ISSN 0105-8517

¥91-dd

On Contractive Linear Multistep
and One-Leg Methods

Jorgen Sand

spoyRA SoT-ouQ pue daIsNn JedUT] 2AndeIU0) UQ pueg [

DAIMI PB-164
August 1983

Computer Science Department — jl_u_ _
AARHUS UNIVERSITY
Ny Munkegade ~ DK 8000 Aarhus C — DENMARK | ||

Telephone: 06 — 12 83 55 1
TRYK: DAIMI/RECAU I

i =




On Contractive Linear Multistep and One-Leg Methods

by

Jprgen Sand

Abstract

Contractive variable-formula methods for the integration
of y' = A(t)y (A(t) restricted to some region of interest)
are formed by using polyhedral norms for showing the con-
tractivity of several one-leg or linear multistep formulas.

When possible the results are given for variable step-size.

1. Introduction

This paper contains the main results of the author's
thesis ([1], [2] and [3]) concerning stability and bounded-
ness of one-leg and linear multistep methods applied to

initial-value problems of the form
' = £ik,v), yilty) = yoeR®, LtEdjel. (1.1)

The numerical solution of (1.1) is a finite sequence
(yg,y1,...,yN) containing approximative values of the exact
solution {y(t) |t2t,} (assumed to exist) on a grid {ti|to<
t1<...<tN}. We will consider two classes of methods for the
production of such a sequence, viz. the linear multistep
methods (LMM) and the one-leg methods (OLM). Let k be a
positive integer. Then a k-step LMM consists of finding

Vi e ¥ n=1-k,2-k,... so that these satisfy the difference
equations given by kn—step linear multistep formulas (LMF) :
k _ k
jzo O!.j i . yn+j — hn+k GJEO Bj " . f(tn+j ’yn+j) ’ (1.2a)



(1.2b)

(s = B. = 0 for 0 £ <k-k_.

Likewise, a k-step OLM consists of solving for n=1-k,2-k,...
the equations given by kn—step one-leg formulas (OLF):

K (1.3a)
X

OLj,n 'yn+j - Th+k

J=0

where

O n®0r log o 0l + I8y =0 and
il n

(1.3b)
— = < 7 —
aj,n Bj,n 0 fox 0 =<k kn.
The LMF's and OLF's are chosen so that
kn Sn+k (1.4a)
and the consistency (and normalization) requirements
_ k k k
h = I 0. Sk s 4 Ow Bl -F Be =T (1.4E)
n+k §=0 Jn n+j §=0 J.n 3=0 J/n
are met for n=1-k,2-k,... . Most often En+k;t0 and may be

replaced by the step-size hn+k=:tn+k_tn+k—1 used in the (n+k)'th
step.

On certain mild assumptions the question of -stability
and boundedness of these methods can be dealt with by con-
sidering their application to pseudo-linear differential
systems, i.e. problems (1.1), where f(t,y) = A(t,y)y for
some matrix-valued function A. If A for all relevant values
of t and y can be chosen sufficiently diagonally dominant,
we may restrict ourselves to considering scalar equations

only, i.e. problems of the form



e
y' = Mt,y)y, y(te) = yoeC, t=ztoeR. (145}

Let Cn denote the companion matrix of a k-step LMM or OLM
applied to (1.5)

- —
0 0222:0
i
Cn= 0 , n=1-k,2-k,
1
Tgen 94 mr s Yk-1,n
where
Yj'nz_ (aj'n_qj’n'gj'n)/(ak'n qk n k n)r :} 0(1)k 1!
and
°K(tn+j'yn+j} if an LMM is considered
K K (1.6)
Aﬂifyn'nﬂ:ifmnnﬂ)lf an OLM is considered
We are then interested in showing the finiteness of
No
M = sup || o Ci||, (1.7)
i=N1

1_k§N1 §N2<O°

where || + || denotes some operator norm. In the case of OLM's

the contractivity condition
||cn|[§1 for all nz1-k (1.8)

becomes necessary (and sufficient) for the finiteness of M in
(1.7), unless we place some restrictions on the order in which
the different formulas and step-sizes are used.

In this paper we consider contractivity of OLM's and LMM's
with respect to operator norms corresponding to vector norms

with "corners" on their unit sphere, viz.

|x(i) .

= max

12isk

(1) The max-norm:



-4 -

(ii) Polyhedral norms: || X ||=a, where X = aX*,

X* £ oW.
(W a convex balanced polyhedral

neighbourhood of the origin)

—1-
(iii) Scaled max-norms: || X || =max |(T Xfl)l
12igk
The reason for not choosing e.g. an inner-product norm is
the following fact that if all the formulas satisfy the
algebraic condition for strong zero-stability
-0 = - X J
plrl= O=pfr=1 or Ir|< 1), Dn(r)-ﬁdxj,nr 2

then ( cf. theorem 3.1 in [4]) condition (1.8) cannot be
satisfied in a matrix norm corresponding to a differentiable
vector norm if A =0, unless Py is constant.
In section 2, we find that there exist LMM's with formulas
of arbitrarily high order for which (1.8) is satisfied in
the max-norm, as long as a5,n ¢ {z] |z+al|<a} for some con-
stant a > 0 and the step-ratios hn+k+1/hn+k do not exceed
some upper limit greater than one. For fixed step-size a
comparison of some of these formulas with the popular Adams-
Moulton formulas shows that the "strongly 0O-contractive"
multistep formulas are reasonably stable and accurate, too.
For the integration of stiff differential equations, the
backward differentiation formulas (the BDF's) are widely
used and in section 3, we construct a polyhedral norm with
respect to which (1.8) is satisfied for the 3-step LMM con-
sisting of the BDF's of order one to three, as long as
qj,n
are excluded.

£ 0 and certain combinations of order and step-ratio

Scaled norms are discussed in section 4, and by imbedding
a one-parameter coordinate-transformation of ék in the max-
norm, we develop a matrix-norm (called the (b,k)-norm),
which is a generalization of a norm used by Brayton and
Conley in [5]. By appropriate adjustment of k,which for a

given set of formulas is only limited from below, and the
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parameter b, we are (in section 5) e.g. able to find for

fixed step-size a 5-step OLM with formulas of order one to
five for which (1.8) is satisfied in a (b,5)-norm, as long
as |qj’n+a|§a.for some a > 0. Furthermore, we find a 4-step
OLM with fixed-step formulas of order one to four for which

(1.8) is satisfied in a (b,4)-norm as long as

90° (if the first-order formula is used)

larg (-qj,n)li

larg (_qj,n)l 5890(- - second-order -~ - =)
larg (-q; )| £45°(- - third-order - = {1L9}
|qj,n+a| a,a=0.2 (- - fourth-order - = = )

2. Strongly O-contractive LMM's

In [1], we used the phrase "the LMM is 1_-decreasing in
gEcC" if |M3n|hn§1 was valid for all d5,pn € Q- The new concept
l,-decrease was introduced to emphasize the variability of A
in our test-equation y'=A(t)y. Since we will not recommend
the concept for general use, we shall only describe the LMM's
by the adjective "contractive", although the ability of A to
vary relatively freely prevents most LMM's from satisfying
the contractivity condition (1.8).

Consider, for example, the principal root r of a zero-

stable linear multistep formula. If qj Tl -61 3 then
5 j
- - ] 2 i
¥ o= ] asl’n/ pp' (1) + 0@%), e, (E) jioaj'ni
and thus
Ot -Bl’nzo for all 1,n (2.1)

is a necessary requirement for the formula to be "strongly
0O-contractive" in some norm (allowing qj,n to vary freely in
some disk, tangential to the origin, lying in the left half-
plane)l . We note that (2.1) rules out most of the well-known
classes of linear multistep formulas. Among these the Adams

formulas of order greater than two.
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Condition (2.1) is clearly not sufficient for this kind
of strong O-contractivity, but if we choose to operate with
the max-norm, necessary and sufficient conditions are easily

derived.

