NVIIW/INIVO HAHL

S £8 Zi - 90 ‘suoydayay
NHVIWNIQ - D snyiey 0008 A — epeBaxyunyy AN
ALISHIAINN SNHYVYY
wewyedsq ssuang Jandwoy)

€861 wndny
£91-94d TWIVA

Brogsnyy assiN

saSenSuey SurwmweiSoxrg jo
S[9POJA] JIBIQIS[Y SN02UIS0INDY [erroSajen)

N. Husberg: Categorial Heterogeneous Algebraic Models

L1G8-5010 NSSI

PB-163

CATEGORIAL HETEROGENEOUS ALGEBRAIC

MODELS OF PROGRAMMING LANGUAGES

Nisse Husberg

1983

Abstract

Heterogeneous algebraic theories and algebras are treated in
detail with examples showing how to model programming
languages. All categorial concepts needed - and only those -
are defined and explained assuming no earlier background in
category theory. The presentation covers language grammars
and syntax fairly well, but semantics is treated only in

general terms.

ii

COMNTENTS . Page
0 NOTATIONS iv
1 INTRODUCTION 1
2 BASIC CATEGORIES OF CHAM 4
Zs Some special objects and morphisms 10
2.2 The string category 14
23 Operators 97
2.4 Syntax and signatures 32
2.5 The algebraic theory 39
2.6 Derived operators in an algebraic theory 49
3 FUNCTORS AS MODELS OF ALGEBRAS 56
3l Algebras 61
32 Hom-functors 63
3.3 Free algebras 67
3.4 Initial algebras 74
4 NATURAL TRANSFORMATIONS DEFINE THE SEMANTICS 77
4.1 Generators and free objects 81
4.2 The category of T-algebras 83

5 CONCLUSIONS 90

6 ACKNOWLEDGEMENTS

7 LITERATURE

APPENDIX

Language A syntax

INDEX

144

.

93

97

99

iv

0 NOTATIONS

A mapping f:X = Y : x & xf has source (set) X and

target (set) Y. Because categories and graphs are important
in this work the argument is to the left of the function
symbol, that is xf or (x)f instead of f(x). Composition of
mappings (and morphisms in general) is written in the

natural way

£ g
W
fg
and x(fa) = (xf)g like (GTWW 1973), (Manes 1976) and (Cohn

1965), but unlike (Schubert 1972) and (Herrlich-Strecker

1973) s

Composition of £ and g is usually written fg but if it must

be stressed that fg is a composition it is sometimes written

fog.

If A denotes a family of sets A=(Asfs € S) then the

cartesian product is denoted

If S has one element only, the product is denoted A", If w=s
(a string with length 1) the product is denoted As (a set of
sort s). If w=A then AV = At = {()}, the set with one

element which is the empty tuple.

A set is denoted A = {al,---,an} or A = { a | p(a) },
where p(a) is a predicate, that is, if a has some property

defined by the predicate, then a is in the set A.
The empty set {} is denoted by &.

An alphabet A is a set of some symbols (usually a finite
set) A string (in an alphabet A) is a sequence of symbols
a;*-*a, in A. The empty string is denoted by A. The set
of all strings (including the empty string) is denoted by A*

and (excluding the empty string) by A+.

1. INTRODUCTION

Category theory is used quite much in computer science, but
only by mathematicians and those - rather few - "engineers"
who have had motivation enough to climb over the threshold
into the categorial paradise. Those who have made it tend to
go still deeper into the fascinating landscape thereby

leaving the majority of the computer people out in the cold.

This is a modest attempt to give a hand to those still
outside which are interested but do not know where to begin.
It is also intended to clarify the basic framework which is
often presented a bit too briefly because the stress is put
on more complex and more interesting features. For the
newcomer it is, however, important to have a good

understanding in the basic ideas.

The ADJ group (Goguen, Thatcher, Wagner, Wright) has made
importang contributions to the introduction of category
theory into computer science. In their report "A junction
hetween computer science and category theory" (part I 1973,
part II 1976) they presented a lot of interesting categorial

means and showed how they could be used in computer science.

The most interesting phase was, however, the introduction of

a heterogeneous algebraic model (HAM) of the syntax and the

semantics of a programming language. This was made by
Letichevski already in 1968 and by Rus in 1972, who both
used heterogeneous algebra to describe (rather abstract)
translators. The notations used by the ADJ group and the
idea to put the HAMs into a categorial framework (CHAM) made

the approach concise and efficient.

A small but important step which made the HAM very easy to
read was the introduction of the "mixfix" notation (Rus 1972
and Goguen 1978) thereby "distributing" the operator symbol
among the arguments as in most programming languages (if p
then A else B, where if _ then else is an operator symbol

with "placeholders").

The initial, free and other algebras used here are close to
those used in the ADJ papers (GTWW 1977) but they are
constructed in a different way. Here the complete categorial
construct is given explicitly in the general heterogeneous
case. To hide the categories as in (GTWW 1977) is not a

"soft" introduction but rather creates confusion.

All the basic concepts needed are presented here because no
former knowledge of category theory is assumed. Some rather
advanced concepts like algebraic theories are treated in
great detail while many basic concepts of category theory

found in any textbook are not included at all.

The choice of material is determined by the application -
modelling programming languages - but the disposition is
close to an introduction into category theory. The main
-ideas can be found in chapters 2 and 3 in (Husberg 1980a),

but in a rather primitive form.

No parallels to other similar approaches are drawn but a lot
of practical examples are given to help the intuitive
understanding. A good bibliography can be found in (Wagner

1981) .

Warning ! The algebraic theories used here are roughly

dual (the arrows are "turned around") to those of ADJ.

This has the advantage that arrows point in the same
direction in the algebraic theory and in the algebra
generated by it. The arrow turning of ADJ is confusing for
beginners. Notice that (Goguen 1975) has a different
definition than in most ADJ papers, the same as the one used

here and in (Gallier 1978) and (Gallier 1981).

2. BASIC CATEGORIES OF CHAM

Here some basic categories used in the categorial
heterogeneous algebraic model (CHAM) are presented.
Unfortunately the literature of category theory uses many
different definitions of a category. Although most
differences are notational, it can, however, be rather
difficult to read them "side by side". Thus all concepts

needed here are defined here also.

The basic concepts used are mainly from (Schubert 1972),
(GTWW 1975) and (Cohn 1965), but also (Pareigis 19270),
(Herrlich-Strecker 1973) and (MacLane 1971) are used as
references. Those who want to go deeper into category theory
could start with Herrlich-Strecker which has many examples
from "normal" mathematics or Cohn if they like algebra.
Schubert is not explaining much but is logical and exact. It
also covers many topics. A very nice introduction (but not
complete) can be found in (Goldblatt 1979) - do not get

scared by the title.

The heterogeneous case is not treated at all in usual
textbooks on category theory although it is possible to
generalize the homogeneous case fairly easily. Explicit

definitions of many-sorted (heterogeneous) algebraic

theories can be found in (WIW 1978) and (WWT 1979), but

deprived of almost all category-theoretic background.

A category consists of objects and morphisms. An object can
be seen as a generalization of the set concept and a
morphism as a generalization of the mapping (function)

concept. In general objects are no sets and morphisms no

mappings.

A graph representation is sometimes used for a category

where the nodes denote objects and the arrows denote

morphisms:

idA

In general a graph is no category because a category must
have identities for each object in the category.
Compositions of morphisms must also be defined and it must

be unique and associative.

If in the example above we define composition so that bea
(or simply ba - notice the order !) is the same as ¢ then
the graph above is a category with three elements. To sum it

up we have the following definition:

A category K consists of a class of objects ObK and

for each pair A,B € ObK a class of morphisms MorK(A,B)

which satisfy the following conditions:

1) each morphism belongs to only one morphism class,

i.e. MorK(A,B) N MorK(C,D) = ¢ if (A,B) ¥ (C,D),

2) for each object A € ObK there is a special morphism

idA [MorK(A,A) called identity such that for each

MorK(A,B) we have

3) if £ € Mor_,(A,B) and g € MorK(B,C) then there is a unique

K(

morphism fg = MorK(A,C) called the composition of f

and g,

4) composition is associative, i.e. (fg)h = f£(gh) for

£ € MorK(A,B), g € MorK(B,C) and h € MorK(C,D).

A morphism £ € Mor_,(A,B) is usually denoted by f: A - B,

K

where A is the source and B the target, although f

possibly is no mapping (or relation).

In general the objects do not form a set but a class (a more

general concept than a set). If ObK is a set then the

category is called a small category. If all morphisms from

A to B, where (A,B) is any pair of objects in ObK, form a

set then K is locally small (or well-powered).

If a category is small it is also locally small, but not
necessarily vice versa. The important category Set with
sets as objects and all mappings between the sets as
morphisms is locally small but not small (because the

collection of all sets is not a set) -

A set is a discrete category because a discrete category

has no other morphisms than identities.

A product category 51 X 52 Xeooy Kn of categories

51'52""'5n is a category with ordered sequences of
Ki—objects (Kl,KZ,---,Kn) as objects and ordered
sequences of Ei-morphisms

(flffzr"':fn)= (K11K2r"'rKn) - (KifKér“'rKﬁ)
: [} & r
as morphisms, where Ki’Ki e ObEi and fi' MorEi(Ki,Ki).

Composition is defined by:
(flrfzf' ..rfn) 0(91'92:"‘;9]“) = (fl"gl:fz"gzr"‘;fnogn)
and identity is obviously

= (idK ,idK ,“’,idK) .

id .
(KyrKpr® ot rKp) 1 Ko Ky

The dual or opposite category EOP of a category K has

exactly the same objects as K and the "same" morphisms but

with "reversed arrows", i.e.

MOrEop(A;B) = MorE(B'A) °
There is a morphism f°P : B > A in EOP iff there is a
corresponding morphism £: A = B in K and composition in
kK°P is defined by foPgOp = (fg)Op.

A subcategory L of a category K is a category with

1) Oby < Oby,

2) MorL(A,B) c MorK(A,B) for each pair A,B € ObL,

3) for each pair (f,g), where f: A - B, g: B = C, and for

any A,B,C € ObL, the composition in K fg € MorL(A,C),

4) for each A € ObL, the identity id, in K is also the

identity of A in L.

A subcategory is full if for any two objects A,B € ObL

all K-morphisms from A to B are also L-morphisms, i.e.

MorK(A,B) = MorL(A,B).

