1] ALISHIAINN SNHHYY

_ _.I_I_H_ H uswpedaq aouang Jaandwo)

‘ _ NVIIW/INIVA MAHL
T G5 €8 Z1 — 90 ‘suoydaay
AYVIWNIA - D snyiey 0008 YA — apeBaxuniy AN

£861 IPqUIAON
891-9d INIVA

uasueyo[‘A 910
uasradsaf aaQ suaf
dnnsuneig uaSief

A Multiprocessor Database Machine

ANIHOVIN dSVEVIVA dOSSADOUdILTINAN V NI
NOILVINASTIdTIV.LVA TVIOISAHd

Staunstrup et al.:

L198-90T0 NSSI

PB-168

PHYSICAL DATAREPRESENTATION IN A MULTIPROCESSOR
DATABASE MACHINE

Jgrgen Staunstrup, Jens Ove Jespersen, and QOle V. Johansen

Computer Science Department
Aarhus University
DK-8000 Aarhus C

Denmark

By using a multiprocessor to implement the lowest
level of a relational database we want to achieve
fast execution of database operations such as
join, find, and update. But the potential speed
improvements provided by a multiprocessor can only
be achieved if one can construct algorithms and
corresponding physical data representations that
can utilize the potential. By choosing a particu-
lar representation, the grid file, and analyzing
its behaviour, we want to point out the diffi-
culties encountered in trying to achieve speed
improvements from a multiprocessor.

1. INTRODUCTION

This is a summary of some preliminary investigations on how to utilize
multiprocessor architectures to achieve fast execution of the oper-
ations on a relational database. We want to emphasize the importance
of finding algorithms and data representations that utilize the po-
tentials of a multiprocessor. One such representation based on the
grid file [Nievergelt et al. 81] is suggested and analyzed. This re-
pPresentation is appealing because it is simple and independent of the
distribution of data and operations; but no claim is made that the
chosen representation is optimal or even superior to other represen-
tations. At the moment it is not even clear what should form the basis
for a comparison with other representations.

The preliminary status of this work means that it is not a complete
description of a multiprocessor database machine. Rather, we point
out what we consider a major diEficulty: programming a multiprocessor.

It is assumed that the reader is familiar with fundamental database
concepts, in particular with the relational model.

2. WHAT IS A MULTIPROCESSOR DATABASE MACHINE?

First we describe what we understand by a multiprocessor database
machine mainly to stress the difference from apparently similar
notions e.g. a distributed database.

A database may be viewed as follows:

requests
database
management
level
operations
database
machine

The operations which users perform on the database are called re-
quests. These requests are transformed into operations. We distin-
guish between the database management level and a database machine.
The most important tasks of the database management level are:

- translation of requests into operations
- privacy and consistency checking
- logging and backup.

This leaves the database machine with the responsibility of performing
the operations. It uses some physical representation to store the

data on the available storage media. When performing its operations
the physical representation is manipulated. In a traditional data-
base the database management level provides one sequence of operations
to be performed by the database machine using a single processor. We
want to study a multiprocessor database machine where a number of
processors cooperate on performing the operations provided by one
database manager. This should be distinguished from a distributed
database where each processor has its own database manager.

There are two reasons for using a multiprocessor database machine:
- to improve the speed i.e. perform the requests faster

- to improve the reliability i.e. make the database less sensitive
to failures in isolated parts of the system,

Our work concentrates on the first of these two aspects although we
recognize that the second is at least as important.

Speed improvements can be achieved by performing several requests
simultaneously, called inter request concurrency or by performing
several parts of one request simultaneously, intra request concur-
rency. Both of these should be used in order to perform the operations
as fast as possible, but the inter request concurrency is administered
by the database management level to maintain consistency of the data-~
base whereas a multiprocessor database machine must utilize intra
request concurrency. Hence we concentrate on the latter in this paper.

3. MACHINE ARCHITECTURE

This section describes the machine architecture of the database ma-
chine that forms the basis of our investigations, it is based on the
Multi-Maren multiprocessor [Mgller-Nielsen and Staunstrup 82]. This
machine was built in 1981 and has been in daily use since whereas

the database machine discussed here is so far a paper design only.

