95 £8 2t ~ 90 ‘ouoydaye
HYVIWNIQ - D snuiey 0008 MO — epeBoxuniy AN

.— 13 NVOIH/INIVA NAHL

ALISHIAINN SNHUYY
e _ e wewyedaq 83uatdg Jeyndwos)

£861 108Ny
S91-9d INIVA

dnia8epy uaquo,

SWYII0S|Yy uoIsaxJ-aidnny 10y aSenSuey vy
— IVd

T. Hagerup: PAL — A Language for Multiple-Precision Algorithms

PB-165

L1S8-50T0 NSSI

PAL - A Language for Multiple-Precision Algorithms.

Abstract.

Traditional notations (programming languages) are seldom
adequate for the description of multiple-precision com-
putations. This is because there is no way to specify how
accurately the arithmetic operations should be carried out.
This paper presents a special-purpose programming language
which allows multiple-precision algorithms to be stated ac-
curately and elegantly,

A number of people have studied algorithms which involve
multiple-precision real numbers. Brent [1] and Olver [4]
both aim at providing unrestricted algorithms for elementary
functions, i.e. algorithms that can produce arbitrarily
close approximations to values of the function in question,
Such algorithms are often stated in a way that is unsatis-
factory for a number of reasons.

Suppose for 1instance that we want to describe an al-
gorithm which uses a well-known special case of the Newton-
Raphson method to compute square roots to any specified
precision. It turns out that the iteration formula

x -y
Ynes = ynt Ay,

is more efficient than the commonly used

4 X
[T(y,,*"ﬁ) .

Ignoring the question of how to find a suitable initial
value which is not important here, a traditional description
might consist of the Pascal function

01 FUNCTION mp_sqrt(x,eps:real):real;

02

03 VAR ysold_y:real;

ou

05 BEGIN

06 y:=initial_value(x);

07 REPEAT

08 old_y:.—.y;

09 yi=y+(x=-sqr(y))/(2%y);
10 UNTIL abs(y-old_y)<=eps;
11 mp_sqrt:=y;

12 END;

Algorithm 1.

together with the following explanatory remarks:

Compute in single precision until y and old.y agree to
single precision. Perform the next iteration in double
precision, and in general double the number of words in each

of

- 3 -

the following steps (this is because the Newton-Raphson

iteration is quadratically convergent).

This type of description suffers from severe drawbacks :

It is unfortunate that a formal description 1like the
program text need be "interpreted" by additional informal
comments,

It is stated how accurately each iterand should be com=
puted. However, nothing is said about how accurately each
primitive operation such as an addition must be carried
out in order to achieve the required overall accuracy. In
other words, the description does not go below statement
level. For instance, it turns out that even if we want a
double-precision result in line 09, the division need on-
ly be carried out to single precision. Such information
can of course also be given informally, but the descrip=-
tion tends to become increasingly clumsy and ambiguous.

The description makes reference to the number of computer
words, First of all, this is a concept whiceh is foreign
to the problem at hand as well as to the solution method,
i.e. the Newton-Raphson method. It is an unnecessary com-
plication to worry about the size and number of computer
words, and it introduces an undesirable potential machine
dependence.,

Secondly, computer words by definition come in in-
tegral numbers. Although it is quite likely that ad-
dition, multiplication and perhaps even division of mul-
tiple-precision numbers are "word-oriented", i.e. always
give an integer number of correct result words, there is
no reason why this should also hold for functions like
"mp_sqrt' (which may in turn be used as a primitive in
other algorithms). At any rate, measuring accuracy by the
number of words seems an unnatural discretization, even
for addition and multiplication. Of course, one can at=-
tach a meaning to a statement like "y is computed with a
precision of 2.7 words"™ by means of a suitable smooth
definition. But phrases of this kind are not likely to
contribute to the clarity of the description. Essentially
the same problems arise if accuracy is measured in bits
or (decimal) digits.

Thirdly, "a and b agree to single precision" seems to
imply that the first n bits of a and b are identical,
where n is the number of bits per word. But what is meant
is more often that the relative deviation between a and b
is smaller than 27" . Even if the latter condition holds,
it 1is possible that no corresponding bits of a and b are
identical.