Theorem 2.1

Let Cn in (1.8) denote the companion matrix of a k-step

LMM with ak n>D. Then (1.8) is wvalid in the max-norm for all
F

r_ jk‘i“l v
(qg,n'ql,n""’qk,n}E:L an,OJ (an some positive real

number), if and only if Bk nz 0 and

(o £ 0; B. 20
J.n J.0
for 3 =0(1)k-1. (2.2)
OLjrn =0 =>Bj,n:0
If Bj o= 0 for all j e [0,k-1] then || Cn|]w§1 for all
- Bl
(qo,n'ql,n""’qk,n) elz] |z {Otk,n/g](:,,n”2 Iak,n/Bk,n'%{ :
. 1 . .
Otherwise Hanhng ie walld fer all (qo,n'ql,n""’qk,n)E
{z[}z+rn] grn}k+1, where r_ = min | n/Bs |
j=0(1)k-1 I/ Jem e
Bj,nio

Proof:

Dropping the subscript n we now find necessary conditions
for
k=1

jzo IQJ— qujI s } ak_qukl

to hold for all qu:[“a,Ol, a being some positive constant.
Birst let qj = 0, jJ = 0(1)k. We then find that

s = Jog by Bee, ms 20,

Letting all the qj's but one be zero we find that

lo. - qg.B.]| < la.| for 3 = 0(1)k-1. 2.3
qujj\lj. or j (k=1 (2.3)



It follows that either Bj is zero or

' -~ /a0y
lqj (uj/oj);

[[Fa

;S ]
!&j/hjl

r

Letting all the qj‘s apart from Iy be zero we find that

‘>iu (2.4)

J = o
1O = GyByl 2

|

and Ek 20 follows. We have now found all the conditions in the
theorem to be necessary. That they are sufficient for
HCnHa:§1 to hold, when (qo,ql,...,qk) belongs to the regions
described, is easily seen since (2.3) and (2.4) will be validgd

and thus

- = x _
k |aj quj| < los | ]akiélak q, B | 0.

In order to check (2.2) for some linear multistep formulas
we would like to have explicit expressions for the coeffi-
cients aj,n and Bj,n’ even in the case of variable step-size.
By modifying the derivation of fixed-step formulas of order
2k (k=the step-number) made in [6], we obtain a lemma that can

be applied for that purpose.

Lemma 2.2

For given sets J&,n’JB,n satisfying JB,n &= Ja,n &
10+ ransuk) and max J, o - k, there exists a linear multistep
r
formula
k k
: g - . : +s_-—
jzo aj,nyn+j hn+kj:0 Bj,nfn+j of order r. e 2 5

where
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rn = number of elements in J& - (assumed z 2},
r

Sy = number of elements in JB % (assumed z 1),

{31 =J (418, =0} =0. .

_3iaj‘nz:0} e and 13‘“],n 0 Jb,n

Apart from a normalization factor, this formula is uniquely

determined by J and J, and given by
Q,n B
B. =( 1 Tt )it T T. ¥y ¥ =d ;
Jn : PR Js1 . [ Fal B1
15Ja’n\Lj} lEJB,n\ij}
e
B. [ ¢ T. .+I T. . if jed, _,
Jrn : : ) 20 : Jopdn B,n
lEJa’n\{j} EJB'n\{]}
G5 n = 4
- (T T. L)+ ( I T o) FE 983 % ald
; . j, i , 5 gl a,n B,n’
igd a,ﬁ\{j} 18J5'n
\_
where Tj'i :hn+k/(tn+j-_tn+i) for i= 7.
Proof:

Given rn+sn numbers y 1LEd o Jed

n+i’ fn+j' o,n 8,n’
known from interpolation theory that there exists a unigue

it is well-
polynomial p of degree at most rn+sn-1 satisfying

pl(t_..)=y

n+i Pt )=E Lop 1€T L, Fed, . (2.5)

551 2 B j) n+j a,n

If p is of degree rn+s%l~1 exactly, (2.5) cannot be satisfied
by a polynomial of degree less than rn+sn—1. In other words:
all polynomials g of degree rn+s%{-2 or less satistying (2.5)

will also satisfy

_ = .
z oLt vt L)) Tegit_ L) + 2 (oL (e )P (E L) "
. ] n+t3 n+j n+j’ . J° n+3""’ 14.3]
jéJu,ﬁ\JB,n jEIB'D
(2.6)
[ og _ p /i ' i 1 1 =
g (tn+j] {@j(tn+j)/¢j(tn+j}-+wj(tn+j)/¢j(tnﬁ)Jq(tn@)j 0



( (2.6) is obtained by setting the leading coefficient of

n+i’ “n+i -

. 1 =y y =
p egual to zero and using g(t_ . .)=y e R s fn+j)'

Here

P (x) é.H (x—-tn+i), wj(x)é¢(x)/(x—tnﬁ), jEJB,n

£ 1 i 1 i = ' =
The formula is now obtained by setting q(tn+i) Ypeir @ )

r,+ 521
fn*j in (2.6) and then multiplying on both sides by hpl n

S

Combining theorem 2.1 and lemma 2.2 we arrive at the follow-
ing theoretiecal result,

Theorem 2.3

For any pz1 there exists a linear multistep formula (1.2)

of order p with the following properties:

1) The number of non-zero coefficients is p+2.

2) For all step-ratios hn+k+1/hn+k belonging to a

certain interval (0,1+e), & a positive constant,
(1.8) is satisfied in the max-norm as long as

( k+1

qO rn'ql

nreer9y ) oE {z] |z+r ]| < r} for some
r r
r>0.

Proof:

For p even we may consider the formulas derived in lemma

2.2 with J_ =J, . It follows that
£ g} B
B. = { T Te w1 20, Yiyeg
o 5

o))
b
o
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o . = 2R, i § T. )y Y¥ijed _. (2.7)
iEJE,n {4y I+ -

Since sgn (Tﬁ i} = sgn (j-1i), uk,n > 0 and we have only to

= 2

ensure that o. n<0 for all jEJa nn{0,1,...,k*1}. For fixed
F F

step-size this can be achieved by e.g. choosing J =J
S ST S I

{k,k—1,k—1~2i| i=1(1)s} with s 2 0. For s=0 we obtain the
trapezoidal rule which satisfies the given conditions. For
s>0 we get formulas with k = 25+1 and p = 2(s+1), i.e. p=k+1
only if ps<6. Let us now show these formulas to satisfy con-

dition (2.2) for fixed step-size. From (2.7) we have

S 4
e —]
Oy, . =28, . =L (k-1-i) '=2¢B,_ . _+(=1+ I 27h) <o
k=Tem = 7k=1im 050 NIk-1) k=lon i=1
B,n
grigd Tor 1 41,2 s=s:81),
0y 4ol /(28,4 o1 ) =1 (k-1-2'-5)7"
B ' ied, \{k-1-21}
Bsn
(2.8)
1-7 . s .
N L R e R M T
i=1 i=1+1
Since
Sooin1, -1 % i-1-1_, =141 _-s+1_,-1+1_,.1 _1-1,-1
 (2t-20) sz (217 ) 722 -2 <2 = {B-g ')
i=1+1 i=1+1

this term is "outweighed" by the (1-1)'th term in
LI

L (27-27)
=1

if 1 >1 . For 1l=s5=1 the term is zero whereas
i

for s>1 and 1 =1

s ;
5 (21m21) 1 _

i=1+1 i

and the term is "outweighed" by the first two terms in (2.8).
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We have now shown that our formulas with even order
and fixed step-size satisfy the conditions in theorem 2.1.
In order to show 2) note first that, since the coefficients
cf the formula depend continuously on the step-ratios, the
conditions &j, < 0 for ngu,n will remain satisfied for all
step-ratios belonging to a certain interval around 1. If
any of these step-ratios decreases it is easily seen that

the guantities

ho ./t .. -t .1, 3= 1(1)k-1,

increase (or remain fixed) if i > j and decrease (or remain

fixed) if i < j. It follows from this observation that

/h

A

(and thus o. Yy, 1

5 o e . .
- o J £k=-1, remain negative

hn+j'&j,n
>0,a

and the proof is immediate since a < 0 and Bj n>O

r

k,n
(for jsJB n) hold for all step-sequences.
I

O,n

To obtain formulas of odd order we may simply remove 0

from the set JB 0 above. Let the new non-vanishing coeffi-
r

cients be denoted by a. and B. _. Then
J Jn

r I

Py T By,n/T5,0 70 199, = "Bg,n< 0
o =B e (2« L I e 120,
k,n k,n ied~ \{k} k,1" "k,;0
B,n
a =B «(2+ I T. .=T. ~)<0 for jeJ 0%
J«n J.n lEJB \{j} Jr1 ] 0 j OL,D\ !
#1
and all the arguments above can be repeated. D

Although the theorem above is mainly of theoretical in-
terest the proof gives us an idea of how formulas fulfilling
condition 1) and 2) in theorem 2.3 may be derived. Using the
computer we have examined all formulas with step-number not

r(p—?)f2]

exceeding 2* +1 (p = the order 212) and only p+2

non-zero coefficients. For even order we chose JS = Ja and

for odd order we selected J, = Jg\{O}.
F"'
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The formulas are listed for fixed step-size only, but
corresponding variable step-size formulas are easily obtained

from lemma 2.2 knowing J& and J For p< 8 the formulas

8

with the largest radius r (among those examined!) are listed.