10

2.1 Some special objects and morphisms

The notion of product is very important, e.g. in the string
category to be defined in next section and used throughout
the paper. For sets the (cartesian) product is defined for

two sets A and B as

AXB= {(a,b): a €A and b € B}

with mappings

2% AXB —= A: (a,b) ~» a
and

Py * AXB - B: (a,b) = b.

In a category the product is defined more generally. A
product can be defined for an arbitrary family (Aili € I) of
objects in a category K, where I is an index set (Schubert

1972, p. 49).

. . I . i
A product is an object A™ (or Hi e T Ai) with morphisms

pi: al » A; such that for each object Y € Oby, and for

any family (fi: Y = Ai|1 € I) there 1s exactly one morphism

h: ¥ = AI such that fi = hpi for all i € I (the universal

property). Usually h is denoted (f,) or (£, reccafy) AE T

1 n
is a finite set.

11

The morphisms pi are called projections. A finite product

has a finite index set I. The identity for a product AI is

the I-tuple of projections (pi|i € I).

If I = @ then for each object Y € ObK there must be exactly

one morphism h from Y into the empty product E. Thus E is a

terminal object (Pareigis 1970, p. 31).

Pareigis has also proved an important lemma: that products

of the same family of objects are isomorphic, i.e.:

Let (AI,(ri)) and (BI,(qi)) be products of some collection

of objects (Ai|i € I) in K. Then there is a uniquely
I

I

determined isomorphism k: al - BT such that L = kqi.

There must be unique morphisms k and h because AI and BI are
products. For the same reason kh and hk must be unique and

kh = 1dAI and hk = 1dBI.

Initiality is very important in computer science because it

ensures the existence and the uniqueness of a morphism from

the initial object to any other object in the category.

12

An initial object X for a category K is an object such that

MorK(X,B) contains exactly one morphism for all

K-objects B. All initial objects for K are isomorphic

(Schubert 1972, p. 35).

In the category Set the empty set g is an initial object
because there is exactly one mapping from @ to any other

set, the empty mapping:

A: 4 = B: - B

where B € ObSet is a set.

There is a dual concept (dual means roughly "turning arrows

around") and it is terminal.

A terminal object Y for a category K is an object such

that MorK(B,Y) contains exactly one morphism for all

K-objects B. All terminal objects are isomorphic.

In the category Set any set consisting of one element is a
terminal object. For any set B there is only the mapping

Sy B — {y}: b - y, mapping every element b € B into the
single element y of the terminal object (from @ there is the

empty mapping). The isomorphisms are i: Y = Y ': y = y’,

where Y and Y’ are one element sets.

Considering that a morphism is a generalization of a

function, it is reasonable to expect that there are

13

morphisms having properties corresponding to "injective" and
"surjective" functions. Because an object may be no set,
these properties are defined "externally", i.e. without any

reference to the structure of the objects (Goldblatt 1979,

b. 37) »

A monomorphism (monic morphism) f: A - B in a category K has

the property that for any pair of morphisms g,h: C - A in K

gf = hf implies g = h.

In Set a monomorphism is an injective mapping.

An epimorphism (epic morphism) f£: A — B in a category K

has the property for any pair of morphisms m,n: B = C in K

fm = fn implies m=n.

In Set an epimorphism is a surjective mapping.

A morphism f: A > B in a category K is an isomorphism if

there is a morphism g: B = A in K such that

fg = 1dA and gf = ldB'
An isomorphism is both a monomorphism and an epimorphism but
every monic and epic morphism is not an isomorphism

(Pareigis, p.l7).

14

2.2 The string category

The category StS with strings as objects is the basis of the
algebraic theories used in this CHAM (categorial
heterogeneous algebraic model). It models sort strings,
where a "sort" can be interpreted as a nonterminal in a
grammar or as a word in angle brackets <> in the BNF
(Backus-Naur Form) of syntax. It is a good example that the
objects in a category can have an "inner" structure which is

"hidden" in the category.

Here the category N of natural numbers is needed
(Herrlich-Strecker 1973, p. 20). The idea is that n denotes
the set of all smaller numbers, i.e. n = {0,1,-+,n-1},

but because we want to index elements in the strings

directly from this set it is better to use

[n] = {err"'!n}

like (WTW 1978). Consequently [0] = {} = ¢ = 0 and we take

[11 = {1} = {g} = {0} =1
[21 = {1,2} = {g,{g}}

15

as objects in the category N. This category could be
defined as a discrete category if the order of the natural
numbers is forgotten, but now the mappings between the sets

r0],[1],*+* are taken as morphisms of N.

Because there is no element in [0] = @ an unique mapping can
always be defined from this into any other object [n], i.e.
the empty mapping ii: [0] = [n]. Thus [0] is the initial

object of N.

In MorN([l],[n]) there are exactly n morphisms, i.e. the
injections i;: [1] - [j]l: 1L -»3j, where j =1, *** ,n. In
the opposite morphism set MorN([n],[l]) there is only one

morphism, the surjection s?: {1,2,++<,n} ={1}: n 1.

Thus [1] is the terminal object of N.

Strings from a set S are defined as mappings

w: [n] = 8S:1i s
but are usually written w = S1°""Syr that is, the element iw
in 8 is denoted by s - The set of all strings from S

(including the empty string) is often denoted S*.

The length of a string w is wlg = n, where 1g is a
mapping from the strings into the maximum element n of their
source set [n], i.e. 1g: S* ->N: w =»n if w: [n] =S and

N is the set of natural numbers.

16

The sort set of a string w is the subset Sw of S which can

be defined as
SW =4{s | iw = s for some i with l<=i<=n and n = wlg }
Taking strings w € S* as objects in a category StS the

object class Ob is the set S*. The morphisms of this

sts
category are defined in the following way:

There is a morphism t: Wy —>w2 in MorEES(wl,wz) iff there

is a mapping m: [n2] —a[nl] such that the following diagram

commutes:

|=

sts

It may seem strange that t and m have opposite "directions"
but it is perfectly possible to define the morphisms in such
a way. The reason for this is that we need products (and
thus projections) in StS. If the arrows are not turned
around here, they have to be turned around when aoing from

the algebraic theory to its algebras which is considered

17

more harmful because a lot of work will be done on that
level while this is only for the basic construction of the

string category.

If t is turned around, the strings will not be products (but
coproducts) because in the diagram below there can be no
such mapping f that the diagram should commute. Therefore

the projection pibis no morphism in such a category.

Remember that in order to commute the diagram must have
fea = (ab), i.e. (if) a = i(ab), that is, f applied to i
(in [2]) composed with a gives the same element of S as ab

applied to the same 1i.

The only mapping from [2] to [1l] is the surjection defined

earlier. It has 1f = 1 and thus (1lf)a = a 1(ab), but as

2f = 1 also we have (2f)a = a # b = 2(ab).

18

According to the definition of t we have

where there are two mappings in MorN([l],[Z]) as defined

earlier. The diagram commutes for ml(ab) = a which means
ab

that pl e Morézs(ab,a).

Another diagram could be given for mz(ab) = b which would

give pgbas the second projection. Thus ab has both
projections needed. In order to prove that ab really is a
product in StS, the universal property should also be

asserted, but it is not within the scope of this report.

A special product is very interesting - the empty string
(sometimes it is indexed Ks to show that it is an element of

the set 8):

19

For every n there is a unique mapping i?: [0] = [n] - the

- 0)\ = .
empty mapping. The empty string o [0] =S is the empty
mapping into S. Thus the diagram commutes for all w of

length n and from every string w in the category StS there

is a unique projection (the lambda projection) from w to

hs (the empty sort string) which is a terminal object in StS

(see 2.1).

A string w = abc is a product of the objects a,b and c. Thus
using the notations in the definition of the product

(section 2.1) we could have

I = {1,2,3} A, =a, A, =b, Ay =cC
and
AI = w = abc with p{: AI —>Al, i.e. pY: w —>a
pg: AI —aAz, i.e. pg: w —b
p%: AI —aA3, i.e. pg: w —>cC

x . . . N r .
StS has injections i: s —>Ss--+*gs which are unique because

[11 is a terminal object in N, i.e. there is a unique

20

mapping from every object [n] to [1l], that is, the
surjection s;: [n] = 1: n+1. But the single sort strings
s are not initial objects in StS because there are no

morphisms into an arbitrary string w from s,

By the universal property for products (see 2.1) there must
be a unique morphism h: w’ —w for any object w' € ObSts
with a family of morphisms (f,: w' —A |i € I).

Now there are many products for a,b and c. For example, if

B- = w'’ = bac with

21

we have the product

B™ = w' = bac with Pt w
r

Thus there is a unique h: w’ = w which can be denoted

w' w' _w' . ;
(p 2P /P 3), a w-tuple of morphisms from w' into the
single sort strings. This morphism is an isomorphism (see
2.1). Thus all strings of the same length and with the same

number of occurrences of each sort (all permutations of a

string) are isomorphic.

The category constructed above has mappings as objects and

some things (indirectly defined) as morphisms. Note that the

morphisms are no mappings. Now we use the standard category
theory trick: We forget about the nature of the objects and
the morphisms and take them as plain strings and

projections, tuples, etc.

The "hidden" structure is not lost. It can be remembered and
used in case it is needed. Below it will be used to
investigate a special class of morphisms in StS, that is,
the morphisms from one string w to another string w’ when

the lengths of the strings are bigger or equal to 2.

22

Consider the following diagram

The morphism t:u —w exists (according to the definition)
only if there is a mapping m: [2] - [3] such that the
diagram mu = w commutes. Componentwise we can define such a

mapping m: [2] = [3]: {1 »2, 2 Pbl}, but a corresponding

23

mapping from [3] to [2] cannot be defined (so that the diagram

commutes) and thus there is no morphism from ab to bac.

This does not mean that there are no morphisms from some
string to a longer string (there is one from ab to baa, for
example) . In general there is a morphism from w to u if
S. < Sw because of the target tupling, i.e. all the target

u
sorts must be found among the source sorts.

According to the universal property of the product w = ab
there is a unique morphism h: u - w for each family of
morphisms from u to a and b, i.e. for each pair of morphisms
fa: u —a and fb:u - b.

Because there are only three mappings from [1l] to [3], the
injections, there are only three morphisms from bac to a, b
and ¢, respectively. Thus the only family of morphisms from
u to a and b are the projections p? = fb and pg = fa.
As there is only one morphism h = (p?,p?): u —->w we must

have h = t.

The morphisms h = (£ ,---,fs) are called target tuples
1 n
because the indexes of the morphisms form a sequence Sy***s,

which is exactly the sort string making up the target of the
morphism h. Thus in the example above h = (pg,pi) has target

w = ab and the sort of pg is 2u = a while pg has sort lu = b.

