ALISHIAINN SNHYYY

.m 5 £8 21 — 90 ‘auoydap
||| Mevwnaa - 3 snuiey 0008 ¥a - speBayuniy Ay
=

wewpedaq soualng Jayndwon

LT98-S0T0 NSSI

€861 Aely
291-9d INIVA

yoke “H ueng

soSenSue] 1UALINOUOD IIY)I0 pue
VAV 10§ [9po [euoneindwon) y

B.H. Mayoh: A model forconcurrent languages

PB-162

NYI3H/INIVA HAHL

A COMPUTATIONAL MCDEL FOR ADA AND
OTHER CONCURRENT LANGUAGES

Brian H. Mayoch

An earlier report [Mal] presented the argument for diagrams
as the most suitable models for programs with concurrency. In a
diagram the configurations correspond to points of the program,
there is a move from m to n if n can be the next program point
after m and the move is labelled by the program action when the
computation follows the move. This report shows that this com-
putational model is suitable for ADA and other languages with
concurrency. In Section 1 we give the computational model for
the guarded command language GCL; in Section 2, a powerful speci-
fication language SCSS is modelled; in Section 3 we give the
model for the language CSP of communicating sequential processes;
then the techniques introduced in these sections are used when

ADA programs are modelled in Section 4.

CONTENTS

=W N -

COMPUTATIONAL MODEL FOR GCL & ot evrennmenennnnss
COMPUTATIONAL MODEL FOR SCCS .ttt nrncennnnnnsss
COMPUTATIONAL MODEL FOR CSP s wsiwswivsmensssnsss
COMPUTATIONAL MODEL FOR ADA 4t et tnenennnnenennns

SUMMARY ..

10
e
30
31

1. COMPUTATIONAL MODEL FOR GCL

The guarded command language GCL [Di] is a very simple

language with non-determinism. An example of a program is
if x > y » max:=x o0 X £ y » max:=y fi
Informally we can describe the behaviour of this program by:

- Suppose we have a pebble placed before if

- the pebble is moved after if and the truth values of the

uards "x z y" and "x £ v" are determined
g Yy Y

- i1f either of the guards is true, the pebble may be moved

to the corresponding arrow

- after the pebble has been moved to an arrow, the
corresponding assignment may be made and the pebble

can be moved beyond fi.

Sometimes the pebble is at points in the program; sometimes
the pebble is in the air while it i'sspassing a program test or
command. The pebble movements for the program correspond to tra-

versals of paths in the graph

7
4
«;,"7;1\ (?]C?\,\,.: =
\ ¥ 7
0 1
£¥v 4ﬂ\
\J} j \@a 'fw.'

Figure 1

Program Graph

Graphs are not always convenient models of programs, but
one can generalise them to diagrams by allowing sums and products

of nodes.

Definition

A diagram consists of

- C, a set of configurations, labelled by integers;

- a partition of C into source, sink and internal

configurations;

=. M, a set-of moves labelléd-by-actions.

Each move in a diagram has a source and a sink which are configu-
ration terms. The set T of configuration terms in a diagram

(C,M) is given by: CcT, if t ,t2€T then (t1+t2),(t th}ET.

1 1

Comment
Products are used to express concurrency: sums are used to

express program choice.

Example

The graph for our GCL program corresponds to the diagram

c = (0,1,7,8)
M= (0 X2V XSy > (7+8), 7 max:=x 51, 8 max:=y 51)

Because configurations have integer labels, one can define

a neat substitution operator on diagrams:

- one can write "m.,+ ... +m > Nat o.. +nl' in the

1 k 1
specification of a diagram D' when D is a diagram with

k source configurations and 1 sink configurations;

- the source configurations in increasing order are assigned

to Mq«. My respectively;

- the sink configurations in increasing order are

assigned to Dge..ny respectively;

- the moves in D are added to D' after the internal

configurations are renamed to avoid conflicts in D'.