Finally, it is at 1least conceivable that the
representation is such that it does not make sense to
talk about "single-precision", "double-precision" etec.

_

The purpose of this paper is to present a programming
language PAL that attempts to overcome most of the difficul=-
ties. A detailed description of PAL is outside the scope of
the paper. It merely aims at exposing and discussing the
most important ideas behind the design of the language.

PAL is a special=-purpose language intended for wuse in
the field of multiple-precision numerical computations. It
is a simple, Pascal-based language designed to be easy to
compile and to allow of an efficient implementation. An im-
plementation, deseribed in [3], actually exists at the
University of Arhus. It has been used successfully in a num-
ber of projects; in particular, a collection of unrestricted
routines for many basic mathematical functions has been
written in PAL [2].

2. Language description.

2.1 Language overview.

PAL borrows much of its syntax and semantics from
Pascal. The most significant differences have to do with ex-
pressions and arithmetic operators. More traditional aspects
of the language will not be described in any great detail.

PAL supports only one basic type which is called 'PAL
real'., The set of its values is a subset of the real numbers
and 1in particular includes the integers. A PAL real has no
accessible internal structure. It may in fact be represented
as an integer, stored in a number of computer words, plus a
scale factor, but this is completely transparent to the
programmer,

I shall not always in the following distinguish between
PAL reals and their (real) values.

PAL reals can be manipulated by various built-in
operators, Each of these is an approximation to an "ideal™",
"mathematical" operator whiech I call the associated ideal
operator. Correspondingly, I shall talk about the ideal
value as opposed to the value actually produced by an
operator.

As a radical departure from Pascal, an arithmetic
operator 1in general takes, in addition to its usual ar=
guments, an extra argument specifying the precision with
which the operation must be carried out. There is not, as in

most traditional languages, a default precision which is
used in all real operations. As an example, the assignment
to z of the sum of the values of x and y takes the form

Z:=sum(x,y,f) ’ (1)

for some suitably chosen f. 'sum' is the predefined addition
operator, and x, y and f may be arbitrary PAL expressions.
The meaning of (1) is that the implementation must guarantee
that the value assigned to z deviates from the ideal value
(i.e.» from X+y) by less than the value of f (which must be
£20). In other words, f specifies the maximum allowable ab-
solute error,

Similar functions exist for subtraction, multiplication
etec. I call these F operators (WF™® symbolizing the wexplicit
error bound).

The case with f=0O occurs frequently enough to merit a
special shorthand. This gives rise to the exact operators
which may be thought of as implementations of the ideal
operators. Most of the exact operators have the same syntac-
tic representation as their counterparts in Pascal and other
languages. Thus

Z:=x+Yy
is exactly equivalent to

z:=sum(x,y,0) .

A final group of operators consists of the APC operators
(automatic precision control operators). These look syntac-
tiecally 1like the exact operators but are, from the point of
view of precision, similar to ordinary Pascal (or hardware)
real operators. They provide an easy-to-specify and ef-
ficient way to carry out computations where precision is not
essential. The actual precision of the APC operators is im=-
plementation-dependent., However, even the APC operators must
adhere to a set of axioms (see section 2.4).

The ambiguity between exact and APC operators is re-
solved by means of a number associated with each PAL expres=
sion called its bias. The bias of an expression is a statiec
(compile~time) attribute which may be -1, 0 or 1. The prin-
cipal (outermost) operator of the expression is said to have
the =same bias. Each operator symbol which would otherwise
have been ambiguous denotes an exact operator if its bias is
zero, and an APC operator otherwise.

The bias also acts as a rounding rule. If a predefined
operator has a non-zero bias, the error resulting from an
application of the operator is guaranteed to be one-sided:

- b w

If the bias is 1, the operator will produce a result which
is # the ideal value. If the bias is -1, the opposite in-
equality holds. The bias of user-defined operators (func-
tions) is ignored.

The bias of an expression may be set explicitly by the

programmer, or it may be determined by default rules.