24

p; in StS according

Because iim = ig in N we must have tpY
to the definition. In the same way tpg = pi. Considering
that t = (pS,p?) the composition of t and pY can be seen as

substitution of the ith element from t instead of the

projection p?.

From the definition of the product in a category the same

fact can be seen. For a morphism t = (tl,-",t): u -»w with

n
w = 8S;""'s Wwe have (by the universal property of the

product)

Projection (to the right !) "picks" out the jth component of
the morphism t (or the composed morphism is obtained by

replacing p? with the jth component).

In the general case composition t" = tt’ of any two
morphisms t = (tl,--°,tn): u >v and t’ = (ti,'--,té): Vv >w
gives a morphism t" = (i,---,t;): u —w such that each

t; is obtained from ti by replacing each projection ij (in

ti) by tj’ that is

[- r v -
ti ti[pj < tj].

25

Example: Composition of morphisms

Let t = (A=B,x:=5,p§)
t" = (if pf then pg else p§,A:=0;B:=0)
u = <statement><anysort>
v = <condition><statement><statement>
w = <sequence><statement>
Now the composition t" = tt' = (ti,t;) is obtained

componentwise by inserting tl = A=B instead of pf, t2 = X:=5
instead of pg and t3 = pi instead of pg. Thus the composed

morphism will be

t" = (if A=B then X:=5 else p;,A:=O;B:=O).

. : : f o ¥ W w
The identity of an object w € ObSts is ldw (pl,---,pn) for

LR Tl A because for any t: w = u where u = si---s&

tll

L8 E = (R) =i BL) (g a== =ikl = [EY, >t
where
n o _ W _ w - "o
ti = ti[pj < Dj] > t t

and (taking the identity idu of the target)

t"

. u u
tidy, = (Ep e t)) (Pyr " yPp) = (E], 700, t0)
where

o= 4rnd o - - T
B = pi[pj < tj] o > & t.

26

Thus a w-tuple of w-projections is both right and left
identity as required in 2) of the definition of a category.
To make sure that StS is a category, composition should be

proved associative, but that is omitted here.

The category defined above is an algebraic theory, in fact

it is the initial algebraic theory in the category of all

S-sorted algebraic theories.

27

2.3 Operators

In general an algebraic theory has some morphisms which are
not projections (or injections) or derived from these by
target tupling and composition. These morphisms are called
operators. The string category StS is a very special

algebraic theory because it has no operators at all.

From the category theoretic point of view an operator is
simply a morphism but here some special notations are
developed in order to make the connection between the
algebraic theory and the programming language as natural as

possible.

An operator symbol o0 is a sequence (uo,--',un) of strings
u; € U*, where U is a set of terminal symbols. The set of

operator symbols is called .

A (basic) operator is a typed operator symbol (0, (w,s)) € R,

where 0€ZI, (w,s) € S*Xs and R is a type relation
R: I X (8*X5), R is often divided into (w,s8)-indexed subsets

which are denoted & = {o] o € R} (operator sets).
W,S w,S

The (basic) operator Ow & has type w,s, arity w, sort s

r

and rank n (where n = wlg with lg: StS —N: w = [n] as the
length function). No operator can have sort s = A (because

A g s!), but w =X is perfectly correct (» € 8*¥) and

28

defines a constant (operator) of sort s. The primitive
elements (Ginsburg 1966) like letters and digits are

constant operators.

In an algebraic theory there are also other operators than
basic operators. Usually they are called derived operators.
The arity and the source of a basic operator are the same,

but the proper arity w’ of a derived operator is often

another sort string than the source w. Thus a more general

definition of an operator is used in an algebraic theory.

An operator is a morphism 0, gt W —>s, where w = Sy"Ts,
r

is a string in S* and s is a single sort in S. Here an

operator is denoted by a sequence

W, .. w
[uopl un-lpnun)w,s

where the parenthesis are in the metalanguage and p? denotes
a projection from the product w = Sy Sy into single sort
iw = s.. If m=n and the projections appear in the same order

1

as in w, the operator can be denoted

[uO—ul'..un—l—un]w,s'

In this case the first (leftmost) placeholder (_) denotes
the projection pY, the second pg, etc. If the order of the

projections in the operator differs form the order in the

29

string w or the number of placeholders is not equal to m
(the length of the string w), the projections must be used

explicitly.

The proper arity of an operator

(uopw sk Ey pW]
1l n-1 1n W,S

is the string ilW"'ikw obtained by taking the leftmost

occurrence of each index ij in a left-to-right order.

For example, if w = S18,535,, the proper arity of the

operator

W w w
[ugPuy PyU,PaUs) o

There are many problems connected to the notation for an

operator, but these will be discussed in section 2.6.

Two special operators are very frequent: inclusion

(coercion) and catenation. In the semantics of a programming

language these operators may denote operations which are
different from inclusion and catenation, but in the syntax
they really denote inclusion and catenation if this notation

is used.

30

The inclusion (incl) is an operator [A“A]S s~ which means
r

that the composition tw S[A_A]S'S, (where tw,s is any

r

morphism for some string w) is defined as [ktk]wrs,, that

is, only the sort of the morphism t is changed, not the

"name". This corresponds to the intuitive meaning of

inclusion in syntax.

The catenation (cat) is an operator [A A A} which

means that the composition {a’b)w,slszll—A—A}slsz,s

(where a and b are morphisms from some string w to 84 and

Sy respectively) is defined as [Aakbh]w S7 that is, the
14

"names" of the components a and b are catenated (see example

Derived constants 2 in 2.5).

Projections can be seen as special cases of operators usina
the more general notation for an operator. Consider a
projection p?: W =S, where s; = iw and w = Sy"*"s,. to be
an operator

wo_ w wW_
Py [ApiAJw’ (Note that P [k]w,A 1)

=
i
with proper arity s Thus composition

= e e e W = -
t R = (tl' rtn) !)‘Pi)\] = [)\ti)\] = tu'sj_

and the operator "picks" the ith element out of the

w-tuple.

31

Another possibility is to introduce killers Y Y which
kill the argument. Thus Ytjy'=R the empty string, for

any tj and the projection could be written

W Wovee win W3 ws pig¥
P; = lypyy - Ap;2 anY]w,Si.

In the proper arity the killed arguments are ignored

Tn the special case pg, the lambda projection, the "0th"

element is picked out, i.e.
p) = [Ypy ¥* =+ vpy V)

is killing all real elements in the w-tuple and
tu,wp‘?\\’ - [A]u,k

which is denoted pg, the unique morphism from any product u

into the empty product A.

This is only a preliminary definition of operators. Some

problems are discussed in section 2.6.

ke

2.4 Syntax and signatures

The operators defined in the previous section are used to
model some "phrases" in programming languages. Here the
connection to the well-known BNF syntax is established. The
presentation is restricted to context-free grammars only. It
is very possible that the same method can be used also for
more general kinds of languages, but that would be too far
from a short introduction. The programming languages

considered are phrase-structure languages (Ginsburg 1966) .

A phrase structure lanquage L is a subset of U* (where

U is a set of terminal symbols - an alphabet), if L can be
generated by a (phrase structure) grammar G = (N,U,P),

where N is the set of nonterminals, P is the set of

productions and N N U = ¢4,

A context-free grammar has only productions of the form

* e s *
s=>u,s;u, u _1S,4, With u, € U" and S,S; € N. A
context-free phrase structure language is generated by such
a grammar and is sometimes called "Algol-like" (Ginsburg

1966) .

It has been shown that programming languages defined by BNF
are equivalent to context-free phrase languages (Ginsburg
1966) . The notation for a grammar is different here because

it is based on an algebraic model. It can, however, easily

33

be made equivalent to the definition of a grammar used by

Ginsburg in the following way:

Define the set V = N U U, the set Zl = U, the set P = P and
o = s_, where Sp € N is the nonterminal denoting a
"sentence" in the language (usually sp = <program>). Then

G’=(V,21,P,G) is a grammar as defined by (Ginsburg 1975).

The "words" in the lanquage are generated in a different way
here and the "start symbol" 0 of Ginsburg is here an index
of the "final" set of words. Note that ¢ is used in this
report to denote an operator symbol and not a nonterminal

(as in Ginsburgs grammar).

There are, unfortunately, many different BNF notations. Here
an explicit BNF with angle brackets is used. Other forme can

easily be transformed into this form.

An explicit BNF is here defined as having only "equations" of

the type

<> :=u0<xl>ul

that is, no alternatives (using |, { }, etc.) or options

o--<x >u r
n n

(using [] etc.) are allowed.

A syntax given in explicit BNF is transformed into a grammar

G = (N,U,P) in the following way:

34

1) The set N of nonterminals is the union of all words

within angle brackets <>,

2) the set U of terminals is the union of all symbols

in strings outside the angle brackets (except ::=),

3) the set P of productions is ohtained from the

"equations" of BNF after replacing ::= with — .

Example: Transforming BNF into a grammar G

Consider the BNF syntax for language A in the Appendix.We

obtain the following sets:

{<letter>,<digit>,<digit string>,+**,<program>}

1) N

{A,B,C,"',a,b,c,"',O,l,"',Ql

2) U

Before extracting productions, rewrite the equations in
explicit form by removing alternatives and optional

notations e.qg.

<identifier>::=<letter>|<identifier>{<letter>)
<digit>

is rewritten as

<identifier>::=<letter>

<identifier>::=<identifier><letter>

<identifier>::=<identifier><digit>.

35

Now the productions are obtained directly

3) P = {<letter>—A,++-,<identifier> —<letter>, -,
<goto>—>goto <label>,+--,

<program>—>program <identifier>;<sequence> end}

If somebody wants a "start symbol" in the grammar G, it

would be <program> in this example.

* k%

From a grammar G = (N,U,P) (or directly from BNF in explicit
form) it is easy to construct a heterogeneous (or

many-sorted) signature (or scheme of operators).

A S-sorted signature SI (or simply) consists of a sort

set S, an operator symbol set I and a type relation

R: © X (8* x g),
In fact a signature is a labelled directed graph (a diagram)
with the nodes labelled from the sort set S and the arrows

labelled from the set P of productions.

A sort hierarchy can be defined for the signature Si‘ so that

a sort s’ belongs to level j if the operator sets Zw are

-

empty for all w with sorts from higher levels, that is,

s! € Si if Zw , = @ for all w = Sy°°*s
r

S n

with some Sj = Sk (1l<=1j<=n) for k>1i.