(C = the error-constant corresponding to I B. =1)
p+1 . J.n
Jjed
B
p=1:
_ - -1
yn+1_yn-+hfn+1' r=co, Cz— 5
p=2
+Bg L wE) r=2, ¢ ==t
Yn+1™¥n "2 04 n’’ foa LET
p=3:
) 2h - e 4
Yne2 5 (8 qtyp) + 5 (E o428 L)y E=1s § = ge
b2 =J—(27y +y )-féé(Zf +3f ) r=§ C 1
n+3 28 n+2 “n 14 n+3 n+2" ' 2% Ty 207
p=4
(27y, 4057 )+3h( 4f . +9f  _+f ) r=1, C ==_3
n+3 32 n+2 n+3 n+2 n’’ ! s 140°
p=5:
v (24y +8y +3y_) + 1Zh(f +3f +f )
n+4 35 +3 n+1 n 35 ‘"n+4 n+3 n+1’"’
r:g C :—L
3" T¢ 100°
1
¥ a5~ 2758 V2020 1y ¥ TOOX,, 5 ¥277,)
, 15h _3 I
688 (16£ +5+45fn+4+10fn+2), r=qr CG— =7 -
p=6:
1
Yn+575888 (337°¥144 720007, 5 +513y,)
15h 1 ___1o0
2944(64f +5+22an+4+100fn+2+9fn), r==, C7— 1393
p=7:
1
yn+6—§Tﬁz(T215yn+5+1OOOy +3+729yn+1+160yn)
20 (30F  4935F 4100f _+27F L), r=3., C -2 _
1552 n+6 n+h n+3 n+1""’ 10" 8 1372°
_ 1
yn+9—m(120393yn+8+74088yn+6+2808yn+2+343y )
63h 13 ___ 63
toa70a (1285, gt ANE G+ TATE, g9 i Tpgr C =—gg5e
p=8:
_ 1
yn+7_7§6§§Z(42875yn+6+42875yn+4+83349yn+2+11125yn)
105h
+§BTT§(256fn+7+1225fn+6+1225fn+4+441fn+2+25fn)'

1 35
6' ~o 14274°

r:
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1

Y149-938000 (413343y,,5+432000y  +76032y  .+6625y )
9h
+Z€Zﬁﬁ(1600fn+9+6561fn+8+3600fn+6+576fn+3+25fn)’
r:l. c :—mﬂ
207 9 43267°
p=29:
_ 1
yn+9——3—m(455625yn+8+592704yn+6+2185596yn+4+109296yn+1
+42875Yn)
+2O0 (392F  42025fF _+2352f . _+882f  +72f )
60466 n+9 n+8 n+6 n+4 n+1’’
3 -
r=gs* C,., §T33"
p=10:
_ 1
yn+11_1078400000(235782657yn+10+561515625yn+8+183997440yn+5
+70709375yn+2+263949O3yn)
99h
+m(160000fn+11+793881fn+10+680625fn+8
+278784fn+5+75625fn+2+6561fn),
p=3 o -__1506675
(014 11 1145403224°
p=11:
_ 1
Yn412-376200000 (22332021y 4 ,+137259375y  (+45999360y_, .
+20796875yn+3+40212369yn+1+6600000yn)
99h
+m(40000fn+12+21 6513fn+11+226875fn+9
+139392fn+6+75625fn+3+19683fn+1)’
_13 ___ 22275
T=530r . .~ e Te"
p=12:
_ 1
yn+14—1301272115000(29894619132yn+13+626971072000yn+11
+243729729243yn+8+292876876292yn+5
+85153523000yn+2+22646295333yn)
63h
+Z§Z§§5§§6(2044900fn+14+11573604fn+13+13249600fn+11
+9018009fn+8+4008004fn+5+828100fn+2+59049fn),
=41 o 243243
28607 13 40781266°
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The main feature of the formulas above is that they all

are "strongly O-contractive" in the same norm and may thus

be combined to form "contractive" LMM's (1.2). The Adams-
Moulton formulas of order p 2z 3 do not satisfy condition
(2.1), but they have reasonable absolute stability and ac-
curacy properties for fixed step-size, and we therefore

(in [1]) compared the "size™ of the region of absolute
stability and the error-constant of these formulas (denoted
AM) to those of the formulas listed above with minimal

step-number kn (denoted SC). In the table below

P, kn and Cn denote the order, step-number and

error-constant, respectively, and

SIn denotes the stability interval.

AM sc

P, | k| C, e10° ST, B | O, 707 SI

3| 2| -41.666 | [-6 , 0] 21 -27.777 | [-4 ,0]
4| 3|-26.388 | [-3 ;0] 3| -21.429 | [-3.56 ,0]
5| 4|-18.750{ [-1.84 ,0] 4|-10.000 | [-1.78 ,0]
6 5| -14.269 | [-1.18 ,0] 51 - 7.179 | [-1.45 ,0]
7 6| -11.367 | [-0.769,0] 6| - 3.644 | [-0.853,0]
8| 7|- 9.357 | [-0.493,0] 71- 2.452 | [-0.645,0]
9| 8| - 7.893 | [-0.310,0] 9| - 2.446 | [-0.542,0]
10| 9|- 6.786 | [-0.191,0]| 11| - 6.554 | [-0.808,0]
11110 |- 5.924 | [-0.115,0] | 12| - 4.431 | [-0.629,0]
12|11 |- 5.237 | [-0.068,0] | 14| - 5.965 | [-0.624,0]
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B AO—Contractivity of the BDF's of order = 3.

In 1972 Brayton

and Conley ([5]) showed that the usual

variable-step version of the second-order BDF was con-

tractive in a scaled max-norm when applied to any diffe-

rential equation of the form

y'=A(t)*y, |arg (-A(t))| £arctan (2/2)~70°32"',

with step-ratios v&

%(1+/§)w1.366. If we allow larger va-

lues of y the formula is not Ao—contractive in any norm.

We shall sketch a proof of their result and show a similar

result for another variable-step version of the second-

order BDF since these proofs illustrate

a. A technique which in certain cases can be used for

extending contractivity results in the fixed step-

ratio case to results concerning variable step-ratios.

This technique (a certain splitting of the companion

matrix) will,

for example, be used when proving the

Ao—contractivity of the BDF's of order p=1(1)3
(theorem 3.4).

b. The strength
4. Note that
order BDF is
and when the

version does

of the scaled max-norm derived in section
even for constant step-size the second-
not O-contractive in the max-norm itself
step-size varies, the usual variable-step

not remain O-contractive in any (constant)

inner-product norm (cf.[4, theorem 3.1]).

[

of the BDF's

To demonstrate the

It may be worthwhile considering variable-step versions

other than the usual one (cf.[1]).

technique mentioned in a. consider the

companion matrix of the second-order BDF:

T+2v

2

. Y v = . =
Ty Yn+2 (1+Y)yn+1+1+yyn Bhso fn+2’ Y hn+2/hn+1’

T+y
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0 1
Clg,y) = Y2 (14v) 2
T A+2y)-g(1+y) (T+2y) =g (T+Y)

A simple calculation shows that

Cla,y)=z(g,y)*C(0,y) +[1-2(g,Y)] *C(x, Ymax) ’
2 _1 Y2 _1
COYI= gy 8 = CUO Y I+ 1= im e €7 ]eCl0,0),
where Yz
z(g,v)= 1+2y and & = s

(T+2y) =g « (T+Y) T+2v o

If ge [-»,0], we see that C(qg,y) for y:éymax is a convex
combination of C(O,Ymax), C(W,Ymax) and C(0,0) (the latter
may be regarded as the companion matrix of the first-order
BDF). For most families of one-leg formulas with the same
(constant) leading coefficient or the same (constant) ratio
between the two leading coefficients in the second charac-
teristic polynomial a similar splitting is possible, but to
ensure that the combination is convex certain pairs (formula,
step-ratios) may have to be excluded (as we shall see in the

proof of theorem 3.4).

Lemma 3.1
For i=1(1)k let Ci(q'Yk+1—i' Yk+2-i""’Yk-1) denote the
companion matrix of an i-step consistent one-leg formula with

/h and coefficients ((h

o R
step-ratios vy =h_ . ./h n+k/hn)aj’8j)’

j=k=-i(1)k. Assume that either £,=b or 8 /BB (b and B

g = i i i i,
non-zero constants) for all i, and that hn (ak-i/&k)(sk—i/gﬁio
when Yy are all equal to some number n > 0. Then, for any

mefl,2,...,k} and any step-ratios Yg2 0,
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k k
)=z-i ai°Ci(0,n)+(1—Z)'_Z b.+C,(=,n)

(D propr s o) = 20
i=1 i=1

for some scalars aj bi’ whereilai=2kﬁ_= 1, and z 8(0,1]for
m, m, = <

Here
—
010 0
I O T S 010 0
l f‘é -
[ 0 0 | G N CP T 1 Ve=1)

and Ci(q,n):ci(q,n,...,n)denote kxk companion matrices.