The substitution operator will be used often in this paper,
but its use should be clear if the reader remembers the following

translation of configuration labels

source | sinks internals
0] 1 2 3 4 5) T8 wwnp]
normal | normal aborted otherwiée select failure tasking
begin end error error
Figure 2

Uniform configuration naming convention

We could have modelled our program by a Petri net, and we
have borrowed the pebble idea from the net theorists because it
will help when we come to describe the diagram model for ADA

programs.
The syntax of GCL can be given by the productions

<command>::=<variable>:=<expression>|skip|abort |
<command>; <command> |
if <guarded commands> fi
do <guarded commands> od

<guarded commands>::=<test>-><command> |

<guarded commands>o<guarded commands>

where <variable>, <expression> and <test> are left unspecified.

The meaning of each GCL command is given in figure 3.

Configu-
Command Y Moves
<variable>:=<expression> 0l 52 0 [variable:=expression] > 1
skip 0,1,2 g =SBl g 5
abort Q1 42 0 —iEEiEJ——> 2
<command >; <command.,,> 0,71 ,2,7 | 0 -S00mand) g gy
7 command? s 142
if <guarded command> fi 0157 52 guarded > 1+2+2
] = command
do <guarded command> od 051 5:2 0 ~giarosd > 0+2+1
— - command
Figure 3

Semantics of GCL commands

In order to get a diagram meaning for each GCL command we must
have diagrams for guarded commands. Clearly a guarded command

must be of the form

B7 - C7 o B8 - C8 o ... o Bj - Cj where jz7.
The corresponding diagram has the configurations 0,1,2,3,7,8,...]
and the moves 7 4 > 1+2, 8 5 > 1+2 ... 3 —g§~> 1+2

7 B7,BS...Bj

0 > 3+7+8+...+]

Examgle

The diagram for "X2y - max:=x 0 xsy - max:=y" has the configu-

rations 0,1,2,3,7,8 and the moves

7 [max:=x]>1’ 8 [max:=z]>1

B = Ko KEF o 5amal

The diagram corresponds to the graph in figure 1, when the alter-
native 2 is deleted from the last move because one of x2y and
X<y is always true.

m}

2 COMPUTATIONAL MODEL FOR SCCS
The calculus of synchronous agents SCCS [Mi] is a specifi-

cation language which exploits non-determinism fully. The

SCCS specification for the program in Section 1 is
Py = [xzy] : P, * [xsy] = Pg

[max:=x] : NIL

e
~
i

[max:=y] : NIL

T
foe
in

The syntax of SCCS can be given by the productions

<specification>::=<name>=<agent>|<specification><specification>
<agent>::=<name>| §<agent>|A<agent> |
<action>:<agent>|<action>|<agent> |
<agent>+<agent>|<agent>x<agent> |
<agent>"|"<agent>|<agent> [<action class>
<agent>[<action morphism>]

where <name>, <action>, <action class> and <action morphism>

are described in [Mi].

The meaning of each SCCS agent is given in figure 4.

Configu-
Agent e Moves
<name> 0 none
§<agent> 0 0 —EE&EL>O, 0 —ESEBE~>
A<agent> as <agent> | explained later

<action>:<agent> 0,7 g -BELIO0 o . o _GESHE o
<action>.<agent> 0,4 0 ,EEiE_> @y 0 —EEEE92—> 7
7 _EEEEE_>

<agentl>+<agent2> 0 0 —EEEEE1—>, 0 —EEEEEE~>
<agentl1>x<agent2> explained explained later

later
<agent1>|<agent2> explained | explained later

later
<agent>)<action class> as <agent> | explained later
<agent>[action morphisml]|as <agent> | explained later

Figure 4

Semantics of SCCS agents
Notice that agent diagrams have no sink configurations, but some

of the configurations may come from the agent whose name is NIL.

Example
The agent

[max:=x] : NIL" has the diagram whose configurations
are 0 and 7, the only move is

0 max: =x s 7

and the configuration 7 corresponds to the agent NIL. The agent
"[xzy] P, + [x=y] = p8" has the diagram whose configurations

are 0, 7 and 8, the moves are

2
0 25 7, 0 > 8
and the configurations 7 and 8 are different because the
corresponding agents have different names.