36

level 3

primary on

level 2

level 2

52 € Sl

level 1

primitive Sy

In the graph above it is easy to see that elements of a sort
s can be constructed only from sorts on the same or a lower
level. If the sort is primary, then only elements from a
lower level are used. The arrows in the graph can cross the

level borders only from bottom up.

37

i is empty also for all w which contain sorts from

w,s’
the same level (k=>i), then the sort s’ is primary on the

level i. The sort) € S, and every primary sort on level 1

0
is primitive in SZ, that is, s’ € Sl is primitive if all
Zw,s' =g for w #).

Thus <letter> and <digit> are primitive sorts in the graph
in the Appendix. Notice the difference between primitive
sorts and primitive elements (constants) and especially the
difference between the empty terminal string) € U* and the
empty sort string X, € S*.

A sort s’ € S is final if Zv S=:;z$ for all s € S, v,u € S*.

5 U
Usually there is only one final sort in the signature of a

programming language (e.g. <program>) and it is equivalent

to the "start symbol" ¢ of a grammar G = (V,zl,P,g).

What about the case when Zw gt ¥ # for all w without

r
exceptions ? Then s’ is not defined ! This is not
equivalent to a grammar G with the production s’—> X (the

empty string) for sort s’ and no other productions where s’

appears on the - left side.

If a programming language has an "empty statement", e.g.
<statement>::=ku]<assignment>|<conditional>| etc.
where Au is the empty string in U*, it can be rewritten as

<statement>::=<empty> |<assignment> |<conditional>| etc.

<empty>::=>\u

38

and the production <empty>-->Au is the only production in

the corresponding grammar with <empty> to the left.

This production defines an operator [Au]ks,<statement>
which is a constant with the empty string as operator
symbol. From the categorial point of view it does not matter

if the operator symbol is the empty string or any other

string like continue or skip.

Thus every sort s’ defined exclusively by the production

s'—>}u is a primitive sort (in Sl).

From a signature SI an algebraic theory T= StS; is defined
using the string category StS of strings S* in the sort set
S of that signature. It is constructed by simply

adding the operator sets to the corresponding morphism sets

of StS
Morg(w,s) = MorEES(w,s) U Zw,s

where the union should be disjoint.

The universal property of products (see 2.1) forces tuples
to be constructed out of these additional operators. Thus
target tupling and composition act like "constructors"
creating (usually infinitely many) new morphisms out of the

string category morphisms and operators added to StS.

39

2.5 The algebraic theory

An algebraic theory is a category constructed from the signature
(via the string category) as explained in the previous section.
Thus it has the same objects as StS (the sort strings in S).

The morphism sets are, however, more interesting and will be

investigated in detail in this section.

Generally speaking, there are four kinds of morphisms in the

algebraic theory T = StS.:
- projections

(basic) operators (from 7)

tuples

composed morphisms.

The projections are the same in both StS and T because they
have the same products (sort strings), but StS has no real operators

and only tuples of projections as morphisms.

Let us divide the objects in the algebraic theories into three
different classes:

1) the empty sort string A (or AS),

2) the single sorts (strings of length 1). This subset is
isomorphic with the sort set S,

3) the proper sort strings w (length >1).

40

2.5.1 Morphisms in StS

Let us first consider the morphisms which are in MorSts
and let us take a look on morphisms with target). As was
shown in Section 2.2 there is a unique morphism from any

object u to A, the lambda projection p& because X\ is

terminal object in StS.

A morphism in StS with a single sort s” as target can be a
projection into itself, i.e. an identity pi(if s=s”), or a

projection p? from some proper string w with iw = s”.

If a morphism in StS has a proper string w” as target it can
be a w'-tuple of projections pf, often denoted (pL;)w . If u=s
(a single sort) then it is a w”-tuple of identities pi if w' =

ss***s, l.e. a string with occurrences of s only.

The morphism types of StS can be presented in the

following way:

target
A s” w”
A pi
source s p? pf(s=s’!) (pi)w, (w'=ss***s!)
W 4 p; (iw=s"1) ()"

41

Notice that there are some conditions for the existence of

certain morphisms: A morphism exists

-

- from s to s” only if s = 87,

-

from w to s8” only if iw = s” for

some i, where 1l<=i<=n and n = wlg,

from s to w” only if w* = ss*°°sg

from w to w* only if S . < S .
w' = “w

The only morphism with source X is the lambda identity.
The reason is that there is no mapping from a set [n] to the

empty set @ except if n = 0, that is we have the situation

2.5.2 Morphisms in a dgeneral algebraic theory T

In a general algebraic theory all the above mentioned
morphisms can be found but also other morphisms "generated"

by the operators in the signature. Because the signature can

42

have no operators with target A, that is L y g for all w
r

(see definition in 2.4), the only morphisms from any object
w into the empty sort A are the lambda projections px
and for all w € S* we have

W
Mor, (w, %) = {p}}.

Morphisms with target s (a single sort) can be operators in

some set QW o If w = A then it is a constant (operator),
r

i.e. a terminal word. But there might also be compositions
which have target s. An important case is the composition of
an u-tuple of constants and an operator from u to s, i.e.
0}
tk,u ;8

which gives rise to a new "derived" constant (operator).

Other compositions create derived operators in general (see

next section).

Examgle: Derived constants 1

In language A (Appendix) there are constants A,B,C,... which

are morphisms in MorT(K,<letter>). There is also an

operator [XA)] Thus by composition

<letter>,<identifier>"

there is a morphism

A ° X A= XAA=AE MorT(A,<identifier>)

(or strictly

o <letter>
A2\,<1etter> [p1

because composition with the mixfix notation A A of the

A]<1etter>,<identifier> - AK,<identifier>)
(syntactic) inclusion operator is simply substitution (see

2.3). Another operator [A—A}<identifier> <labels will take the
[

43

letter A into MorT(A,<label>) and if we apply the operator

goto —A<label>,<goto> we get the goto statement

goto A e MorT(A,<goto>)

which even can be included into the morphism sets
MorT(A,<sequence>) and MorT(A,<program>) by the

corresponding "inclusions".

Thus in a graphical notation for the constant L and the

<sequence>

above mentioned operators we have

X — 2 goto A
(statenent
A__A goto A
[Zoote>]
goto _ i ' goto A
(Slabel> J
A X A
<identifier>

44

where goto A e MorT(A,<sequence>) is the composition

L®, (o] (9] o
AM;S [A_k]le'igolk_kjié,la [goto —A)}g;g [A_A]g'EE (A_A}E_

using the short notations
le = <letter>
id = <identifier>
la = <label>
g = <goto>
st = <statement>

se = <sequence> .

This graph naturally shows only a few morphisms and objects

in the category T (there are infinitely many).

* * %

The idea with this example is to show that the terminal

"words" of a single sort s in the language are morphisms

from the empty string into that sort. Thus the set of all

programs is the morphism set MorT(A,<program>) in the

algebraic theory constructed from the syntax (in explicit

BNF) of the language.

The morphism sets MorT(K,w) where w is a proper string

contain only w-tuples of morphisms in MorT(K,si) if

WSS, 'S . Composition of a w-tuple with an operator o,
r

will give a new morphism in MorT(A,s’). Thus composition

means that the operator is "applied" to "arguments" (in a

w-tuple) giving a new "value" of sort s”.

1se

45

Example: Derived constants 2

In the language A (see Appendix) there is an operator

(k—A—AJ<identifier><letter>,<identifier> and constant

B In the previous example it was shown that

Ar<letter>"”
A € MorT(A,<identifier>). Thus by target tupling there is

(A,B) € MorT(A,<identifier><letter>).

The composition of the operator with this tuple gives

<identifier>

cat

<identifier><letter>

(A,B)

where AB denotes the composition

(A,B)

oA A A)

\idle idle, id

46

Certainly there are infinitely many morphisms in

MorT(A,<identifier>), in fact all non-empty strings in the
constants of sorts <letter> and <digit> beginning with a
letter. The empty string Au is not in this morphism set

unless it is a constant of sort <letter>.

Because the morphisms are not mappings and the objects

not sets there is no "empty mapping" from KS. If the empty
string Au is included it has its own "arrow" and from the
categorial point of view it does not matter if its "name" is
the empty string or any other string (as long as it is

disjoint from the other morphisms in the same set).

In general the morphisms with target s are operators, either
basic or derived (for proper derived operators, i.e. not
constants, see next section). They have a very rich

structure which will be needed when modelling programming

languages.

One interesting class of morphisms is defined by composition
of lambda projections and constants (including derived
constants), i.e.

u

p)\t?\,s
which "transfers the source of all constants from A to u".

Because pﬁ is unique for every object u € ObT the morphism

set MorT(A,s) is mapped injectively (one-to-one) into

MorT(u,s). The same goes for morphisms from A to any string w.

47

According to the definition of composition, each projection
p? in t should be replaced by the corresponding component ti
in the lambda projection. Because the only component in the
lambda projection is the empty component, the morphism t

will remain unchanged - only the source will be set to w

instead of XA. Thus

if t e MorT(A,u) then t € MorT(w,u)

for all u,w € ObT.

Strictly every morphism is indexed by its source and target
(the disjointifying trick), but to increase the readability
the indexes are dropped if the source and target are clear

from the context.

All the morphisms with target w (a proper string) are
w-tuples of morphisms from some string u to the single sorts
S; in the string w. Every morphism can be seen as a w—tuple
but if w is equal to X or a single sort s the tupling is

trivial.

A morphism from X to w is a w-tuple of constants while
morphisms from some string u can be w-tuples of basic or
derived operators, projections, etc. In the general case
there is a morphism (target tuple) t: u - w only if there
are morphisms ti: u —>s, for all Sy in Zw' Thus in the

following example there must be tl: u —>sl and t2: u —asz.

48

The universal property of a product w in a category T
requires that there is a unique morphism h: u - w for each
w—tuple of morphisms £: u —>sj, where w = sl---sn and

l<=j<=n. Thus we can write

_)
MorT(u,w) = (MorT(u,sj))

for h = (£)".

49

2.6 Derived operators in an algebraic theory

In order to show how a derived operator is "constructed" a
simple example is presented. No "new" morphisms are added to
the morphism sets of the algebraic theory T = StS . The
derived operator is shown to be in the morphism set. In fact

all derived operators are in the algebraic theory

constructed as in Section 2.4.

Example: Derived operator

Consider a signature S :

sort set S = {s,a,b,c,d,e,£, -}

operators o [A B C]

ab,s
2 = M N Ol5a
0 = RS Mgy

In the algebraic theory §ESZ there is an object w = cdef.
Because it is a product we have projections

pY: w = C

pg: w = d

pgz w —> e

pZ: w —=> f

and target tuples of these projections

]

t (P]/Py): W = cd

i i

£y

I

(pg,pZ): w — ef.