Proof:

Let z be aﬁ/(ai— En-q-BE/h Then we only have to show

n+k)'

the existence of scalars {ai}?:1, {bi} k=1 SO that-Zai=Zbi=1,
k
Cn O eaqomr oo e Yigg) = 2 350 €4 (00m)
and K
E U B S L e L

By locking at the last row of these matrices we find that

L5 By g T E B =bk==bk_1=...=bm+1::0and the rest of the

scalars can be found by solving two non-singular triangular

a

systems of equations. Premultiplying the coefficient matrix
and the vector on the right-hand side in these systems by
either the vector (1,1,...,1) or the vector (1,0,...,0) it
follows that-Zai=:Zbi =1.

0.
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For the usual BDF's we need no splitting of Cm(m'Yk+1-m""

Yk—1) and the lemma will be used (with g=0) in this section
. . i ;
for splitting Cm(o’yk+1-m""’Yk-1) only. (Here Bk_i:to is
i

k—-i =0 is).

not needed, but o

Proving A, -contractivity of the usual BDF's of order p £2

0
for all step-ratios ngYmax is thus equivalent to finding
X), C(m,ymax) and C(0,0) all

become contractive! Brayton and Conley succeeded in doing

some norm in which C(0,y
ma

this by noting that fore:ry%ax/(1+2Y )é% all three ma-

max
trices map a symmetric convex region of the form

-

into itself. For E3>% (i.e. ymaxi>%(1+/§)z1.366), an unfortu-

nate combination of the 3 matrices will produce an unstable

matrix, since e.g.

C(O"Yma:«:)n 'C(m’ymax).(l):zi:? '(1)-+€n. (8)

By noticing that the norm derived was of the form

lell=lirerlle, n=[3 o 94,

they succeeded furthermore in establishing A(a)-contractivity
with a= arctan(2v2)a 70°32'. The (b,k)-norm developed in sec-
tion 4 is a generalization of this norm to matrices of arbi-

trary dimension k.

Let us try the approach of Brayton and Conley on another

variable-step version of the second-order BDF.
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Proposition 3.2

The one-leg formula (y=h /h

n+2 n+1)

3 _ -1 .
7 Yn+2" 241 2Y 27 " Bpaaf (e q*Bhy o By Lt (1-Bly ),

where B= (3y”+1)/[2y(3y-1)], is contractive in a scaled
max-norm (constructed below) for all step-ratios %‘<Y =
%(3+V33)z1.457 when applied to any scalar equation of the

form
=AMt) ey, Jarg(-A(t))]|saly) ,a(y) >0,

[ (y) 2 arccos ( )=78%27" for“yéﬁir(3+/_§)]

By allowing smaller and larger values of vy, the formula can

be made unstable even for a(y)=0.

Proof:

The companion matrix is

C(q;Y)=Z'C(0,Y)+(1-Z) -C(OOIY),
where

= 6v7 [6v%-q(3y%+1)],

0 1 0 1
C(0,y) = and C(w,y) = €_3Y —2y-1
3y?2+1
B % % 0 -¢

In this case, further splitting is not needed since it is
easily seen that for -1<¢ é%-the matrices C(0,y) and C(w,vy)

map a symmetric region of the form
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into itself.

For e <= 1, C(»,y) is unstable and for €?>% an unfortunate

combination of the two matrices may produce an unstable ma-

trix:
n 1 1 1
co, ™t )z - 30en(}) -

We note that the formula has now been proved Ao-contractive

{5 Ye(%,%(3+/§§ﬂ (Y=% excluded per definition of B) in the

matrix norm
1 0

llc|| =|lT" e, ,» T=
12
3 3

The fact that the companion matrix is contractive in this

norm may be expressed as
|g(6y2=3y=-1)|+]|18v?+2q(6v2-3y-1) | < |18y 3q(3y%+1) |.
For ye [(3+/33)/12, (3+V/33)/6] we find that 0<6y2- 3y- 1£3y2+1,

and a sufficient condition for contractivity in this case is

thus [z = g(6v* 3y=-1), a=18y?]:

A

lz|+|a+2z]| £ |a-3zZ|
0

v

IA

|z |+|a+2z| <2|z|? - 5a*Re z

I1f |arg(-z)| < arccos (%) then -5-Re z 2 |z| and the condition

is satisfied. In general, A(0)-contractivity follows from a



criterion in |[7,p.468] (concerning the max-norm) since

|6v?=3y-1] €| 3y*+1| for the step-ratios in question. i

Remark

Although the BDF is not Ao—contractive in the max-norm,

we see from the polygons shown in this section that

N
2
|| m C(qn,yn)lhn§3(2, respectively) VN
n=N,

when qnéo and

1 _ 1 a0 /23 -
yn§§%1+/3) L§§Yn_§g(3+/33), respectively)

for the usual and the "unusual" variable-step version, re-
spectively, i.e. only a moderate expansion (measured in the
max-norm) can occur in these cases. D

In the notation of section 4, the norm used by Brayton and
Conley is the (0.5,2)-norm, whereas the one constructed in
the proof of proposition 3.2 is the (1/3,2)-norm. The figures on the
next page show for the fixed-step second-order BDF its region
of absolute stability (the dashed line) and the regions of
contractivity w.r.t. the two norms. The formula is not A-con-
tractive in these nornms.

We shall now apply the techniques demonstrated in this sec-
tion to derive an Ao-contractivity result for a method con-
sisting of the BDF's of order p=1(1)3. We start by using
lemma 3.1 for splitting C3(O,Y1,y2) (although Bi_ii 0 is not
satisfied).

The linear system for determination of a;, a,, a; (cf. lemma

3.1) is the following:
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‘_11 3

L2 . \d 4 ~

-1 0 1 2 3 4 5 8

Fig. 3.1. The region of absolute stability and the region
of contractivity in the (1/3,2)-norm of the fixed-
step second-order BDF.

61 1
54 1
4 ]
y .
2 1
14 3
O L

=1 0 1
Fig. 3.2. The region of contractivity in the (0.5,2)-norm
of the fixed-step second-order BDF.
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o
1 ) ? 0 (+n) (enen®)? | [ ]
120 3p34gnZ43n+ :
o n2 n2 (1+n+n?)? last row in
- - el a B
12N 3nsign2a3ne 15 A€ 0T Vel
transposed
5
0 0 n°(1+n) a,
N 3n’+4n?+3n+1 - -

Setting y;=n - f%é and y,= n .T%E where a, bz 0, the solution

of this system will be

a3=p3/q3,where
P3;= a’b?(3n®+4n?+3n+1) (b?n2+2b(1+b)n +(1+b) ?),

q,;= (1+a) (1+b)* (1+n) [3a’b*n*+ab (4a+7ab+3b) n’+a (1+b) (@+7abrebyt

+ 2(1+a) (1+b) (a+2ab+b)n +(1+a)  (1+b) 2],

a,=p,/d;, where

P,=b?(1+2n) - [a’b?n°+ a’b(2a+5b+4)n"* + a((1+b) (3a+2a?+11abr2b)
+2a bin? + a((1+b) (3+9a+3a® +5b+13ab) +a’b)n?
+ (1+b) ((1+b) (1+6a+9a®)+2a’In+(1+b) ? (1+3a+3a?)].

a,=p,;/49;3, where

3 4 ;
p,= (1+n)+ T 3 C..a'bJ,
i=0 j=0 *J

Coo=T1,Cyp =21+3, Cpy=2n+d, C, =n’+41+3,
Ciq= 6n2+14ﬂ+12, Cy,=4n+5, C30=(n+1)21

C,.= 4n°+16n?+22n+12, C,,=3n%+12n2+21n+15,
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Co3= 2(n+1) Cyy=2(n+1) (2n?+3n+2),

Cy,= 3n"+12n3427n7+30n+15, C;;=2(n+1) (n?+n+3), C,,= 0,
Cy,= (N+1) (3n°+8n%+9n+5), C,,=2(n+1) (-n3+n2+2n+3),
Ciu= =-n(n+1)?, Cy4=2(n2%+n+1) (n+1) 2,

Crp= =2n(n%+n+1) (n+1) %, C,,= 0.

Thus we find that a,, a, are non-negative for all (a,b),
whereas some requirements on the relation between a and b
(i.e. v, and v,) are needed in order to ensure a;20. Let us
first £ind n, so as to make €, (0,n), €, (0,0): Cy(0,n),

C,(®,n) a stable family of matrices.

Lemma 3.3

Cg(orn)r Cz(Oyﬂ); CI(O.-n) and Cl (»,n) is a stable family

of matrices if n = 1.011588... and not if n is larger.

