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In this report a system capable of simulating
hardware systems is presented. It is described
from a user as well as from an implementation
point of view.

The intended reader has a broad knowledge of
computer science and an interest in hardware.
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Introduction.

Simulation may play an important role in the develop=-
ment of a piece of hardware. A hardware simulator is a com=-
puter program or system to carry out this task. One such
system is described here.

The system can be used to simulate any of a large num-
ber of hardware circuits. Therefore some notation must
exist to describe a particular circuit to the system. This
is the subject of chapter 1.

Chapters 2, 3 and 4 describe the implementation, and
chapter 5 reports on some practical experience gained with
the system. Finally, chapter 6 attempts a comparison with
other simulation systems.

Ierminology.

In what follows, "hardware" invariably means digital,
logiec hardware. The reader is assumed to be familiar with
basic hardware terminology as it is used in [1], [2] and
[3]. Some knowledge of Pascal and possibly Concurrent Pascal
is also desirable since many concepts are explained relative
to their closest analogue 1in one of these languages, and
because the simulation system is implemented as a collection
of Pascal programs.

The remainder of this section introduces some ad=
ditional terminology.

To avoid confusion with the simulation systems; the
hardware system it simulates is often referred to as the ob-
ject system. Occasionallys the word "circuit" will be used
in the same sense,

A hardware circuit is a physical ("real"™) device, but
it 1is normally thought of in terms of a logical model that
attempts to describe its behaviour. In particular, a con-
tinuum of possible values (voltages) is replaced by only two
values called logical values and denoteds for instance, by
HIGH and LOW.

Background.

The history of this work dates back to the spring of
1980 when I took an undergraduate course (so-called 3rd year
module) called "Digital Logic Components™, at that time
given by Becky Clarke assisted by Kurt Andersen. The course
has since then been offered regularly to students, most
recently by Peter Mpgller-Nielsen; I shall refer to it hen=-
ceforth as the 1'"hardware"™ course. In it, basic hardware
design methods are presented, and the participants use
"breadboard" Lkits to build a number of circuits including a



rudimentary nicro=computer.

At the beginning of the following semester, I had two
incentives +to start work in the direction described here.
Firsts although I had no longer a kit at my disposal, I wan-
ted to experiment further with the constrution of hardware
circuitry, and on a somewhat larger scale.

Second, it seemed rather archaic to carry out a logical
task like the design and testing of a hardware circuit,
using a physical system at the mercy of faulty connections,
defective IC's etec., and I thought it an exciting challenge
to design a computer program that would assist in the
process.,

I therefore set out to build a system capable of
simulating as faithfully as possible a breadboard circuit.
In April 1981, when a preliminary version had been implemen-
ted, Peter Mgller-Nielsen showed interest in presenting the
system to the participants of a future hardware course as an
experimental design tool.

During the summer, I worked to complete the system,
give 1t a friendlier and more robust user interface, and
write a user's manual for it. It was used successfully in
the fall 1981 hardware course, giving rise to only minor
problems that were corrected "on the spot™".

Desi bieati .

What I wanted to do was to simulate breadboard cir-
cuits, and this emphasis was what distinguished my work from
other treatments of simulation. It would therefore not be
reasonable to come up with a general system capable of
simulating a range of widely differing systems, such as a
Simula 67 system. On the other hand, it would be foolish to
reject any generality that might be avaliable for free. I
therefore decided to make the system as general as possible
without sacrificing anything substantial in the process of
generalization from the most special=-purpose system con-
ceivable.

Further, the system should be simple and easy to use,
"olean" without too many special "features™ and conventions,
and easy to implement. These requirements are especially
easy to Jjustify here, as I thought of the system as a pilot
project in a relatively new field. Until the system was
demonstrated to be of any practical use at all, it would be
a waste of time to muddle it up with "programmer's short
cuts”" ete.

Lastly, during the design phase, it was generally
feared that the program might turn out to be hideously slow.
For +this reason, efficiency of the simulation was also a
major concerns.



1. THE PROGRAMMING LANGUAGE HL.

HL is a notation that allows a certain class of hard-
ware systems to be precisely specified. The simulation
system expects an HL program as its input.

In this chapter I describe and discuss the syntax and
semantices of HL. I concentrate on what I see as the most im-

portant features of the language.

A concise and formalized definition is outside the
scope of this report; I allow myself to rely heavily on the
reader's intuition as stimulated by an example program. Fur-
ther examples and a BNF grammar for HL may be found in ap-
pendices A and B.

An example program.

The following HL program defines a simple U4-bit binary
counter and uses it in a trivial test circuit. The program
text is complemented by a number of diagrams.

PRIMITIVE xor;
(# exclusive OR #)

IN i1,1i2;
OUT o;

BEGIN
0:=11<>1i2;
END; Xor

(EXRRRERBXTAAXARRARFEARLRTRRBRER)

TYPE counter;
(*# U-bit binary counter #)

IN cp; (# clock input #)
OUT ql[0..31;

PRIMITIVE flipflop;
(# D flip-flop *¥)

IN dscp;
OUT q;
VAR s; (# internal state #)



BEGIN
IF ecp
THEN q:=s —d ¢
ELSE s:=d; CP
END;
flipflop

(**************************)

PRIMITIVE and3;
(# 3-input AND gate #)

IN il1%31;
OUT o3
VAR ksn;
BEGIN
n:=il[11;
FOR k:=2 TO 3 and3
DO n:=zn#i[k]; '
o:=n;
END;

(***&***************i*****!)

