ISSN 0105-8517

FINITE PRECISION RATIONAL ARITHMETIC:
SLASH NUMBER SYSTEMS*

David W. Matula
Peter Kornerup

DAIMI PB-166
October 1983

* This research was supported by the National Science Foundation under grant MCS-
8012704 and by the Halibarton Foundation.

FINITE PRECISION RATIONAL ARITHMETIC:
SLASH NUMBER SYSTEMS¥*

Abstract

Fraction number systems described by fixed-slash and
floating-slash formats are specified. The structure of arith-
metic over such systems is prescribed by the rounding
obtained from "best rational approximation". Multi-tiered
precision hierarchies of both fixed-slash and floating-
slash type are proposed and analyzed with regards to their
support of both exact rational and approximative real computation.

I. INTRODUCTION AND SUMMARY

There are compelling reasons for investigating arithmetic
in number systems composed of limited precision fractions. The
simplicity and naturalness of specification of fraction number
systems and arithmetic leads to a substantive body of number
theory available to analyse and document properties of compu-
tation in such systems. To implement a fraction number system

consider that:

B a set of fractions {p/q} can be represented as a set of
integer pairs, where the finite precision limitation
characterizing the set can be specified simply by bounds
imposed on the size of the numerator and denominator in

each allowed pair, and

B any real value not exactly representable in such a finite
precision fraction system can be canonically rounded to a
value of the system by choosing what in number theory
literature is called a "best rational approximation”.

Our companion paper [KM83] describes an arithmetic unit
capable of performing addition, subtraction, multiplication
and division incorporating this canonical rounding by best
rational approximation on such fractional operands. Computa-
tion time is shown essentially equivalent to a floating-point
divide operation of comparable precision per arithmetic ope-
ration. This speed is sufficiently competitive to make frac-
tion number systems viable candidates for special application
supplements to, or possibly alternatives for, a floating-point
computation system.

Concern for numeric software portability has motivated
several efforts [.KM81], [IEEE81], [cHH83 1, for defining
unique and efficient finite precision computation systems with
user specifiable precision levels available at the programming
language level. To prescribe a particular floating-point arith-

metic system recall that parameters for base, precision, and
exponent range, must be set. Other choices including rounding
rule and possible allowance of denormalized numbers must be
resolved to fully characterize the resultant number system and
its attendant approximate real arithmetic. In contrast, frac-
tion number systems may be fully characterized by a single
(radix independent) integral valued parameter denoting the
bound on numerator and denominator size. This parameter then
serves quite naturally as an hierarchical precision specifi-
cation variable. Approximate real arithmetic in fraction number
systems is then uniquely prescribed by the canonical rounding
obtained from best rational approximation of the exactly com-
puted results. Lest this rounding rule appear esoteric con-
sider the following.

The familiar process of rounding in radix representation
illustrated by rounding the decimal representation 0.431464...
(= 277/642) to four digits yielding 0.4315, is elegantly simple
as it corresponds to a truncation of the radix representation.

Although less familiar, the "best rational approximation
rounding" process, illustrated by rounding 277/642 to the four
digit fraction 22/51, can be seen to be equivalently simple as
it results from truncation of the corresponding (but not visible)

continued fraction representation.

The correspondence between fractions and continued frac-
tions is fundamental to the characterization and implementation
of finite precision rational arithmetic. A brief review of
terminology will be useful here. A fraction, denoted p/q or g
is an ordered pair composed of a nonnegative integer numerator
pr, and a nonnegative integer dencminator g, which are not both
zero. The gquotient (value) of p/q is the rational number de-
termined by the ratio of p to g for gq#0, and is taken to be
positive infinity when g =0. The numerator and denominator of
an irreducible fraction must have a greatest common divisor
(ged) of unity, other fractions being termed reducible. Two
fractions are equal, denoted p/g=r/s, if gqr=ps (p/g=1r/s
does not necessarily imply identical numerators and denomina-
tors). We do not always distinguish between "p/gq" denoting a

3
fraction (the ordered pair) or the quotient (a rational
number) .

Every nonnegative rational number x has both an irredu-
cible fraction representation p/q and a finite continued
fraction expansion

- P - 1
X = = + =
= ag ; a; 20, (1)
a; *
a +
R, q
an

also denoted p/q =[a0,a1,...,am], where the partial quotients
a; are integral and unique (canonical) with the added re-
gquirements a, 20; a, 21 for 1£i$m-1; and am.a2 when m2z 1.
The truncated continued fractions

P

ol P ATRT S, IS [a,,a a,l, i=0,1 m (2)

qi 0 o’ 1:---111 rhpeeeplly

1 .

A
a,
1

termed the convergents (or best rational approximationsj of

p/g, constitute a series of successively more accurate approxi-
mations.

Note then that

3%}
~J
~J
—

|

= [0,2,3,6,1,3,3].

=)
=
138

The seguence of convergents to 277/642 are illustrated in con-
tinued fraction, fraction, and decimal radix representation along

with the relative error of the approximations in Table 1, from
which the rounding of 277/642 to the four digit fraction 22/51

is readily made visible.

continued fraction decimal relative
fraction representation error
[0] 0/1 0.0 o 1

[0527] 1/2 Q.50 0.15
[0+2,3] 3/7 0.428... 0.0067
[0,2,3,6] 19/44 0.4318... 0.00082
[0:2s3:641] 22/51 0.43137. .. 0.00021
[0,2,3,6,1,3] 85/197 0.431472... 0.000018
[0:2:3,6:1;3,3] 277/642 0.4314641... 0

Table 1. The sequence of best rational approximations to

277/642 and the relative errors of these approximations.

The rounding rule prescribed by best rational approxi-

mation is simply to truncate the continued fraction represen-

tation at the largest index such that the corresponding frac-

tion fits the format limitation.

Importantly:

(i) this process is unequivocally unique, i.e. we do not

have to speculate on alternative rules for rounding

"in the last place";

(ii) this process is in fact radix independent, i.e. the se-
guence of best rational apprcximations does not depend on
the radix employed for representation of the fractions,
the final rounded value being determined simply by the
last (largest indexed) convergent not exceeding the bound
on size of numerator and denominator for the target frac-
tion number system.

The canonical nature of the rounding is important not just
in the fact that there is a resultant substantive body of number
theory to analyse the properties of computation in these systems.
For the computer architect, the availability of a natural stan-
dard to guide the number system and arithmetic specification is
the ultimate key to effective design in support of numeric
software portability.

In [MK80] we presented the foundations of finite precision
rational arithmetic drawing heavily on classical material [HW79]
from the number theoretic topics of Farey fractions and con-
tinued fractions. Basic results from these sources will be uti-
lized (without proofs) as needed in our development here. Our
companion paper [KM83] should be consulted for details on the
efficient implementation of an arithmetic unit operating on
rational operands.

In this paper, number systems composed of finite precision
fractions in convenient binary formats facilitating exception
handling features for underflow/overflow, infinity, exact zero,
and not-a-number are prescribed. Innovations include a status
bit for the exact/approximate status of each value. This bit
is included in the word format to facilitate run time moniteoring
of the compatible exact-rational/approximate-real arithmetic
that can be hosted by finite precision rational arithmetic.
Accepting as a design goal the support of user specifiable pre-
cision at the programming language level, we show that finite
precision rational arithmetic provides a conveniently para-
meterized hierarchical precision environment. Hierarchical pre-
cision is investigated both for support of exact r&tional and
approximate real arithmetic.

We prescribe formats characterizing both fixed-slash and

floating-slash number systems [Ma75].

fixed-slash: numerator / denominator

floating-slash: | slash positiongl [Eumerator.../.;.denominator
[

—
=

One format has an implicit slash "fixed" between equal sized
numerator and denominator fields. The other has the "floating"
slash position explicitly set by the value in an associated
slash position fieldf with the sum of the number of bits in
numerator and denominator prescribed.

In Section II we describe fixed-slash formats and analyse
the resulting number systems and arithmetic. A major property

of these systems is that the result of all arithmetic operations

(+/-+,x,/) on single word operands are exact in double word re-
presentation, yielding a hierarchical exact rational subsystem

within an approximate real computation environment. The feature

of "graduated double-to-single precision rounding bias towards
simple fractions" derived from best rational approximation in
these systems is described. The benefits of this rounding bias
for hosting "approximate rational" arithmetic (approximation

of arithmetic over the rational field) are demonstrated. Exag-

geration of precision degradation for "approximate real' arith-

metic due to this rounding bias is examined in detail, with
result that a small loss of effective precision compared to
format length should be assumed.

Floating-slash formats and properties of the resulting
number systems and arithmetic are described in Section III.
Important features shared in common with fixed-slash systenms
are briefly summarized. Emphasis is placed on describing the
two features distinguishing floating-slash from fixed-slash
number systems:

(i) the larger underflow-to-overflow range for comparable
length formats,

(ii) the more uniform behaviour of relative-error-of-approxi-

mation over the whole underflow-to-overflow range.

Of major importance is the characterization of extended range
floating-slash systems and the identification of a precision
fill feature through interpretation of "denormalized numbers".

