ISSN 0105-8517

EXPERIMENTS WITH
A FAST STRING SEARCHING ALGORITHM

Peter Moaller-Nielsen
Jergen Staunstrup

DAIMI PB-167
October 1983

Computer Science Department
AARHUS UNIVERSITY
Ny Munkegade — DK 8000 Aarhus C — DENMARK

Telephane: 06 ~ 12 83 55 Er

Il
H

=1
I

HH]

—

EXPERIMENTS WITH A FAST STRING SEARCHING ALGORITHM

Peter Mgller~Nielsen and Jgrgen Staunstrup
Computer Science Department
Aarhus University
DK-8000 Aarhus C, Denmark

October 1983

Abstract

Consider the problem of finding the first occurrence of a
particular pattern in a (long) string of characters. Boyer and
Moore [1] found a fast algorithm for doing this. Here we consider
how this algorithm behaves when executed on a multiprocessor.
It is shown that a simple implementation performs very well.
This claim is based on experiments performed on the Multi-Maren
multiprocessor [4].

1. INTRODUCTION

Consider a string, S, of L characters from some alphabet, and a
pattern, P, which is a string of K characters from the same
alphabet (K << L}. Consider the problem of finding the leftmost

occurrence of P in S, i.e. the least index "i" such that
S(i..i+X~1) = P(1..K)

Boyer and Moore [1] have found a very fast algorithm for doing
such a string—-search, their algorithm is sublinear, i.e. on the
average it needs fewer than "i" character comparisons, to find
an occurrence at index "i". Here we suggest an implementation of
this algorithm which reduces the average running time further
by searching a number of substrings simultaneously. This imple-

mentation is formulated as a so-called problem-heap algorithm [4].

2. PROBLEM-HEAP FORMULATION OF THE STRING-SEARCH

The overall task to be performed is searching the string, S, which
may be split into substrings (problems). Each process searches the
substrings it receives using the Boyer-Moore algorithm. The details
about this algorithm may be found in [1]. Each of the processes
looks as follows:

CYCLE
receive (substring);
search (substring); "using the Boyer-Moore algorithm"
IF match
THEN report (position);
END

The substrings that remain to be searched are represented in a

data structure shared by all processes called the problem-heap.

2.1 The problem-heap D D
i . . . T L
The problem-heap for the string searching problem can be organized Yot -AA SNy WA

in a number of different ways; the one described below is quite

\
A
~

Ly o

simple, but it turns out to perform very well, therefore other

more complex organizations of the problem-heap have not been tried.
’ The obvious question is of course which D should be chosen?

A simple analysis (see appendix) shows that the optimal D
The most obvious way to distribute a string of length L to N pro- P ¥ (PP
depends on:
cesses 1is by dividing it into N substrings of egual length and P
then let each process search through one of these:
- the pattern to be found

- the position of the leftmost occurrence

1 L 2L i L - the number of processes
N N 41 - the string to be searched
b= } + VWA } |
\'hv——"‘:“‘v———'” _V‘“——J
Hence the optimal value of D cannot be computed before the search.
process process process L
1 2 N Fortunately the running time is not sensitive to the exact choice
of D. The following diagram shows the relationship between the
measured average running time T and the value of D (for a particular
But since the leftmost occurrence of the pattern is not known choice of the above parameters):

in advance, this organization is very inefficient since the work
done by all processes working to the right of "i" is lost.
Instead relatively short substrings are given to processes. Hence -

the following illustrates a typical snapshot of a search: 200

search
completed 600
1 /////// \\\ \\\\\\\ L
Vhdd ok L L L AL L VAL LLL L LA L L] |] 500
VrrrTrrriingg V777777777 ¥ 1 1
L - | SR—— Y { J - -
process process process 400 N=8
1 2 3
- max T
3 e average T
. 3 . : . . . 0U|
The details of the string administration, i.e. keeping track of - omin T

which strings have been given to which processes can be worked

200
out in many different ways, e.g. static or dynamic determination
of the substring length. It turns out that the following simple

administration performs very well: all substrings are of the

same fixed length D, where DzK. Processes are always allocated

T T
substrings from left to right, hence there is a point, F, up 100 200 300 400 500 1000 D

until which the string has been searched or is being searched:

3. PERFORMANCE OF THE STRING-SEARCHING ALGORITHM

To demonstrate the performance of the algorithm it has been
implemented on the Multi~Maren multiprocessor [4]. Two series

of experiments were conducted with this implementation. One

served to find the optiﬁal D, a result is shown above. The other
served to analyze the performance of the algorithm. Rather than
give the performance as an absolute running time which is very
dependent of hardware and implementation characteristica, the
performance is given as a relative speed-up, i.e. the ratio of its

running time using one process to the running time using N processes:

()
T (N)

S(N) =

The advantage of using the speed-up as a performance measure is of

course that it eliminates machine and implementation details.

Below is shown the measured speed-up for the above described
implementation of the string-search. For each N the optimal value
of D has been used.