[m}

Let us turn to the explanations promised in figure 4. To
get the diagram for Ap, one adds j —EEER%> j for every internal
configuration j in the diagram for p. To get the diagram for
plA one keeps only those moves in the diagram for p, that have
labels in A. To get the diagram for p[@] one relabels all the
moves in the diagram for p - @(a) replaces label a. Suppose
the agent Py has the diagram D1 - (C1,M1) and the agent Py has
the diagram D, = (C,,M,). The diagrams for p,xp, and Pqlp,
have C,xC, as the set of configurations. For both p,*p, and pHp2
the set of source configurations is (source configuration in C1)x
(source configuration in C2) and we have the move
i1xi2 —2*B 5 §1x42 whenever i1 -%> 31 and i2 B> 2. In the

diagram for pxp, we have only these moves; in the diagram for
axf

p1|p2 we also have the move i1xi2 > J1xJj2 whenever g = skip
& 12=2 or o = skip & i1=j1.
At last we can define the diagram for a specification of

the form

by the rules

- relabel the source configurations 0 of Cye++Cy by new
integers Rpeo Xy
- use O'XZ"'Xk to relabel the configurations in the

diagrams Cqee=Cp which come from agents named

XqrXge o Xy

Example

The specification Po = [x2y]: Py * [y] : Pg
P = [max:=x] : NIL
Pg = [max:=y] : NIL

gives the diagram C, with two moves
0 _lﬁéll_> 7, 0 _£§§XA_> 8

[max:=x]

the diagram c, with one move 0 > 7, and

2

[max:=y] > 8, If we relabel

the diagram Cq with one move 0
the start configuration of c, and C3 by 17 and 18, then the
diagram for the specification has the configurations 0,7,17,18

and the moves

0 —X2Y o gy, q7 Amax:=x]

0 — XY o, qg, 1g _[max:=y]l g

In [Mi] Milner has shown that all the SCCS operators are useful
and satisfy interesting laws. Note that any finite diagram
can be given by an SCCS specification using only the operators
":" and "+". In the next two sections other SCCS operators

will help in the building of large diagrams from small.

10

3. COMPUTATIONAL MODEL FOR CSP

The much studied language for communicating sequential
programs CSP [Ho] is an extension of GCL that allows for syn-
chronized communications between processes.

A somewhat intricate CSP program is:

[P::Q?x; Q!maxS; do x<maxS-S:=S+x-maxS; Q?x; Q! max$S od
1Q::P!minT; P?y; do minT<y-t:=t+y-minT; P!minT; P?y od
]

Informally, we can describe the behaviour of this program by

1) Suppose we have pebbles at the entry nodes of the two graphs

§ S if < Hi = 2 ! :
Qlmax >p x<maxs >p S:=5+x-maxSs >p Q7% 5 QlmaxSs

8 9 10 P11

minTzy

Yo pmint 97 57y~ 98 mini<y © %9 Ti=Tey-minT > 910 pImiaT ”311p5f>

2} The P-pebble can move freely except on the edges from Pq»
Bir Pjg #B4 Pqq

3) The Q-pebble can move freely except on the edges from dgr
Gg+ Hqg HDG Gy

4) The P-pebble can move along Py~Py OF Py P4 if and only if
the Q-pebble can move at the same time along dy~d7 OF 407944~

5) The P-pebble can move along P42Pg O P4,°Pg if and only if

the Q-pebble can move at the same time along q72dg OY g,4°dg-

11

The pebble movements for the program correspond to the firing

of transitions in the Petri net

Figure 4

Petri net model for a CSP program

The freedom in pebble rules (2) and (3) is reflected by the
fact that the transitions T1 and T2 can be concurrent with
transitions T3 and T4. However, this true concurrency can be
reduced to non-determinism because CSP processes do not share
variables. For this reason the pebble movements for the pro-

gram also correspond to traversals of paths in the graph.