2.2 E operators.

The properties of the arithmetic F operators may be ex-
pressed succinctly by means of the following notational
device:

When x is a real number, X denotes a real number y with
Iyl £ Ix| .
For instance, if x%O,
nl4+x) = ¥ . (2)

When Q appears on the right-hand side, as in (2), it is ex-
istentially quantified ("there exists a y with [yl £ Ix] so
that ln{4+x)=y "), Appearing on the left-hand side, it is
universally quantified. Different occurrences of X are not
correlated in any way (i.e. each may denote a different
value, even within the same expression).

Let us further denote by V(x) the value of a PAL expres-
sion x. The arithmetic operators can now be defined by the
table below in which each operator is shown with example
operands.

sum{x,y,f) V(x)+V(Y)+V?})

dif(xsysf) V(x)=V(y)+V{E)

A
Vix)/V(y)+V(f)

| |

! i

| |

| !

] A |
prod(x,y,f) | V(x)V(y)+V(f) !
i |
quot(x,y,f) | i
! |

! !

A
copy(x,f) Vix)+V(rF)

Table 1. Arithmetic F operators.

2.3 Exact operators.

The most dimportant exact operators are given in the
table below. Notice that there are exact operators which
have no corresponding F operator., On the other hand, there
is no exact division ocperator.

| Operator H Computes !
| == e A e i o e i
! X+y ' Vix)+V(y) |
] X=-y H Vix)=V(y) |
| x &y ! Vix)V(y) !
i +X% ! Vix) !
! -X ! -V(x) |
i X | V(ix)"V(n) '
! m DIV n ! V(m) DIV V(n) !
! m MOD n i V(m) MOD V(n) |
! abs(x) I 1Vix)| |
! ent (x) ! Lv(x)] !
! e(xsn) i V(x):(10°V(n)) |
| expo(x) | lloguo !V(x)!J !

L e R e e L T epm—"

Table 2. Exact operators.,

All the arguments shown as m or n must evaluate to integer
values.

2.4 APC operators.

All APC operators are defined vrelative to a positive
number called the APC delta and denoted by 4 . A is an im-
plementation-dependent constant which must be <1. The im-
plementation at Arhus uses

8

A= 40° X
The derived relation is useful in describing the APC
operators:
x~y < Ix-yl 2 A -minilx!|, lyl} ’

When X~y , I shall say that x and Y are APC close.

Most arithmetie APC operators can be characterized by
saying that the value returned by the APC operator 1is APC
close to the 1ideal value. Exceptions concern addition and
subtraction.

TS W e em D G G e e Em S e S e S s e S mm e S S B RS B G G e G D S S e em mm mm em e D

H ! Computes !
i Operation | a number which is APC close to !
| =—mmmem e m——— o e ———— '
H X+y I see below !
| X=y ! see below !
i x#y i Vix)V(y) !
| x/y i Vix)/V(y) !
| -X i -V(x)]
! x"n ! Viz) ¥in) '
! abs(x) H 1Vix)! |
! e(x,n) ! V(x)-(10°V(n))]

Table 3. Arithmetic APC operators.

Again, arguments shown as n must evaluate to integer values.
Addition and subtraction obey the following axioms:

Vix+y) ~ V(x)+V(y) if V(x)V(y) 2 0
IV(ix+y)=(V(x)+V(y))} & A- max{|V(x)!,]V{y)}}
Vix-y) ~ V(x)=-V(y) if V(x)V(y) S 0

WA

IV(x=y)=(V(x)=V(y))| Armax{!V(x)l,|V(y)]}

2.5 Belational and logical operators.

PAL also contains relational and logical operators.
Because of the lack of different types, truth values must be
represented by real numbers. The following correspondence is
used:

0 - FALSE
1 - TRUE .

In accordance with this convention, relational operators al=-
ways return one of the values 0 and 1, and the expression
occurring in statements such as

IF <expression> THEN <statement,> ELSE {statement,>

is interpreted as FALSE (<statement,> executed) exactly if
it evaluates to 0. I shall not in the following distinguish
between truth values and their real representations.