50

These tuples can be composed with operators of corresponding

arity

-— w w -
ty = tjo; = Mp;Np,O: w > a

£ = RpgSp:T: w -=> b

a = %29
and target tupling of the compositions gives

t (t3,t4): w = ab

5=
which can be composed with o giving

- _ _ W, W W Wi,
t6 = t50‘— (t3,t4)G = AMpleZOBRp3Sp4TC. w = S

t t

3 4

In graphical form these morphisms are inserted as follows:

s
L
g
ab t5
Py Py
a t3 b t4
w = cdef
g o
I 2
cd tl ef t2
Pl P2 Pl P2

51

If t, is rewritten with placeholders (_) instead of the

6
projections (see 2.3) we get the derived operator

[AM_N_OBR_S_TC]_ .

Thus tupling is used to "climb" up to the source of the
projections and composition to "go up" to the target of the

operators.

A derived operator of type w,s is constructed from the

projections of the product w using target tupling and

composition until the sort s is reached (if it is possible).

In this work application of a function £ to an argument x is
written
xf

which looks like composition of morphisms

tSG_

where t5 = (tlol,tzoz) and tl,t2 are tuples of projections.

If the operator ¢ is "applied" to the "tuple” (01,02) of
"type" cdef,ab we get

(61,62)0 = [AM__N_OBR_S__TC]w -
A\~ ’

c g

i 2

which is the same as the derived operator in the example.

Thus it is rather easy to find derived operators.

52

The derived operator in the example above is, however, of a
special kind because each projection appears only once in
the derived operator. In general it should be possible to

include multiple occurrences of the same projecticn and to

have an arity which is different from the proper arity.

Example: Derived operator 2

Suppose that we want a derived operator like in example

"Derived operator 1", but with a terminal string instead

of pz. A terminal string is a morphism with source As ({the
empty sort), i.e. a constant (possibly derived) operator.
Thus we have the following diagram:

W
Py

where t* = u” and u” € U* and t = pgt‘. If the derived
operator is generated using t instead of pz the result will
be
W, W We. »
[AMplezoBRp3Su TC]w,s
because t has the same "name", i.e. the same operator symbol

(in this case a single terminal string u”) as t° (see 2.5).

53

The derived operator has the arity w (according to the
derivation) although it intuitively should be w*° = cde. It
is easy to derive an operator with the "right" (or proper)
arity because

Pt e =t g
can be used instead of pg if the whole derivation is

performed with respect to w” instead of w.

A derived operator with proper type w,s can be formed with
respect to every string u which has a sort set Su such that

SW c Su (see 2.2).

The composition (pg)wg gives a derived operator ¢ which has
projections p? instead of projections pY in the original
operator. Here both operators have the same name which is
correct as long as the operator symbol can be used as the
name (with placeholders instead of projection names). If
this is not possible, e.g. when the order of the projections
does not follow the order in the target string, the names of

the operators are different (see 2.3).

54

Example: Derived operator with multiple occurrences

Consider the case when two operators have arities which are

overlapping, i.e. for Gl of type Wysa and 02 of type w2,b

there are Si in w, and sj in Wo such that si = sj. Then we

1

have the situation in the following diagram.

_ Wy, W Wa W
o= AMplezoBRp25p3TC

The operator derived with respect to w = cde has two

occurrences of the projection pg.

* k %

55

The type of an operator with multiple occurrences of the

same projection is defined from the sequence of the

left-most occurrences of the projections in the operator.

This definition is a bit arbitrary because the "same"
derived operator could be constructed from another string

(e.g. u=dce), which is a permutation of the first. In the

algebraic theory these morphisms are different, but there is

an isomorphism between them. The isomorphism is the tuple

t = (ngpgfpg): w —>u with "invers" fpg,p;,pg): u =>w and

the derived operators have the following relation
U, U U, . u _ u _u _u W W W W
[AMp,Np, OBRP; Sp,TC],, o = (PyrP;/P;) [AMplNPZOBRPZSpaTC]W' .

which is consistent with the definition of composition (see

2 2

56

3. FUNCTORS AS MODELS OF ALGEBRAS

In order to express relations between categories a pair of
mappings (a functor) is introduced. These mappings must
satisfy two main conditions - they should preserve

identities and composition. Thus the following definition

can be used:

A (covariant) functor F from the category K to the

category L is a pair of mappings FOb: ObK —>0bL and

FMor: Mor§ —>MorK satisfying:

1) (ldA}FMor = 1dAFOb for every object A € ObE
2) if £f: A -»B and g: B =»C 1in K then (fg)FMor =

(fF

) (gF) : AFy, —>CF4, in L.

Mor Mor

Usually a functor is denoted F: K —>L. Because a functor
preserves identities and composition it also preserves
isomorphism. Normally a functor is covariant which means
that the "direction of the arrows" is preserved but

sometimes a contravariant functor is used which reverses

the direction and composition is (fg)F = (gF

Mor)(fFMO)

Mor r

CFOb —aAFOb in L in that case.

57

Example: Injection of sorts

A very simple functor would be the injection from the sort
set 5 (seen as a discrete category) to the string category
StS. This functor IS: S —>StS with Isob: s = ([1l] —=s)
maps sorts on sort strings. It is not inclusion because s
and [1] —s are different, although the unique mapping

[1] =s: 1 s usually is denoted simply by s (see 2.2).

[1]
1
s
B3 5)
IS ‘N IS
ids s
S
The morphism mapping is also an injection Toyi® B vapi,

where s is a sort. Because there are no other morphisms than
the identities in a discrete category the functor is

completely defined.

58

Example: Algebraic theory embedding

There is a (covariant) functor J: StS — T, which is an
inclusion if T = Sts. defined earlier. Some authors like
(Pareigis 1973) define an algebraic theory as a covariant
functor which is bijective on objects and which

preserves finite products.

The algebraic theory used here is, however, heterogeneous

while Pareigis defined a homogeneous theory using N
instead of StS. The ADJ group (GTWW 1975) defines a
many-sorted theory as a functor but their functor preserves

coproducts (a matter of taste).

Thus we have the following categories and functors:

sort set (discrete category)

15 injection of sorts

StS S-sorted string category

(with target tuples)

J inclusion of strings

S-sorted algebraic theory

with operator set

59

A functor always preserves isomorphism but this does not

mean that the functor itself always is isomorphic.

A functor F: K =L is isomorpic (bijective) if

Fyor: MOorg —>Mor, is a bijection. Because it also maps

identities bijectively, the object mapping FOb: ObK -->ObL

must be a bijection. Categories K and L are isomorphic if
there is an isomorphic functor between them. The renaming
of objects or morphisms induces isomorphic functors and

categories.

The functor F is full iff F is surjective and

Mor
faithful iff FMor is injective on (i.e. restricted to) each

morphism set MorK(A,B) where A,B € ObK. This does not mean

that F (unrestricted) is surjective or injective. Thus a

Mor

full and faithful functor has F bijective on each

Mor

morphism set, but possibly not F (unrestricted)

Mor
bijective, as two different objects may be mapped into the

same one by a full and faithful functor (Schubert 1972, p. 25).

The functor F is dense if for each B € ObL there is an

A € ObK such that AF is isomorphic to B (Herrlich-Strecker

1973; Bs 69)=

The functor F is an embedding if FMor (unrestricted) 1is

injective. A faithful functor is an embedding only if it

also is-bijective on objects (Herrlich-Strecker 1973, p. 69).

60

L% FOb is an identity, the functor is called strict.

A forgetful functor U: K —>Set maps every object in K to a

(set) mapping. There might be other forgetful functors (into
some other category than Set) but those are of little

interest here.

61

3.1 Algebras

Given an algebraic theory T, an algebra of type T or a

T-algebra is a functor A: T —>Set such that:

1) whg, = (SAob)w, i.e. if w = S1** s

then (sAOb)w = slAObX-'-X s Bop (canonical product)
2) if pY: W —>s, in T, where w = S1°" TS,

then p?AMor: (SAOb)W —> 5,84, (product-preserving) .

Usually the set SiA is called AS (the carrier of sort si).

Ob
i

The canonical condition is needed because there are many

products for a family of objects {Si ie 1’

the string category. It ensures that a product w = Sy*°°s

where S; € S, in

n

is mapped into a product A" = AS X---xAS and not to the
1 n
(permutation) A_ XA XA X-++XA which contains the same
R *n
carriers but in another order. In this work all algebras are

supposed to be canonical.
If w = A (the empty product) then we have Mgy = (sAOb)A
and the terminal object X in T is mapped into the one

element set {()}. The projection pi is mapped into the

. A .
empty mapping (sAy.)" —>AAy,, that is {o} ={0}.

The one element set {()} (in fact any one element set) is

terminal object in Set because there is a unique

mapping from any set B to the one element set, i.e. the
surjection s: B - { ()} mapping every element of B into the

single element of {o}.

62

The sets AS (= SAOb) in the set family A = (AS: s € 5) are

the carriers of the algebra A and the mappings Oy SA,
r

usually denoted Op* a¥ —aAs, are the operations of the
algebra A (remember that ¢ is an operator symbol, o

W,S

. w . .
is an operator and 0, gA: A" —>A_ is an operation).
Ll . 2on

63

3.2 Hom-functors

The source of a functor can be a product of categories (the
product is a category too). Especially interesting is a
bifunctor (from a product of two categories) which is called

the hom-functor

Hom: EOP £ K =>Bet

defined by

. b .
Homob. ObKop Ob5 —9Mor5. (A,B) haMorK(A,B)

and

o
HomMor: MorKop X MorK —>MorK: (f p,g) ha(fOp,g)Hom

where f: A =-A” and g: B - B” gives

(fOP,g)Hom: MorK(A,B) ~aMorK(A‘,B’): X h9f°pxg

which gives the commuting diagram

Mor, (A,B) A i o

(fOp,g)Hom f (foP,g)Hom g

MorE(A’,B’) A’ e

x (£°P, g) Hom

The hom-functor is defined only for locally small categories
(the morphisms from an object A to an object B form a set
for any A,B € ObK), but as a rule all interesting

categories are locally small in this report.

64

If either argument is fixed, the hom-functor is reduced to

two "usual" functors:

the covariant hom-functor (usually denoted HomA) for K with
respect to an object A

(A,)Hom: K —>Set

and the contravariant hom-functor (usually denoted HomB)
for K with respect to an object B

(_,B)Hom: K°P —set.