The database machine consists of a number of processors each with a
local primary and secondary store:

global primary store

Bus

/

interface

controller Processors
and local

1 2 N primary store

database '

management

level
secondary
storage

PAC | ce7 |2 o
I'ié émphasis in this paper is on software aspects such as data re-
presentation, the advantages and disadvantages of the architecture
sketched above is not discussed in further detail, but a more com-
prehensive discussion may be found in [Hsiao and Menon 811].

The database is divided into a number of parts, each administered by
a separate processor. Some operations may be performed locally with
only a small amount of communication between the processors, but
other operations e.g. the join operation considered in the next sec-
tion may require substantial amounts of data to be communicated among
the processors.

We imagine that the database management level is completely separated
from the multiprocessor e.g. by running it on a dedicated processor
which supply the database machine with operations to be performed
through the interface controller.

4. DATA REPRESENTATION AND ALGORITHMS

This section describes a physical data representation and corre-
sponding algorithms based on the machine architecture outlined above.
The discussion is centered around the join operation which is the
most complicated and time consuming of the relational operations.

A relation is a set of tuples: {(a r@,r...,a) |a; €D.} where D, is
the domain of the i'th attribute. A join of Pwo felations P and S
over a common attribute P, and S, respectively is a new relation J.
This new relation can be computeé by the following straightforward
algorithm:

Nested loop algorithm:

for all (pT,p2,...,pm) in P do
for all (51,82,...,Sn) in S do
if P =5,
then J v=JLJ{(p1,p2,...,pm,s1,52,...,si_1,si+1,...,sn)}

The running time of this algorithm is pProportional to IPXSI i the
number of elements in the cartesian product. This running time can
be reduced in at least the following two ways:

= Localizing data: the number of iterations in the inner loop of
the above algorithm can be reduced if for each tuple in P a
small part of S can be isolated where all the potential matches
(P, =8,) occur. There have been proposed many algorithms and
physical data representations which aim at localization. The
most obvious thing to do is to sort the two relations with
respect to a particular attribute, Another possibility is using
the grid file representation [Nievergelt et., al 1981], this is
investigated below.

- Concurrency: the join does not prescribe any order in which the
tuples should be inspected and included in the new relation,
This may therefore be done on several sub-relations simulta-
neously.

This paper focuses on the last alternative. At first sight it seems
obvious how to do this, namely letting each processor handle an
equal fraction of the iterations in the nested loop algorithm. It
is, however, not as simple as this. Most existing databases achieve
significant speed improvements by localizing data. To be a real im-
provement a multiprocessor database machine must therefore utilize
both locality and concurrency. In the following such an attempt is
made to illustrate some of the difficulties involved in doing this.

4.1. Physical Data Representation

The tuples of all relations must be stored in some data structure on
secondary storage €.9. discs. A common feature of such secondary
stores is that data are grouped into so-called blocks where entire
blocks only can be read Oor written.

In this study the grid file representation is chosen. This represen-
tation aims at obtaining good locality by storing tuples with nearly
the same attribute values close to each other, usually in the same
block. Another way of achieving good locality is by sorting the re-
lation with respect to one of the attributes. If almost all join
operations are over the same attribute, this is to be preferred. The
disadvantage is, of course, that joins over all other attributes
gain no locality. With the grid file representation all attributes
are treated symmetrically. Consider a relation with two attributes
over the domains D, and Dy. The following diagram shows the tuples
in this relation as points in a two-dimensional space:

D2
A
b4
X % x one block
% ' S x
x
X X
X »
=< X
x - one tuple
X /
x X
*
- x

PAC [ect |2 i 7o)

For any particular tuple t the goal is that all tuples in the neigh-
bourhood of t are placed in the same block as p. Tuples are inserted
and deleted dynamically, this leads to a splitting and joining of
blocks. A directory keeps track of where to find a particular tuple.
The technical details involved in realizing this are omitted here,
they may be found in [Nievergelt et al. 1981, Jespersen and Johansen
19827

The next step is to decide how the tuples/relations are distributed
on the secondary stores of the processors. To be consistent with the
choice of the grid file representation all attributes should be
treated symmetrically. Consider again the diagram showing all the
tuples of a relation with two attributes as points in a two-dimen-
sional space. These tuples are now distributed at random among the

N processors so that they all end up with approximately 1/N of the

tuples.
D2
N %
X
1
x
X x
—3 D1
D2 1
S
” N of the
2 i original tuples
bl w x
3 D1
D2
b -
N * o)
> ‘ .
< i o WL

> D1 PAC |ow*+ 5%&

ke el

The random distribution is simple to maintain dymamically. A tuple
can be deleted immediately and new tuples are inserted at the pro-
cessor with the currently lowest load. Each of the processors or-
ganize its tuples as a distinct grid file with a separate catalog.
Hence, there is no global information telling which processors have
which tuples. Let us repeat that we make no claim that the archi-
tecture and data representation described above is optimal, but its
simplicity and symmetry is appealing.

