procedure entry exit_from.Pi;
begin
EXIT_STATEMENTIi (Vs) ;

while not(w_adm.empty) do
continue(w(. w_adm.occupied .))

end;

begin
init (Vs)

end;

The pair "w" and "w.adm" implements a

The operations on the pool are:

empty : = true, if the pool

pool of gueue-variables.

is empty, i.e. if all

queue-variables in the pool are empty.

vacant : the identity (e.g. an index in an array of

queue-variables) of

pool which is empty.

occupied : the identity in the
which is not empty.

a queue-variable in the

pool of a gueue-variable

Note that our implementation of the continue-statement deviates

from normal Concurrent Pascal [3]. An

execution of a continue-

statement does not enforce an exit from the entry. Note also

that "sh_mon" contains two entry procedures ("entry_to_Pi" and

"exit-from-Pi") for each entry procedure (Pi) in the Shared

Class. The Common Class associated with "sh_mon" looks as

follows:

sh = common class{...... , S: sh_mon);

var Vds e 3

procedure entry Pi{

begin
s.entry_to_Pi;
Si(va);
s.exit_from_Pi

end;

begin
init(vd)

end;

);

The detailed transcription of the Shared Class "r_w" above
is shown in the next section.

It should be noted that local variables in the entry pro-
cedure of a Common Class are allocated anew (and locally to
the calling process) for each new invocation. Only the global
variables (i.e. Vd) are allocated globally to the processes, and
in just one copy.

4. AN EXAMPLE

This section contains the most essential parts of three
programs. The programs are identical with the exception that
the control of access to a shared table is programmed in three
different stages of refinement. The first program uses a Monitor
to encapsulate the table. The second program uses a single Shared
Class, which is transcribed into a pair consisting of a Monitor
and a Common Class as described above. The third program uses a
further refinement of the access control. This refinement cannot
be programmed by means of a single Shared Class.

All programs solve the following problem. The entries of a
table is updated according to a set of transactions. The table
has a fixed number of entries. Each entry has a key which iden-
tifies the entry and a field which contains some information,
which is associated with the key. The set of transactions con=-
tains only two different kinds of transactions, a WRITE and a
READ. A WRITE looks up a key in the +able and updates the infor-
mation field of the entry. Once the entry has been found, the
updating must be done indivisibly, i.e. it cannot be mixed with
other READs or WRITEs. A READ looks up a key in the table and
reads the information field. The reading of the information can
be done simultaneously with other READs (but not other WRITEs)
of the same information field. Operations on different entries
can be done simultaneously. The seguence in which the transac-
tions are carried out is immaterial. The transactions are divided
evenly and randomly between a number of identical processes
called "slaves". The problem is solved when all slaves have
executed all the transactions that was allocated to them. The

program for the slave process is as follows:

10

type i
]
kind_cf_transaction = (reading, writing); 4
slave = process(t: table; ...);:
var no_of_transactions: integer;
kind: kind_of_transaction;
key: eend
info: veud
iz integer;

vl R

procedure new_transaction(var kind: kind-of_transaction;
var key: integer;
var info: integer);

begin

.

end;

begin

for i := 1 to no_of_transactions do
begin
new-transaction(kind, key, info);
if kind = reading

then
t.read(key, info) H
else
t.write(key, info) ll
end)
end
end;

1

The structure of the three programs can be depicted as follows:

The three programs differ
only with respect to the
programming of these
accesses.

slave

trans-

actions
for

slave 2

slave M

The shared table and the control of accesses to it looks as
follows for the three programs:

Program 1

The table is encapsulated in a single Monitor.

table = monitor;

var te array (1 e s @) of

record
key: ...:
info: ..
end;

function search{key_0: ...): integer;
var i: integer;
begin "We assume that 'key_0' is in the table."
i=1;
while t(. 1 .).key <> key_0 do i := i+ 1;
search := i
end;

procedure entry read(key: ...; var info_o:

begin
info_o := t(. search(key) .).info
end;
procedure entry write(key: ...; info-i:
begin
t(. search(key) .).info := info_i
end;
begin
end;

Program 2

The table is encapsulated in a single Shared Class, which is

transcribed into a Monitor and a Common Class.