The extended range and precision fill features together allow
specification of "extended floating-slash" systems having the
traditional range and maximum relative gap size of comparable
format length floating-point systems while containing an em-

bedded "standard" floating-slash number system with "standard"

floating-slash arithmetic as an accessible subsystem.

ITI. FIXED-SLASH NUMBER SYSTEMS

A. Format. The (2k+2)-bit fixed-slash number system is com-—

posed of 4-tuples (a, s, num, den) conveniently described by

reference to the definiﬁg binary word format. The component
fields illustrated in Figure1 are: the sign bit s, the k-bit
integer field num, the exact bit a (for exact/approximate

status), and the k-bit integer field den.

F 1 num I a] den

k k+1 k+2 2k+1

Figure 1: (2k+2)-bit format fixed-slash number represen=-
tation.

A fixed-slash number is termed normalized when

gcd (num,den) = 1, and so corresponds to an irreducible fraction.
An unnormalized fixed-slash number corresponds to a reducible

fraction.

(a)
(b)
(c)
(d)

The value v of the fixed-slash number is.

If num=# 0, den =0, then V'=(-1)s(num/den).[signed rational number]
If num=0 and den=1 mod 2, then v = (-1)°0. [signed zero]

If den=0 and num=1 mod 2, then v =(~1]Sm. [signed infinity]

1 mod 2, or if num =0 and den =0 mod 2, then

If den =0 and num
v denotes "not-a-number". [not-a-number]

Standard fixed-slash arithmetic shall denote rounding (by

best rational approximation to the fixed-slash format limit)
of the exactly computed operation (+,-,x,/) on finite valued
fixed-slash operands. When v is a number, a =0, denotes that

the value is exact. a =1 denotes that the value is an approxi-
mation. The state a =1 should be set when the corresponding

represented value results from any of the following conditions:

B Rounding error: The represented value is the result of
rounding an otherwise exactly computed value that cannot

be represented in the format provided.

B Inherited error: A computed number where one of the

arguments had a = 1.

B Initial error: An initial number which is explicitly
acknowledged to be not necessarily exact.

The exact bit and sign bit are unspecified when v is not-a-number.

A characterization of the numbers represented in a fixed-
slash number system and an assessment of the space efficiency of
the representation both follow from established number theory

[HW79, MK80], as summarized in the following observations.

Observation 1: Independence of Base. The set of representable

extended real values of the (2k+2)-bit fixed-slash number system
are the extended rational values of the Farey fractions Fok_qr
where the order-n Farey fractions Fn are defined by

Fn = {15 I 0sp,qgsn, gcd(p,q) = 1}. (3)
Note further that representation of the order-n Farey fractions
for any particular néZk-1 can be achieved by restricting the

fixed-slash numbers to num<n, dengn. o

Observation 2: Redundancy and Representation Efficiency.

Redundancy in fixed-slash number systems entails a loss of less

than one bit in storage efficiency independent of k.

B Basis: Redundancy occurs in fized-slash number systems
since reducible as well as irreducible fractions can
be represented. Dirichlet has shown (see [Kn81, p. 324]
for a proof):

10

Theorem 1.
|{E|1 <p, 9n, gcd(p,q) = 1}' 6
lim g 5 = —5 = .6079... (4)
n-reo § n m

Thus approximately 60% of the representable fractions

are irreducible for sufficiently large k, and direct compu-
tation of the percentage of irreducible fractions for small

k is in close agreement with this limit. For a numeric word
format to attain 60% of the possible bit patterns as distinct
values is to lose less than one bit (in this case

logz(wz/s) =0.718 bits) per word. o

Suppose convenience at the user language interface dictates
prescribing fixed-slash number systems by the number of decimal
digits allowed. By Observation 1 there is no need to employ
binary coded decimal (BCD) representation to realize a faithful
binary word implementation of such systems. E.g., imposing num,
den §109—1 in the 64-bit fixed-slash number system yields
exactly those fractions having at most 9 decimal digits each
in numerator and denominator. In contrast a 64-bit BCD string
would contain only 16 decimal digits (with no sign). Note that
BCD strings use only 10 of 16 possible patterns (losing
log2(16/10) =0.68... bits) for every 4 bits, hence losing about
1/6 of the storage capacity. From Observation 2 it follows that
faithful binary fixed-slash representation of "k-digit decimal"
fixed-slash number systems will entail only a bounded loss of
storage capacity independent of k.

B. Exception Handling. A variety of implementation dependent

exception handling procedures for non-trapping modes can be
supported by the fixed-slash format described in section II A.
Proceeding with a computation after exception by message passing
is readily facilitated. The primary features are summarized in

the following observations.

11

Observation 3: Extended Arithmetic. Signed infinity and zero are

provided in a natural and symmetric manner. An implementation of
the standard rules of arithmetic with fractions implicity

ignores the signs of zero and/or infinity and correctly realizes
extended arithmetic with infinity in the projective mode. Signed
infinity is available for implementation of extended arithmetic

in the afﬁine mode. Note that the presence of a zero field in
either numerator or denominator and a unit in the low order
position of the other field is sufficient to characterize a zero
or infinity, respectively. Then the leading k-1 bits of that

field are available to hold a message related to the corresponding
zero or infinity value. o

Observation 4: Underflow/Overflow. The underflow and overflow

thresholds are the reciprocals of each other. Underflow to either

. positive or negative zero and overflow to either positive or
- negative infinity may, by the exact/approximate bit, be distin-

guished from the occurrence of an exactly computed zero or in-
finity. The format then allows an implementation dependent message
of k-1 bits to be stored with the zero or infinity to describe
the underflow/overflow situation (as noted in Observation 3). The
message may be passed on, or otherwise becomes transparent to
standard arithmetic on the zero or infinity value. 7 o

Observation 5: Not-a-Number. When either the numerator field or

denominator field is zero, it is sufficient that the other field
have a low order bit set to zero to determine that the value is
not-a-number. Then the leading k=1 bits of that field are avail-
able to hold an implementation dependent message that may be
passed on for exception handling or as debugging information.
Note that the null word is in the not-a-number class and is con-

veniently available to designate an "unassigned value". o

Observation 6: Denormalized Numbers. Standard fixed-slash arith-

metic shall be expected to return normalized fixed-slash numbers,
a feature readily obtained with the arithmetic unit described in

- [KM83]. A denormalized fixed-slash number shall refer to an un-

normalized fixed-slash number where a specific meaning is
associated with the value of gcd(num,den). Such a message

will be transparent to standard fixed-slash arithmetic on the
denormalized number, but can be visible in an enhanced environ-
ment to exception handling or extended arithmetic procedures.

C. Exact Unary Operations. Fixed-slash number systems allow

exact computation for the primary unary rational operators
and certain conversion operations as summarized in the follow-

ing observations.

Observation 7: Exact Additive and Multiplicative Inverses.
Every member of a fixed-slash number system has an exact (effi-

ciently computed) additive inverse (by changing sign) and multi-
plicative inverse (by swapping the contents of the num and den
fields). The exact bit is not changed for these operations.

Observation 8: Absolute Value. The absolute value of a fixed-
slash number is exactly and efficiently computed by setting
the sign bit to the positive state, leaving the remaining por-

tion of the word unchanged.

Observation 9: Integer and Fraction Parts. For the fixed-slash

number x, floor(x), ceiling(x), and x mod 1 are all exactly
computable each yielding a numerator and denominator no larger

than the respective components of x. Recalling from (1)

% o= g =[a0, 2y, Byr ener am],
we obtain floor(x) and ceiling(x) using the value of agi and

x mod 1 using the value of [a1, Ay ey am], with proper
modifications to account for the sign. Repeated application
provides access to all of the partial guotients. The exact bit

is not changed by these operations.

13

Observation 10: Numerator, Denominator, GCD and Normalization.

The numerator and denominator of any fixed-slash number can be
directly extracted. If unnormalized (corresponding to a re-
ducible fraction) the rounding provided by the arithmetic unit
described in [KM83] efficiently normalizes the fixed-slash
number providing at the same time the value of gcd(num,den).

Observation 11: Radix Represented Input Conversion. Floating-

point and fixed-point numbers for any radix can be represented
as fractions with integral numerator, and denominator a power
of the radix. Such input can always be exactly represented in
a (2k+2)-bit fixed-slash number system having sufficiently
large k, and otherwise properly rounded by best rational
approximation.
B Note that decimal data specified by a fixed-point format
F i.j denoting an i decimal digit field with j £i places
assumed to the right of the decimal point can always be
exactly input into a 64-bit fixed-slash number system for
any i £9. Furthermore, data expressed in non-decimal or
mixed radix units, e.g. feet/inches, weeks/days/hours/
minutes, and degrees/seconds, are exactly representable
in any of the measurement units in fixed-slash number
systems. Exact output conversion to mixed radix systems
employing floor(rix) and (rix) mod 1 is also conveniently
available. These features provide added capacity beneficial
to faithful hosting of data processing applications.