4.2. The Concurrent Join Algorithm

When using the randomized representation in a multiprocessor with N
processors each handles approximately 1/N of the tuples as separate
sub-relations Pi and Si:

!
P,ILP2U...UPN

S,IU82U...USN

S

Now consider a join of the two relations P and S, SeaP:

SbaP = S1!><1P1US1MP2U...US1NPN
USZNP1US2NP2U...USZMPN
USNNP1USNNP2U...USNNPN

Hence the join is split into N2 joins of sub-relations. The joins in
the diagonal are local joins within one processor, whereas all the
remaining joins require communication of sub-relations between the
processors.

The locality of the grid file reduces the amount of blocks to be
considered in each of the N2 joins but it does not eliminate any of
the joins, which would of course be preferable. We have, however,
not been able to find symmetric representations with this property,
this is discussed in further detail in [Jespersen and Johansen 83].
The diagram shown below gives an example of what can be achieved by
the grid file locality. Each Square represents a join of two blocks,
the shaded squares are the joins that are avoided:

P1 Pi PN
S,I %
[I’ | ------
|
I | :
| | :
|) \
|) i
s. [7
J £ 1 [_— o
I ‘ '
I | /
|
) I | ;"
i] o
I |
SN |] | —— ”

Processor i (1 £1 =N) handles one row of the matrix:

S.baP US,aP_U...US., P
1 3 a n

1 2

As mentioned above S . P. can be performed directly by processor i
but the remaining jo%n operations require communication of the

tuples in P_,P_,... which must be sent to processor i. Similarly
processor i muSt send the tuples in P. to all the remaining N-1 pro-
cessors. So the gain obtained by bein% able to perform N block trans-
fers from the secondary store simultaneously is reduced by the ne-
cessity to communicate some of the blocks between the processors.

5. ANALYSIS OF THE RANDOMIZED REPRESENTATION

This section contains an analysis of the randomized representation
described in section 4. Since the join operation is regarded as the
most demanding of the database operations the analysis is based on
estimates of the performance of this operation. It is, however, not
clear how this performance should be measured. The following list
contains some of the possible measures:

- the number of tuples communicated between the processors
- the number of storage references made by each processor
- the number of block transfers to and from secondary store

- the running time for executing a join operation on a particular
machine.

We have chosen the number of block transfers as a measure, because

it is reasonably machine and implementation independent. Furthermore
it is the dominant factor in the running time. This choice has
several disadvantages e.g. it ignores the cost of communication be-
tween the processors. It would be nice to find a better measure which
is machine independent yet capture all aspects of the algorithm. The
choice of such a measure is also under debate for mOoNnoprocessor re-
presentations [Batory and Gotlieb 82].

5.1. Upper and Lower Limits

We analyze the number of block transfers (from secondary storage)
needed for joining P and S which are both two-dimensional relations.
This analysis reveals some of the fundamental properties of the
randomized representation.

With the chosen measure a perfect join algorithm would be one where .
each block of both relations is transferred from the secondary store
exactly once. This is obviously a lower limit. In practice this lower
limit cannot be achieved due to the limited capacity of the main
store. But the better the locality of the representation the closer
one gets to the lower limit.

Consider a block P, of the relation P, in general there may be several
blocks of S which Intersect with P, . (Two blocks intersect if there
is a tuple in each of them with thé same attribute value). In the
algorithm described here the blocks of the relation P are transferred

once only whereas the blocks of S which intersect with more than one
block of P are transferred several times. In the worst case all
blocks of S are transferred for each block in P. Let #P and #S be the
number of blocks in P and S respectively. If T denotes the number of
transfers from secondary store, the above can be summarized as:

#P + #S £ T £ #P + #P * #8

5.2. Estimating the Average

First we estimate the average number of block transfers needed when
a single processor is used: T,. This is compared with the number of
block transfers needed by eacﬂ processor in a N-processor database

machine: TN. Based on these we give the speed-up i.e.