table_monitor = monitor;

var n_readers, n_writers: integer;

w: waiting_room;
w-adm: waiting_room_adm;

procedure entry entry_to_read;
begin
while not (n_writers = 0) do
delay (w(. w_adm.vacant .));
n_readers := n_readers + 1;
while not w_adm.empty do
continue(w(. w-adm.occupied
end;

procedure entry exit_from_read;
begin
n_readers := n_readers - 1;
while not w_adm.empty do
continue (w(. w_adm.occupied
end;

<))

i) 3

procedure entry entry_to_write;
begin
while not ((n_readers + n_writers) = 0) do
delay(w(. w_adm.vacant .));
n-writers := n_writers + 1;
while not w-_adm.empty do
continue(w(. w_adm.occupied. .))

end;

procedure entry exit_from_write;
begin
n_writers := n_writers - 1;
while not w.adm.empty do
continue(w(. w_adm . occupied .))
end;

begin

init w-_adm;

n_readers := 0; n_writers := 0
end;

table = common class(t_m: t@ble_monitor);

var ke oarray (. 1 e @
record *
key: ...; -
Infor e
end;

z «) Bf

function search(key_.0: ...): integer;
var i: integer; o
begin "We assume that ‘'key-0' is in the table."
i:=1;

while t(. i .).key <> key.0 do i := i +1;
search := i
end;

procedure entry read(key: ...; var info_o:
begin
t_m.entry_to_read;
info_o := t(. search(key) .).info;
t-m.exit_from_read
end; '

—

procedure entry write(key: ...; info_i:
begin
t_m.entry_to_write;
t(. search(key) .).info := info_i;
t-m.exit_from_write
end;

begin
end;

13

Program 3

This program resembles program 2, except that the entries of
the Common Class is programmed in such a way that the search
for the proper entry is allowed to take place simultaneously
with other searches and readings and writings of information
fields. Note that the "table-supervisor" in program 3 is ident-
ical to the "table-monitor" in program 2, except for a few
changes of names.

table_supervisor = monitor;

var n_readers, n_writers: integer;

W waiting_room;
weadm: waiting_room.adm;

procedure entry read-request;

begin
while not (n_writers = 0) do
delay(w(. w-adm.vacant .));
n-readers := n_readers + 1;

while not w_adm.empty do
continue(w(. w_adm.occupied .))

end;

procedure entry read_release;
begin
n_readers := n_readers - 1;
while not w_adm.empty do
continue(w(., w_adm.occupied .))
end;

procedure entry write_request;
begin
while not ((n-readers + n_writers) = 0) do
delay(w(. w_adm.vacant .)):
n_writers := n_writers + 1;
while not w_adm.empty do
continue(w(. w-adm.occupied .))
end;

procedure entry write_release;
begin
n_writers := n_writers - 1;
while not w_adm.empty do
continue (w(. w_adm.occupied
end;

begin

init w_adm;

n_readers := 0; n_writers := 0
end;

table = common class(t_m: table_supervisor) ;

var te array (. 1 w. ces &) OFf
record
key: ...;
info: ...
end;

function search(key-0: ...): integer;
var i: integer;

begin "We assume that 'key_.0' is in the table."

E e= 7
while t{. i .).key <> key_0 do i := i+ 1;
search := i

end;

procedure entry read(key: ...; var info-o:

var index: integer;

begin
index := search(key);
t.m.read_request;
info_o := t(. index .).info;
t-m.read-release

end;

procedure entry writelkey: ...; info_i:

var index: integer;

begin
index := search (key);
t_m.write_request;
t(. index .).info := info_i:
t.m.write_release

end;

begin
end;

-))

The three programs have been executed on our multiprocessor
system in order to measure the changes in performance as access
control was refined from program 1 to program 3. The execution
times depend on many irrelevant quantities, e.g. the total num-
ber of transactions handled by the slaves, the speed of the
actual C-code machine etc. The measurements are therefore dis-
played in terms of the "Speed-up". The Speed-up S(n), which is
a function of the number of slaves, is defined as:

S(n) = T(1)/T(n)

where T(i) is the time it takes for a system with i slaves to
solve the problem (i.e. to execute all transactions). S(n) still
depends on some parameters e.g. the quotient between the time
spent retrieving a transaction and the time spent searching the
table for a single key, the fraction of WRITEs among the trans-
actions etc. The graphs below show - for a particular choice of
these parameters - the Speed-up for the three programs and for
different numbers of slaves. The measured values illustrate how
the saturation point of the shared object (i.e. the table) is
moved to higher values by refining the access control.