12

Y :=maxS
X:=minT Yy :=max$s X:=minT
Pp*9p >P7*dy >Pg*dg Pqig*dqg ?Pq9*8q4

™

Pg*dg * Pg*dy9 —™ Pg*dqg

oo S

Egd 9 P10*919
,/”,' \\\\\
*ngqs T Pro¥dg T P10xq;///)’
v
Pg*dg
\\\\
Pg*dg /:jg:p1xq1
\<::::S§:fl‘::;99xq1 R Vi iy
‘\\\\ //,/'
Pg*dg
Figure 5

Graph model for a CSP program

i3

The syntax of CSP can be given by adding the following
productions to those of GCL:

<command>: :=<communication>|[<process list>]
<guarded commands>

=<communication>-<command> |

<test>; <communication>-<command>
<communication>::=<name>?<variable>J<name>!<expression>

<process list>::=<name>::<command> |

<process list>||<process list>

Figure 6 is the extension of figure 2 that gives a meaning
to communication commands.

command configurations move
2 i '
<name>?<variable> 0,1,2 0 [name?variable] >
y ;
<name>!<expression> 0,12 0 [name.expre5510n1>1

Figure 6

Semantics of CSP communication commands

We can take the GCL meaning of guarded commands if we allow

?<communication> and ?<test>;<communication> as move labels.
Example

The CSP command "Q?x;Q!maxS;

do x>maxS-S:=S+x-maxS; Q?X; Q!maxS od"
gives the diagram with configurations

(0,1,7,8,9,10,11) and moves
1
__>7' 7 M)B'

L | . = -
8 ?x<max$s 51+9, 9 S:=S+x-maxSs >10,

]
10 22X 5 44, qq Rimaxs

14

The diagram for a process list command like

[p1::c1[[p2::02||... | By 08

is built in two stages: the diagram operator (:) is used to
express the concurrency, then the diagram operator(:>is used

to capture synchronization and termination in CSP. The concurrency
operator(:>is the one we used to build the diagram or the SCCS
agent p1[p2 from the diagrams for the agents P and P, - The
restriction operator<:)is the one we used to build the diagram

for the SCCS agent plA from the diagram for agent p.

Let D1D2...Dm be the diagrams for the commands C1C2...Cm
is our process list command. Let D{Dé...Dﬁ be the diagrams we
get from D1D2...Dm by adding the move 1 Eexminate >1 and

adding in pj after every communication in Cj‘ The first stage in
our diagram building is completed by defining DO as

(] ' 1 . A .] . .
D1(:)D2(:>...(:>Dm with 1x1 x ...x1 as its sink configuration [&
We start the second stage by defining SYNC as the class of

actions O Xe e e X0 satisfying
i 1 i . 1 i
a; is [Pj.e in P.] or [T.; P.l!e in Pi]
= @y A8 [P.% dn B.] or T.; P.?v in P.
j is [P;2v in P, [Ty Py]
We capture the CSP termination convention by defining END as

the class of actions CyXeooXxa satisfying

. 1 i . 1 i
i ii Pyle in P,1 or I[Ty; Pylv in Py]

= o. 1s terminate

Now we could define the diagram D for our process list command
as DD(:)(SYNCUEND). A more precise definition which shows how

"process lists are commands" is: 0,1,2 are the configurations
DOGB(ssc'I\ICUEl\JD)\,“_2

and the only move is 0

15

Example

Consider the CSP command

[P,::do P,lx»skip od||P,::skip]
The individual processes have the diagrams
2 N
D1::configurations 0,1,2,7 moves 0 —lJEZLEiLé 1+7, 7 —EE&EL>O

D2::configurations 0,1,2 move O —EE&RA>T

The diagram DO = D%(:)Dé has configurations
0x0, 0x1, 1x0, 1x1, 7x0, 7x1

and moves

(a) o0xo L2B2ix in Pqlxskip o\ 6 o 7,0 4+ 147 + 7x1

(b) 0xp —SKiPxskip o 4.4 4 gx0

[?Po!x in Pq] x st 5

(c) Ox1 1x1
[d) Qw1 —SEIPESE 5 e

(&) 1s0 ~ZE¥ERID o 4e1 & 10
(£] ‘tat ~BE2SEs 449

(g} 7x0 —SKIPXBKID o oo 5 4 0x1 % 71 # TxO

() BT —EPNEE.