Logical operators (AND, OR, NOT) are always exact.
Relational operators have F, exact and APC variants,
However, the error bound is redefined to be a measure of the
permitted "fuzzyness" of the operators. As an example, con-
sider the three operators corresponding to the exact
relation "less than":

The F operator is called 'lt' and is defined by

V(lt(x,y,f)) = then (if V(x)<V(y) then 1 else 0)

{ if IV(x)=V(y)! 2 V(f)

else (either 0 or 1)
In other words, the operator is guaranteed to return the
ideal result if |V(x)=V(y)! Z V(f), but may return either
value if |V(x)=V(y)i<V(f).,

The exact operator is written '<', and 'x<y' is equivalent
to "1t(x,y,0)"'.

The APC operator is also written '<' and defined by

Vix<y) = then (if V(x)<V(y) then 1 else 0)

{ if IV(x)=V(y)! 2 A-min{IV(x)}|,!V(y)!}
else (either 0 or 1)

The APC operator hence returns the ideal value if its ar-

guments are not APC close.

Note that a non-zero ©bias has the same effect as for
arithmetic operators. Thus a relational operator with bias 1
may return either the ideal result or 1, but not 0 unless
the ideal result is 0.

2.6 Bias.

The PAL programmer has full control over the bias of
each expression occurring in his program. A given bias is
specified by prefixing the expression in question by one of
the monadic operator symbols '<', '=' and '>!', according to
the table below

Bias | Operator
_________ e e e e --—-
-1 | <
0 ! =
1 | >

Table 4, Bias operators.

E.g. in
>(X+Y) ’
the expression 'x+y' has bias 1.

No computation is associated with the bias operators.
They simply serve as compiler directives.

When an expression has not explicitly been given any
bias, its bias is determined by the following default rules:

1). An expression which is not part of any other expres=-

' sion has bias 0. The same applies to arguments to

user-defined routines and to array index expres-
sions.

2). The bias B of an expression which is an argument of
a predefined operator with bias BO is determined by
one of the four rules below:

SAME : B = BO
OPPOSITE: B = =B0
-1: B = =1
0: B =20

Which rule is used is specific to the operator and
to the position of the argument (first argument,
second argument ete.).

In general, how an argument to an operator "inherits" its
bias from that of the operator has been defined according to
the principles

1. If an argument must evaluate to an integer value ac=-
cording to the rules of the language, it is computed with
zero bias (rule n"Qn"),

25

& T =

Otherwise, consider the partial derivatives of the cor-
responding ideal operator in the region

R = { (X¢’-o.’xh) l X‘g O’II"X’-I;O }
(n is the arity of the ideal operator). If the k'th par=-
tial derivative is Z 0 throughout R (i.e. if the result
of applying the operator is a non-decreasing function of
the k'th argument, considering only positive arguments),

rule "SAME" is used for the k'th argument. If the partial
derivative is S 0 throughout R, rule "OPPOSITE" is used.

Arguments
bias =1 (rule

which serve as error bounds are computed with
“_,1").

This gives rise to the following table:

N MDA S S N MR Gn G G mm e e O N G S e e D SR En S R T D S S e G D S S S R S e e e e e e e S S S e

| Operator i l.argument | 2.,argument | 3.argument |
T et trm e ——— e ————— R e !
| + (dyadie) i SAME ! SAME | !
| = (dyadic) ! SAME ! OPPOSITE ! |
| # ! SAME ! SAME | !
i / I SAME ! OPPOSITE | |
! + (monadic) | SAME | i |
! = (monadic) | OPPOSITE | i i
] e | SAME ! 0 | i
{ DIV , MOD | 0 i 0 i H
! < » <K= ! OPPOSITE 1 SAME | |
| > s 2= ! SAME | OPPOSITE ! |
! = 5 <2] SAME | SAME ! !
! NOT | OPPOSITE i i i
! AND , OR ! SAME H SAME] |
| i i | i
| sum , prod] SAME H SAME ! -1 !
| dif » qQuot i SAME i OPPOSITE | -1 !
H 1t », le | OPPOSITE ! SAME] -1 i
! gt » ge ! SAME | OPPOSITE | -1 |
! abs H SAME | | i
| ent | SAME i ! !
| e I SAME i 0 i i
! expo ! SAME ! i H
! copy i SAME ! -1 ! H
Table 5., Bias inheritance.

2.7 Miscellaneous.

PAL contains no type declarations. A variable declaration
looks like e.g.