S(slaves)

linear speedup

Program: 3

Program: 2
Program: 1

slaves

5. ANOTHER TRANSCRIPTION OF THE SHARED CLASS

The transcription of a Shared Class, which was shown in
section 3, can often be optimized (with respect to execution
time) by using some properties of the access constraints imple-
mented by the Shared Class. For example, EXIT_FROM_READ in

program 2 in section 4 can be written as:

procedure entry exit_from_read;
begin
n_readers := n_readers - 1;
if (n_readers = 0) and (not w_adm.empty)
then
continue(w(. w_adm.occupied .))
end;

and ENTRY_TO_READ as:

procedure entry entry_to_read;
begin
while not(n_writers = 0) do
delay(w(. w.adm.vacant .));
n_readers := n_readers + 1
end;

Below is shown a quite different transcription of the Shared
Class in program 2. The delay- and continue-statements {and the
associated objects 'waiting_room' and'waiting_room_adm') are

substituted by busy-waiting loops.

table_monitor = monitor;

var n_readers, n_writers: integer;

function entry entry_to_read: boolean;

begin
if n_writers = 0
then
begin
n_readers := n_readers + 1;
entry_to_read := true
end
else
entry-to-read := false

end;

procedure entry exit_from_read;
begin
n_readers := n._readers - 1;
end;

function entry entry_to.write: boolean;

begin
if (n_writers + n_readers) = 0
then
begin
n-writers := n-writers + 1;
entry.to.write := true
end
else
entry_to_write := false
end;

procedure entry exit_from_write;

begin
n-writers := n_writers - 1;
end;
begin
n-readers := 0; n-writers := 0
end;

table = common class(t_m: ;able_monitor);

var t: array (. 1) of

record
key: ...;
info: ¢:s
end;

function search(key_0: ...): integer;
var i: integer;

begin "We assume that 'key_0' is in the table.”

i:=1;

while t(. i .).key <> key_-0 do i :=
search := i
end;
procedure entry read(key: ...; var info_o:
begin

while not (t-m.entry-to-read) do;
info_o := t{(. search(key) .).info;
tom.exit_from_read

end;

i+1;

o)}

20

procedure entry write(key: ...; info_i: ...);

begin
while not (t_m.entry_to_write) do;
t(. search(key) .).info := info-i;
t-m . exit_-from.write
end;
begin
end;

The graphs below compare the performance of three transcriptions
of a Shared Class, Program 2 was described in section 4. Program
2'uses the same transcription as program 2, but includes the
optimization suggested above. Program 4 uses a transcription

based on busy-waiting,

S(slaves)

21

linear speed up

Program: 4

e Program: 2'

Program: 2

T slaves

22

The transcription which uses busyrwaiting is slightly better
than the other two. This may be explaineg as follows. The tran-
Scription which uses busy—waiting is inherently faster than
transcriptions using delay- ang continue—statements (compare
the entry procedures‘EXIT_FROM-... in the three Programs). An
adverse effect is caused by the heavy traffic on the entries
of the Monitor called 'table_monitor'. This traffic will satuy-
rate the 'table_monitor! for a relatively small number of pro-
Cesses. However, if the time spent executing an entry in the
’table-monitor' is small compared to the total time spent in
an entry of the Common Class called "table', the relative lossg
is small for the Processes that are doing useful work. Whether
4 process loses its power executing a busy-waiting loop or ig
delayed in a queue-variable ig immaterial when a static allo-
cation of Processors to Processes is used.

Acknowledgement

References
==-tlences

[1] Mgller-Nielsen and Staunstrup: Saturation in a Multi-
Processor. IFIP'83, September 1983,

[2] Mpller-Nielsen ang Staunstrup: Early Experience from
a Multiprocessor Project. DAIMI, PB-142, January 1982,

[3] Brinch Hansen: The Architecture of Concurrent Programs.
Prentice~Hall, 1977