Note that Homg is defined as a covariant functor from
KOP here. It is a contravariant functor from K (hence
its name) but for a contravariant definiton of HomB the
composition must be redefined (turned around). In this

report, however, only the covariant functor definition will

be used.

The covariant hom-functor HomA: K —>Set assigns to each

object X in K the morphism set from A to X, i.e.

XHomA = MorK(A,X) and to each morphism g: X =Y a mapping

gHomA: MorK(A,X) —>MorK(A,Y): X > xg such that the fonllowing

diagram commutes:

65

Mor_ (A,X)

K
lgHomA

MorK(A,Y}

The contravariant hom-functor is not used here, but as an
example of a contravariant functor (used by the ADJ group to
define an algebra in (GTWW 1975)) the definition is given in

the contravariant form.

A contravariant hom-functor HomB: K —Set assigns to

each object X in K the morphism set from X to B, i.e.
XHomB = MorK(X,B) and to each morphism f: Y - X a mapping
fHomB: MorK(Y,B) —bMorK(X,B): x > fx such that the

following diagram commutes:

MorE(Y,B)

fHomB

MorK(X,B)

fx = x(fHomB)

Because the functor is defined in its contravariant form the
definition of a (covariant) functor must be redefined for

: KOP >set 11):

HomB: K —>Set (but not for HomB

66

2b) (for a contravariant functor F: K —L)

if £f: A -»B and g: B =-C in K

then (fg)F = (gF

Mor k CEF

) CFOb —aAFOb

in the category L, that is, the contravariant functor

Mor Mor

preserves but reverses composition.

67

3.3 Free algebras

For a given algebraic theory T there are usually many
T-algebras (even canonical). A certain group is especially
interesting, the free algebras, because (by definition)
there always is a unique morphism from the free algebra to

any other algebra (with the same set of generators).

Such an unique morphism is a model of the semantics in this
approach and thus it is very important to know that it is
always possible to find a unique behaviour for any

(syntactic) word in the free algebra.

Given an algebraic theory T it would be nice to have a
method of constructing a free algebra, i.e. a functor
F: T —Set which is product-preserving, canonical and

has an unique morphism to any other algebra of the same

"w type (1] "

In (GTWW 1975, p. 35) the contravariant hom-functor was shown
to be a free algebra of a homogeneous algebraic theory (with
one single sort). Because the algebraic theories in this
report are dual to those of (GTWW 1975) the covariant

hom-functor is a strong candidate.

Consider the hom-functor Hom': T —>Set with respect to a

string (an object) v in the algebraic theory T. From the

68

definition of a (covariant) hom-functor (see 3.2) we have
the object mapping

wHornv = MorT(v,w).

Because w is a product in T, there is a unique morphism
h: v ->w for each w-tuple of morphisms f: v —>sj, where
W=S,° TS and l<=j<=n. Thus we have

_ w
MorT(v,w) = (MorT(v,sj))

for h = (f)V and

Vi - - wo_ V. W
wHom '™ = MorT(v,w) = (Morg(v,sj)) = (stom)

because stomv = MorT(v,sj). Consequently Hom' is canonical

(see 3.1).

v

The morphism mapping of Hom' maps each morphism

t: w =>u € MorT(w,u) into

tHom": MorT(v,w) —>MorT(v,u): X =Xt

which for t = pg: w —»sj and x = (p‘i’)w gives

W v
ijom % MorT(v,w) —aMorT(v,sj).

Considering the object mapping above we can write this

\'/ v, w
ijom : (MorT(v,sj)) —>MorT(v,sj)

or
pWHomv: (s.Homv)W —>s.HomV
| 1 J
where w = sl---sn and l<=i<=n. Thus HomV is

product-preserving (see 3.1) and consequently a T-algebra.

69

The objects of the algebraic theory T are mapped by Hom"
into the morphism sets of T from v to some other string w.
This is the reason why they were investigated so thoroughly

in Section 2.5.

V is the set of morphisms from v to some

A carrier of Hom
single sort s (carrier of sort s). Because of the lambda
projections px, by composition all the (terminal) words of
sort s belong to this set (see 2.5). If s=<program> then all

well-formed (syntactically correct) programs of the language

are in the carrier T = Mor_(v,s).
v, 8 e

There might be other morphisms too, which are not (terminal)
words in the language because they contain projections

pz (sometimes the projections are called variables and
denoted xi,si (GTWW 1977), but they are metavariables - not
variables in the programming language to be modelled) . These
morphisms are derived operators, in fact all derived
operators which can be generated by projections from v. Of

course these projections can be renamed using some

(meta) variable set Xv'

70

The morphism sets from v to proper strings w consist of
w-tuples of morphisms from v to single sorts. An example

might best illustrate the nature of the free algebra.

Example: The carriers of a free algebra Hom"

Let the signature have sort set S = {a,b} and operator sets
Zh,a - {A}
2),b = 1B
Lap,a = LIA_+_Al}
Iy p = ([-_1}
Zw,u = @ for all other w,u € 5*,

It is considered that parenthesis [] and underline _ do not

belong to the alphabet of the language to be modelled.

If v = abab, then (according to the definition of a theory T)
the following morphisms are in the carriers of Hom" (and their

products) :

Pf:pg e Tv,a (projections)
A (= pyA) € - (constant)
PX:PZ] Tv.b (projections)
B (= b;B) e Tv,b (constant)

By the definition of a product there must be target tuples

i h i i in T :
in Tv,ab for each pair of morphisms 1in i and Tv,b

v v v v \%
(plfp2)'(pl’B)’-..'(A'pz)'(A'p4)'(A'B)'... e Tv’ab-

P

Composition of these tuples with the operator in Tab 5 gives
I
v, VvV _V v v
+ +B ;% e Rt A+ A+B,*** € T .
pl p2'pl r r Pzr P4r r v,a
On the next level there must be target tuples
v, Vv _V
(pl+p2'p2)f.."(A-l-Bl‘B)l... e TV'ab
and by composition
v, VvV, _V ..
P1+p2+P2: A+B+B, e Tv,a
and so on infinitely. Thus the carriers contain

"expressions"™ in + and - with constants A and B together

with projections p{, pg, pg and pZ. Some of the morphisms

are shown in the following figure:

12

Once the algebraic theory T is constructed, it is easy to
obtain the free algebras Hom" by taking all morphism sets
MorT(v,w), with the string v as source, as objects and

define the obvious mappings between them so that the

diagrams of the type above all commute.

The free algebra is useful when programs (or constructs of
other sorts) are studied on an abstract level, that is, when

it is irrelevant exactly which constructs of lower order are

used.

For example, if the structure of identifiers is considered
to be uninteresting, a free algebra with a suitable number
of projections pz, where iv = <identifier> for some l<=i<=n)
can be used to model the syntax of language A (see

Appendix) .

To get rid of the infinite set of identifiers generated by

the operators

[:«_M}E’_@ [A_A_)J_igle'id [A_)_A]_i'gdrﬁ

where le = <letter>, id = <identifier> and d = <digit>,
these operators must be deleted from the signature

generating the algebraic theory T.

Thus the free algebra of a theory T = StS;., where I~

is the same as I except for the deleted operators, would

73

give a model with a finite set of identifiers. It would be
convenient to rename the projections pg with names which are
identifiers in the language A - if it is unnecessary to stress

that they really are metavariables.

Using a free algebra it is possible to get "words" in the
carriers even if there are no constants at all in the
signature and thus all morphism sets MorT(A,w) are empty. In
that case the "words" are not in the language because they
consist of projections and operators (mostly derived
operators) but using the renaming trick with Xv' a set of

terminal words in the language, it is possible to get

natural constructs anyway.

74

3.4 Initial algebras

A special case of free algebras, which is quite interesting,
is the initial algebra (with v =)). There are no
projections at all in the carriers of the initial algebra
(except for p& = idj in T),»). Thus all words in the
carriers are terminal (well-formed expressions or terms) and
the initial algebra is a nice model of the syntax. It is
also called the absolutely free algebra, the anarchic

algebra, the word algebra and the Herbrand universe (the

carriers T .
Ar 5)

If there are no constants in the signature generating the
algebraic theory T, then the carriers of its initial
algebra are all empty. In fact, for every primitive sort s
there must be at least one constant (operator in EA'S) in

order to have no empty carriers.
Example: The initial algebra Hom

Using the same signature as in section 3.3 we have the

following morphisms in the carriers of the initial algebra

HomA:

A € Ta (= MorT(k,a)) (constant)

B €T MorT(A,b)) (constant)

p (=

75

By target tupling we also have

(A,B) € Tab

and by composition with the operator in Tab "
r

A+B e T_-
a

Thus the carriers will be

i

T {A,A+B,A+-B,A+A+B, "}

a

Tb = {BI-BI_—'BI. "}

T, = [(2,B),(A,-B), (A+B,B), (A+B,-B)," "}

Note how v=abab in 3.3 is replaced by A above. The

Homv—mappings are the same in both examples.

* k% *

76

The Herbrand universe for the case with no constants is not
Homk but a free algebra Homv, where v is chosen so that
there is one projection pz to every primitive sort s. This
projection corresponds to the arbitrary constant in the

standard construction of a Herbrand universe.

77

4., NATURAL TRANSFORMATIONS DEFINE THE SEMANTICS

In this model both syntax and behaviour are algebras, i.e.
functors. Thus it is very important to have a concept
relating functors to each other. In cate~ory theory there is
a fundamental construct which also can be used to construct

categories of functors, among others categories of algebras.

A natural transformation n: F -G (F: K =L and G: K =L

are functors) is a mapping n: ObK —9MorL: A hanA such that

the following diagram commutes for all f: A =B € MorK(A,B):

78

Thus a natural transformation is a family of L-morphisms

(nA: AF —=AG for all A € ObK) such that nAOfG = fFOnB. The

are called the components of n. A natural

morphisms Iy

transformation is sometimes called a functorial (or functor)

morphism.

If the functors F,G: T —>Set are algebras then a natural
transformation n: F =G is a family

(n,° F¥ -6Y for all w € Ob,) s

where F" is the product (sF and GY is (sG

W w
ob’ ob) -

From the definition of a natural transformation we have
omWe = n¥Wno
Ny PiG = PjFng.

i
4
for £ = pi:) —>si.