N Running time Speed-up
1 3597 1

2 1883 1.9

4 981 3.7

8 516 7.0

The table shows that the algorithm has a good speed-up even

with the very simple string administration described above. There
is however, a significant deviation from a completely linear
speed-up. In the following section the causes for this deviation
are identified. These causes are viewed as different kinds of
lost processing power, i.e. periods of time when the work of one
or more processors does not contribute towards the solution,

finding the leftmost occurrence of the pattern.

3.1 Braking loss

The first kind of loss which can be identified is braking loss,
which is the superfluous work done by processes during termina-

tion of the algorithm. Consider a process, M, which finds an

occurrence of the pattern; other processes may already be working
on substrings to the right of M

occurrence
of P
1 yd L
VLLLLLL L L L) WA 1
V777777777777 '7 7 ‘ I : ///j/// 1///////////[1/,//: v‘wv‘ ﬁl
———
process

M
The work done to the right of the occurrence is of course super-

fluous. Consider now the processes working to the left of M,
these should of course finish the search of the substrings they
are currently working on, otherwise an occurrence before the one
found by M could be missed. To get an estimate of this loss,
consider the following three time instances:

T1: the instance when the first substring to the right
of the leftmost occurrence is given to some process.

T2: the instance when a process finds the leftmost
occurrence.

T3: the instance when all processes have been stopped.

Those processes that finish searching a substring in [T1,T2[are
immediately put to work on a new substring to the right of the
occurrence, hence each of them loses a whole period, i.e. the
time it takes to search a substring. On the average this should
be N/2 of the processes. Now consider those processes that finish
a search during [T2,T3]; they are not given a new substring to
search, yet their processing power is lost until T.. The diagram

3
shown below illustrates this situation:

|

1 |
::!A%WWW///////I
] ¥ :
4 111171111111
! ! ¥3
i iWhL/+/—,L;:L++7L/-/+H%+/+N//|
| X4 :
: (1111110011111111
[| g
! | Yot fddb A4
| | |
| | %6 I
: : V1111117
{ | |
| T
; V111111111111
| |
T, T

-
N
g o— - —
w

The crossed sections (//////}) represent the braking loss. The
braking loss can be divided into two contributions. The first
contribution is the (N-1)/2 processes losing a whole period, i.e.

the periods marked by MfFAH44A , this amounts to (N=1)/2 Dc, where

¢ is a constant. Our measurements show that this contribution,

although dominant, is not a satisfactory estimate of the braking loss.

The residual (shown as /////// in the diagram) gives a significant
contribution to the braking loss also. To estimate the residue
consider the time instance T,. At this instance, the N-1 re-~

2
maining processes are busy searching some substring. Let the
instances when they finish be X1,X2,...,XN (Xi = T2 where 1 is

the number of the process finding the occurrence). The residual

contribution, R, to the loss is:

=
I
Mo

max{xj} - Xi

i=1

To estimate the average value of R we must find the average of

max{xj} - Xi' Let (11’12""’iN) be a permutation of 1,2,...,n

such that

X,
1

In

X,
1

A
A

2y
2 N

then the average we are seeking is the average

X, =~ X, (0 < J < N)

If we assume that the X1 are uniformly distributed on [0,Dcl,

then the average can be found using order statistics [5]

1

E(X, -X.) = (N-J) Dc
iy ig N+1
Hence
N 1
R = .E (N-1) N+1 Dc
i=1
N-1 1
T T e
i=1
_ N(N-1)
= 2w D°

So the total braking loss is

(E:l) Dc

_ (N-1)
B = 22_"Dc + NI

2

N

2
N
= (§¥7 - 3) De

Some experiments were conducted to measure the actual braking
loss, the following diagram shows the experimentally measured

values against the predicted wvalues for Bloss:

Braking

loss
4

Experiment

20 40 60 80 100

3.2 Iteration loss

For small values of D another kind of loss called iteration loss
becomes significant. When a process finishes searching a substring
and gets a new substring from the problem-heap some work is lost,
partly because of the overhead associated with the string admi-
nistration but more significantly some momentum is lost when the
jumps made through the string are cut.

The iteration loss is directly proportional to the number
of iterations made by each process. Assume that the leftmost
occurrence of the pattern starts at index "i", then the average
number of iterations is:

i

D

If we assume that the loss associated with each request is a

constant, O, the total iteration loss is:

Iloss =0 %

The experiments show that averaging over a large number of
searches, the above is a reasonable approximation of the iteration
loss, but if we consider a particular string and pattern, O is

by no means constant. As mentioned above the lost momentum is the
major cause for the iteration loss. Consider two consecutive
values of D, d and d+1. The running time of the algorithm when
executed with these two values of D may be gquite different. This
is because the jumps through the string made by the Boyer-Moore
algorithm are quite different. To see why this variation occurs,

it is necessary to take a closer look at the Boyer-Moore algorithm:

The key idea in Boyer and Moore's algorithm is to compare the
pattern and the string from the end of the pattern towards the

start.
pattern
X —————=—= X string
o i . . e
J first comparison (J+K-1)

second comparison (J+K-2)

To check for an occurrence of the pattern at index J one compares
the characters in the string with the pattern starting with the
character in at index J+K-1, if this matches, the characters at
index J+K-2 is compared with pattern(X-1) etc. If all K characters
match, an occurrence of the pattern has been found, but if they

do not, the pattern is moved to the right to check for an occur-
rence there. Because the comparison is done from the last character,
the pattern can usually be moved quite far to the right. If,

for example, the character at index J+K-1 does not occur in the
pattern, it can immediately be moved K characters to the right.