VAR x,ysall1..4,1..47;
Here x and y are simple variables and 'a' a 4xU matrix.

Arrays are dynamic in the Algol 60 sense, i.e. their
bounds are computed on entry to the routine in which they
are declared.

All simple variables and all elements of array variables
are initialized to the value 0. This in particular applies
to the special function identifier variables used (as in
Pascal) to return values from functions.

PAL supports two ways of passing parameters to routines.
One is intended to be reminiscent of call=by=-value but could
be called "ecall=-by-constant": No copy of the actual
parameter is created. Instead, the value of the actual
parameter is accessible in the procedure body through the
formal parameter. However, no assignment may be made to the
formal parameter.

The other parameter passing mechanism is call-by-
reference, specified as in Pascal by prefixing the formal
parameter name by the key word 'VAR' in the routine heading.

3. Examples.

The square rooct function of section 1 can be recast in
PAL as follows:

Remarks:

Line 01:

Line 04:

Line 08:

Line 09:

Line 12:

Line 13:

- L

01 FUNCTION sqrt(x;eps);

02

03 CONST frae=0.1;

04 VAR ys,old_y,dsc;

05

06 BEGIN

07 Y:=initial_value(x);

08 =<1/ (2%y);

09 d:=initial_deviation(x);
10 REPEAT

11 old_y:=y;

12 d:=<c#*d#*d;

13 y:=y+quot (x-y¥*y,2%y,frac#d);
14 UNTIL abs(y-old_y)<=eps;
15 sqrt:=y;

16 END;

Algorithm 2.

The function name has been changed to 'sqrt' in
accordance with the basic philosophy of PAL that
"everything is multiple-precisionr,

Variables d and ¢ have been added to keep track
of the deviation ly,- VX | of the computed
iterands from Vx , and to hold the constant
{2y,)"%, respectively.

Both operations are APC operations: there is no
need to compute ¢ accurately.

d is set equal to some estimate of the deviation
of initial_value(x) from VX .

At the start of the loop, d is always approx-
imately equal to the deviation of the current
iterand from VX . For the ideal iteration we have

4
- 2
!)/n-a--d -vVx | = AVn l}’n - vx | .

Thus, after execution of line 12, d is approx-
imately equal to the deviation of the next
iterand from VX . Note also that if the bias
operator '<' had been omitted, the mul=-
tiplications would have been exact, leading to an
exponential growth of the number of digits in d.

Because of the quadratic convergence, we need all
digits of y#*y (PAL has no squaring operator) and

- 14 -

2%y, Thus the division is the only operation
giving rise to a computational error. The permit-
ted error can be seen to be a small fraction of
the estimated deviation of the new iterand from
VX , This is a reasonable choice which avoids
useless work (a too accurate division), Yet
preserves the convergence properties,

The full power of the bias facility was not exploited in
the above wexample; the bias operators could have been
"reversed™ ('<' replaced by '>') with no appreciable effect.
This is because no attempt was made to prove that the al-
gorithm computes VX to within an error of eps (indeed, the
algorithm, although usable in practice, is not provably cor=
rect). The following trivial example of an algorithm accom=-
panied by a correctness proof assumes the availability of
unrestricted algorithms for sin(x) and 7 . Specifically, the
functions 'sin' and '"pi' must satisfy

~
Visin(x,f)) = s8in(V(x)) + V(f) and
Fas
V(ipi(f)) = ™ + V(f) s

and the problem is to construet an unrestricted algorithm
for cos(x). Using the relation

cos(x) = sin(T /2-x) ’
a PAL solution might be
FUNCTION cos(x;f);
BEGIN
cos:=5in(dif(0.5%pi(<0.2%f),x,0,1%f),<0.8%f);
END;

Algorithm 3.
and the correctness proof goes as follows:

P
V(cos(x,f)) = sin(V(dif(0.5%pi(<0.2%f),x,0.1%Ff)) + 0.8V(Ff) =
A A
sin(V(0.5%pi(<0.2%f)) = V(x) + 0.1V(f)) + 0.8V(f) =
A A A
Sin(0.5%(7 +0.2V(f)) = V(x) + 0.,1V(f)) + 0.8V(f) =
' ~ A A
sin(M /2 = V(x) + 0.2V(f)) + 0.8V(f) = cos(V(x)) + V(f) .