COMP f[0..3]1:flipflop;
a3[0..3]:and3;
x[0..3]:x0r;

VAR k,1;

ﬁ >— fla] [31
BEGIN (% counter #) —.I 4

FOR k:=0 TO 3 “)D._r;m g1a1

DO BEGIN - y "
cp->flkl.cp;

FOR 1:=1 TO k —3>—j)>‘_

DO f[l-1].q->a3[k]1.il[1];

FOR l:=k+1 TO 3 :D:)D‘H
1

DO 1->a3[kl.il11;
a3lkl.o=>x[kl.i1;

| FH1 g1

I

flol qlol

flkl.q->x[k]l.i2; ap

x[kl.o=>f[kl.d;

f[k]-q—>q’:k]; Cou_n%er
END;

END;

(FERREEERBEEARFRERRERR RN RN RE)



PRIMITIVE peripherals;

IN d[0..3];

VAR k,dumny ;
— [2]
BEGIN
FOR k:=0 TO 3 —  [3]
DO BEGIN dmT
REACH(10,42-k);
WRITE(d[k1:1); —— 161
END;
REACH(12,40); -
READ (dummy ) ; F’f’-""P)"'t‘ﬂ"ﬂl5
END;
€22222222 2222222222222 222222 )
COMP c:counter;
io:peripherals;
Ial 31
VAR k; [a1 [31
c q,m dI'I io
BEGIN (#* main %) [o] [o]
clock=>c.cp; 73
FOR k:=0 TO 3
DO c.qlk]l->io.dlk]; clock
END;
1.1 Syntax.
I shall not attempt a rather pointless rigorous
separation of syntax and semantics. This section deals main-
ly with syntactic issues and with "obvious" semanties that

are mostly implied, such as those of arithmetic operators.
The more interesting parts of the semantics are given 1in
section 1.2.

1.1.1 HL program.

The hardware system described by an HL program has the
following characteristics:

It «consists of a finite number of named components and
a finite number of Wires.

Each component has a finite number of named ports
divided into input ports and output ports. Each wire con-
nects an output port to an input port.

At any given time, each port has a value that can be
represented as an integer. Connected ports always have the
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same value. Values of input and output ports are called in-

puts and outputss respectively.

An HL program consists of a declarative part followed
by a statement part. The declarative part establishes the
set of components, and the statement part specifies the pat-
tern of connecting wires.

1.1.2 Main declarative part.

The main declarative part contains declarations of

variabless componentss Lypes and primitives.
Yariables.

Variables are declared following the key word VAR. They
correspond to Pascal integer variables.

ﬂnmnnngn135

Components are declared following the key word COMP.
They correspond to the physical components mentioned above.

Each component is an instance of a particular gcircuit
(the concept of "ecircuit" is similar to that of '"system
type"™ in Concurrent Pascal). In a component declaration, a
circuit identifier is given following a colon, as in a
Pascal variable declaration.

A circuit is either a type or a primitive. Instances of

types and primitives are <called Ltype components and
primitive components, respectively.

Iypes.

A type is a template for a component that may interact
with other components through a number of ports, but is
otherwise structured like the entire system.

Input and output ports are declared following the key
words IN and OUT. Apart from the differences arising from
the handling of ports (and the heading TYPE <type iden-
tifier> ; ), syntax and semantics of a type are those of an
entire program; alternatively, the program may be viewed as
an anonymous type without ports.

The components and ports declared in a type T (and in

no inner circuit) are called the constituent parts of T.
Pybimd .

A primitive is a template for a component that is not
further decomposable. Declarations in a primitive may be of
variables and ports only.

The primitive ©body is an algorithm describing how the
primitive's outputs may be computed from its inputs and pos-
sibly some internal state.
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1.1.3 Main statement part.

The main statement part is an algorithm to connect com-
ponents in a certain way. The central element is the connecgc=-

ftion statement.
Connection statements.
There are two forms of connection statements.

The most important form has an output port and an input
port separated by the connection operator =>.

¥.A -> Y.B

is an instruction to connect output A of component X to in-
put B of component Y.

The other form I shall also call a fix statement. It
is an instruction to feed a particular (integer) value n
permanently to an input port. The syntax is

n _> Y-B .

After execution of this statement, I shall say that Y.B as
well as all ports connected to it have ©been fixed at the
value n.

No port may participate more than once as the right
operand in a connection statement.

Dther statements.

The following statement types have been adopted from
Pascal:

Assignment statement
IF statement

WHILE statement
REPEAT statement

FOR statement

Targets of assignment statements and iteration indices
of FOR statements must be variables; and expressions must be
composed of variables, integer literals and the usual arith=-
metic operators of Pascal.

An integer expression is permitted in an IF, WHILE or
REPEAT statement where Pascal requires a boolean expression.
The expression is interpreted as FALSE exactly if it
evaluates to 0.

Relational operators (=3<s;...) yield the value 1 cor=
responding to TRUE and 0O corresponding to FALSE.
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1.1.4 Type bodies.

The contents of the previous section also apply to the
statement part of types. In addition,

1} The following restrictions apply ¢to connection
statements in the body of a type T:

a) The port to the right of the connection operator
must be declared within T.

b) At least one of the involved ports (in a fix
statement: The involved port) must belong to a
component declared within T.

2). Inside a type T (textually), input ports of T are
treated as output ports (as regards the legality of connec~-
tion statements), and output ports as input ports. They are
denoted without qualification (e.g. "cp" instead of "T.cp").