D. Hierarchical Precision Exact Rational Arithmetic. One

functional goal of providing an arithmetic precision hierarchy
in a programming language is that the user be able to

control that the results of certain arithmetic operations shall
be exactly represented. Hardware supported precision hierar-
chies are generally of the multi-tiered single/double or
single/double/quad form. These tiers are usually defined

simply to provide comparable arithmetic on operands whose

14

format widths are corresponding multiples of a certain base
word format width, rather than by attempting to determine
the minimal most efficient hardware needed to realize parti-
cular functional arithmetic goals on base word operands.

For fixed-slash 'arithmetic the functional goal of real-
izing exact arithmetic on base word operands can be achieved
with essentially optimal hardware efficiency by a convenient
single/double-tiered hierarchy as shown in the following
theorem.

Theorem 2: Let n=2k-22z4. For any two n-bit (format) fixed-
slash numbers with finite values x, v, the values

(x+y), (x-y), (xxy) and (x/y) (5)

are exactly representable as 2n-bit (format) fixed-slash
numbers. This result is best possible for addition and sub-
traction in that some values (x+y), (x-y) are not represen-—
table as 2(n-1)-bit fixed-slash numbers, and nearly best
possible for multiplication and division in that some values
(x xy), (x/y) are not representable as 2(n-2)-bit fixed-slash
numbers.

Proof: It is sufficient to consider nonnegative x =p/q and
Y =r/s. By ordinary algebra of fractions

xi}.:E*E:M
q s gs '
xxy:Ex£=E’
g s gs
=P, _ PBS
x/y = /S ey

For the n = (2k+2)-bit (format) fixed-slash numbers x, y
we obtain p, q, ¥, s gzk—1. Hence ps, pr, gs, gr <22k—1, and
Ips £ gqrl <22k+1-1. Thus (x +y) is exactly representable in a
2n = 2(2k+2) = 2(2k+1)+2 bit format, and (x xy), (x/y) are

exactly representable in a 2(n-1) = 2(2k+1) =2(2k)+2 bit format.

15

Choosing x = 1/y =(2k—1)/(2k-2), we obtain

ps + gr ={2k-1)2 +(2k--2)2 >22k for kz 3,

where ged(ps +qr,gs) = gcd((Zk-H (25292, @1 @5=2)
This confirms the necessity of a fixed-slash format of at
least 2n bits for addition (similarly for subtraction). The
necessity of a fixed-slash format of at least 2(n 1) blts
for multlpllcatlon follows readlly for x=y=(2 ~1)/(2 =2},
and for division for x —1/y = (2 —1]/(2 =-2).

Letting SINGLE and DOUBLE denote n-bit (word) and 2n-bit
(double word) formats of the same generic arithmetic type,
the merger of functional goal with architectural convenience
for fixed-slash arithmetic is succintly expressed in the

following observation.

Observation 12: Single-to-Double Exact Arithmetic. All arith-
metic operations (+,-,x,/) on any SINGLE fixed-slash operands

vield exact DOUBLE fixed-slash results.

Certain useful functional computations on SINGLE fixed-
slash operands can also be shown to have exact DOUBLE or QUAD
fixed-slash results, where QUAD denotes the corresponding
generic 4n-bit (quadruple word) format. We state the following
(noting that the proof follows in the same elementéry manner
as that of Theorem 2) as indicative of many that can be

derived.

16

Lemma 3: Let a,, b,, 1=0,7,2,3, be integer valued SINGLE, and
X a finite rational valued SINGLE, fixed-slash numbers. Then
ag + aux

Y =
bD + b1x

(6)

is exactly representable as a DOUBLE fixed-slash result, and

a, + a,x + a x2 + a x3
_ 0 1 2 3
¥ = 2 3 (7,
b0 + b1x + bzx + b3x
is exactly representable as a QUAD fixed-slash result. fal

It should be noted that the rational arithmetic unit
described in [KM83] allows the computation of the full
expression (6) in the same time as any one of the indi-

vidual operations +,-,x,/, (a time roughly equivalent to
one floating-point divide of comparable precision).

Fixed-slash arithmetic can host exact rational arith-
metic in a manner that may be viewed as an extension of
"type INTEGER" arithmetic. At the same time convenient
support of traditional type INTEGER arithmetic as a subset
of fixed-slash arithmetic (inserting the appropiate trun-
cated integer divide) is feasible as summarized in the

following observation.

Observation 13: Integer Compatibility. The (2k+2)-bit fixed-
slash number system supports exact integer arithmetic over
the full finite range [—(Zk—1),2k—1] of the system. The format

provides convenient architectural compatibility with sign-and-
k-bit-magnitude integer representation by restriction to

the leading k+1 bits, where a =0 and den =1 are maintained
constant for all exact finite integer computations. o

17

Example: A four-tiered hierarchical precision fixed-slash
arithmetic system is described in Table 2. Word formats of

Underflow-to-

Fixed-Slash Word Width Numerator and overflow

Format {in bits) Denominator Range (Deci-
Widths (in bits) |mal Equivalent)

HALF 32 15 ppEYED
SINGLE 64 31 gt ed
DOUBLE 128 63 fgttHe2
QUAD ' 256 G 10%38.2

Table 2. Format sizes and numeric ranges for a four-tiered
fixed-slash arithmetic system. ’

32-, 64-, and 128-bits are consistent with sizes of .commercially
available hardware supported floating-point arithmetic formats,
e.g. the IBM370 system (where, however, SINGLE denotes 32 bits).

Designation of the 64-bit format as SINGLE width corre-
sponds in size most closely to the 60-bit format SINGLE width
employed in the CDC Cyber architecture. A 64-bit SINGLE width
for fixed-slash arithmetic is practically necessary both for
sufficient range and accuracy of approximate arithmetic (accuracy
is considered in the next two subsections).

Provision of a QUAD precision of 256-bits is suggested
primarily to achieve a range comparable to the range of several
commercially available floating-point systems, e.g. the DEC
Vax and Honeywell 6000 series both have ranges of approximately
10i38 for SINGLE and DOUBLE width floating-point formats. The
IEEE proposed standard [IEEE81] also has rangerv1qi38 for SINGLE,
however a broader range for DOUBLE. For the body of scientific
problems where a tradeoff favoring greater range to format
size than that implicit in fixed-slash systems is desired, the

18

floating-slash and extended floating-slash systems described
in Section IIT are recommended.

Provision for HALF width allows memory saving in the
storage of small integers and the relatively simple fractions
frequently encountered as exact input, e.g. in many linear
programming applications. Furthermore, provision of the four
tiers, HALF, SINGLE, DOUBLE and QUAD, provides a broader
spectrum of user specifiable exact rational arithmetic control
that could be efficiently supported at the programming lan-
guage interface.

The fact that all fixed-slash arithmetic operands,
including division, are exact in no more than twice the word
length provides great utility to the feature of having an
exact/approximate bit in the format of each fixed-slash number.
This hardware facility can efficiently support a more compre=
hensive computation environment at the programming language
level as noted in the following observation.

1

Observation 14: Synergistic Exact Rational and Approximate

Real Computation. Fixed-slash numeric representation with the
exact/approximate bit associated with each value provides

support for compatible exact rational and approximate real
arithmetic. Thus a synergistic dynamic precision controlled
exact-rational /approximate-real computation environment could
be accessible to the user at the programming language inter-
face.

Areas where a compatible exact-rational/approximate-real
arithmetic computation environment could be beneficial include:

§ Symbolic computation;

Arithmetic for knowledge based systems;

8 Combinatorial optimization, e.g. linear programming
with sparse 0-1 constraint matrices.

19

Efficient hardware realization of compatible exact
rational and approximate real arithmetic at relatively low
cost in both computation time and architectural logic design
complexity is an appealing dividend of fixed-slash represen-
tation. The strength of this exact-rational /approximate-real
synergism also critically depends on the adequacy of support
of approximate real arithmetic provided by fixed-slash com-

putation, which is the subject of our next two subsections.

E. Precision of Approximation. The parameter k implicitly
determines the precision of a (2k+2)-bit fixed-slash approxi-
mation as noted in the following observation.

Observation 15: Singlé Parameter Specification of Precision
and Range. For the family of (2k+2)-bit fixed-slash number
systems the parameter k hierarchically specifies both the

precision of approximate representation and the underflow-to-
overflow range. Arbitrarily high precision over any finite
region and an arbitrarily large range are achieved for suffi-
ciently large k. There is a natural tradeoff between growth
of precision-of-approximation and growth of underflow-to-
overflow range in the family of fixed-slash number systems.

The ability of any specific finite precision number
system to host approximate real arithmetic is determined at
the microscopic level by the spacing, or size of gaps, between
representable values of the system. For floating-point systems
the "gap function" [Ma70], and/or equivalent "reciprocal -
relative~-spacing function" [BF80], are reasonably well be-
haved functions yielding the spacing at x (for x over the whole
underflow-to-overflow range) in terms of the precision level
of the system. Provision of an analogous "precision-of-approxi-
mation" function over the range of a fixed-slash system is
accessible, but more complex. The analysis is aided by some

pertinent facts from number theory.

20

Recalling that the values of the (2k+2)-bit fixed-slash
numbers are just the order (2k-1}-Farey fractions (3), we obtain
[HW79, MK80]:

Theorem 4: Let E, é be representable (2k+2)—bit fixed-slash
numbers bounding the open interwval E, % ;, termed a gap, con-
taining no other representable (2k+2]—bit fixed-slash numbers.