In general, the algorithm makes use of all the information gained
by the comparisons to move the pattern 1 to K characters to the
right. The obvious algorithm which compares the characters from the
start can only move the pattern one character to the right.

Further details about the algorithm may be found in the references

{11, [2], and [3]. So the time it takes to search a particular

substring may vary. If the pattern can be moved K characters Predicted Measured

‘after each comparison, the search goes very fast; as the other N ng) Blgss Elgﬁﬁ T (N) T (N)
extreme, the pattern is sometimes only moved one character to N

the right, this occurs when the string is very regular with many 4 899 49 25 973 981
repetitions, e.g. when the alphabet is very small [21]. 8 450 30 25 505 516

Since it would be quite complicated to cover this variation in i
. ' . (For N=8, D=100 and N=4, D=200 is used.)
the expression for the iteration loss, we make the somewhat crude

assumption that O is constant.

4. CONCLUSION
3.3 Saturation loss

In all the experiments reported above the string was placed in . .
p p g p A fast multiprocessor string searching algorithm has been pre-

a common store accessible to all processes whereas all code and . , L .
sented. It is a simple modification of an algorithm by Boyer and

local variables were placed in private stores accessible to one . . .
Moore which makes it possible to search many substrings simul-

rocess only. Only one process at a time may read or write the
P y Y P y taneously. These searches can be done by the independent proces-

common store. Hence there might be a short delay, saturation loss,

sors of a multiprocessor. The algorithm has been implemented on
on each access to the common store while other processes access .

a multiprocessor and a very good speed-up has been achieved.
The deviation from linear speed-up could be explained by identifying
two kinds of lost processing power called braking and iteration loss.
The magnitude of both of these was expressed analytically and these

expressions were verified experimentally.

it. The following experiment was made to demonstrate that this
delay is insignificant for the string searching algorithm. A ver-
bsion of the program was made where a copy of the string was placed
in each of the local stores so that several processes referencing
the string simultaneously would not interfere. The running time

of this version differed by less than 1% from the above mentioned

results. From this we may conclude that saturation loss can be
Acknowledgement

ignored. i initi
g Thorkil Naur initiated this work by making the first attempt to

construct a multiprocessor implementation of the Boyer-Moore

3.4 Running time estimation . . ,
algorithm as a term project in the fall of 1980.

It is claimed that braking and iteration loss explain the deviation
from linear speed-up (see the table in section 3), i.e. that

T(N) ~ (T(1) + B) /N

loss * Iloss

To verify that no source of loss has been overlooked, one may
compute a predicted T(N) using the above expression and compare

this with the experimentally found T(N):

References

(1]

(2]

{51

A Fast String Searching Algorithm, R.S. Boyer and J.S. Moore,
C. ACM 20, 10, 1977.

On improving the worst case running time of the Boyer-Moore
string matching algorithm, Z. Galil, C. ACM 22, 9, 1979.

Practical Fast Searching in Strings, R. N. Horspool,

Software Practice and Experience 10, 1980.

BEarly Experience from a Multiprocessor Project,

P. Mgller-Nielsen and J. Staunstrup, Computer Science

Department, Aarhus University, January 1982.

An _Introduction to Probability Theory and Its Applications,
vol. II, W. Feller, Wiley 1970.

13

APPENDIX

In section 2.1 it was claimed that the optimal value of D depends
on a number of guantities, e.g. the position of the occurrence
which are usually not known before the search starts. Below the
optimal D is calculated for a particular string and pattern. This
also makes it possible tOVCOmpare the calculated optimal D with
the experimentally estimated optimal D.

The two sources of loss: braking loss and iteration loss determine
the optimal D; to reduce the braking loss, D should be small
whereas D should be large to reduce the iteration loss. The optimal
D is therefore the one that minimizes the total loss:

i.0 N

loss(D) = SE ¢ (gy- g) ve

The minimal value of Loss is obtained for

VZ(N+1)i-O

D
¢ (2N2=N-1)

opt N>1

The following table compares the calculated DO with the experi-

pt

mentally estimated Dopt

calculated experimental

N Dopt Dopt
2 258 300
4 143 200
8 92 100

The disagreement between the experimentally estimated and the cal-~
culated optimal D is due to the very big variation in the experi-~
mental results. For 505<D2400 this variation covers any differences
caused by choosing different D. To make a reliable experimental

estimation a very large number of experiments should be run.