1.1.5 Primitive bodies.

Statement parts of primitives must not contain connec-
tion statements. Inside primitives, input ports may be
evaluated to yield integer values, but assignment to input
ports 1is illegal. Integer values may be assigned to output
ports, but output ports cannot be evaluated.

1.1.6 Scope rules.

Let the types and primitives of an HL program define a
set of nested blocks in the usual way. The smallest block
containing the declaration of a given object is said to
define that object and to be its defining circuit.

The scope rules may be stated as follows:

1). The scope of types, primitives, variables and com-
ponents extends from their point of declaration to the end
of their defining circuits, with the exception of inner
blocks that are either primitives or that redeclare the
identifier concerned. In the latter case, the outer
declaration is valid until the point of redeclaration.

2). An unqualified port name follows the rule just given.
If the component C is an instance of a circuit defining a
port A, the name C.A is valid at any point in the scope of
C- "
This rule is the same as that which governs the scope
of record fields in Pascal.

Variables and ports defined by a type are called type
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yariables and Lype ports. Primitive variables and primitive
ports are defined analogously.

1.1.7 Arrays.

Variables, ports and components may be declared as ar-
rays rather than as single objects. This is done by fol-
lowing the object name by the desired index rangel(s) en-
closed 1in square brackets. Array bounds and indices must be
integer-valued.

Once declared, an array cannot be manipulated as a
whole. Single array elements are denoted as in Pascal.

All arrays are dynamic. Bounds are evaluated at array
declaration time and may be arbitrary expressions.

1+1.8 Input-output.

Input and output of integers from/to a TTY have been
implemented. Further, strings appearing literally in the
source program may be output on the TTY.

Coordinates have been assigned to the terminal screen,
and there 1s an instruction REACH to move the cursor to an
arbitrary position.

1.2 Semantics.

The semantics of HL tell two things:

1). How to associate a circuit with an HL progranm,
2). How to simulate that circuit.

I shall describe both, but will put the emphasis on 2)
above, since it is probably the least obvious. The first of
the following sections deals with 1), the remaining three
with 2).

1.2.1 Type expansion.

The simulation will be explained in terms of an object
system called the expanded systeme. The system desceribed by
an HL program is converted into i1ts corresponding expanded
system by the following algorithm, similar to macro expan-
sion:

Repeatedly replace globally declared type com=-
ponents by their constituent parts and appropriate
connections, until all +type components have been
replaced by primitive components.,
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1.2.2 Component execution,

In +the expanded system, "ocomponent™ means primitive

component. Execution of a component is execution of the
body of the primitive of which the component is an instance,

with references to ports and variables causing manipulation
of the component's ports and variables.

Call a component excited, if at least one of its inputs
has changed since the component was last executed. The ex-

panded system is simulated according to the following three
principles:

1)« Any excited component is eventually executed.

2). Each change in the value of an output port is im-
mediately propagated to the set of connected (pos-
sibly indirectly: via a number of type ports) input
ports.

3). Values of component variables are preserved between
~ executions.

1e2.3 The predefined clock.

There 1is one predefined "system" output port with the
name "clock". This port always has one of the values 0 and
1. Its value is made to change whenever there are no excited

components.

1.2.4 Initialization.

Initially (when simulation starts), all components are
regarded as being excited.

All ports that have not been fixed at another value,
and all primitive variables initially have the value 0.

13 Discussion.

In this section I shall try to evaluate the c¢harac-
teristies of the language in a number of ways. I shall also
mention some desirable features that have been left out.
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1.3.1 Types.

The type concept is a powerful structuring tool. It al-
lows complex data types to be built in a hierarchical and
orderly fashion.

The range of expressible hardware systems does not in
principle depend on the availability of types. But the ex-
clusion of the type concept would require the entire object
system to be described on one single hierarchical level. In
practice, this is adequate only for very small systems; com-
pare the role of procedures in other programming languages.
It is feasible to design an entire computer starting from
single transistors, but not by considering each transistor
in turn.

IThe type concept is absolutely essential to the useful-
ness of the syvstem.

Types describe the statiec structure of a system.
Therefore, operations on port values in type bodies do not
make any sSense., Likewises type variables are requisite in
constructing a circuit but have got nothing to do with its
simulation.

1.3.2 Primitives.

Primitives may be thought of as defining a dividing
line: Above this line, "objects" are described in hardware
terms, as being composed of other objects connected in cer-
tain ways. Below it, objects are described in whatever way
seems practicable, using the power of a general programning
language.

Defining a group of primitives amounts to choosing a
set of basic building blocks or axioms. Clearly, there must
be such a basic platform; one cannot go on forever defining
objects in terms of simpler objects, especially since these
objects are supposed to model a physical reality.

In HL, great flexibility is derived from the fact that
primitives may be arbitrarily defined. The programmer is
free to choose his personal level of interest. Although
physical hardware normally can be analysed down to the level
of single gates before quantum mechanics must be invoked, it
is a perfectly sound approach to view entire micro=~computers
as the basiec units of hardware.

Assignment to input ports is not allowed for fairly ob-
vious reasons (what would be the physical interpretation ?).
Evaluation of output ports has been ruled out to achieve a
kind of symmetry and to prevent the surreptitious use of
output ports as state variables.
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Primitives describe the dynamic behaviour of components
in a fixed ecircuit. Therefore, connection statements in
primitive bodies are meaningless.

1.3.3 Design of primitives.

The rules defining when a component is executed are not
very explicit. For instance, if two inputs to a component
change within a single clock half-cycle, the rules do not
even state whether the component is executed once or twice.