Further, assume 0 §E<:§ are irreducible fractions. Then

(i) Absolute gap size:

w|r

_g=qu, (8)

(ii) Relative gap size:

E..P
s g _ 1 P

5 55’ mrq¢0, (9)

q
(1ii) Gap f£ill: Letting FILL(%, %) denote the set of
all irreducible fractions in the gap g, g '
p r) . Jip+jr {,4) =
FILL(q: s) {iq+js | ged (i,3) = 1. (10)Ij

Corcllary 4.1: The extremes of gap size over the (2k+2)-bit

fixed-slash number system are:

(i) Absolute gap sizes over [O,Zk—1]:

max gap = 1, (11)
min gap = ——E——;L—E——— ~ 2-2k, (12)
(27=1) (27-2)
where also
_ 1 -k
max gap over [0,1] = —/— ~2 7, (13)

21
s . . 1 i)
(ii) Relative gap sizes over r 27=174:
i]
max rel gap = g~ k=1) (14)
min rel gap = —p———fp— ~ g2k, (15)
(27-1) (27-3)

Corollary 4.2: For any ¥ in any gap (g, §) of the (2k+2)-bit
fixed-slash numbers, the gap gsize at X, v(x), is given by
e vl e
min{q,s}zk

L p 16
. Y (%) 59 o (16)

for 0 < x € 1.

R for x > 1.
min{qg,s}2

Proof: Let x be in the gap (E' %) and assume without loss of
generality that g <s. The fraction (p+r)/(g+s) is in the
gap (g, ES, hence not representable as a (2k+2)-bit fixed-
slash number. It follows

(i) for 0 < x < 1, that s < 25 s g + s < 2s,

k-1 k

S0 2 < 58 < 2" and gs ~ qzk,

(ii) for x > 1, that r < 2k Sp+r <2,

SO qs-¥ qr/x ~ qzk/x,

where the approximations are tight when g << s. o

The variation in gap sizes from 0(27%) to 0(27%) notea
in Corollary 1 for a(2k+2)-bit fixed-slash number system is
very broad, being of the order "double-to-single" precision.
This variation is, however, not capriciocus. By appropriate
interpretation, Corollary 4.2 reveals a graduated precision
hierarchy within a given fixed-slash number system that will
be shown later to have its own merit for certain types of ap-

proximate computation.

22

Consider , for example, the 8-bit fixed-slash numbers
(Farey fractions F7) over the unit interval as illustrated in
Figure 2. Visualization of gap sizes in 1eft¥to-right order

a) { P I I I A R B A | i
0 ilt1121 23 1 43 2 53 45¢ 1
1 765 47 3 57 2 75 3 74 567 1

b) L T T SN I L o

0 11 1 2
1

1 11 1 2
1

1
2 2 3 3 1

W
wlwr

X
3

Figure 2. Gaps between representable values of the 8-bit
fixed-slash number system over [0,1] arranged in

a) continuous order, and b) in order by nonincreasing

gap size.
(Figure 2a) yields an erradic (apparently chaotic) pattern.
Alternatively, an enumeration of the gaps by decreasing size
tagged only by the simpler fraction bound (Figure 2b) reveals
the graduated precision hierarchy of gap sizes. The hierarchy
is made more explicit in the following, where for simplicity
we restrict attention to the unit interval.

Corollary 43: Let j be the smallest integer (level) such that
the given irreducible fraction 0 $p/q <1 is representable as a
(2j+2)-bit fixed-slash number. Then the gap size on either
side of p/g in the (2k+2)~bit fixed-slash number svstem for
k>j is approximately 2-(j+k).

Recall for binary floating-point systems that the ad-
dition of one more bit to the mantissa (significand) doubles
the number of representable values, by adding exactly one new
representable value to each gap (bisecting each gap).

There is an analogous but more complex situation for binary
fixed-slash systems which we briefly summarize.

23

Corollary 4.4: Let F denote the (2k+2)-bit fixed-slash numbers,
and F' the fixed-slash numbers obtained by allowing one more
bit each in numerator and denominator, i.e. F' is the

(2 (k+1) + 2)-bit fixed-slash numbers. Then we obtain [note:
refer to Figure 2 for illustration with F for k =2 having
{%,%,%,%,%} representable over [0,1], and F' for k =3 having
all values shown in the figure]:

(i) Density: F' has about four times the number of

representable values as F,

i - y i p (B r)
(ii) Refinement: The mediant q+s of each gap \g’ s/ of
F is representable in F'.
u u u u.
Furthermore, for E<v—1<v—2<...< B eI, with 25, 15ism,
1 2 m i

giving all values representable in F' falling in the gap
(gr %) of F,

(iii) Gap Fill Intensity: for g<s, [%j §u15[§J .34

u

(iv) Gap Fill Bias: for g<<s, ;l is approximately the
u

1

midpoint of the gap (E. E), so the gap (g, %) of F!

q /
1
is still about one-half the size of the (previous)
u, u
larger gap (E, g of F, where then the gaps (Gl'Gg)
up Yy (®m r 172
(—— __)r iy LT —) of F' are each of the smaller

v.,' v \v_’ s
2 3 m 2k

(double-precision) size-§1/52, e.g. about 2~ for

p/g in the unit interval.) o

The precision of approximation available for represen-
tation of a real number x is thus biased in the neighbourhood
of relatively simple fractions as summarized in the following

observation.

24

Observation 16: Graduated Double-to-Single Precision Gaps.

Gap sizes for the (2k+2)-bit fixed-slash numbers over the unit

-2k

interval vary from a minimum of ~ 2 to a maximum of Z_k. For

fixed k, and any j <k, gaps of the (2k+2)-bit system, having

as one bound a "simpler" fraction p/g with p<gq <23, have size

j+k) - (3+k)
r

at least as large as 27! other gaps ranging from ~ 2

down t0r~2_2k. However, over [0,1] the "DOUBLE"™ 2n-bit fixed-
slash numbers have a maximum gap size still smaller than the
minimum gap size of a "SINGLE" n-bit system. Relative gap

sizes vary from a minimum of ~ 272K to a maximm of 2”71
over the whole underflow-to-overflow range, with bias towards
larger relative gap sizes both from a "simpler" fraction bound

and with distance of the gap from unity. a

F. Approximate Real Arithmetic. To examine the accuracy of

approximate real arithmetic in any finite precision number
system it is necessary to specify the rounding employed when
the result of an arithmetic operation is not exactly repre-
sentable in the system. For fixed-slash arithmetic the rounding
is canonically specified utilizing the notion of "best rational
approximation”.

Recall that every nonnegative real number x has a continued

fraction expansion

e [ao, aqr By voul (17)

where the partial guotients a, are integral and unique (canoni-

cal) with the added requirements a, 2 0; aj; 21 for 1<£1i, and

0
for terminating (rational) x :[ao, a1, ...am] also a, 2 2 when

mz2 1. The truncated continued fractions

2]

—% = [ao, Agr eeny ai]. i =006 Tyoweds My
i

fie]

25

termed the convergents (or best rational approximations) of

p/g, constitute a series of successively more accurate approxi-
mations whose principal properties are (see [HW79], [Kh63], or
[MK80]) =

(i) Recursive ancestry: With p_2=0,p_1=1,q_2=1 and q_1=0,
Pj=ajPj_q ¥ Pi2,
93733931 ¥ 93-2,
(ii) Irreducibility: gcd(pi,qi)=1,

i
(iii) Adjacency: qQPs_q " Py94q T (-1)",

(iv) Alternating convergence:

p, P Py P Pys_ 2
B TR g T8 g e Ceneg —23-1 T o _1’
9 9 925 q q5-1 q,

g r P .
s S “_EI 3_‘_",
s gy i q a; 49
(vi) Quadratic convergence:
P P
e < |3t - —l $ —— for i s'm-1.
9; (G549 94 a; 4 9541

Let FX8, denote the values of the (2k+2)-bit fixed-slash
numbers (equivalently FXS, denotes the Farey fractions sz_1).
The rounding ¢k: Reals - FXS, is defined for every real number
x, where po/qﬂ,p1/q1,p2/q2.... are the convergents to Ix|, by

, k
0, x =p_ /q, with p /q <271,

I

pm/qm if x

. X X_
@k(x) & Pi/qi if x>0, p;,qy £27-1 and max{pi+1;qi+1}>2 1, (18)

—@k(—x) if x<0.

26

To illustrate the rounding suppose we are to round X =
277/642 into a 20-bit fixed-slash number, i.e. at most 9 bits
in numerator and denominator. Note that

5]
N

85 271
17197 642

01319
1’2' l44'

== (0,2,3,6,1,3,31, with convergents

1631

(This example may be used also to illustrate the preceding
properties (i)-(vi) of convergents). We cbtain as the rounded
value the truncated continued fraction

001010101
[01213161113] = 18% = —2
0110001012

corresponding to the last convergent representable as a 20-bit

fixed-slash number.