Proof:

Let e denote n’/(1+2n). Then for |e]| <1

1 T . =
n_>0%ﬁ(1,1;1) (Or 811).

C2 (Orn)n

If we for notational convenience write C,(0,n) as

0O 1 0
C,;(0,n) = 0 0 1
Yo Y1 Yo

we find that for [e]| <1

c, (0,m)™ - c (0,2 Cy(=,n)=(1,1,1)7T

e [Yo+va (Yo+yi) e (vo+y1) ] /(1-e)e (1,1, 1T .
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If n>1.011588... we will have Yy, +Y, (Y,+Y1) =€ (Y, +y,)<e~-1,

and hence for n sufficiently large CZ(O,n)n'C3(O,nV- €y l=ym)
will possess an eigenvalue of modulus larger than one. On
the other hand, ifn= 1.011588..., it is possible to find a
symmetric convex neighbourhood W of the origin so that all
the matrices in question map W into itself. The following

region will do:

W =the convex hull of the set

1 1 1 1 0 0

01, £ 11, =11, £ 0 PR ¢ (oo ) =1

2

1 0 =1 oy Gy o H(C,+C,+1) =1

!
Lette,,*te,,...,te; denote the extreme points of W. Then we
; _
can illustrate W in R3={(x,y,ﬂT|x,y,zszﬁ} by considering
intersections with different planes. (Note, however, that W

may be larger than indicated by these intersections).

P2 -e,
pi = 1+x) ectne,, P, = (1+x)eq+xe,,
Py = —(1+xX)es+xe,, P, = —(1+xX)e;+xe,.
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Using these intersections, a straight-forward (but tedious)
calculation will show that W is mapped into itself by any
of the matrices in question ifn= 1.011588... D
By means of this lemma we can now show the main result of

this section.

Theorem 3.4

Consider a variable step-size method based on the first,
second and third order BDF. Let kn and Ly denote the order
and the (last) step-ratio, respectively, used in the n'th
integration step. If the variation of (kn,yn) for all n is
confined as shown below, the method will produce bounded
solutions to any (scalar) equation of the form y' = A(t,y) vy,
A, w =0 . ¥t pu .

o
A
w
A
1A
-—

(n=1.011588...).

Proof:

The coefficients C,. on p. 23-24 are (rounded)

ij
1.000 6.023 9.046 4.023 0.000
5.023 32.302 51.629 20.256 =-4.093
8.070 54.769 88.541 20.161 -24.846

4.046 28.490 51.087 24.561 0.000
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We see that if b(cf. p.23) is "very large" p, 20 is possible
only if a is "very large" or "very small". Using a root-

seeking algorithm we find that p,20 if

1A

i) (Yn/ﬂ) .8009..

ii)  (y,/n) =.81 and |(Yn_1/n)—.475 | 2 .036

iii) (v, /n) = .82 and [(y _,/n)-.478 |z .137
iv)  (y,/n) = .85 and I(Yn_1/n)—.485 | 2 .259
v) (y,/n) =.90 and [(Yn_1/n)—.493 | 2 .871
vi) (v /n) =.99 and |(Yn_1/n)—.4999j > .4899
vii) (y /n) =.999 and |(Yn_1/n)—.5 | 2 .499...

For kn=:2, a=0 and p,20 is satisfied for all bz 0 (all
Yns:[O,n]). If kn=:1 the companion matrix will map W (cf.
the proof of lemma 3.3) into itself regardless of (Yn_1,yn).

Corollary 3.5

On the assumptions in theorem 3.4, the companion matrices

satisfy
N
' T cla)ll_ < 3.83, ¥ N, N,.
n=N
Proof:
We shall show that A:={(x,y,z)T | H(X,y,z)T ”m <6} is

a subset of W (cf. the proof of lemma 3.3) if 6§ <0.261414,
and the proof will follow, since 5% 3.83. A is convex and

hence we only consider its extreme points. From the inter-
sections shown p. 25 it is evident thatAi(ﬁ,ﬁ,é)TpﬂarérdTEW.

Furthermore, for 6=0.261414, we obtain with ey,= (0,-a,-b):



s

8 1 0 0
_s _ 5. 1 28=1b=a) -2 11+ c- A )
=%
8 1 = g b

G4 23] ¥
2b-a(y,+1)-(1-v,)

C"_"

and hence i(é,-@,@)T also lie in W. The last extreme points
to be considered are i(é,ﬁ,—ﬁF, but these points evidently

lie in W, since for &=~ 0.261414:

£{0, 8=6] T ;2 (1, 6,~8) TE W -
0.
In the light of theorem 3.4, it is not surprising that un-
boundedness (or instability if A is independent of y) may
occur even for fixed step-size if the 4'th order BDF is
included in the method (and no restrictions are imposed on
the variation of A). This is a fact which Brayton and
Conley pointed out in [5]. In our notation they showed that
for a k-step consistentone-leg formula (pn,cn) the pair of

matrices
H= {c(0,n,ns...,n), Clg,nsNsee.,n)}

is unstable if g satisfies

k,nq

o Y| > e T,

Ot]-:,,n_qgk,n

where (pngﬂﬂ is assumed constant for fixed step-ration. 1In

the case of fixed step-size (n=1), the k-step BDF has E%=1,
k
ay = Z %—, p' (1) =1 and hence we have an unstable pair if
j=1 k _1
k 24 and g <=2 «[1424«(1+ 35 1377 ] .
3=5 7
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4. Contractivity in Scaled Norms

In this section we shall define a generalization of the
scaled max-norm used by Brayton and Conley when proving
A(a)-contractivity of the second-order BDF [5]. This gene-
ralized norm has the form ||C[|b=|lT;(3Tb]]m , whereT_ is a
matrix dependent only on the parameter b. As an important
by-product of our considerations, we will obtain a trans-
formation which may be useful in showing contractivity
even in the case of non-linear problems (cf. theorem 4.4).
Before specifying Tb’ let us indicate how powerful a tool
similarity transformations is in connection with companion

matrices.

Lemma 4.1

Let C be a companion matrix and A a matrix with the same
characteristic polynomial. Then C is similar to A if and
only if the minimal polynomial of A has the same degree as

the characteristic polynomial.
Proof: Follows from Householder [8,p.150 and p.18].

We may express the condition in lemma 4.1. in another way
if A is some "well behaved" transformation of a companion
matrix. The transformations, g, which we will consider are
analytic in some (open) region  containing the spectrum, £,
of the companion matrix and*univalent on Afi.e. g(xi)z g(x%
when A # A, and ,\i,?\jeA}.( )

Lemma 4.2

Let C be a companion matrix with eigenvalues {Ai}ieI and
C_ the companion matrix with the eigenvalues {g(Ki)}

g ieX?

(*) In the literature univalence is most often used in connection

with regions.
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where g is analytic in a region Q > {Ai}iel and univalent
on {Ai}iel' Then
Cg== Tilg(C)T for some matrix T

if and only if
g'(A)#0 for all multiple eigenvalues of C.

Proof:

We start by considering the Jordan Canonical Form (JCF)

of the companion matrix C (cf. e.g. [2,p.3]):
-1 . =1
C=VeJV , i.e. g(C) =Veg(J) -V

Since g is univalent on the spectrum of C, CG can be repre-
sented by a JCF of the same block-structure as the JCF of e,

say
Gy~ VaTely

It follows that Cg is similar to g(C) iff Jg is similar to

g(J). We therefore consider the equation Jg-X==X-g(J). Let

J =blockdiag{Jd_ .}, then x={x. .}° 1r where J_ .-X. .=

i=1(1)s 9% i,37°1,3= gl 4,7
Xi j-g(Jj). These equations have the form
1 rT [ 7] [ 1 (m.-1)
0 0 X X g(Aj) w-nT1d 3 (A
\\\::SFi‘ . . | | .
\ T T
0 g(?x ) xm. ey 0O——0 g(?\j)
L 4 [ 1 L 1l |




e -

(2] .21 [ 1 (m.=1)

X5 X q(Kj)-g(Ai)- 1 (EE:TTTg ) (A.)

0 : (4.1)

-T - y

X

o §

o xi 0 0 g(A;)-g(;)
L1 L i | _

Comparing elements in the matrices on both sides (starting
with the last row) we observe that Xij==0 if i#j. If i=3
we find by comparing the elements (now starting with the
first row) that Xi,i is upper triangular with the diagonal

elements g'(Ai)Q—1 *(1,0,...,0)*x,, &= 1(1)mi. Since the

multiplicity of A is m_, we see that Jg-X==X-g(J) has a
non-singular solutlon 1ff g' (A )= 0 for all multiple eigen-
values Ar. On this assumption, Cg-—T g(C)T follows for

g |
P=VE "V
g (4.2)

If the similarity transformation in the lemma above is to
be incorporated in a norm, it will be most useful if T is

independent of C.