If the bias of one of the three error bounds were changed
from =1 to 1, the proof would collapse. If a bias were

_ ™

changed to 0, the proof would still work; however, the al-
gorithm would waste much time doing multlpllcatlons by ¥
when f contains many digits.

4, Discussion.

The three shortcomings of traditional programming
languages have been entirely remedied:

- A PAL program is a complete description which can be fed
directly into a computer,

= An error bound is specified (explicitly or impliecitly)
with each primitive operation, The reader should,
however, be aware that this is not the ideal state of af-
fairs: It would be a considerable improvement if the
system could deduce this detailed information from a
description at the statement level or perhaps even above
the statement 1level of a global required accuracy.
However, the selection of appropriate error bounds often
requires a good deal of mathematical insight into the al=-
gorithm at hand, and it is difficult to see how this step
might be automated,

- The discrete measure of "computer words" has been
replaced by the continuum of real absolute error bounds.

4.1 Basic principles.

PAL was designed according to the principle that the
programmer of multiple-precision algorithms should be aware
that precision costs time and should always understand his
algorithm well enough to know how much accuracy is needed in
its various parts. In addition, it should be possible to
carry out inexpensive operations (giving, of course, less
accurate results) even on numbers of a high stored
precision, rather than have accurate numbers blindly force
all operations to be of corresponding precision. This is the

principle of transparent precision.

It 1s clear that a system to perfornm multiple-precision
computations must require the user to state at some point
how much accuracy he actually needs. Many multiple-precision

- 16 -

packages are simply committed at compile-time to a par=
ticular size of multiple=precision variables and to
operations of corresponding accuracy. However, this 1is a
very crude mechanism. Languages like Cobol, ADA and PL/I al=-
low a different precision to be associated with each
variable. But this cannot cope with the situation in which
the same statement is executed repeatedly with increasing
precision, such as in the example square root routine. The
only way to attain the necessary flexibility is to let
precision be specified (and changed) dynamically. This can
be done 1in several ways. One is to have a procedure
'set_precision', a call

set_precision(100)

meaning: "Use a precision corresponding to 100 decimal
digits (e.g.) until the next call of 'set_precision'"., The
different strategy adopted in PAL is to have a parameter
specifying precision associated with each call of a
predefined operator. To have this parameter be just one more
operand of the same type as the other operands is convenient
to the programmer and lends a pleasing uniformity to the
language. Since there seems to be no nice syntactic way to
accomodate a third operand to an operator like '+', usual
function syntax is used (e.g. "sum(x,y,f)"). This has the
unfortunate effect of rendering some expressions very un-
readable., However, this applies only to F operators, and as
the examples show, these occur relatively unfrequently.

The operand specifying precision invariably states the
maximum allowable absolute error. One might instead have em-
ployed a bound on the relative error, a logarithm of the
latter (corresponding to the number of bits or decimal
digits), or something quite different. The absolute error
bound wWas chosen because of its simplicity and because the
relative error creates problems around zero.

4.2 The predefined operators.

Only the most basic mathematical operators have been in-
cluded in the language itself. An implementation may provide
elementary mathematical functions in the form of a standard
library written in PAL. The examples above have shown ap=-
propriate conventions for functions like sin(x), T etc.

Among the predefined operators most are completely
traditional (disregarding their multiple-precision nature
and a possible error bound parameter). 'expo' and 'e' are
indispensable, €.g. for the purpose of scaling. They may be

i PP

thought of as approximate logarithm and exponential func-
tions, respectively. Alternatively, they may be viewed as
orderly ways to inspect and to change, respectively, the
otherwise inaccessible internal exponent of PAL reals.