Theorem 5: The rounding byt Reals = Fxsk satisfies the follow-

ing three properties for all real ¥%,y:

(i) Monotonic: X <y=w¢k(x] §¢k(y),

(ii) Antisymmetric: @k(—x) = —@k(x),
(iii) Fixed peoints: |[x| =p/q€'Fxsk =¢k(x) =X.

q
in the (2k+2)-bit fixed-slash number system. Then the interval

of values rounding to g includes all values between the mediants

Theorem g : Let %, E) and (g, g} be the gaps on both sides of E

of the two gaps, i.e.
=P t+p p+r
c[)k(x) q for u+q<x<q+s' (19)
P

and also each mediant itself whenever = is the "simpler" frac-
tion bounding the gap, i.e.

+ T :
Qk(g—rg): g iff g < s (hence also p < 1),
(20)

t
@k(a—}g): g iff g < u (hence also p < t).

27

Thus the rounding @k: Reals - FXS5, effectively satisfies
the rule "round away from the mediant towards the boundary of
each gap, rounding the mediant to the simpler fraction bounding

the gap". Thus we say ¢, is mediant rounding into FXS. .
k k

Corollary 6.1: The mediant rounding error

Iz = @k(x)l for ¢, (x) = p/g < = satisfies:

Absclute error bound:

1
Ix - ¢k(x)l < qzk' (21)

Relative error bound:

< 1 for p = 0. (22)

p2 o

X = Qk(xl

e

@k(x)

It is important to note from Corollary 6.1 that most of
the interval within a larger gap rounds to the simpler frac-
tion bound. This provides then that the "dimplicity" of
the ' fractional ' result provides a measure of the graduated
precision-of-approximation bias of the rounding. More specifi-
cally:

Corollary 6.2: If ¢, (x) =p/q, with j £k the smallest integer
such that p/q is representable as a simpler (2j+2)-bit fixed-
slash number, then

(1) I1x-0, (x)] < 2~ G+k) (23)

which is essentially a best possible bound in that

o = (34K

(ii) Ix-@k(x)l for x the mediant of a gap (24)

in FXSk.

26

To illustrate the rounding suppose we are to round x =
277/642 into a 20-bit fixed-slash number, i.e. at most 9 bits

in numerator and denominator. Note that

N
%]

71
4

2 8
1" 197"

217 = 10,2,3,6,1,3,3], with convergents

01319
1'2”4'

~J
wn
)
&

(This example may be used also to illustrate the preceding
properties (i)-(vi) of convergents). We obtain as the rounded

value the truncated continued fraction

85 001010101

[0,2,3,6,1,3] ;1_T= =

0110001012

corresponding to the last convergent representable as a 20-bit

fixed-slash number.

Theorem 5: The rounding @k: Reals - Fxsk satisfies the follow-

ing three propefties for all real x,y:
(i) Monotonic: x<y=¢k(x) §¢k(y],
(ii) Antisymmetric: @k(-x) = =% (x),

(iii) Fixed points: |[|x| =p/q€ FXS, =¢k(x) =g,

Theorem & : Let (%, g and (g, %) be the gaps on both sides of %
in the (2k+2)-bit fixed-slash number system. Then the interval

of wvalues rounding to g includes all values between the mediants

of the two gaps, i.e.

<E Erp tr '
o (x) =5 for u+q<x<§~;? (19)

and also each mediant itself whenever g is the "simpler" frac-

tion bounding the gap, i.e.

pt+r)_ i
Qk(+5)— g iff g < s (hence also p < r),
" (20)
Qk(—%}2)= g iff q < u (hence also p < t).

27

Thus the rounding @k: Reals -~ FXSk effectively satisfies
the rule "round away from the mediant towards the boundary of
each gap, rounding the mediant to the simpler fraction bounding

the gap". Thus we say Qk is mediant rounding into FXSk.

Corollary 6.1: The mediant rounding error

lx - @k(le for @k(x) = p/q < » satisfies:

Absolute error bound:

1
lx - 2 (x}| € =, (21)
k qzk

Relative error bound:

x -0 (x) 1
————| < —x forp =z 0. (22)
@k(x) p2 o

It is important to note from Corollary 6.1 that most of
the interval within a larger gap rounds to the simpler frac-
tion bound. This provides then that the "gimplicity" of
the ' fractional | result provides a measure of the graduated
precision-of-approximation bias of the rounding. More specifi-

cally:

Corcllary 6.2: If & (%) =p/g, with j £k the smallest integer
such that p/q is representable as a simpler (2j+2)-bit fixed-

slash number, then

(1) Ix-0, (x)1 < 2~ G+ (23)

which is essentially a best possible bound in that

(i1) 1x -0, ()1 ~ 27 3*) £or % the mediant of a gap (24

in FXSk.

28

For our preceding example note that 277/642 is the

‘mediant of the ga (%g%, %%% in the 20-bit fixed-slash numbers.

2727 85 : ;
He5$$ @9(335) =757 With a rounding error of 1/(642 x 197) or
~ s consistent with (24). The most important features of

mediant rounding are summarized in the following observation.

Observation 17: Canonical Rounding. The rounding determined by

truncating the continued fraction representation (best rational
approximation) is unique and may be intefpreted as the "round
away from mediant" rule. This mediant rounding effects a gra-
duated precision bias towards simpler fractions, i.e. for i<k,
rounding to a (2j+2)-bit fixed-slash number within the set of
(2k+2)=bit fixed-slash numbers is tolerated with error as large
as 2-(j+k). o
A functional goal motivating the provision of a user con-
trolled variable or multi-tiered pPrecision hierarchy is to
allow for appropriate portions of a computation sequence to
be carried out in higher precision. Given that "graduated
(downsizing) double-to-single precision rounding bias towards
simpler fractions" is implicit without user request in a fixed-
slash number system, we must ask if there is a significant
class of problems for which this type of adaptive precison
applies naturally to the appropriate portions of a computation
sequence. We find an affirmative answer by distinguishing two
types of approximate computation.

B Type Q: Approximate Rational Computation. This corre-
sponds to the class of finite sequences of rational

arithmetic (+,=,x,/) operations on exact initial rational
values (i.e. arithmetic over the rational number field),
where approximation is employed whenever intermediate or
final exact results would require too much storage.
Examples of such computation occur in symbolic computa-
tion, combinatorial optimization, and operations on ra-
ticnal matrices.

29

8 Type R: Approximate Real Computation. This corresponds

to the class of finite sequences of real arithmetic
(+, =y x, /v V", exp, log, sin,....) operations on real or
approximate operands (exact reals, approximate values,

intervals).

A benefit of the "graduated double-to-single precision
rounding bias towards simple fractions" feature for hosting
approximate rational arithmetic is summarized in the following
observation and then illustrated by an example [MK79].

Observation 18: Recovery of Exactness. A moderate length

approximate rational computation hosted by fixed-slash arith-
metic will have an accumulated error governed with high pro-
bability by a near double precision error bound. If the exact
result of the same rational computation is a rather simple
fraction, the implicit single precision rounding interval
associated with this simple fraction is very likely to contain
the approximate near double precision computed result prior

to the final rounding, so that the final rounding then re-
covers the exact simple fractional result. o

Example: Figure 3 illustrates the computation of the deter-

minant

10 20

13 17 13

11 7 7 5
Prdet 199 77 35 = 13

69 4 56

91 77 65

by evaluation of the rational expression

10, 7,56, 11,8, 1Y, 69 20,77\ {65 7. 1. 11 20,56\ .10 4
((13 11’65*‘19"ﬁ’13)+‘ﬁ*ﬁ’ﬁ)'(({ﬁ“ﬁ’ﬁ”—"_)—)”“”_

30
10 7 s 11 4 1 6 2 11
T3 13 65 79 77 T3 1] 95
\./ \./ \/
0 44 1380
743 323 1547
© @ ®
70 44 157
743 323 T7 8[=3.744-6
784 44 3036
859 3799 4199
] [0} o]
229 7 449, _
543 859.949-7 58 L4%3:5,0-7 521 271-290-6
\ +/
156773 , _
362724 4<1-34¢0-6
ry
2L a=7.4
T 41076 \/\\/
8&53 \/ I/’
73278 279-340-6 L
o @l
320 84 . __
77 806 Toa o led =5
11612, __
30193 27" 1-249-5
ol
=R

Figure 3. 13 A=0

31

in the order indicated by the parentheses. The fixed-slash
approximate computation employed rounds all intermediate frac-

tions by the mediant rounding ¢: Reals = F i.e. so as not

’
to exceed 3 decimal digits in either numerzigr or denominator.
Rounded values along with the absolute and relative errors
accumulated at each stage are illustrated. Note that the final
step of the computation involves the rounding of 320 _ %%% =

11612 1. ¥ 2 3 5 1
J0793' whose convergents are 0, 31 3* T g’ T3¢ 3349

and the true result is recovered

11612 11612 e
30793 Thus ¢ (3393) = 73¢

by the final rounding.

For approximate real computation with no discernible
preference for rational valued results, the graduated precision
feature tends only to aggravate computational error. We show,
however, that the degradation is not so severe as might be
anticipated from the size of the maximum gap and maximum re-
lative error. The analysis is aided by the following results

from [MK80].