Theorem 4.3

The matrix T in lemma 4.2 can be chosen independent of

C if and only if g(C) has the form
=1
g(C) = (=c+C+a+*I) +(d+C-b-I), ad#bc . (4.3)

In this case T=:{tij} can be chosen so that for k =dim (C):

. =1
tij)\j 1=(c?\+d)k_1-@i:}§) , i=1(Dk, Y.  (4.4)
1

k
=«
=
Proof:

In order to show that g must be of the stated form, split
Vg, X and V into blocks:
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v =1[V, 1V ,s...V_ ], X=blockdiag {X,}, v=[V,,v,,..,v_].
g 9.,1""g,2 g,s 2=1(1) s L 2 s

il
According to (4.2) T =:U=={uij} must satisfy

. .y _ (3-1) b _
Vg’R X,=U VQ—{ui (}\R)/(j 1)!}i,j,2—1(1)s,

k

u Aj_1.

where u, denotes the polynomial u, (}) .
i 1 1]

3=1
Since X% is triangular (cf. the proof of lemma 4.2), we
find by comparing the elements in the first column of V e X

g,% 7L
and U-VQ that, for i = 1(1)k:

i-1 _ y . 1= . i-1_
g(iy) x1'1—ui(?\£), i.e. u, (Ag)eu, (3)) ug (Ag) u,(Ag ) =0
Since u. i=1(1)k, are independent of Aﬁ, £=1(1)s, it follows
that ui-u$-1—u1-u;_150, i=1(1)k, and, in particular, since

u1¢0 is necessary for U to be non-singular,

k-1
2 e
Uy G%J * Uy where vi-—ui/gcd(uT,uz), i=1,2.

We see that v§-1 must divide u, and thus deg (v,) £ 1. Likewise,

v, is at most of degree 1 since deg (uk)ék-1. Hence u,/u;y

must be of the form

u: (N gp
u; (A) -cA+a

r

where ad # bc because U must be non-singular.

If we now compare the first two rows of Vg EXQ with those of
r

UeV

: o Ppld 9§ 4
gr we notice that (XR_"{Xij }):

%13 7w T 00 /G-0 1 ana 1P =D 0/ G-n e Pgay) .

On the other hand, (4.1) with Ai = Aj=kg tells us that
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=1 :
(2) I3 (), _(3-1) - .
%93 —iETxu a (A)/(3=-1)t, 3=1(1)m,.
Combining these relations, one finds that (using the chain

rule)

w7 0y = e OV 0, 3210y,

and
I 1

g(C) =u, (C)" -u,(C) = (-c+C+aIl) - (4C-bI)

follows easily.

In order to show that
(-cC+aI)-T-Cg==(dC—bI)-T (4.5)

holds for the matrix T given in (4.4), apply the matrix on
the right-hand-side of (4.5) to the vector (1,r,...,r~ T,

It is easily seen that this gives the vector v=(vl,v2,..vk)T,

where

1
, i=1(1)k=1,

vi=(ad—bc)-r-(cr+d)k_2.(

ar+bl-
cr+d

k-1 ;
—_ k‘.T - ® r ° —————ar+b - —d—" é_:r._-l——]g
vk—(cr+d) Ead bc) cr+d cr+d Py p(cr+dﬂ-

k :
Here p(i)= ¥ pjkj denotes the polynomial pk°hﬁH](-det(C—AI).
J=0

Likewise, we see that

. k=1,T_ ? k-1 _k 1 k. f{ar+b
Cg 55 1 S - ) " =(r,r ,...,r , ﬁk (cr+d) p(Er+d)h
w K i k=7 k=1,T
where pk=-Z pjajc J. It follows that T'Cg'(1,r,...r )T o=
J=4

w =(w1,w2,...wk)T, where

i-1 . '
_ k=1_1.../ar+h 3 W . ar+b\ ,~
gt E’ (cr+d) GRS el (a":a)/Pk ] -
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Some elementary calculations show that (-cC+aI)w =v, and
(4.5) is proven. The theorem now f?llows from (4.5) since
-c+C+al and T are non-singular. T =:{uij}is obtained by
inserting A=(du=-b) /(-cu+a) in (4.4):

. k=1 i-1
J=1_ f—eu+g fap=b :
U5 (ad_bg ch+4 , i= 1(1)k, Yu. (4.6)

’ 0.

It follows from (4.5) that

II.M.‘P‘T'

s L
T CT = (aC_ +bI) (cC _+dI
( g ) ( g )

1
In a Hilbert space ]]Cg{[i 1 will thus imply ||T cCT||<1 if

az+b
cz+d]

<1 for all |z| =< 1. (4.7)

If a, b, ¢ and d are real, (4.7) 1is equivalent to
la+b| = |c+d|, |a-b| s c-a| and |c|<]a|.
For a general operator norm HCgH§1 will imply
!
(lal-leh -l[T cT|[ < |al+|b] ,

and thus || T cT|| s1 if |a| + |b| ¢ |d|-|c|. It is interesting

to find a similar result even in the non-linear case:

Theorem 4.4

For any integer sz 1 let Zi denote the super-vector
T d b T i
(Zn' Zn+1""’zn+s—1)
scalars satisfying

. Furthermore, let a, b, ¢ and d denote

ad=bc, |a|+|b|< |d]|-|c]| and Ck'pn(a/c)-ck'cn(a/c)¢0,

where (pn,On) is a k-step one-leg formula.
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Assume that, for some function f and some sequences {En},

{En}, any solution of the k-step one-leg equation

by (B)x =h+£(E ,6 (E)x ), (4.8)
A _ k. ar+b
B ()= (erea) oo (23,
s _ k ar+b
on(r)—(cr+d) On(cr+d),
satisfies
k k
xS, 0= s,
where || * || is some vector-norm. Then any solution of the

one-leg eguation

o, (E)y, = h <£(E_ ;0 (E)y ), (4.9)

will satisfy

_1
<l emevi]l,

1
- k
(™ ®1)-v_ . |l

where T={tij} is given by (4.4) and @ denotes the Kronecker
product.

Proof:
For any integer sz 1 let Tsz{tij} denote the matrix of
dimension s given by
i-1

=] .
s 3—1: s-1_ aA+§ -
E1tij A (cA+d) (cx+d) , i=1(1)s, VA .

J

From (4.6) we have that US={uij}= Tglis given by

S : s=1, d-1
; s .Jj-1_/[-ci+a di-b .
35111135 —(ad-bc) (—C€+a)‘L r 1=1(1)s, VE.

s .
Let ui(g) denote the polynomials ¥ uij£]-1. Then
1=
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s+1 ct+ta s o
(555 w50, 1=1()s,

a

s+1 dE-b s -
(E)—(ad bJ ui_1(€),1—2(1}s+1.

In other words T;}r,1 can be decomposed in two ways

» _[}c-[o:T;11+a-[T;1|oJ}

(ad—bc)-TS+1—

(4.10)

k+1 . k1 | _ =i .
Let now Yn satisfy (4.9). Then X ._(Tk+1 ®I) Yn

satisfies (4.8) and thus HXk [léHXk
n+1 n
Making use of the decompositions in (4.10), we find that

(T ® 1)vi | <

—|b

_l
al- e nYE, |

ner |l 3

) o
la-(r7 @ 1)¥E, b+ (T;'e 1)YX| = %

al k
lad-be | - [| X5 || = []-c - ( Tk ® DY, +a- (T, @ DY <

+1

-
Loll+lal- e DYk,

Ke

and the proof follows, since 0 < |a|+]|b]| £ |d]|-

Remark

It seems rather essential that our coordinate transforma-
tion represented by the matrix T;i1 is such that T£i1 can be
decomposed in two ways

1 _|-&-[o|r]+a[r(0] | _ [BBar-e by
Tr+1™ |3 - - -
8,8, 00000 Ay 41 d[o|r]-B[R 0]




-37-

where R=:{rij} is an arbitrary non-singular matrix. It is
therefore interesting to note that - apart from a normali-

1
zation factor - the particular matrix Tk+1 used in theorem

4.4 is the only matrix with this property. This fact follows

k .
from the necessary identities (ri(E}:= b iy 53_1):
=
(d€-b) *r;_4 (E)=(-c&+d) -x (£), i=2(1)k.

From these we obtain that R must be such that

O | v anie]
ri(a):(dz—b) .rl(E)=const,(_5g+a)k—1_(d£—b)l _

~CE+3 -§E+a
As in the proof of theorem 4.3, we may calculate

k-1,7T T

P )
T CT.(1I)\I-"I)\ ) =:(U11U210--ruk)

We find that (4.11)
. k=4 .4=1
1 i-1_ (—-c) d k _f(al+b
H,= ——= |(a)i+b) = A - — < (cA+d) .pG*__J
1° ghdd pk-(ad-bc)k 1 ci+d/ |.