—> 0x1 + 7x1

where st abbreviates "skip or terminate". The action class SYNC is

(skipxskip, skipxterminate, terminatexskip, terminatexterminate)

16

while “[?P2!x in P1]xterminate" is the only action in the class
END. The diagram for our CSP command is the same as D0 except

for

- move (a) is dropped
- move (c) has the label “[?lex in P1]xterminate“
- the configurations are assigned new integers, with 0

being assigned to 0x0 and 1 to [|x]|.

Perhaps the graph representation of this diagram in figure 6

will be welcome.

?—h—)—b——> Qd >('|)
N A4\ #s
C;?xo > 7x1:) ¥ 1x0 f) &

Figure 6

Graph of a diagram

We ought to say something about the CSP kind and unkind
choice discussion [Fr]. In our view this depends on how one
assigns "state transformations" to product moves. When a
guarded command has only Boolean tests as guards, one can assign
a state transformation to the isolated move

2B

0 Bis 3+ 7+ ...+ 5.

This cannot be done when communications occur in the guards, one
must know the product in which the move occurs before it can be
assigned a meaning. The same is true when communications occur
as commands; one cannot assign a state transformation to the
move

a iy 3 s
0 P4?v in P > 1

7

in isolation, only when it occurs in a product with the move

0 Pile in P.

> 1

the state transformation assigned to this combination is the
one that would naturally be assigned to the move - 8 1.
When assigning state transformations to moves one has to pay
due attention to scope of identifiers and other environment
problems. However these problems are of little importance when
one is trying to model (understand) a program in a language

that allows parallelism.

Example
In the CSP program in the beginning of this section only Boolean
tests occur, so all communication commands can be replaced by

assignments when we give the diagram for the program

Configurations (0,1,7,8,9,10,11) (0,1,7,8,9,10,11)

source 0x0 sink 1x1

Bl EiEBL sy Fg LITNEED . gog

10x10 —X3ZMINT 44 07 q9xqq Y= maxS o o o

?x<maxs f skip>1x

8x8 T + 9x1 + 1x9 + 9x9
Gl ol B SRR o e G

B ~aniP B RUNTH 00 4 gas

gug »XAXS B T 3,40 « gD

8x9 ?x<maxSsS 8 skip>1x9 + 9x9

gah SRR B TY . g4

?x<maxS ® skip

8x10 >1x10 + 9x10

18

T2 x ?minT<y 5

9x8 10x1 + 10x9
GuE st BOIRTOE . b on 4 97D

Sl wesB BKID . 4.8

9x9 —2 XM qg.10 , gxo T2 X 8kIP o 4409

iy B E T8 o 5 49
0x10 22X SRAP g 10 10x9 SEIPLR T o 46045
10%8 —SRiR X FIRATRY o 4n.4 & 70x9
Tal SRIR % SMINENY S Jed @ qxd 1x9 —SEID T2 5 ¢ 10
8 x1 ?maxsS<x x skip S 1x1 + 9x1 9x 1 _EE_EEEB_> 1x1
where T2 = "S:=S+xXx-maxS" and T4 = "T:=T+y-minT".

Some moves of the diagram are not given because their sources
are not accessible from the configuration 0x0. If the reader

looks at figure 5 s/he will see that the corresponding edges

of the graph model were also omitted.

O

19

4. COMPUTATIONAL MODEL FOR ADA

The programming language ADA [Ad1] provides powerful
mechanisms for parallelism, but these have not yet been defined
formally. It is necessary to describe the relation between the
formal definition of ADA [Ad2] and our diagram models, before
the representation of parallelism can be described. The formal

definition gives:

(1) the abstract syntax of ADA, so that each syntactically

correct program has a tree representation;

(2) the static semantics, that typechecks a tree and rewrites
it in a form that can be used by

(3) the dynamic semantics, which define the behaviour of the

program.