This means that primitives must be of a rugged and
robust design. But it is neither impossible nor particularly
difficult to build properly functioning equivalents of comn-
mon S3SI and MSI circuits.

This 1is a trivial fact for combinational circuits; the
XOR=gate of the example program may serve to illustrate the
point. It is less obvious how clocked circuits may be im-
plemented. An internal state can be stored in a set of
variabless; since these are preserved between executions. But
how is it possible to ensure that cutput changes are caused
by the clock transition ?

The primitive "flipflop" of the example program is sup-
posed to be a normal D-type flip-flop triggered by the
HIGH~going (0 => 1) clock transition. The reader is invited
to convince himself that it will work correctly in all cir-
cumstances.

Using the same principle, or in fact this particular
primitive, it is possible to construct a very wide range of
clocked circuits. This is intuitively clear and confirmed by
practical experience.

1.3.4 The clock.

The predefined clock output serves, much as in real
hardware, as the one point of independent action that can
spark off a chain reaction in connected circuits.

13«5 Initialization.

Experience has shown that it is necessary to initialize
a circuit before the simulation proper. Otherwise, com=-
ponents may be in an "inconsistent" state (e.g. an inverter
with input=output), and in most casess, the simulation never
gets under way.

This is the reason why all components are initially
regarded as being excited. Components are supposed to Dbe
designed so that, once executed, they will ©be in the
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equivalent of a physically possible state.

Another possibility would have been to provide each
primitive with an explicit initial statement (Concurrent
Pascal terminology). I decided against this option because
the initial statement for most common primitives seems to be
either immaterial or to naturally coincide with the normal
statement part (the latter being the case, for instance, for
all combinational primitives). An even better choice might
have been to have an optional initial statement.

A few primitives do need a special initialization al-
gorithm to be carried out. This can be accomodated 1in the
following not very nice way:

IF "first time"
THEN

. (# initialization #)

. (* normal operation #%)

The "first time" condition must be represented by some
variable. This means that at least some variables must have
a known initial value. Hence the convention that all

primitive variables are initialized to the value 0.

13.6 Representing logical values.

The logical values are represented by integers. Al-
though it is not logically necessarys I have always used 1
for logical HIGH or TRUE and 0O for logical LOW or FALSE.

It might be argued that this is a kind of built-in
"type anarchy", in that the user is forced to mix wup ¢two
concepts that have got nothing to do with each other. But
clearly, however logical values are represented, they must
be amenable to manipulation inside primitives, and the al=-
ternatives to the chosen path all seemed rather unpleasant:

- Providing a new data type
signal=(HIGH,LOW)
with only the comparison operator defined.

- Providing a new data type with a welter of more or less
familiar operations.

- Insisting on explicit conversion to and from a data
type having useful operations ("integer" or "boolean").
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For instance for the XOR=gate:
ozslogic{ing (11)<3int(d2) 3

An even more important reason is that the signals car-
ried by the wires not necessarily represent the two logical
values. For convenience, a wire may be used to represent an
entire data buss; or a completely different data channel. In-
sisting on one-bit communication would be like requiring all
primitives to be of gate complexity.

This also explains why the system does not restrict the
integers transmitted to two values. Even in traditional low=-
level design, one might want to use more than two values,
for instance to express a "don't know" condition.

1.3.7 Connection statements.

A pattern of interconnections may be specified in many
ways. I have chosen a highly "operational" one because I
think its meaning is particularly easy to grasp. Further-
more, it facilitates +the use of an HL program as a "“check
list" when constructing the physical circuit corresponding
to the program. See [4] for a quite different approach.

There are three reasons for the insistance that the
left and right operands to the connection operator must be
an output and an input port, respectively:

- I +think this is the "right" way to think about a
connection. Connecting two input ports, for in-
stance, does not really have much sense to it.

- It allows a kind of type checking tc be performed.

- Less importantly, the restricted form of connec-
tion statement seems to have a simpler implemen=
tation.

The requirement that no input port may be connected-to
more than once is the counterpart of the Dbasic hardware
design rule stating that it is illegal (except in special
cases) to connect two ocutputs.

The rules discussed below are those given in section
T«1.4,

Rule 2) is perfectly natural. This ought to be clear
from the example program and its accompanying diagrams.

Fig. 1 illustrates the reason for rule 1 a).
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Fig. 1

If the rule 1is violated in the body of a type T, and
two or more instances of T are subsequently declared, there
will be multiple connections to the same port.

Rule 1 b) is included solely for efficiency reasons.
The connection statements prohibited by this rule, but
otherwise legal, do not seem particularly useful, and their
implementation presented a problem.

1.3.8 Pascal-like notation.

HL has ©been designed so as to ressemble as closely as
possible the well=-known programming language Pascal. This
has a number of advantages:

- The wuser will (presumably) have little difficulty un-
derstanding syntax and semantiecs.

Design pitfalls are easier to avoid.

Parsing and part of the implementation are standard.

Standard terminology, for instance on syntactic struc-
ture, can be used to talk about the system.

However, wusing the same language constructs both in type
bodies and in primitive bodies also has a disadvantage:

- The important distinction between circuit construction
and simulation is blurred.

The choice of Pascal as the "host" language is less im-
portant. Pascal is generally regarded as a "good" language;
and it was familiar to me.
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1.3.9 Scope rules.

The basic decision was to the use the scope rules of
Pascal, and to amend them wherever necessary. There 1is one
obvious and one more subtle modification.

Port names cannot, of course, comply with Pascal scope
rules, since they would be invisible outside their defining
circuit and therefore useless. Adequate scope rules (and
notation) are those of record fields.