We notice that if and only if c+d = 0,the matrix T_ICT will
contain only one row dependent on p. Since we here wish to
consider the criterion,||T_1CT]hD§ 1, we thus see that this

criterion is greatly simplified by choosing c+d =0. Since

d
4.4 we shall choose ¢ = 0 and (without loss of generality)
d
lal+|b] £1. If the theorem, however, is to be applied to a

0 makes it impossible to satisfy the conditions of theorem

1. The conditions of theorem 4.4 then read a =0 and

consistent formula (pn,cn}, the polynomial 5n will have a

root in (1-b)/a and we therefore require |1-b| < |a| to be
satisfied, too. These conditions only leave the possibility
lal =1-b, 0<b<1. Since ||T”'cT||_ and ¢, |l are independent
of the orientation of a we choose a=1-b and obtain the

(b,k)—-norm:
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Definition 4.5

A norm is said to be a (b,k)-norm if it for some be [0,1)

has the form

-1
H AHb: HTb ATb Hoo ’

where sz{tij} is the triangular matrix of dimension k

given by

IIA
A

tij=@:j)b1'j(1—b)j'1, 1< j<ic<k (4.12)[I
It is known that for any two ordered triples {A,,A,,A,}
and {u,,u,,u,} of distinct elements in C there is one (and
only one) linear fractional transformation which maps ki to
Ly i=1(1)3. Although it is intuitively clear from this that
we lose some "adaptability"of our norm by withholding only
one parameter in the fractional transformation, we shall see
that this choice simplifies the analysis very much without
eliminating all "adaptability" of the norm.
In certain cases we may have to shift the value of b in
the (b,k)-norm during the integration, but the effect of this

is easily calculated.

Lemma 4.6

Assume that
-1 -1
I e -y Il < ll(r'e ey [, n=0,1,...,
where T = {ti?)} is the kxk matrix determined by

a_a+bt1

ko e k=1,{_n n -
1tij A —(an+dn) (E;T:a_ ’ =1(1)k, v,

n =R

j
where andn¢bncn,Vn. Then
n-1

f<C T || (T
n+1 s=0

-1
Iy r,e 1)1y @1

1
+T'Ts) L Il“. 0]

= YOH’



=D

and if [[-]|=]-|[,, c =0,4d =1, a =1-b_, b _e[0,1)
n-1 1+p (<7
gyl T e+ (2] - lvall,
s=0 0
0 if b, 4 € b
E —
S b b
2 T%%l~—§ otherwise.
s+1
Proof:
For n = 1,2,...
(T '® 1 s M e 1) (T 2
| 4T T8 DAL, sl en(r_ @ D(T,_;® I)-Y ||
s et e x|t e 1)y
= n n-1 n-1 nt*
Hence
=1
1¥pqll=llr @ (T "e Doy Il s (/T @ 1] -
n-1 1 i
(sEoH(TsH T eIl -llT e 1]l - (I, I,

! . =; R :{rgs)}is
LT

From (4.4) and (4.6) we find that Ts+1. 5 s 2

determined by the reguirements

k=1
(S)Aj—T _ Cs+1(asx+bs}+as+1(csk+ds)
1J as+1ds+1-b

r

k
Z
=1

3 s+1%s+1

i=1
[és+1(ash+bs) bs+1(csh+ds):] i=1(1)k, V A
-CS+1(aSA+bS)+aS+1(cSA+dS) /

If ¢ = 0, 4 =1, a_=1-b_, bns:[0,1) we thus have that

-1
(b_,.=-b_)+|b_, ~b_|
_ -1 _ s+1 7s s+1 s
) & I [ =152 |l = (1% ,

1-b

||(Ts+1Ts

s+1



nil] o

Ity @ Ille= Il Il = [11-b l+1o | 171 = 1,

and

llj

I ® Tl = |75 || ,=[(1+b,) /(1-b,) %", q.e.q. .

For the sake of reference we state some of the properties

of the (b,k)-norm:

Theorem 4.7

Let C be the companion matrix of a polynomial p of

degree kz 2., If there exists a real number b 6[0,1) sc that

S T k=1 _
3 R R e T - B o™ )
j;
k-1
(1=b)™ |, (k)
a3 (k) [, (4.13)
then_||CHb= H(T~b)Cb+b-IHaJ§1, where C, is the companion

matrix of the polynomial g(r) = p((1-b)r+b), and

k-1
=% =1 T+b
1™ ey < Tyl 1257 0= 175" W = (12R) 0 ¥z 0.

where Tb is given by (4.12).

Proof:

(4.13) follows from (4.11) because

k- 1

W= (1=b) 354 0235 p ((1-p) 240) / (p + (1-:) 7T
. o1 [ =) _
=~ (p - (1-p) )T 3 (1 R, [E——~——19’-bp%}-hk T

(k=1)1

k=2 s Y .
(15175 (3) () 53

o I

+
It o™

J

From the proof of theorem 4.4 we see that Tgl is the trian-

gular matrix with the elements
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A
A

—(1‘1)(-b)i‘j/(1—b}1'1, 1£5<1i<k,

%137 \5=1

and the theorem follows easily from the previous discussion. 0
Because of the similarity between ]MIHb 1, llegll, 1 ]
and ||C||, < 1 we may utilize some of the results in [7] and

[9] to derive some relevant criteria.

Lemma 4.8

Let C(g) denote the companion matrix of the polynomial
k . k ;
plr,q)=p(r)-g+oc(r), where p(r)=j£0ujrj, 0(r)=j£08jr3 and
p(1,9)= -g. Furthermore, let Cb(q) denote the companion
matrix of the polynomials pb(r,q)=p((1-b)°r+b,q), 02 b<1 .
Then
lc(o)|l, <1 if and only if
(4.14)
ak-p)(j)(b)éo,j =0(1)k-2, and,bé-ak_1/[(k—1)ak];
HCb(O}HOO < 1 if and only if

a - 0N by<o, 5 = 0(1)k-1 (4.15)

k

LE uk:>0, and (4.14) or (4.15), respectively, holds with strict

inequalities, then the feollowing is wvalid
Y o £[0,n/2)3a>0 :HC(q)Hbg‘lor HCb(q)m°§1, respectively,

holds for all gef{zl|larg(-z)]| £a and Re(-z) <a}.

Proof:

IIC(q)Hb £ and.J|Cb(q)|LD§ 1 are both equivalent to cri-

teria of the form
k-1
— L ] < — L ] 7"
jEOIaj q bjl :Iak q bk| ; (4.16)

where
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Blr,q)* jfo‘aj'q°bj’r]: Py (£,@) +b+ (0, =qB,) * (x=1)+ [(1-b) J*
or pb(r,q), respectively (cf. theorem 4.7). We note that
©(1,0)=0, and thus }IC(O)\\bET and [le(O)]L)§1 are equivalent
to ak-ajéo for j=0(1)k-=1, which gives (4.14) and (4.15).
Assume now that ak>0 (i.e. ak>0) and that ak-aj<0 for
j=0(1)k-1. Let a e [0,7/2) be given. We must then find a>0
so that (4.16) holds for all g=ce+(-1+ib), where 0 <c £ a
and |b| <tg (o). But if g=c*(-1+ib) we have as a tends

to zero,

) 2
—gb.| = ja.]|- ‘b./a.+0 .
laj=aby| = fay|-(1+c+b,/a +0(c™))
and thus (4.16) reads
k-1 k-1 " 5
0s(la, |- £ Ja.])+sgn(a,)ce(b + Zb.)+0(c )=c+O(c’).
k17,2 125 k k" .2 P25
j=0 1=0
0.
Remark
The conditions for strong O-contractivity in the (b,k)-
norm (i.e. dr > 0: HC(q)\hji 1 for all ge{z||z+r| £ r}) have
later been found by Nevanlinna and the writer ([10]) to be:
Oy B Dy (4.17a)
0 by 20 and oI p)y=0 = ¢ (1) =0 d ]
for 3=0(1)k-2, )
bs-a_;/[(k-1)a,] and b=-a_,/[(k=-1)o, ] =
(4.17¢c)
b=-8,_4/[(k-1)8,] 0

Necessary and sufficient criteria for HC(q)Hb§1 or
HCb(q)|Ln§ 1 to hold for all ge C are found by using tech-
niques very similar to those applied in [9] concerning the

case b = 0:
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Lemma 4.9

With the notation of lemma 4.8, assume that uk/8k>0.
Then HC(q)Hb <1 holds for all geC if and only if

1) lcco) [l =1,
2) o my=0 53 () = 0 for 3=0(1)k-2, and

b=-ay_,/[(k=-Doy] =b=-6,_,/[(k-1)8,], and

E=2 it (3) 2 _ . (B (k=NMb+B, _.)?
3) oy - [ (1-b)~ (o (b)) ", (1_p) k- k k-1

% :
j=o0  J* 0 3 (1) Y tle=T1 0%y
B 2
£ 1=y E 1 —3——:}>o .