Theorem 7. For the random variable X chosen uniformly on [0,1]
the expected value and the variance of the rounding error
|x-—¢k(x)|, for rounding to (2k+2)-bit fixed-slash numbers,

are given by:

_ 6 log2 k 1
Exp (|x g ¢k(x)|) - ~—;§E— % O(zzk)' (25)
c kz\
var (|X—¢k(X)|) =2—§E+0(-—§“]€}; (26)
2
o

for ¢ a constant.

Theorem 8: If X is chosen uniformly on [0,1], then for any o,
1202, with ¢k denoting rounding to (2k+2)=bit fixed-slash
numbers,

Ny - ; 1 2
Prob qlx - o)| > (zk_1)a} o e o (27)

A

o

From Theorem 7 we note that the expected rounding error
into (2k+2)-bit fixed-slash numbers is of an order much closer
to the double precision level ~2_2k, than the single precision
level ~2_k, especially for large k. As the variance in
rounding error is high, however, it is more important to ask
for a bound on error size that will be violated with prébabil—
ity less than some very small tolerance, e.g. one-in-a-million
(107%) or one-in-a-trillion (10~12), which can be found from
Theorem 8.

Fixed- Wtcrd Gap Size Precision-of-Approximation T
Slash Width over [0,1] . Cne-in-a~|oné-in-a
Format | (in bits) min max Avg Mediant Million Trillion | Max
HALF 32 10—9.0 10—4.5 10—8.2 10-9.0 10_4'5 10*4.5 10-4.5
SINGLE 6a 10—18.6 10-9.3 10—17.5 10—18.6 10~12.3 10-9.3 1G—9.3
DOUBLE 128 10~37.9 10~1E.9 10—36.5 10—37.9 10—31.6 10—25.6 10—18.9
QUAD 256 10—?6.4 10-38.2 10—74.7 10—76.4 10—70.1 10—64.1 10‘38.2
I

Table 3: Gap size and rounding error bounds over [0,1] for certain
fixed-slash number systems.

Table 3 shows a Precision-of-approximation profile for
each of the four tiers of thehierarchicalprecision fixed-slash
arithmetic system of Table 2. The profile gives, over the unit
interval of each fixed-slash number system,

33

(i) the minimum and maximum gap size,
(ii) the average rounding error,

(iii) the mediant rounding error bound (defined by
one-half of all numbers chosen uniformly over
[0,1] should incur at most that error),

(iv) the one-in-a-million rounding error bound (de-
fined by only one in a million rounded values
over [0,1] should incur an error larger than
that value),

(v) the one-in-a-trillion error bound,
(vi) the maximum possible error.

All entries are given in decimal exponent form so the
values may be interpreted loosely to give equivalent numbers
of "decimal digits of accuracy".

For input of several thousand values the one-in-a-million
bound would provide a conservative estimate of precisién—of-
approximation for all rounded inputs. For an extended compu-
tation on a machine performing 100 million (108) operations
per second, the one-in-a-trillion error bound should be a con-
servative estimate of rounding precision for all results. Note
that the compounded accumulated error of extended computation
should probably dominate the infrequent larger errors intro-
duced by the rounding precision bias of fixed-point compu-
tation. Thus the "average error" precision-of-approximation
value could be used as a first order estimate for comparison
with accuracy of other finite precision number systems.

Primary effects of the graduated precision environment
on approximate real computation are summarized in the following

observation.

34

Observation 19: Precision of Approximate Real Computation.
Rounding values from [0,1] to fixed-slash numbers with k-bit
numerators and denominators yields an average error comparable
to that of (2k—10g2k)-bit binary radix representation. Extended

computation (assumed normalized to the unit interval) is thus
hosted with (absolute) approximation errors much closer to the
double precision level than the single precision (worst case
guarantee) level of the single-to=-double variable precision
scale. Larger formats lose proportionally less precision. The
compounded accumulated error of extensive computation should

likely dominate subsequent precision loss due to the grad-

uated precision environment. o

The net effect from Observations 18 and 19 is that the
beneficial aspects of support of approximate rational arith-
metic are achieved with no great degradation in support of
approximate real computation for the larger format sizes
(64, 128, 256)-bit fixed-slash number systems.

The graduated precision environment of fixed-slash number
systems should not be considered an insurmountable cbstacle
for approximate computation with fractions if near uniform
spacing of representable values is considered imperative for
efficient use of resources. The use of denormalized numbers
to yield precision-fill in a manner analogous to that de-
scribed for floating-slash representation in the next section
is possible also for fixed-slash representation. We leave the
details of this feature to the floating-slash representation
discussion, where both precision £ill and range extension
become convenient extension options.

There are then two remaining seemingly essential practical

considerations applying to use of fixed-slash computation:

(i) there is a rather small numeric range to format

size tradeoff for any format size,

35

(ii) the support for more uniform absolute error
behaviour over [0,1] is achieved at the expense
of relative error degrading with magnitudes away

from unity.

We shall now show in the next section that floating-
slash representation affords many of the same desirable fea-
tures we have documented for fixed-slash representation. In
contrast to the limitations just cited for fixed-slash com-
putation, floating-slash systems are shown to provide a
larger numeric range to format size tradeoff and more uniform
control of relative-error-of-approximation over the whole

underflow-to-overflow magnitude range.

36

IIT. FLOATING-SLASH NUMBER SYSTEMS

A. Format. The (k+8+1)-bit floating-slash number system is com-

posed of 4-tuples (&y. By F, exs) conveniently described by
reference to the fields of the defining binary word format.
The component fieldsillustrated in Figure 4 are: the sign bit s,

s a eXs num

<~ Lbits ¢— k-1-exs bits —>

den - 25%8

— exs bits

explicit slash position

Figure 4. Format for floating-slash number representation

incorporating an implicit leading denominator bit.

the exact/approximate bit a,the L-bit integer field exs where

L= [lcgék], and the (k-1)-bit fraction field £ containing the
concatenated numerator and leading-bit-deleted denominator values.
This representation uses an implicit leading denominator bit
allowing the (k-1)-bit fraction field to represent a k-bit fraction,
by which is meant any fraction with an i=-bit integer numerator

and j-bit integer denominator where i + J £k, i, 2'1. The value
exs = 2£—1 is reserved for encoding infinity and not-a-number.

The value of exs, for 0 < exs g k-2 (s 22—2), is used to determine
the slash position so that num is defined to be the integer in

the leading k-1-exs bits of the fraction field. den is composed by
adjoining the leading bit (value 2exs) to the remaining exs bits
in the fraction field yYielding an (exs+1)-bit integer. Thus

num = [£/2%%%), den = (f mog 25%8) , gexs, (28)

With these integer values for €xs, num, and den, we then define
the value v of a floating-slash number to be:

37

(a) If exs = 0, then v = (-1)° num. [integers including
signed zero]
(b) If 1% exs £ k-2, then v = (-1)% (num/den).
[signed rational numbers]
% and f = 0 mod 2, then v = (—1)5@.
[signed infinity]

(c) If exs = 2

(@) I£ exs =2°-1 and £ = 1 mod 2, then v denotes

"not-a-number". [not-a-number]

For a standard floating-slash number system we shall have exs in the
range k-1 £ exs < ZR—Z simply correspond to undefined values.

For the extended range floating-slash number system we allow any exs
field width 1 = [log2k1 and interpret exs in the range

k-1 2 exs & 2&_2 to provide an exponent e for scaling either the
numerator or denominator as shown in Figure 5.

a)
P U e e e o0
1] £ oo el
E—— k-1 bits [1 e bits ——-ﬁ
num den
b)

Co% 4 o e |
ARvAH IR RIS
| k-1 bits —» |« < pits —]

, (O LI O S <

num den

Figure 5. Extended range interpretation of floating-slash
number representation.

In this interpretation we designate the (k-1)-bit fraction field
to be a (k-1)-bit integer £ which is augmented by a leading bit.
The bit string then forms the leading k bits of either the nume-
rator or denominator depending on whether the slash is interpreted
to have "floated out" the right or left hand side of the word,

38

respectively. The extended range floating-slash numbers corres-
ponding to Figure 5a are equivalent to k-bit floating-point
numbers. The small floating-slash numbers of Figure-5b do not
correspond to floating-point numbers, being rather the inverses

of the "large" floating-slash (or floating-point) numbers.

The value v of an "extended floating=-slash" number in the

extended range is

k+2R—3
2

v = {—1)526(2k-1+f). [scaled numerators]

(e) If < exs s 2%-2, let e = 2%-2-exs, and then

2
(f) If k-1 =exs < E:%—:i , let e = exs-k-1, and then

v = (“W)s/(Ze(Zk-1+f)).[scaled denominators]
(g) If exs= ——— + V is undefined.

A floating-slash number is termed normalized when
gced (num,den) =1 and so corresponds to an irreducible fraction.
An unnormalized floating-slash number corresponds to a reducible
fraction.

standard floating-slash arithmetic shall denote rounding
by best rational approximation to the standard (non extended)
floating-slash format limit of the exactly computed operatiocn
(+,-,%,/) on finite valued floating-slash operands. When v is a
number, a = 0 denotes that the value is exact, and a = 1 denotes
that the value is an approximation. The state a = 1 should be set
corresponding to rounding error, inherited error, and/or initial

error as noted for fixed-slash arithmetic.