Only locally defined names may occur din primitives.
This has a number of advantages:

- The clarity of meaning that goes with the absence
of free identifiers.

- Efficient component execution.
= An insignificantly simpler implementation.

The really important point, however, is that "foreign"
names wWould present a serious conceptual problem. The most
obvious candidates would be variables declared in surroun-
ding blocks, but such variables exist only during (part of)
a circuit construction phase (see section 1.3.1), whereas
primitive bodies are not executed until simulation. It is
hard to see how a sensible meaning can be attached to a type
variable whose value or address is suddenly required in the
course of the simulation.

Nevertheless, it is desirable in some situations to be
able to use non-local objects in primitives. A really good
solution might be to provide primitives with parameters.
This idea is elaborated in section 1.3.14.

1.3.10 Typelessness.

In this section only, the word "type" will be wused in
its usual Pascal sense.

HL as presented is a "typeless" language, in that only
integer variables are supported. This does not mean that I
reject one of the major advances in language design, the
idea of types and type checking. In fact, I only reluctant-
ly refrained from having type declarations and proper hand-
ling of other basic types than integers. Ideally, I would
have liked to be able to send values of arbitrary types
through typed wires. But it would have added non-trivially
to the complexity of the compiler, and it did not after all
seem worth while for a project of this kind.
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I do not personally regard the use of integers as
booleans as particularly disturbing. But the absence of a
type "character" and of character input-output is a nuisan-
ce.

17.3.11 Flow-of=-control in types.

The reader might initially wonder why control struc-
tures have been introduced in type bodies. The pattern of
wires inside a type is a concept that does not inherently
bossess any aspect of time or ordering of wires. However,
the reader must concede that FOR statements are useful when
handling data buses (see the example program). More complex
but still regular structures are conveniently expressed
using the full range of control structures.

Nevertheless, I think it is unfortunate that the con-
cept of flow-of-control in types had to be introduced, and
that an artifiecial ordering of wires is imposed.

But the problem seems largely a theoretical one, and to
solve it would involve departing radically from the ideas of
Pascal. I did not want to become sidetracked by this issue.

1.3.12 Input-output.

Input-output was designed with the sole purpose of
being handy in the context of the hardware course. The
direct addressing of "fields" on the terminal screen is in-
tended to be reminiscent of the control panel found on most
computers.

1.3.13 Simulating reality ?

A crucial question is, of course: Which aspects of a
real hardware system can be dealt with successfully by the
system ? And what kind of questions cannot even be for-
mulated within its framework ?

The system is intended to simulate the logical
behaviour of a Thardware system, and not its detailed
physical behaviour. The values assigned to ports come from a

discrete domain and are supposed to model logical values,
not voltages.

ﬁ.ﬁamg_tnxﬁm_t_o_p_o_l_o_gx-r

Atomic objects (primitive components) interact ex-
clusively through ports and are connected by wires having no
other properties than the identities of their endpoints.
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Therefore, all questions regarding geometry and topology [2]
are meaningless.,

Delays.

The system handles delays only in a very limited way.
The mentioning of a specific delay time is conspicuously ab-
sent from the sentence "Any excited component is eventually
executed"” (section 1.2.2). In order to use the system suc-
cessfullys, one must adopt the assumption

All delay times are positive buf otherwise unknown.

The adhesion to this principle is also regarded as an
element of good style in ordinary hardware design [1]1. It
amounts to not making assumptions about the relative sizes
of delays.

Hold and setup times.

Hold times are implicitly assumed to be zero. The same
is true of setup times, but in the (common) case of setup
times leading up to the clock transitions, this has no sig-
nificance (see below).

Clock period.

The value of the clock is changed only when there are
no more excited components. This means that the clock period
is always "long enough". In the real world, a circuit may
fail to work due to a too fast clock; this has no analogue
in the system.

0] S TTEL ; .
Other concepts that have no place in the system include

- Fan-out limitations.
- Independent clocks.
- (not surprisingly) Noise problems.

Ihree-state guLnuLaf

Three-state outputs cannot be directly incorporated,
since it is illegal to connect two outputs. However, at the
price of having to put in an extra "junction" component
wherever three-state outputs meet, it is possible to make a
reasonable substitute.

A value different from the values representing the two
usual logical values would then be chosen to represent the
"high Z"-states and the "junction" component would simply
check that at most one input was not "high Z", and otherwise
pass on its one valid input.

"Open collectors" can be handled in much the same way.
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1.3.14 Proposed additions to HL.

Circuit parameters.

It would be most useful and satisfying to have a kind
of generic facility: Circuit parameters. The example il-
lustrates the idea:

PRIMITIVE and(m);
IN i[1..m];

OUT o3
VAR nsk;
BEGIN
n:=if1];
FOR k:=2 TO m
DO n:=n#*il[k];
o:=h;
END;

The primitive shown is an AND-gate with an unspecified
number of inputs. A concrete AND-gate with six inputs would
subsequently be declared as follows:

COMP ab: and(6);

I 1imagine actual parameters to be evaluated to an in-
teger value when a component is declared, and the formal
parameter to act as a constant having that value.

The inclusion of circuit parameters would involve only
small changes to the implementation. The main precondition
of dynamic arrays is already fulfilled.

Other additions.

Some or all of the following language elements might
prove useful to an HL programmer. They have all been taken
from Pascal.

Constants

Procedures and functions
WITH statement

Records

CASE statement

The WITH statement is intended for wuse in connection
Wwith circuits rather than records.
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2., SIMULATION.