*k

lcy (@) ||, £ 1 holds for all geC” if and only if

1 ool =1,

2y oI my=0= 69 ()=0 for 5 = 0(1)k-1, and

3 e s =3 wy))?

e : >
. j=0 p(J)(b)

In 3) and 3') terms with zero denominator are to be removed.

Proof:

As mentioned in the proof of lemma 4.8, HC(q)|&)§ 1 and
||Cb(q) ||, both have the form
k-1 k k
¥ |a:-gb.|¢|a,-gb, |, where I a.=1- I b.=0. (4.18)
4= 3 3 k 77k j=0 I 5=0 3
Let J be the index set {j]ajio}. Then for g =iy purely imagi-
nary, we have that
|as [+ © ¥y +O(y'), if ]
B aj 2T§7[ v Yy 1, 1f jJedJd
]aj_qu!_ J
ibjl-yy otherwise.
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From the proof of lemma 4.8 we know that 1) and 1') imply

k-1
that =2 [aj|=|ak], and on this assumption we see that (4.18)
=0
for g = iy has the form
k=1 2 k-1 b’ 2 b, .
y 2 |byf+dyerzr =Las& -2 4 0ly").
j=0 j=0 |73 k|
Jjgd jed

Hence, all conditions in the lemma are recognized as necessary.
That they are sufficient follows from theorem 2.1 in [7],
since they imply that (4.18) holds for all g = iy (including «):

[

k-1 2)72') k-1 1 2 b 1
¥ |aj_iybj| = b lajlz.(laj‘+y . a] B
j:O j=0 | jr
Jjed
k=1 , k-1 ) b: 3
<( I [aj[)z-[‘z ([aj|+y . aj‘)
j=0 j=0 %3 ]
Jjed
2
1),1") ) , k=1 bj i 3),3")
= ak+‘ak .y '-E =g = [ak—iy'bk\.
J=0 | 3|

jed
0.

5. Certain Contractive Variable-Formula Methods

It is well-known that the order of a one-leg formula
P(E)y =h-£(0t o +(1=0)-t ., 1/ 0(E)y_ ),

is p=min {%,m}, where £ and m are the largest integers for

which the following hold:

—_— s

h D(E)y(tn):y'(@tn+k+(1—8)tn+k_1) 15 exac? for all
polynomials vy of
degree = {

is exact for all
polynomials y of

and O(E)y(tn)=y(®t +(1-0)t

n+k n+k—1)

degree £ m-1.
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It follows that a kn—step one-leg formula is of order kn iff

oy ot et 1)
h p(E)yn— z 3 (C ) . yn+j
j;k—kn q ¥
k o, (0t +(1-0)t ) +C
+k +k—-
and Q(E)Yn:Z - : o, (t .)n : ) yn+j !
j=k-k, j ' n+ ]

where ¢ is independent of j and ®j(t) denotes the polynomial
k

iEk_k(t—tn+i)/(t—tn+j). We replace the parameter c¢ by B satis-

n

fying B.8k+8k—1= 0 and obtain the following fixed-step formulas:

kK _=1:
n
o(r) /X = r-1,
(1-B) o (r) /x*1 = r-B
kK =2
n
K2 2
2ep(r)/r = (20+1)r -406r+(20-1),
(2-B) 0 (r) /572 = [(e+1)r = (8-1) ]-B- [(0+1) r=0].
k =3
n
k=3 _ 2 3 2 2 2 2
6+0(x)/r = (30°+60+2)r’ - (90%+120-3)r +(90%60-6)r-(36-1),
2(3-B) o (r) /r< 3= [(92+3e+2)r33(@2+@-2)r+2(6-1)]
~B- [(02+30+2) r’ -2 (0%+20) r+(0%+0) ].
kn=4:
12.0(r) /r5 % = (20%4+90%+110+3)r" - (80°+3002+200-10)r +

+ (126" +360°460-18) - (86+18F-40 -Gr 4204 30-0-1),
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- 4
6(4-B) o (r) /£ 4= [(0°+60%+110+6) r =6 (0 +40°+0-6) r > +

+ 8(0°+30%-8-3)r-3(0°+20%-0-2)
~Ba| (8 £60° 41 1846) 2 =3 (0 50 5 0y %

3(0°+40%+30)r-(0°+30%+20)

1200(r) /r5> = (50'+400°+1050°+1000+24)r - (250" +1800° +

+3750°+1500-130)r + (500" +3200°+5100%~-400-
3 L 3 2 2
-240)r = (500" +2800°+3300°-1400-120) r’+

(250" +1200°+1050°-600-40)r- (56%+200%156-100-6)

24 (5-B) o (r) /r 2= (0"+100°+3502+500+24)r°=10 (8" +80°+

#176° —20-24)%  ¥20+ (0% +70% 491 02~ T0-12) 2~

-15(0"+60°+70%-60-8) r+4 (0*+50 *+5F-50-6)

S

-B. (6"100%+350%+500+24)r"* -4 (0*+90°%+2602+ |

+240)r’+6 (0" +80°+190%+120)r2-4 (6% +70%+

C1492+8@)r+(@”+693+11@2+6e) 1

The reason for replacing the parameter c¢ by B is two-fold.
Firstly, setting B to the same constant in several formulas,
we may apply lemma 3.1 to the resulting OLM (1.3). Secondly,
our analysis in [2] (pp.34-44) shows that in most cases (even
for variable step-sizes) the «~-contractive two- or three-step
formulas with minimal O-value satisfy

(k-1)b Bk 4 Bk—1 =0.
Since the 0O-values for which a one-leg formula is 0O-con-

tractive w.r.t some (b,k)-norm usually are smaller than the



il

@=values for which it becomes «-contractive, we shall here
only consider OLM's with B= (k-1)b, kz 3 and refer the reader
to [2] for a more thorough (but not that successful) treatment
of one- and two-step formulas, k=2,3.

The following three figures illustrate the set of (b,0)
for which the fixed-step k'th order formulas with B= (k-1)b
are O-contractive in the (b,k)-norm. Moreover, the minimal
O-value for which the formulas are «-contractive in the (b,k)-
norm is displayed. Below each figure the non-differentiable
behaviocur of some of the curves is eXplained.

We observe that for k=3, no 3-step 3'rd order formula is
A,-contractive in a (b,k)-norm with b <£1/(k-1). Fortunately,
this is not the case for k=4 or 5 and we find a second- and
a third-order formula being A(w)-contractive in the same (b,k)-
norm and with a reasonably large o (approx. 89" and 450, respec-
tively), cf. fig. 5.1 and fig. 5.2.

To construct a 4-step OLM we also need a one-step formula
and from lemma 4.9 it is easily seen that choosing Bk=1.1
(say) will make the formula A-contractive in the (0.2,4)-norm.
Finally, we may add a four-step formula although they seem to
have a relatively small region of contractivity in the (0.2,4)-

nerm, @f. gdep. 5.3,
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3
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i

| x
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2073370,

and b=a0

for ©=0.3193995

=0
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S (T
i

Jo—contr .
3

and b=0.2020410.

37979589

=0

3b+052=0 for 8

3o

2725283,

=0

and b

1542916

1

-4

for ©

(b)) =0

'(b)=

P

and bx=0.2139326.

.4648768

=0 for 6=0

3u4b-+a3

p'(b)=

k=4
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L‘F:

FEprerbt T

AfnLE

n-.

L:

it

b

w—-contr.,k

CT AR
{‘-J“ 1::

and bx0.1902780.

=0 for 6=0.4363371

=40 ;b +a,

: p(b)

ks 3

1446741.

=0

and b

0 for 8~0.4489212

qb+0ca=

(b)=4qa

p(2)

k=4
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Fig. 5.1. The region of absolute stability (dashed line) and
the region of contractivity in the (0.2,4)-norm of
the second-order 2-step one-leg formula with 0=0.54,
B=0.6.

0 5 10 1.5 20 25

Fig. 5.2. The region of absolute stability (dashed line) and
the region of contractivity in the (0.2,4)-norm of
the third-order 3-step one-leqg formula with 0=/5.53-
145 B= 0.6



=2 -1 0 1

Fig. 5.3. The region of absolute stability (dashed line) and
the region of contractivity in the (0.2,4)-norm of
the fourth-order 4-step one-leg formula with 9=B=0.6.

Remark

The (b,2)-norm has turned out to be an appropriate measure
of strong O-contractivity of 2-step OLM's ([10]) and we hope
to publish this result soon. 0
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