F p.G

g
k3

19

The Set-object F" is a canonical product with projections

pVF: F' ->F_ . Thus for an arbitrary (£_ ,*°°,f_) € Fw,
i S; S S,
W
where w=sl'°'sn, we have (fs ,"',fS)piF = fs. and
1 n i
£ n = g_. .
s; S S;

The mapping N applied to an element of Y gives

* yn = (g PR |) = (E_ 7 PR SR |)
I n S1 sn Sl sl sn ®n

because the diagram above must commute. Thus for W=Sy TS,

nw = (nsl,---,ﬂsn). This means that if ﬂs = B for all
s € S then n = p.

A (vertical) composition of natural transformations

n: F -G and €: G -»H is defined as the mapping

n€:ObK —aMorL: A ha(ne)A, where (na)A: AF - AH is the usual
composition of the L-morphisms Na: AF —AG and € ,: AG —>AH.

The composition N€ is also a natural transformation.

Because the composition of morphisms nA' WA and EA is
associative for all A € ObL then we have

(my)e =n(pe).

The morphism family (idAF: AF —AF for all A € ObK)
defines a natural transformation idF: F —=F such that for
all natural transformations n: F -G and y: G =-F, we

have

1dFib= Y and nldF =nN.

80

The functors from a category K to a category L form a new

category, the functor category [K,L] (or QE) with all

functors F: K =L as objects and natural transformations
between the functors as morphisms. But this is true only if
K is a small category (Pareigis 1970, p. 10). This is

usually the case in computer science applications.

If also L is a small category (as it usually is here) the

functor category [K,L] is small (Schubert 1972, p. 19).

In general a morphism n in [K,L] (a natural transformation)
"inherits" the categorial properties that are common to

for all A € ObK. The functor category [K,L] often

%
inherits the properties of L (Herrlich-Strecker 1973, p. 95).

Thus, if the components n, are monomorphisms in the category

A
L (for all A @ ObK), then the natural transformation n is a

monomorphism in the functor category [K,L].

If a category L has a terminal (or initial) object then the
functor category [K,L] will have a terminal (initial) object

too for any category K (Herrlich-Strecker 1973, p. 95).

81

4,1 Generators and free objects
The theoretical background of free algebras is closely
connected to "universal maps". Here only a special kind of

universal maps is used, but first the general definition:

A universal map g: X =FU (a free object F) for X with

respect to U, where F € ObK, X € ObL and the functor
U: K =L, has the property that for each A € ObK and each

f: X =AU there is an unique K-morphism f: F =AU such

that the following diagram commutes:

Often the pair (g,F) is called a universal map
(Herrlich-Strecker 1973, p. 178), or free over X with

respect to U (Goldblatt 1979, p. 441).

82

The object X is also called generator, F is called the free

object generated by X and g is inclusion of generators.

83

4.2 The category of T-algebras

The category AlgT of algebras has T-algebras (functors) as
objects and natural transformations as morphisms. In this
category all algebras are of the same type because they are

canonical product-preserving functors from T to Set.

V . . .
To show that Hom is a free object in Algz, l.e. a free
algebra, it is necessary to show that for some set X

(generators) and some mapping g: X —>HomVU, where

U:AlgT —>Set is a forgetful functor, there is an

unique AlgT—morphism (a natural transformation)
n: Hom' —A
for each algebra (functor) A: T —Set and each mapping

f: X =AU such that the following diagram commutes

3

Hom" A Alg

84

and T is the set family T = (TV wo € s*). This set family
r

consists of the carriers ’I‘V s of Hom' and their products
¥

wl

(see 3.3). The same goes for AU = (A w € 8%).

The generator X = (XV S) has as many elements as there are
r

sorts in the string v = Sy°Ts, and moreover it is divided

into subsets Xv : iv = s}. Thus the generator set

S = {xv,i

where each element (metavariable) x

X = {Xv’lr"'rxv'n}l v, 1

is of sort iwv.

Now the inclusion of generators (rather an injection) is a
. _ X . v .
family g = (gS. Xv,s —)Tv,s' Xv,i =>p; for all s € SV and i

such that iv=s), where S _ = {sj: 1<=j<=n}.

If A is an algebra such that there is a mapping
f = (£_: X ->A : X _.w»a_ ., with iv = s) there must be
s v,S s v, 1 s,1i

g°nu = £.

As the components of n are mappings in Set we simply
consider the natural transformation n to be a family of
morphisms in Set (like Pareigis 1970, p. 9) and thus

n = nU turning the condition above into

g °n_ = fS for all s € Sv'

85

According to the definition of a natural transformation
n,°tA = tHom'°n
A s

for any morphism t: X s and any s € S, i.e. the following

diagram commutes

.

tHom" tA

From section 3.1 we know that AA = {()} and from section
_ v N LNV ;
2.5 that Tv,l = {ph}. Thus Ny 3 Tv,k _;Ak' Py = () is an

isomorphism.

The morphisms tA: Ay —>As: () » ()tA are injections from
a singleton. Thus we can identify the image with the

mapping, i.e. denote ()tA with tA.

From the definition of Hom" (section 3.2) we know that

v, . ¢ I .
tHom : Tv,k _)Tv,s' Py, VD, t and because Tv,k 1s a

singleton too, we must have

(py°t)ng = tA (= ()tA).

86

The natural transformation n must also satisfy
n..°haA = hHovaH
v S
for any morphism h: v -+ s and any s € S, i.e. the following

diagram must commute

n v

hHom" ha

Above the mapping ng was determined for morphisms

pvot erT ; but there might be other elements in
A A S vV, S

Tv & too. According to section 2.5 it is possible that
14

TV < contains projections pr (if iv =s for some i) and/or
¥

operators o_ _.
SEEEAREOLS Y ow

If there is a projection pf such that iv = s, then for this
i we have

v
X . = 5
Vi lgS pl

and in order to have gSOr% = fs we must have

V —
(PjIng = Xv,ifs

where xv,ifs < AS.

87

If there is an operator o erT then commutativity
V,S v,S

gives (for 1dv € Tv,v)

i U = . -
(1dv)gv,sHom Ng (1dvh}v OV'SA
where
A v o_ . o -
(ldV)UV,SHOm 1dv Gv's Ov,s
. _ v v _ v
(i)n, = ((Png)" = (x_ £)7,

and thus

Thus B is uniquely determined for all morphisms in

TV < for all s € S and for a given set X and a given mapping
4

gs X —>Hom"U there is a unique n for each algebra A and

mapping f: X —AU.
Example: The semantics of a free algebra
If d = <digit> and n = <natural number> are sorts in a

signature SZ then for v = nd we have a free algebra

Hom" : T —>Set (where T = StS), which is a free object in

Alg, for X = {x1,x2} with respect to U: AlgI - Set.

The universal map g: X —Hom"U is defined by Xlg=pf e Tv

gl
_ v
and X2g = Py e Tv,d'
If A: T ->Set is another algebra (the behaviour) with
Ad = Dig, the set of digits 0,---,9, and An = Nat, the set

of natural numbers, then for a mapping f: X =AU there is a

unique natural transformation n: Hom’ —>A. Here f is an

88

assignment of values to the (meta)variables and n defines

the "semantics" of Hom".

Thus if X1f = 37 and X2f = 5 then we must have

(py)n, = X1f = 37

(pyIng = X2 = 5
and

(cat)n = (XLf,X2f)catA = 375 € Nat
where

- 3 v \Y

A
}v,n'

Vo
Of course, for all tA,n € Tl,n the elements Py t)\'n e Tv,n
are mapped by n into Nat, especially we have

Vo -
(p)\ 37)\’n)ﬂn = 37.

Thus nN_ is mapping both pv and pV 37 into the same
n 1 A A,

element of Nat if Xlg = pf and X1f = 37.

Because this is true for all maps f: X =AU, we know that
the semantics n is "correct" (intuitively). But notice that
the "semantics" is different for different f-mappings. This
is not very satisfactory, but fortunately there is a free
algebra with only one semantics for each behaviour A, the

A
initial algebra Hom .

89

From the reasoning above it is clear that the initial
algebra Hom A always will have a unique natural

transformation n: Hom *

—>A (for any algebra A: T —>Set).
The generator X will be the empty set g in this case and

the universal map g: ¢ —>HomAU is the empty mapping.

The assignment of values f: g — AU is an empty mapping too

and the components of the natural transformation are

The only elements in T are constants and Ng is

A S
completely determined by the condition

(tk,s)ns = tA,s

Thus HomA is an initial object in AlﬂT' The unique
natural transformation n: Homk —>A is—Ehg semantics of
the language defined by the signature S . Of course the
semantics is completely defined by the behaviour (the

algebra) A. Some prefer to call A the semantics.

90

5. CONCLUSIONS

The main aim of this work is to make the theoretical
background clear and develop notations which are suitable
for this application. The key concept in this work is the
notation of an operator (section 2.3). Compared with the
corresponding notation in (Husberg 1980a) it has been
extended considerably, but unfortunately there are still

certain problems.

Multiple occurrences in derived operators are rather clear
(section 2.6), but the notation of an (derived) operator
with "internal variables" is still not satisfactory. Another
problem is the "splitting of sorts" which seem to be

necessary in modelling translators (Husberg 1980b).

This report is, however, already too long and these

remaining notational problems are left to another work.

This presentation contains no formal proofs because it is
mainly written for practical computer people with an
interest in theoretical computer science, but without expert
knowledge in that area. I hope, however, that some
mathematician would take the time to write down the proofs

in order to have a more solid mathematical foundation.

91

Possible directions for future research in CHAMs are:

1) theoretical background, i.e. problems described above and
introduction of more category theory concepts (like
adjunction).

2) ways of defining the semantics, which in one way is an
independent problem. In (Husberg 1980a and 1980b) a
"structural" semantics is described, which uses graphs (a

graph is the basis of a category).

It seems necessary to move in both directions because they
interact. Some of the theoretical problems have their origin

in attempts to construct a practical model of semantics.

92

6 . ACKNOWLEDGEMENTS

I would like to thank the Danish Government for a
scholarship which made it possible to work at Aarhus
University for four months during the winter 1982-83. The
Computer Science Department was an excellent environment for
this work and I am especially grateful to Peter Mosses and
Frank Oles for interesting discussions. Luc Bougé and Neil

Jones also helped me with many good comments and questions.

93

7. LITERATURE

(Cohn 1965) Cohn, P.M.: Universal Algebra, Harper

and Row, New York, 1965, 333 p.

(Gallier 1978) Gallier, J. H.: Recursion schemes and
generalized interpretations, in "Automata,
Languages and Programming", Springer LNCS 71,

1978, pp. 256-269.

(Gallier 1981) Gallier, J.H.: Recursion-closed algebraic

theories, JCSS 23 (1981), p. 69-105.