This chapter gives the internal view of what happens
during the actual simulation. The relevant algorithms are
described on two levels of detail.

The first level is intended for the reader who wants to
glance "behind the curtain" to get a better feeling for the
semantics of HL, the same way that knowledge of a run-time
stack may clarify the concept of recursion. It is also a
necessary preamble to the more detailed description.

The second level may be helpful to anyone who wants to
modify, copy or understand in detail the presented system.
My goal is to supply Jjust enough information to enable an
experienced programmer to rebuild the system easily. without
cluttering the picture by not very interesting details.

2+1 A broad outline.

During simulation, the system goes through a series of
simulated ec¢lock cycles. Every time the clock value changes,
the components connected to the c¢lock are executed. In
general, a component is executed whenever one or more of its
inputs change. This in turn may cause inputs to other com-
ponents to change.

When this process stops (if ever), the simulated time
is advanced to the next clock change, i.e. the cloeck value

is made to change.
Before the first change of the clock value, the circuit

is initialized by executing every component at least once,
as explained in the previous chapter.

The conceptually simplest implementation might assign a
processor to each component. But since this implementation
uses a sequential machine, some form of time-sharing among
components is necessary.

To state the algorithm in a more lucid and precise way,
I shall make use of a Pascal-like mixture of formal and in-

formal elements, the latter being explained below.
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Main simulation algorithm:

01 "Put all components into Q";

02 Clock _voltage:=0;

03 REPEAT

o4 REPEAT

05 "Take a component out of Q";

06 "Execute it"w;

07 UNTIL "Q is empty";

08 Clock_voltage:=1-clock_voltage;

09 "For all input ports connected to the clock"
10 DO "value of the port" := clock voltage;

11 "For all components connected to the clock"
12 DO "put the component into Q";

13 UNTIL "stop criterium";
Explanatory remarks:
1) "Q" is an unbounded FIFO queue.

2). "Clock_voltage"™ is a variable holding the current
" clock value.

3). I shall not go into the details of how a component is
- executed. The only point of interest is the algorithm
carried out when a value is assigned to an output port
of the component, say the value e to the port P.
Port assignment algorithm:

31 IF "value of P"<{>e

32 THEN

33 BEGIN

34 "Value of P%":=e;

35 "For all input ports connected to PV

36 DO BEGIN

37 "Value of the port":=e;

38 IF "the component containing the port is not in Q"
39 THEN "put it into Q";

4o END;

L1 END;

2.2 A closer look.

This section centers around the main data structures
used in the simulation. They are explained as to purpose and
logical structure, and a carefully worked-out example is
given. The &reader 1is advised to study the example while
reading the description.

After this, I explain how the informal parts of the two
algorithms of the previous section are implemented.
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2.2.1 The data structures.

Three large Pascal arrays together specify an internal
model of the object system. I distinguish between d¥ynamic
data that change in the course of the simulation, and static

data that do not.

M contains static data describing port interconnections
and dynamic data giving, among other things, port
valuess

D contains static dope vectors for array variables and
array ports, and dynamic values of variables.

¢ contains the static code for each primitive. This is
some representation of the primitive body.

A1l three arrays are indexed by positive integers I
shall often call "addresses" (the address of a chunk of data
being the smallest index of a2 variable holding part of the

data).
The elements of M are of (Pascal) type

Record
value;,

nexts

link,

father,

last:integer;
end;

Every port corresponds to an element of M. Every com-
ponent is represented by a contiguous part of M. I shall not
always distinguish between elements of M and the objects
they represent.

%

The "next" and "link" fields are static.

"Next" fields partition the set of ports into singly
linked lists I call equivalence lists. Two ports belong to
the same equivalence list exactly if they are connected 1in
the internal model. If an equivalence list contains an out=-

put port, it is the first list element.
"Link" fields serve as pointers. Some allow the address

of a component to be obtained from the address of one of its
ports, others provide access to the information stored in D.

The "next"™ and "link" fields obey the following conven=
tions (suppose the fields in question belong to MIk]1):

Next>0 => MI[k] represents an input port.
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Next<0 => MI[k] represents an output port.

Next<>0 => ABS(next) is the address in M of the succes-
sor of M[k] in its equivalence list.

Next=0 => M[k] 1is the last element in its equivalence
list.

Link>0 => Link is the address in M of the component
containing M[k]. Link<>k.

Link<0 => k 1is the address in M of the component con-
taining M[k].

(-Link) 1is the address in D of a block

of data belonging to the component containing

M[kl.
The "value™, "father" and "last" fields are dynamic.
The "value" field simply contains the value of the

port.

"Father" and "last" fields will be discussed in section
22l

Data in D belonging to primitive components declared
together (i.e. in the same <itemlistd> : <primitive iden-
tifier> declaration) form a contiguous bloeck that is
logically divided into a common segment, common to all the
components in question, and a private segment consisting of
one local store for each component.

The common segment contains a pointer to the code in C
of the relevant primitive, and dope vectors for all array
variables and array ports belonging to the primitive. The
exact format of dope vectors is not important here.

The local store of a component contains values of the
component's local variables as well as a pointer to the com-
non segment.

An example.

The example on the following pages shows an HL program,
the object system it describes and the static parts of its
corresponding internal model.

For the purpose of clarity, data in M D and C have
been offset by fictitious displacements.
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2.2.2 The algorithms.

Given these data structures, it is fairly easy to see
how the informal algorithms presented earlier may be stated
precisely. In the followings numbers 1in square brackets
refer to line numbers of the informal algorithms.