Example
The program fragment "while B loop S; end loop" is a syntactically

correct ADA loop statement with the tree representation

loop
/\
while stm_s
/
id "B" | call
/\
id "s" param assoc_s

The static semantics does not change this tree and the dynamic
semantics uses it as the actual parameter for the formal para-

meter "loop" in the function specification

20

function EXEC_WHILE_LOOP (loop:TREE; env: D _ENV;
store: STORE; cont: EXEC_CONT)
return IO MAP;

We can consider the body of this function as a way of giving the
meaning to the moves whose labels are syntactically correct ADA
while loop statements - in this example, edges with the label

while B loop S; endloop.
The passage through the abstract syntax and the static

semantics may affect the correspondence between program points
and the configurations in our diagram model. However, the formal

definers of ADA write (page 1.14)

The functions used in Dynamic Semantics are partitional
into three groups those defining the elaboration of
declarations ... those defining the evaluation of expres-

sions ... those defining the execution of statements.

So we need only take declarations, expressions and statements
as the labels of moves in our diagram model. Because of nesting
there are many feasible ways of choosing configurations in our

diagrams, but one possibility is

Pick the largest expressions, the longest declarations

and the smallest statements.

Example

Instead of choecsing 0

while B loop S; endloop 31 we shoyld

have chosen the egquivalent

Configurations (0,1,7)

2B

Moves O > 1 + 7

S

7 > 0

where the move label S corresponds to the call of a procedure.

This procedure has a declaration which was elaborated on some

21

earlier move with the label: procedure S ... end S. Moves with
this label give a meaning to moves with labels S, but we can

define this meaning by using the diagram model of the procedure

body.

Now we can turn to parallelism in ADA, and start by describing
the diagrams for task bodies. There are three kinds of statements

that can only occur in a task body: delay statements, gecept
statements and selective wait statements. Because ADA makes no

assumptions about the speed of processors, a delay statement can

be represented by a move with label skip (just like a null state-
ment) . An accept statement can be represented by a move with a
label like - accept E do ... end. Such a move gives a meaning to

a move with label E in the same way that the body of a subprogram S
gives meaning to moves with label S. Before discussing selective

wait statements, let us look at the

Example
We shall later give the diagram model for an ADA program that
simulates a soccer match. In this program there will be 22 tasks

with the body:

task body PLAYER is
begin
loop
exit when game over;
Take Up Position;
Ball .P;
Dribble;
Ball.Vv;
end loop
end PLAYER;

The diagram for this has configurations (0,1,7,8,9,10) and moves

22

?gameover 5

0 1+ 7

7 Take Up Position s 8
8 Ball.P s 9

g _Dribble s 10

10 Ball.v s 0

There is an important difference between selective wait state-
ments with an else part and those without, because of the word

"immediately" in the ADA requirement (p. 9.10)

- If no alternative can be immediately selected and there
is an else part, the else part is executed. If there
is no else part, the task waits until an open alternative

can be selected.

Like the distinction between kind and unkind choice in CSP,
the distinction between selective waits with and without else
parts is not completely apparent in the diagram, but only re-
appears when the diagram moves are given a meaning.

Suppose BT"'Bn are the conditions in a selective wait
statement. Selective wait statements without an else part are
allowed to have a delay alternative or a terminate alternative
but not both. A delay alternative gives an edge labelled skip,
while a terminate alternative gives an edge labelled terminate

to the normal exit point.

ExamEle

The program fragment

select when B = accept E do ... end; end select

has the diagram:

23

Configurations (0,1,4,7)

2
B > 4 + 7

Moves O

accept E do end

7 > 1

The insertion of "else S;" after the semicolon would give the

diagram

Configurations (0,1,7,8)

?B
Moves O > 8 + 7
7 accept E do end s 1
g By 3

the insertion of "or terminate;" would have given the diagram:

Configurations (0,1,3,7)

Bs 349

Moves O

accept E do end

7 > 1

We should also give an example of the diagrams for the two kinds
of non-deterministic statements which can occur outside a task
body. The timed entry call "select urgent; or delay + 5.0;

end select" has the diagram

Configuratiocons (0,1,2)

Moves O —EEQEEE%> 1
o -Skip .

whereas the conditional entry call "select urgent; else S; end

select" has the diagram

24

Configurations (0,1,2)

Moves O —EEEEEE-> 1
0 —25 1
Example

In the ADA program that simulates a soccer match we will have

one task with the body

task body BALL is

begin
Lloop
select
decept P dog efid;
or termihate;
end select;
accept V do end;
end loop;
end BALL;

The diagram for this has configurations (0,1,2,3,7,8) and moves

)
g SEEEL 3 4.7

accept P do_ end

7 > 8
3 terminate s 1
8 accept V do> end s 0

The diagram for a task body must be modified to allow for its

abortion by another task. One must add the move

aborted s 9

for each configuration j in the diagram of a task body that

can be aborted.