The values of the standard (k+2+1)-bit floating-slash
numbers (kz2) correspond to the values of all signed irreducible
k-bit fractions, denoted FLSk, where

= 0 .1
FLSkJ{tE p,q21,gcd(p,q)=1,|1log, pl+|log, qJék—2}U{tT,tﬁ} . (29)

39

Binary floating-slash number systems thus have a dependence
on the base implicit in their characterization. To determine if
this is likely to cause any base dependent anomalies consider
the relation between FLSk and the base independent set of

hyperbolic fractions Hn defined by

B = {xg | pg s n, ged(p,q) = 1) (30)

It is readily determined that

(31)

FLS c sz_.-|_1 c FLSk r

k-1

and the implications for assessing the extent of base dependance
and representation efficiency are summarized in the following

observations.

Observation 20: Dependence oOn Base. The floating-slash numbers

corresponding to FLSk are characterized in a base dependent
manner. The natural representation independent system sz_1_1

is contained in FLS, with less than one bit loss in representation

k
capacity. Properties of Hok-1_4 can be analyzed to assure the
avoidance of base dependent anomalies in FLSk. _ Restriction

to those fractions with numxdensn in part (b) of the value

specification given after Figure 4 yields a realization of the
. k=1

values of the hyperbolic fractions Hn for any n<2 if such

a canonical "representation independent"” system is desired. o

pirichlet has shown [see Di19, Pp. 283]

Theorem 9 _

lim n! = —55 o E078ss 4 « (32)
m

-

Thus restriction to irreducible fractions in H_ loses only

log, (n2/6) - 0.718 bits of representation capacity as noted

in Observation 2 for fixed-slash representation. Further losses
due to employing FLS, rather than sz_1, and due to possible
unutilized values of the exs field are correspondingly small, so:

40

Observation 21: Redundancy and Representation Efficiency.

Floating-slash and extended range floating-slash number systems
with the implicit leading denominator bit format of Figures 4,
5 incur a total loss in representation efficiency of only

approximately one bit for any size format. o

B. Exception Handling. The important exception handling features

of floating-slash systems applying to both standard and extended
range formats are summarized here. Further details to explain and
contrast these features with corresponding fixed-slash format
features is available by reference to Observations 3-6.

B Signed infinities and signed zeroes are provided.

B Infinity may contain an implementation dependent message.

§ Underflow and overflow thresholds are the reciprocals

of each other.

Not-a-number is provided.

B Denormalized numbers may be defined by giving meaning
to the gcd of the reducible fraction corresponding to

an unnormalized floating-slash” number.

C. Unary Operators. The feollowing unary rational operations

on floating-slash and extended floating-slash numbers are exactly
and efficiently computable and representable within the same
(k+2+1)-bit format:

Additive inverse.
Multiplicative inverse.
Absolute value.

Integer part, fractional part (and successive partial

quotient determination).

Numerator, denominator.

B gcd, normalize.

41

Efficient numerator and denominator extraction is of great
importance since to perform arithmetic it is necessary to move the
numerator and denominator into separate registers. Since the
unit position of the numerator can vary anywhere within the
(k=1)=bit fraction field in the format of Figure 4, shifting is
required to extract the numerator. If the numerator bits were
stored in reverse order left adjusted in the field, the numerator
could possibly be extracted more efficiently by first reversing
the full (k-=1)-bit field (twisting the wires) and then masking.
Alternatively, the numerator could be stored at the right hand
side of the field and the denominator at the left hand side with
the denominator bits reversed with unit bit left adjusted. Reso=-
lution of these architectural questions involving the most effi-
cient procedure for ordering and moving numerator and denominator

into registers would not alter the nature of the represented values.

Example: For floating-slash representation of the convergent
approximation mn= ~355/113, which agrees with m to seven decimal
places (rel. err. ~10_7), note that s=0, a=1. Since 355=101100011
113=11100012=26+1100012,we must have exs:6:1102. For a 32-bit
floating-slash format, 2=5, k=26. Figure 6 illustrates the repre-
sentation of ~355/113 in the defining format (of Figure 4) in (a),

27

and in the twisted-denominator-left-adjusted format in (b).

f
a exs num] den
T
a) IO I 1 00110 0000000000101100011 ! 110001
T
0 1 2 6 7/ ,L\ 31
1
i)
- f P
twisted |
a exs den ! num
b) IO 1 I 00110 100011 : 0000000000101100011
i
0 1 2 6 7 i 31

l
L\
Figure 6: The 32-bit floating-slash representation of ~355/113

in standard format (@) and "twisted-denominator

low-order-bit left adjusted" format (b).

42

D. Hierarchical Precision Rational Arithmetic. Regarding the

extend of exact simple rational computation in standard

floating-slash number systems note [MK78]:

B Multiplication or division of an i-bit fraction by a
j-bit fraction yields a value representable as an
(i+j)-bit fraction.

@ The sum or difference of an i-bit fraction and a j-bit (3>1)
fraction is representable as an (i+2j=-1)-bit fraction;
and furthermore, if both fractions have values greater
than unity, then the result is representable as an

(i+j+1)-bit fraction.

I Computing the difference 5'-§ = E%;EE of two nearly
often termed "catastrophic

equal fractions, a situation
cancellation", implies that |ps-gr|<<|ps+grl|. Thus the
exact result will be representable without need for a
great increase in precision, and possibly even with a
smaller precision if g,§>>1 so that gs is relatively
small. In particular, if the difference of two k-bit

k/3

is less than 2~

fractions of value greater than 2 k/3,

then the result is also a k-bit fraction.

Let SINGLE, DOUBLE, and TRIPLE denote n-bit (wofd), 2n-bit
(double word), and 3n=bit (triple word) formats of the same
generic type. We summarize primary aspects of the exact rational
arithmetic hosted by such a multi-tiered standard floating-slash
computation system in the following observation.

Observation 22: Exact Rational Computation and Catastrophic

Cancellation. Multiplication and division of standard SINGLE

floating-slash operands yield exact DOUBLE floating-slash results.
Addition and subtraction of standard SINGLE floating-slash
operands yield exact TRIPLE floating-slash results. The occurrence
of catastrophic cancellation, i.e. the difference of two nearly
equal fractions, yields a great simplification in the resulting

43

fraction, often allowing the difference of two SINGLE operands

to be exactly represented in SINGLE format. o
Our utilization of an implicit leading denominator bit
brings an important architectural property to the format beyond

the savings of one bit in the representation.

Observation 23: Integer Compatibility. Floating-slash represen-

tation as provided by the format illustrated in Figure 4 will
have a=0, exs=0 for exact normalized representation of integers.
The normalized representation of any integer in the range
-257721, 2¥"'_9] will then be identical to the sign-and- (k+%+1)-
bit-magnitude representation of that integer. This same result
also holds for the "twisted" format with the denominator at the

left, as illustrated in Figure 6b. o

A multi-tiered floating-slash system provides a synergistic
integer/exact-rational/approximate-real computation environment
with greater range than for corresponding fixed-slash format

lengths.

Example: A four-tiered hierarchical floating-slash system using
formats of size 32-, 64-, 128-, and 256-bits is shown in Table 4,
showing ranges of about twice the number of digits compared to

the same size formats for fixed-slash in Table 2.

Slash Fraction Field Underflow=-
Floating—Slash Word Position | width (in bits) | to-Overflow
Qaring as width Field including Range
Format (in bits) | Width | implicit bit (Decimal
Equivalent)
HALF 32 5 26 10*7+5
SINGLE 64 6 57 yg*16-8
DOUBLE 128 7 120 1p=35-8
QUAD 256 8 247 ' gpEiaed

Table 4. Format sizes and numeric ranges for a four-tiered

floating-slash arithmetic system.

44

Note that DOUBLE floating-slash representation with a
128-bit format achieves a range essentially equivalent to the
DEC Vax and Honeywell 6000 series floating-point range (for
their SINGLE or DOUBLE format). QUAD floating-slash (256-bits)
gives essentially the range of the IBM 360 SINGLE, DOUBLE, or
QUAD formats. Furthefmore QUAD contains as a subset all values
representable in the proposed IEEE standard 32-bit single
floating-point format. (In fact all IEEE single x for

1§x§256-1 = ~1O16‘Bare exactly representable in "SINGLE" 64-bit
floating~-slash representation, and all IEEE double x for
1§x§2119—1 = ~1035'8are exactly representable in "DOUBLE" 128-bit

floating-slash representation).

Two approaches have been utilized for hierarchical multi-

tiered floating-point range specification:

¥ Same underflow-to-overflow range for all floating-point
precision tiers. This is the case for most commercially
available large computer sysfems, including Cray-1,
Dec VAX, Honeywell 6000, IBM 370, Interdata 8/32 (see
[BF80]).

B Increased underflow-to-overflow range in higher floating-
point precision tiers. This is the case for the proposed
IEEE standard [IEEE81], that specified by the Ada language
feature for parametrically declared FLOAT precision
(see [CoB82]), and that suggested for the CADAC arithmetic
unit [CHH83].