S :E‘J.
N TN

Consider a block Pp of the relation P, if it intersects with many
blocks of S many blocks must be transferred from secondary storage

to perform the join, whereas if it intersects with a few only these
few are transferred. Let R denote the average number of blocks which
intersects with each block of P, intuitively this is the ratios of
the average "length" of the blocks in the two relations. We postulate
that the average number of block transfers from S for each block in
P, called TS, is:

TS = G(R) * /#S

G is a function of R for which we have no analytic expression. It
expresses how much locality the grid file provides. In our simula-
tions G varies between 0.1 and 0.2 which can be interpreted as the
locality achieved from the grid file avoiding 80-90% of the potential
block transfers (80-90% of the squares in the diagram from section
4.2 are shaded). The factor vV#S has a simple geometrical interpreta-
tion. In our implementation of the grid_file the blocks tend to be
squares i.e. on the average there are v#S blocks which may hold a
particular value of an attribute:

T
TV
' |
--4hhl—‘+__|-_
| |
| 1
S e o r_ - = =
: | | ? V#S blocks
o e db 2l o= o =
I | r
I I i 1
- - 5 __l__ s _.r -
1 | I
i | I | J 3
7o)
value o
v
PAC q ok* % &

It follows that:

T, =#P*TS + #P = #P *G(R) * /S + #P
The second addend "#P" stems from the one transfer of P (outer loop
of the algorithm in section 4).

Now consider the multiprocessor algorithm described in section 4.
Each processor has approximately 1/N of the blocks of both relations
i.e. #P/N blocks of P and #S/N blocks of S. It was claimed above that
R (the ratio of the average "length" of a block) determined how much
the locality provided by the grid file representation helped. When
the tuples are distributed randomly into N sub-relations, it means
that the sub-relations become sparser (see section 4.1) i.e. the
"length" of blocks increases. But since this happens to both rela-
tions R is not changed, hence G(R) is the same. The average number

of blocks transferred from S for each block of P by processor Je TSy
is therefore J

TSj = G(R) * /#5/N

Since processor j must join its sub-relation of S with the whole of
P we get

=
I

#pP *TSj + #P/N

#P * G(R) * /#S/N + #P/N

#P * G(R) * V#S + #p

#P * G(R) * V#S/N + #P/N
#P * G(R) * /¥#S

#P * G(R) * /#S/N

= VN

This estimate has been verified by simulation. Two small artificial
relations with #P = #S = 200 were constructed and the number of block
transfers were counted when 2, 4, 6 and 8 processors participated
in the join. The results are summarized in the table given below:

N T1 TN S(N) VN
z, 3396 2382 1.43 141
4 3391 1688 2,01 2

6 3372 1323 2.55 2.45
8 3450 1132 3.05 2.83

10

Although the simulation is very small it confirms the above analysis
of the number of block transfers. In [Jespersen and Johansen 83] the
analysis is carried further to cover relations with more than two
attributes,

Conclusion

The notion of a multiprocessor database machine has been presented.
This is a special purpose machine built as a multiprocessor to speed
up database operations. The key points are choice of physical data
representation and a corresponding hardware architecture.

One such pair of representation and architecture has been analyzed.
This has been done by studying the performance of the join operation.

time consuming operations. It appears that the proposal leaves a lot
of room for improvements. Along with such an improvement it would be

secondary storage and primary storage used here seems like a very
crude measure.

In summary this stresses the importance of finding efficient multi-

pProcessor algorithms and datastructures, unless this is done even
the most sophisticated hardware cannot be utilized.

References

Batory and Gotlieb 82: A Unifying Model of Physical Databases,
ACM Tr. on Databases 7, Dec. 1982.

Jespersen and Johansen 83: En Database-maskine baseret pd en multi-
procesenhed, Thesis (in Danish), Computer Science Department,
Aarhus, May 1983.

Mgller-Nielsen and Staunstrup 82: Early Experience from a Multipro-
cessor Project, DAIMI PB-142, Computer Science Department,
Aarhus, Jan. 71982,

Nievergelt et al. 81: The Grid File: an adaptable, symmetric, multi-
key file structure, ETH-46, Zurich, Dec. 1987.

Hsiao and Menon 83: Design and Analysis of a Multi-Backend Database
System for Performance Improvement, Functionality ExXpansion and
Capacity Growth, TR-81-7, Computer Science Research Center, Ohio
State University, Ohio.