25

Once we have the diagrams for the task bodies in an ADA

program they can be combined using the diagram combinator().

Example
In the ADA program that simulates a soccer match the diagrams

for the one BALL task and the 22 player tasks can be combined
using the(:)combinator with the diagram for the body

procedure Soccer is
task type PLAYER;

task BALL is entry P;

ENEEY Vi
end BALL;
gameover: BOOLEAN:=FALSE;
us,them: array(1..11) of PLAYER;
begin

delay (90 + 60.0);
gameover: =TRUE;

end Soccer;

The diagram for this body has the configurations (0,1,7) and

the moves
o ~EEER s

gameover : =TRUE S

7 1

The interesting part of the ADA semantics is the use of the
diagram combinator(:)to capture the synchronisation rules. ADA
tasks interact in one of three ways: rendezvous, termination
or abortion. For each of these ways of interacting we must
define a class of allowable action products a1x32x;..xun. Lt
nested interactions were forbidden in ADA, these classes could

be defined by

26

class requirement on LR DL ETRE L
= = 14 =
REND (aj accept E do end) . .(3.1)(ai E)
TERM (Vi) (ai = terminate)
ABORT (aj = aborted) .=. (31)(ai = task j aborts)
Example

Consider the ADA program Soccer when the BALL task and the 22

PLAYER tasks are active.

a., x accept P do end x « X i

S V1

to be in REND is

"precisely one of « gol

Wil

the requirement for the action

&g x accept V do end «x Oyp X
to be REND is
precisely one of Ogzq* e+ % g

As always the class TERM has only one action.

The requirement for the action

¥ Oyqq X %pp X oeee X Gpgy
is BALL.P";
* Yeriq * Gpq X X Qg
1.8 BALT: V"

The action class

ABORT is empty because abortion is not used in the program

Soccer.

If we define IND as the class of

satisfying

o # accept P do

& o_. # terminate

S
& (V7) (avj # BALL.P & “vj
& (V3) (aTj # BALL.P & aTj

BALL.V & «

BALL.V & «

XGXUpXQygq X ey« XOypq XOpg X o o« XOpg g

end & oy # accept V do end & o # terminate

Vi # terminate)

T # terminate)

then we can define the diagram for the parallel part of the

Soccer program as

1 0 | (REND U TERM U IND)

where DO is the result of | on the diagrams for the main
program, the ball and the 22 players. One of the possible

"computation histories" in D1 is

0, x 0_ x O x 0 X ... X OT11

skip x ?true x ?gameover x skip x ... x skip

7. x 7 x 7 x 0 X swe x 0

S B V1 V2 T11
-- player US(1) takes up position
while all other players sleep
7Y 2 8 0 0
s ¥ B %1 ¥ Vv2 ¥ oo X Py

gameover:=TRUE x accept P do end x BALL.P x 0 % s s
-- player U, (1) gets ball

V while whistle blows
1g x 8 % Fgq % Oy x woo x Oy
l -- player US(1) dribbles
TS X 8B X ‘IOV.I x OV1 ® sme X 0T11
skip x accept V do end x BALL.V «x OV2 x ...xOTH
-- player US(1) kicks the ball
1S X OB x 0V1 x 0V2 X we. X 0T11
skip x ?true x skip x ... x skip
: 3 0 0 0
lg ¥ 3% Ogq % Oy * wne x Oy
terminate x ... x terminate
Y
‘]S X 1B x 1V1 X 1V2 X . X 1'1"11

27

28

In our definition of the class ABORT we have assumed that

the diagram for every task body has the move
- aborted> 2
for every configuration c. Because abortion can happen while

a task is actually making a move, this assumption is not enough

and we must also assume the move

aborted o s 2

" ol
for every diagram move ¢ —> c'.