4.3 APC operators.

The wusefulness of the APC operators has already been
demonstrated. As a further example, the reader may try to
reformulate algorithm 2 without the use of APC operators.
APC operators are clearly most useful in the computation of
error bounds, as opposed to "datar",

The rounding offered by the APC operators greatly
facilitates proofs of algorithm correctness. The rounding
can generally be directed so that the errors associated with
the APC operators affect (marginally) speed, but not cor-
rectness,

The accuracy of the APC operators is easily seen to
closely mirror the accuracy one would expect from the real
arithmetic of a computer which uses

-2092A

bits for the mantissa (here A means the APC delta). This
makes the APC axioms easy to remember and to use. For max-
imum efficiency on a given machine, A can often be chosen
close to 2", where n is the number of bits per word of the
machine, since APC operators, given this choice, need only
manipulate one or two words of their multiple-word ar-
guments, This is the reason why each implementation has been
allowed to choose its own A . On the other hand, this causes
a very unpleasant lack of portability: A PAL program making
assumptions about a particular APC delta can only be moved
safely to implementations with smaller values of A . Since
the actual size of A is of very little consequence to the
PAL programmer as long as it is not too large, it might be
preferable instead to have the language definition stipulate
one particular (fairly large) A » such as A= 40", the idea
being that any implementation is 1likely to ©be able to
provide low-cost APC operators for a A of this magnitude.

4.4 Bias inheritance.

The implicit bias inheritance scheme of PAL contributes
considerably to the ease with which APC operators may be

- 18 -

combined as well as to the readability of the resulting ex-
pressions,

The four principles of section 2.5 according to which
the bias inheritance has been defined are quite natural, ex-
cept for the proviso concerning the region R, The bias of an
expression may be taken as an indication of the programmer's
intention as to how rounding should be performed during
evaluation of the expression. Arguments which contribute
positively to the final result (such as the first argument
of a subtraction) should be evaluated with the same kind of
rounding, whereas the opposite rounding should be used for
arguments which contribute negatively to the final result
(such as the second argument of a subtraction). Expressions
which must evaluate to integer values are given bias 0
because expressions containing APC operators cannot in
general be guaranteed to yield integer values, and because
the evaluation of integer-valued expressions normally is
fast, even if exact operators are used. Finally, arguments
which serve as error bounds are given bias -1 because it is
desired that the computed error bound is at most as great as
the ideal value.

The restriction of consideration to the region R of
positive argument values is necessary in order to keep the
bias a static quantity (consider a multiplication with ar-
guments of varying signs). The reason why this restriction
is sensible is that most expressions with a non-zero bias
have to do with the computation of error bounds and have
sub=-expressions which are known to be positive (compare the
examples). In any case, the default bias inheritance rules
are only meant as a help to the programmer and can be over-
ridden where necessary.

4.5 Types.

The elimination of types from PAL may be seen by some as
a retrograde step. On the other hand, most numerical al=-
gorithms seem to make little use of other types than in-
tegers, reals (and arrays of these) and, to a lesser extent,
booleans. Traditionally, integers and reals are treated as
disjoint types. In PAL, integers are simply special values
which may be assumed by any PAL real, just as the
mathematical set of integers is a subset of the set of real
numbers. Of course, an implementation may, if it so wishes,
try to spot variables used as integers or booleans and other
candidates for optimization.

- 19 -

4.6 Parameter passing mechanisms.

Call-by-value was replaced by M"call-by-constant" in
order to preserve the principle of transparent precision at
the level of user-defined functions. Call-by-value requires
that a copy of the actual parameter be created (to full ac~-
curacy), regardless of how accurately the value of the
parameter 1is actually needed in the routine. In contrast,
the run-time implementation of "call-=by-constant"™ can be al-
most exactly as for call=by=-reference.

4.7 Implementation.

The definition of PAL says that operations of arbitrary
accuracy can be carried out on arbitrary PAL reals. It is
clear that no implementation can fully comply with this re-
quirement. But a good implementation should try to impose
few other restrictions than those dictated by the finite
(total) amount of storage available to the system. This
means that it must be possible to dynamically vary the
amount of storage allocated to each variable, In any case,
no computation may be allowed to proceed after a failure by
a predefined operator to satisfy one of its defining axioms.,

The range of available operators probably forces the im-
plementation to represent multiple-precision numbers in some
sort of positional system if it is not to be excessively
slow; a representation of this kind has been tacitly assumed
a number of times above. This dependency on a particular
representation is regrettable; on the other hand, the vast
majority of existing multiple-precision systems employs
representations based on positional systems,