[10,31,34,37]: All references to the value of a port
translate 1in a straightforward manner into manipulations of
the "value" field of an element of M.

[01,05,07,12,38,39]: The "father" field of elements of
M 1is used to chain together components to form the queue Q.
In this context, components are identified by their addres-
ses in M.

[01]: The statement "Put all components into Q" is ex=-
ecuted only once. It is implemented by stepping through all
used elements of M. Boundaries between components are recog-
nized by inspection of the sign of "link" fields.

[06]: Execution of a component requires access to

Its code.

Its ports.

« Its local variables.

. Dope vectors for 2) and 3).

Ew -
et it St Nt
e e

From the address in M of the component, the D address of its
private segment can be immediately obtained through the
"link"™ field. Following another pointer, the common segment
is found. And finally, a pointer in the common segment gives
access to the code of the component.

[09-12]1: Actually, this part of the algorithm is rather

09' "For all input ports connected to the clock"

10" DO BEGIN

117 "Value of the port":=clock_voltage;

121 "Find the component to which the port belongs";
13° IF "that component is not in Q"

140 THEN "put it into Q";

151 END;

[09%']: All input ports connected to the clock
can be found by going through the equivalence 1list
that has the clock port as its first element.

[12']: "Find the component" means determine its
address. This is done by considering +the "link"
field of the port in hand.
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[13']: The M™last" field is wused to signal
whether a given component belongs to Q or not. It is
updated every time the component is put into or
taken out of Q.

[13]1: In principles the simulation can be thought of as
going on forever. Therefore, the stop criterium, added for
obvious practical reasons, need not be discussed here.

[35]: Given an output port, the input ports it is con-
nected to can be found as described above for [9'].

[38]: See the remarks pertaining to [12'] and [13'].

2.3 Discussion.

O0f course, Q has the role of what in other simulation
systems is termed an "event list". Its simple form is due to
the fact that the logical model implied by the semantics of
HL does not assign definite delay times to circuits. Rather
than stating that some event takes place at a specific point
in time, it merely asserts that it will happen sometime in
the future. Using the queue strategy, the simulation system
is guaranteed to be in accordance with the model (under the
obvious assumption that the execution of every primitive
takes finite time). The very important conclusion is the
following:

If a property of a circuit can Dbe proved within the
logical model», the circuit, when simulated., will exhibit the
same property.

Loosely: If a ecircuit is "logically OK", it can be
simulated. The converse is not true. To give an example of
this would probably be rather cumbersome, but an informal
argument goes as follows: The logical model demands that a
circuit be "ecorrect" under any distribution of relative
delays. The simulation system instead picks a distribution
"at random" and might hit one that makes the circuit "work",
even if others wouldn't.

2+3.1 Scheduling.

A component is scheduled for execution (put into Q) as
soon as one of its inputs changes, while another component
is still in the process of execution (see the Port assign-

ment algorithm). :
Another possibility would have been to execute a com=-
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ponent C without immediate scheduling of other components,
and thereafter go through the ports of C, looking for output
ports with changed values, and scheduling as appropriate.

The difference between the two algorithms is so small
that the choice between them is largely a matter of ef-
ficiency considerations.

A more radical change would be to queue (port,new
value)=-pairs instead of components. Processing a Qqueue
element (P,v) would mean

Give P the value v
Execute the component containing P

This would give the HL programmer a somewhat more ex-
plicit <control over component execution. He would for exam=-
ple be able the deduce the exact number of executions of a
particular component, since it would equal the number of in-
put changes. But there seems to be little use for that kind
of information, the axioms defining the simulation being ap-
parently strong enough.

One last field of experiment could be the data struc-
ture Q. The "exact opposite" of a qQueue, a stack, would also
work correctly except in cases where a component is executed
an infinite number of times wWith no intervening clock
changes. Such "pathological" cases model no physical
reality; an example is given below.

clock 7

Fig. 3

2.3.2 Equivalence lists.

If port interconnections are viewed as a graph, ports
being vertices and wires being directed edges, the graph has
the properties

1) Each output port has inward valency 0.
2) Each input port has outward valency O.

This means that the graph can be unambiguously represented
as a set of equivalence lists. Since the only inquiries made
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about the graph structure are of the form

Given an output port P.
What are the input ports connected to P ?

the equivalence lists are also a very economical way, in
time and spaces of representing the graph. One advantage 1is
that there are no variable-size pointer areas in spite of
the varying outward valencies of output ports.

2.3.3 Space considerations.

The conventions for "next" and "link" fields may seem a
little strange. It would in fact be cleaner to wuse a few
more fields +to contain the same information in a straight-
forward manner. But M is by far the biggest data structure
used by the system, and any field saved or wasted has con=
siderable effect on the maximum size of object systems that
can be simulated. I have accordingly bent a little the
declared principle of simplest possible implementation.

2.3.4 Execution times.

The fears that the simulator might turn out to be too
slow for interactive use have proved completely unfounded,
at least for the kinds of circuits that have been simulated
so far. With a realistic program, the user is hardly aware
of the time spent in computation.
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3. COMPILATION.

There 1is «clearly a wide gap between HL and the data
structures required by the simulation algorithms. Some form
of translation 1is needed to bridge this gap. In fact, some
of the language constructs of HL are so dynamie¢ in nature
that 1t appeared easier to divide the translation into two

separate phases: compilation and run.