(Ginsburg 1966) Ginsburg, S.: The Mathematical Theory of
Context Free Languages, McGraw-Hill,

1966, 232 p.

(Ginsburg 1975) Ginsburg, S.: Algebraic and Automata-
Theoretic Properties of Formal Languages,

North-Holland, 1975.

(Goguen 1975) Goguen, J.A.: Correctness and Equivalence
of Data Types, Int. Symp. Mathematical
Systems Theory, Udine 1975, Springer
Lecture Notes in Economics and Math.

Systems No. 131, 1976, pp. 352-358.

(Goguen 1978)

(Goldblatt

1979)

(GTWW 1973)

(GTWW 1975)

(GTWW 1977)

(Herrlich-

Strecker 1973)

94

Goguen, J.A.: Abstract Errors for Abstract
Data Types, Formal Descriptions of
Programming Concepts, E.J. Neuhold (ed.),

North-Holland, 1978, pp. 491-522.

Goldblatt, R.: Topoi, the categorial
analysis of logic, Studies in logic
and the foundations of mathematics 98,

North-Holland, 1979, 486 p.

Goguen, J.A., Thatcher, J.W., Wagner, E.G.,
Wright, J.B.: A junction between computer
science and category theory, IBM Research

Reports RC-4526 and RC-5908, Yorktown Heights,

New York, 1973 and 1976.

Goguen, J.A., Thatcher, J.W., Wagner, E.G.,
Wright, J.B.: An Introduction to Categories,
Algebraic Theories and Algebras, IBM Report

RC-5369, Yorktown Heights, New York 1975.

Goguen, J.A., Thatcher, J.W., Wagner, E.G.,
Wright, J.B.: Initial Algebra Semantics
and Continous Algebras, JACM, 1977, No. 1,

pp. 68-95.

Herrlich, H., Strecker, G.E.: Category

Theory, Allyn and Bacon, Boston, 1973, 400 p.

95

(Husberg 1980a) Husberg, N.: Algebraic Description of High
Level Languages Using Category Theory,
Helsinki University of Technology,
Computing Centre, Research Report No. 16,

1980, 63 p.

(Husberg 1980b) Husberg, N.: Exact description of computing
systems, Licentiate thesis, Helsinki
University of Technology, Digital Systems

Laboratory, 1980, 95 p. (In Swedish)

(Letichevski Letichevski, A.A.: Syntax and semantics
1968) of formal languages, Kibernetika, 1968,
No. 4, pp. 1-9. (In Russian, English
translation in Cybernetics, Plenum

Publishing corp., New York)

(Manes 1976) Manes, E. G.: Algebraic Theories,

Springer-verlag, 1976, 356 p.

(Pareigis 1970) Pareigis, B.: Categories and Functors,

Academic Press, 1970, 268 p.

(Rus 1972) Rus, T.: S-algebra of formal
languages, Bull. Math. de la R. S.
Roumanie, 1971 (1972), No. 2,

pp. 227-235.

96

(Schubert 1972) Schubert, H.: Categories, Springer-

Verlag, 1972, 385 p.

(Wagner 1981) Wagner, E.: Lecture Notes on the
Algebraic Specification of Data Types,
IBM Research Report RC-9203, Yorktown

Heights, New York, 21 p.

(WTw 1978) Wagner, E., Thatcher, J.W., Wright, J.B.:
Programming Languages as Mathematical
Objects, Mathematical Foundations of
Computer Science, Zakopane 1978, Springer
Lecture Notes in Computer Science 64,

]..978' p- 84-1010

(WWT 1979) Wagner, E., Wright, J.B., Thatcher J.W.:
Many-Sorted and Ordered Algebraic Theories,
IBM Research Report RC 7595, Yorktown

Heights, N.Y., 1979, 15 p.

97

APPENDIX
Language A (syntax)

<letter>::=A|B| *** |z]a|b| **° |z
<digit>::=1]2]3]4|5]6|7]8]9]0
<digit string>::=<digit>|<digit string><digit>

<integer>::=<digit string>|{t}<digit string>

<letter

<identifier>::=<letter>’<identifier>{<digit>

<variable>::=<identifier>
<label>::=<identifier>
<expression>::=<integer>|<variable>|<expression>{t}<variable>
<assignment>::=<variable>=<expression>
<goto>::=goto <label>
<condition>::=<variable>{z)<expression>!<condition>{:;d}<condition>
<
<conditional>::=if <condition> then <statement>[else <statement>]
<loop>::=for <variable>=<expression>[step <expression>]
until <expression> do <statement>
<statement>::=<assignment> |<goto> |<conditional> |<loop> |
(<sequence>) |<labelled statement>
<sequence>::=<statement> |<sequence>;<statement>

<labelled statement>::=<label>.<statement>

<program>::=program <identifier>;<sequence> end

INDEX

98

(Underlined pages contain definition)

algebra
absolutely free
anarchic
canonical
free
heterogeneous
initial
word
algebraic theory
Algol-1like language
alphabet
arity
overlapping
proper
arrow
associative
basis of a category
behaviour
bifunctor
BNF
explicit
carrier
cartesian product
category
discrete
functor
isomorphic

locally small (well-powered)

of natural numbers
opposite
product
small
string
catenation
CHAM
class
composition

vertical
constant
derived
constructor

Page

61, 67, 68, 83

3, B, 70+ T2y The Ty #l,
2

2' zi_76p 88

74

3, 26, 27, 38, 39, 49, 58
32

v, 32

27

54

28, 29,53

3, 5, 8, 12, 16, 35, 56
6

91

67, 77, 87-89

63

14, 32-38

33, 35, 44

61, 62, 69-72, 74-75, 84

v, 10

4, 6, 77, 83

7

80

59

7

14

8

7

7

10, 14-27

30

2, 4, 14, 91

6, 7

iv, 6, 8, 24, 25, 38,
42, 50, 55, 56, 66, 69,

79

28, 37, 42, 46, 52, 73, 74

42, 45

38

87

Fd

99

context-free grammar 32

coproduct 17, 58

diagram 35

disjointifying trick 47

distributed operator symbol 2

dual 3, 8, 12, 67

empty statement 37

empty tuple iv, 61, 85

epic morphism (epimorphism) 13

equation 33, 34

explicit BNF 33, 35, 44

expression 71
well-formed 74

family of morphisms 10, 20, 78, 84

of objects 10, 69
of sets v, 62, 84

final sort 33, 37

free 81

functor 56, 61, 77, 83
canonical 83
contravariant 66
covariant 56, 58
dense 59
embedding 59
faithful 59
forgetful 60, 83
full 59
isomorphic 59
product-preserving 6l, 67, 83
strict 60

functor category 80

functorial morphism 78

generator 82, 67, 84, 89
grammar 32-35, 37, 38
graph iv, 5, 35, 91
HAM 1
Herbrand universe 74, 76
heterogeneous 2; 44 35, 58
hom-functor 63, 67, 74
contravariant 65
covariant 64, 67, 68
homogeneous 4, 58, 67
identity 6, 8, 11, 25, 40, 56, 59
inclusion 29, 30, 42, 58
inclusion of generators 82, 84
initial algebraic theory 26
initiality 11
injection 15, 19, 23, 27, 57:; 85
injective 13, 46, 59
inner structure 14, 21
internal variable 90
i somorphism 1.1, 13, 21, 55, 8&
killer 31
labelled directed graph 35
lambda identity 41

lambda projection 19, 31, 40, 42, 46, 47,

length
many-sorted
mapping

empty
metavariable
mixfix notation
model

monic morphism (monomorphism)

morphism
name
natural
natural numbers
natural transformation
node
nonterminal
object

free

initial

i somorphic

product

terminal
occurrence

leftmost

multiple
operation
operator

basic

constant

derived
operator
operator
operator
opposite
opposite morphism set
permutation
phrase
phrase-structure language
placeholders
primary sort
primitive elements
primitive sort
product

empty

finite

of categories

of objects
production
programming language
projection
r ank
renaming
replacing
S-sorted algebraic theory
S—-sorted signature
scheme of operators

set
symbol
symbol set

100

v, 15, 27, 39

4, 35, 58

iv, 7, 21, 62, 83, 85

12, 15, 19, 46, 61, 89

69, 73, 84, 88

2, 42

1, 4, 14, 46, 67, 72, 73, 74
77, 90, 91

13

iv, 5-7, 11, 16, 27, 39, 46, 69

30, 46, 52, 53, 73

iv, 27, 73

14, 15

77, 83, 88, 89

5, 35

14, 32; 33

5-8, 14, 21, 39, 59, 80, 83

81, 83, 87

12, 15, 20, 80, 89

11, 12, 21

10

11, 12, 15, 19, 61, 80

29, 55

52, 54, 90

62

27, 28, 38, 42, 45, 49, 86, 90

27, 28

28, 42, 45, 46

28, 42, 49, 51, 55

27, 38

2, 27, 38, 52, 62

27,735

16

15

21, 55+ B

32

32

2, 28, 51, 53

36, 317

28, 37

37, 38

iv, 7, 10, 16, 18, 20, 39, 49

11, 31, 61

11, 58

=

T0, 20

32, 35, 37, 38

2, 29, 32

11, 17, 24, 28, 30, 39, 49

Fii

69, 73

24, 47

26

35

35

semantics
sentence
set
set of generators
signature
single sort
singleton
sort
sort hierarchy
sort set of a string
sort string

empty

proper
source
splitting of sorts
start symbol
string

empty
string category
structural semantics
subcategory

full
substitution
surjection
surjective
syntax
target
target tuple
target tupling
term
terminal symbol
translator
tuple
type
type relation
unique
universal map
universal property
variable

internal

meta-
vertical composition

101

of natural transformations

well-formed program
word
terminal

\vauﬂkaFJ-
< O wlu|e o

- =

-

e N

-

N~ NN
~1 = WlW
- - -

[\)
-

-

r

mxom‘l—'loommwn—-
O o wlolH- [Nvg

-

33,
42,

29, 67, 87, 88, 91

7, 10, 12

83

37, 41, 49, 72, 74
39, 42, 44, 47

27

39

18, 37, 39, 44
40, 44, 47

7, 28, 40, 46, 47

35, 37
14, 15, 19, 27, 46
15, 31, 38, 46

42
17, 20

32, 34, 44
7, 23, 40, 47
39, 47, 49
45, 50, 51

32

90

35

11, 19, 20

20, 23, 38, 48

~J
(93]
-

0]
19
-

o0}
o

42, 44, 69
44