The set of numbers having finite representations in a
given positional system is not closed with respect to
division. This is the reason why PAL <contains no exact
division operator. There are other similar restrictions
which have not been mentioned. For instance, the second
operand to the exact exponentiation operator may not be
negative.,

The operators 'expo' and 'e' are intended to be very
fast. Unfortunately, this can be achieved only if the base
of the internally used positional system is a power of 10
(10 having been chosen as the most convenient base for
humans). In practical terms, this is a much more severe
restriction on the implementation since internal bases more
often are powers of 2. The language definition might have
circumvented the problem by permitting each implementation

- 20 -

to provide its own base to replace the constant 10 in the
definition of ‘'expo' and 'e'; this was rejected because of
the adverse effects it would have on portability.

5. An extensive example.

T NS S e e e S S S S e s S S ST S e e

For a more substantial example of a PAL routine, con-
sider the following more elaborate unrestricted square root
function which is provably correct and considerably more ef-
ficient than algorithm 2. The workings of the algorithm will
not be explained here,

FUNCTION sqrt(x;f);

(# computes the square root of x
to within an absolute error bound of f #)

CONST c¢1=0.1245;
0231017;
e3=U;
c_4=4;
c_5==1
c6=0.01;
e7=0+28;

VAR gilsksn,u,v,y;

FUNCTION b;
VAR m;
BEGIN
IF x<0 OR f<=0
THEN
BEGIN
IF x<0
THEN writeln(' %%% sqrt(x,f) called with x<0')
ELSE writeln("' %%% sqrt(x,f) called with £<=0");
terminate;
END;
m:=expo(x) DIV 2; (# for the purpose of scaling #)
y:=<e(cl,-m)*(x+e(10,m+m)) ;
(# linear initial approximation #)
g:=<c2%f/y;
k:=expol(g);
b:=c3¥%expo(k)+c_4; (* b+1 is an upper bound on the
number of iterations #%)
END;

w P

VAR al1..b]; (* used as a stack %)

BEGIN (¥ sqrt ®)
IF x<>0
THEN
BEGIN
(# n=0 #)
(# compute required accuracies of iterations
in reverse order = push them on 'a!' #)
WHILE k<e_b
DO BEGIN)
n::n-l-'l;
k:=k DIV 2; (% note: rounding away from 0
since k<0 #)
alnl:=k;
END;
u:=<{cb¥y#*y;
viz=<cT¥y;
FOR i:=n DOWNTO 1
DO y:=y+quot(dif(x,y*y,e(u,alil)),y+y,e(v,alil));
(# pop accuracy from 'a' - compute next iterand #)
sqrt:=y+quot(dif(x,y*y,u*g).y+y,v*g);
(# last iteration #)
END;
END;

Algorithm 4.

Summary.

A new programming language PAL to describe multiple-
precision computations has been introduced and has been
shown to possess a number of attractive characteristiecs.

All variables in PAL are of the same types and the
programmer need not worry about storage allocation. PAL con-
tains F operators, exact to within a specified error bound,
exact operators, and APC operators which are similar to
single-precision real operations but use directed rounding.
A set of default rules helps the programmer specify how
rounding should be performed in composite expressions.

. I am indebted to several colleagues at
the University of Arhus, in particular Ole @sterby.

[11:

[21:

[3]1:

[4]:

Beferences.

Richard P. Brent: "Multiple-Precision Zero~Finding
Methods and the Complexity of Elementary Function
Evaluation"., 1In: "Analytic Computational Complexity"
(editor: J.F.Traub), pp. 151=176. Academic Press, New
York, 1976.

Torben Hagerup: "Calculation of Elementary Mathematical
Functions to an Arbitrary Precision", M.S. thesis. In=-
ternal report DAIMI IR-48, University of Arhus, May
1983,

Torben Hagerup: "PAL Manual™". Internal report DAIMI
MD-48, University of Arhus, August 1983,

FeW.J.0lver: "Unrestricted Algorithms for Generating
Elementary Functionst, Computing Supplementum 2: "Fyn-
damentals of Numerical Computation (Computer-Oriented
Numerical Apnalysis)n (edited by G. Alefeld and
R.D.Grigorieff), pp. 131-140. Springer=Verlag, Wien,
1980.