The informal definition of ADA describes the effect of abortion
on a task in a rendezvous or one that has made an entry call,
but it is not so clear about the effect of abortion on a task
that is terminating or one that is aborting some other task.
Another complication is that ADA rendezvous can be nested -
entry calls may occur between the do and end in an accept state-
ment. In a later paper we will describe how the classes REND,

TERM and ABORT can be modified to cover such nested interactions.

Now let us describe the creation and destruction of ADA
tasks. For the sake of simplicity let us ignore the possibility
of abortion or the raising of an exception while declarations
are being elaborated. In this case tasks are created by a move
like

j —> k x O1 X we. X Om
where j is the configuration after all declarations have been

elaborated. Analogously the destruction of tasks is given by

a move like

29

ExamEle

The complete diagram for the ADA program that simulates a

soccer match has the moves of D1, the extra moves

task type PLAYER 5

0 7
7 task BALL is entry P; entry V; end BALL s 8
8 gameover: BOOLEAN := TRUE 5 9
9 us, them: array(1..11) of PLAYER s 10
begin
10 > OS X OB X OV1 X "'XOT11
T x 1, x 1., x x1 Ellh g

the configurations of D1 and the extra configurations (0,1,7,8,9,10).

o

So far we have described how any ADA program can be
modelled by a diagram, but we have not given any meaning to
moves in a diagram. The formal semantics of sequential ADA
[Ad2] gives a meaning to moves whose labels are within the
sequential part of ADA. There is no reason why a move with a
label like "accept P do end" should have a meaning in isdlation;
the synchronization rules only allow such moves in combination
with an appropriate entry call, so only combined rendezvous

moves must have a meaning.

Example

Both rendezvous moves in our soccer program

accept P do end x BALL.P
7B x 8P > 8B x 9P

8 x 10 accept V do end x BALL.V _
B P 7 "B P

have the identity state transformation as their meaning.

m}

30

Part of the semantics of ADA places restrictions on the
sequences of moves that can occur in a diagram model of an ADA
program. Because calls on the same entry are gqueued, move
sequences in our ADA soccer program are fair - the ball will
honour all rendezvous requests impartially, it will not favour
a particular player or team.

Are our diagram models of ADA programs built on sand, are
they unsatisfactory because they replace the true parallelism
of ADA by synchronized move sequences? The answer is NO for
two reasons - the Petri net argument in [Ma2] and the fact that
ADA can be implemented correctly on a single processor. If one
has the luxury of a multiprocessor implementation of ADA, then
the global state and time of a diagram model may be very dif-
ferent from the reality of concurrent computation but the real
observable behaviour of an ADA program must correspond to a

possible behaviour of the diagram model of the program.

SUMMARY

It has been shown that diagrams are a suitable computational
model for programs in ADA and other languages with parallelism.
It seems clear that the model can also handle exception
propagation and other sequential ADA features, that we not

discussed here.

REFERENCES

[ad1] Reference Manual for ADA, SIGPLAN 1982.

[ad2] Formal definition of ADA, C11-Honeywell Bull, 1981,
Paris.

[Dil] E.W. Dijkstra: A discipline of programming.
Prentice Hall 1976.

[Fr] N. Francez, C.A.R. Hoare, D.J. Lehmann, W.P. de Roever:
Semantics of nondeterminism, concurrency and
communication. J. Comp. Sys. Sci. 19 (1979)
290-308.

[Hol] C.A.R. Hoare: Communicating Sequential Processes.
CACM 21 (1978) 666-677.

[Ma1] B.H. Mayoh: Program models: meaning and proof.
DAIMI PB-157 (1983).

[Ma2] B.H. Mayoh: Parallelism in ADA: program design and
meaning. Springer LNCS 83 (1980) 256-268.

[Mi] R. Milner: Calculi for synchrony and asynchrony.

31

Edinburgh report CSR-104-82.