For one example of a multi-tiered hierarchical extended range
floating-slash system we could have QUAD level remain a standard
floating-slash system, with DOUBLE, SINGLE, and HALF being ex-
tended range floating-slash systems each having the same 8=bit
slash position field. This provides downsizing of precision-of-
approximation from QUAD to DOUBLE, SINGLE, or HALF, with a more
moderate downsizing of range (e.g. for the 64-bit SINGLE format

with 2=8, k=55, the range is ~10%%¢"3, and for the 128-bit

DOUBLE format 2=8, k=119, the range is ~10155'9, compared to QUAD

45

range of 10174'0). Alternatively, following the more recent

design trend, we may choose graduated broader ranges for extended
range floating-slash in a manner comparable to those in existing

and proposed floating-point systems, as suggested in Table 5.

Extended Slash Fraction Field Underflow-
i Word Position Width (in bits) | to=Overflc
Floating-Slash . : . .
Format Width Field including Range
(in bits) width implicit bit (Decimal
Equivalent
HALF 32 8 23 10%41-3
5
SINGLE 64 11 52 ro#?]
DOUBLE 128 14 113 [aa

Table 5. Format sizes and numeric ranges for a three-tiered
extended range floating-slash arithmetic system.

E. Precision of Approximation. The parameter k implicitly deter-

mines the precision-of-approximation as well as the underflow-to-
overflow range for standard floating-slash systems. Essential

features are summarized in the following observation.

Observation 24: Flecating-Slash Range/Precision Specification.

Floating-slash representation provides about twice the exponent
range of fixed-slash representation for the same word size. The
nested sequence FLSk c FLSk+1 < FLSk+2 < ... results in floating-
slash systems having both greater range and precision governed
naturally in their growth by a single parameter. Extended range
floating-slash representation allows a separately parameterized
range/precision specification if desired. The additional repre-
sentable values of the extended range system all have absolute
values outside the positive finite magnitude range

(17025 1-1),25"7121] of the includead subsystem FLS, , preserving
the integrity of computations and roundings within the finite

magnitude range of FLSk. o

46

As it can be shown [MK80] that the hyperbolic fractions H
become log uniformly dense on the positive real line as n-w, it
follows that floating-slash representation yields "macroscopi-
cally" uniform relative error control for all parts of the range.
This contrasts favorably with fixed-slash systems where relative
errors consistently increase for approximations of guantities
farther away from unity towards the overflow, or underflow,

boundary.

At the "microscopic" level of gap size, we obtain a single-
to-double precision variation in relative gap size graduated by
the "simplicity" of the simpler fraction gap bound. Results for
floating-slash relative gap size variation over the whole underflow-
to-overflow range are analogous to those of absolute gap size
variation over [0,1] for fixed-slash representation. The following
results adapted from [MK80] provide the relative gap size function

and indicate the maximum and minimum bounds.

Theorem 10: For any X inany gap (E,E) of the (k+2+1)~bit floating-

slash numbers the relative gap size at x, y*x) = {g—g)/x, is
given by
Y*(x) = S1x ~] %72 (33)
4 (min{sr,pg}) ‘2
so that over L1 ; 2k=1_,4
Lo%=1_4
max rel gap ~ 2‘k/2. (34)
4 -k
min rel gap ~ 2 7. o

E. Approximate Real Arithmetic. Rounding by best rational

approximation inte the (k+2+1)-bit floating-slash numbers is
defined by @i: Reals-oFLSk for every real number x, where

po/qo,p1/q1,p2/q2,... are the convergents to [|x|, by

47

. N P
pm/qm if #e0 % = a; € FLSk,
ox (x) p./q. if x>0 L A <1 (35)
= : . ’ r ’
k B qi k qi+1 k

- @ﬁ(—x) if x<0.

The rounding ¢E satisfies the monotonic, antisymmetric, and

fixed point properties just as noted for @k in Thecrem 5. Also

@;: Reals—»FLSk satisfies the rule "round away from mediant to
the boundary of each gap, rounding the mediant to the simpler
fraction bounding the gap". Thus we term @i: Reals-»FLSk
mediant rounding to FLSR.

From [MK80] we obtain the following results on the average
relative rounding error and on the distribution of relative error.
For X chosen in a log uniform manner over the whole underflow-to-

1 ok=1_41]s

overflow range [_E:T:? ']

2
|X - ©o* (X)|
(= "k 7 - K
Exp \ X < 2k_1 ’ (36)
and for isos1,
X = of (X}
k 1 40,
Prob { - % > 2(k-1)a} <~ m. (37)

These formulas are used to compute the precision-of-
approximation profile for relative error of approximation in
Table 6 for the same four-tiered floating-slash hierarchy utilized
in Table 4.

48

. Precision-of-Approximation
. Relat
Floating- Word GapaSiZ: [Relative Error]

Slash wWidth One-in-a- One-in-a-

Format (in bits) min max Avg Million {Trillion Max
HALF 32 16778 [ap™®? | g0 ®5 | 3072? | 3 ? [y
SINGLE 64 19—17.1 10—8.5 10-15.5 10—10.4 10—8.5 10—8.5
BOUBLE 128 10—36.1 10—18.0 10-34.2 10—29.3 10—23.4 10—18-0

-74.3 -37. =72, -67. - =~
QUAD 256 10 10 * 10 el 10 Bl 10 hed 10 it

Table 6: Relative gap sizes and bounds on relative rounding
error for log uniform data over the whole underflow-
to-overflow range for certain floating-slash number

systems.

To avoid the graduated rounding precision bias of floating-
slash representation note that for every "simple fraction" g
bounding a rather large gap in the (&+k+1)-bit floating-slash
number system, the number of distinct unnormalized fractions
equal to g is of the same order as the size of the gap. Thus
the possibility exists to give a meaning (as denormalized values)
to these unnormalized fractions. By interpreting the value of
the gcd of such unnormalized fractions to imply a distinct real
value of the gap (rather than the value 5), we may obtain a gap
fill through denormalized values in . each gap_so that the overall

relative error of each gap throughcut the system is 0(2_2k).

Details of the encoding of such denormalized values and their
decoding and use in an extension of the arithmetic unit of [KM83]

will be developed in a subsequent paper.

49

REFERENCES

[BF80] W.S. Brown and S.I. Feldman: "Environment Parameters
and Basic Functions for Floating-Point Computation®.
TOMS, Vol. 6, No. 4, Dec. 1980, pp. 510-23.

[CHH83] M. Cohen, T.E. Hull and V.C Hamacher: "CADAC:
A Controlled-Precision Decimal Arithmetic Unit".
IEEE TC Vol. C-32, No. 4, April 1983, pp. 370-77.

[Co82] W.J. Cody: "Floating-Point Parameters, Models and
Standards", in "The Relationship between Numerical

Computation and Programming Languages”. Ed. J.K. Reid,
North-Holland Publ. Co., 1982, pp. 51-65.

[Di19] L.E. Dixon: "History of the Theory of Numbers", Vol. 1,
1919, Reprint Chelsea Publ. Co. 1971.

[HW79] G.H. Hardy and E.M. Wright: "An Introduction to the
Theory of Numbers", Oxford University Press, 5th Ed.
1979.

[IEEE81] "The Proposed IEEE Floating-Point Standard", four
articles in Computer, Vol. 14, no. 3, March 1981.

[Kh63] A.Y. Khintchin: "Continued Fractions", translated from
Russian by P. Wynn. P. Noordhoff Ltd., Grooningen, 1963.

[Kn81] D.E. Knuth: "The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms". Addison-Wesley Publ. Co.,
2nd E4d. 1981.

[KM83] P. Kornerup and D.W. Matula: "Finite Precision Rational
Arithmetic: An Arithmetic Unit". IEEE TC, Vol. C-32,
No. 4, April 1983, pp. 378-87.

[KM81] U, Kulish and L. Miranker: "Computer Arithmetic in
Theory and Practice", Academic Press, 1981.

50

[Ma70] D.W. Matula: "A Formalization of Flecating-Point Numeric

’ Base Conversion". IEEE TC, Vel. C-19, No. 8, Aug. 1970,
pp. 681-92.

[Ma75] D.W. Matula: "Fixed-Slash and Floating-Slash Arithmetic".

Proc. 3rd Symposium on Computer Arithmetic, IEEE Publ.
No. 75CH 1017-3C, 1975, pp. 90-91.

[MK78] D.W. Matula and P. Kornerup: "A Feasibility Analysis of
Binary Fixed-Slash and Floating-Slash Number Systems".
Proc. 4th Symposium on Computer Arithmetic, IEEE Publ.
No. 78CH 1412-6C, 1978, pp. 29-38.

[MK79] D.W. Matula and P. Kornerup: "Approximate Rational
Arithmetic Systems: Analysis of Recovery of Simple
Fractions during Expression Evaluation". Proc. EUROSAM 79,
Lecture Notes in Computer Science, Vol. 72, Springer
Verlag, 1979, pp. 383-97.

[MK80] D.W. Matula and P. Kornerup: "Foundations of Finite
Precision Rational Arithmetic". Computing, Suppl. 2,
Springer Verlag, 1980, pp. 85=111.