The compilation is very similar to the compilation of a
language like Pascal. Its input is the "raw" HL programs and
its output some form of "executable code"™. The compiler uses
completely traditional techniques, it is slow and non-op-
timizing, and it was built around an automatically generated

LALR(1)-parser.



The run phase lies between compilation and simulation.
It uses the code generated by the compiler to build (the
static parts of) the internal model.

In this chapter, I shall first give an overview of the
technique used. I shall then proceed to discuss in greater
detail some issues of particular interest.

4.1 QOverview.

The run phase is in many ways similar to the execution
of a Pascal program, provided types and primitives are
viewed as procedures with the side effects of extending the
internal model.

Declarations as well as statements are executed. The
declaration of a component is thus a "eall" of a circuit.
The effect of such a call is to augment the internal model
by a new instance of the circuit. Calls may be nested, and
a traditional run-time stack, placed in C, is employed ¢to
hold type variables and handle the flow-of-control. Ex=-
ecution is initiated by a "system"™ call of the anonymous
"main type'.

As regards primitives, only the declarations are ex-
ecuted, the statements in the body having no effect until
simulation. The call therefore simply allocates space in M
and D for the component's ports and local variables.

For types, declarations as well as bodies are executed

at run-time. Declared ports are allocated space in M, and
declared components are eventually also placed in M and D by
their respective c¢ircuit calls. The net effect of the

declarations is to assemble a collection of the constituent
parts of the type. The connection statements in the type
body thereafter modify this block of data to reflect the
pattern of interconnections.

When two or more components are declared together, as
in
COMP a,b:t ’

the declaration could theoretically be compiled into a
series of identical calls., For efficiency reasons; however,
a single circuit call is instead followed by a duplication
operation that expands the newly created instance into as
many copies as needed.

The last action of the run phase is the compaction:
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Types are effectively eliminated from the internal model by
removing all type ports from the equivalence lists.

4.2 Dope vectors.

For the purpose of simplicitys the question of dope
vectors was not considered above. Since arrays are dynamic,
dope vectors are created at run time when array declarations
are executed.

There are dope vectors describing arrays of objects of
the following kinds:

1) Components

2) Primitive variables
3) Primitive ports

4) Type variables

5) Type ports

1). Dope vectors for component arrays are placed in the
stack frame (in C) of the defining type.

2) and 3). The placement of primitive variable and port
array dope vectors was explained in chapter 2.

41). Type variable array dope vectors are placed in the
stack frame of the defining type along with the variables
they describe.

5). Type port array dope vectors for ports of a type T
are also placed on the run-time stack, but in the stack
frame below the frame of T, i.e. in the stack frame of the
type (possibly the main program) from which T was called.

4.3 Algorithms.

I do not want to explain the chosen algorithms in con-
plete detail. They are not as transparent as could have been
wished. In facts one of the points I want to make is that a
slip 1in the language design has made the implementation of
the run phase more complicated than would otherwise have
been the case.

In a later sections, I shall expose the cause of the
problem, propose and Justify a change to HL, and hint at how
the implementation has been carried out in spite of the dif-
ficulties. For the time beings, I shall describe only some
simpler parts of two central algorithms.
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41.3.1 Connection.

In this sections I describe how the connection operator
->» is implemented.

Suppose a connection statement prescribes that some
output port X is to be connected to some input port Y.

If the language had not supported the type construct,
the following simple algorithm would have been possible:
Simply change the situation

X

M

Fig. 4

to

Fig- 5]

(the boxes represent portss and the arrows indicate the
equivalence lists).
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The scheme is not quite good enough as presented since
it does not provide for a way of detecting the error of con-
necting two output ports to the same input port (in the
first picture, Y would already be part of a non=trivial
equivalence list). The field "father" of each port 1is
therefore wused to indicate whether that port is pointed to
by some "next" field.

The presence of types complicates matters somewhat, and
the algorithm pictured above is not adequate. The crucial
point is that type ports do not have a fixed status (input
or output). As explained in chapter 1, a port of a type T is
treated as an input port when used within T, and as an out-
put port when used outside T, or vice versa.

Taking 1into account the existance of type ports, the
situation before a connection operation may look like

A

Fig. 6

What is required of the connection operation is to mer-
ge the two lists into one list with A as its head. With no
regard to efficiency, this might be done by searching to the
end of the list to the left, and changing a pointer in the
obvious way. However, a pointer to the last element of the
right list, stored in the "last" field of Y, makes it pos-
sible to perform the operation in constant time:
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Lastly a word about the fix statement. Suppose the in-
put port Y is fixed at the value v. This is implemented sim-
ply by going through the equivalence list having Y as its
head, and setting each "value" field equal to v.

4.3.2 Circuit duplication.

This section deals with the duplicating operation that
was briefly mentioned in section 4.1. Since the data struc=-
ture concerned consists mainly of pointers into the struc-
ture itself, the duplicating is not a simple M™literal"
copying and, in fact, it is not an entirely trivial problem.

The situation is as follows: Blocks of data in each of
M and D, of sizes MSIZE and DSIZE, respectively, represent a
particular circuit. I shall describe how to make a logical
replica of this data structure. The reader may easily infer
how to make more than one. ’

I call the «circuit the active eircuit (for this
duplication), and its representation the active area.

The elements of M and D above the active area are not
yet in wuse, so the actual finding of sufficient free space
presents no problem.

The following schematic example may help to show what
is involved:
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active
area

Before duplication After duplication
Pig. 8

Data in D.

Suppose the active circuit is a primitive. It then suf-
fices to set up a new local store. This store must contain
all zeros except for a pointer to the common segment.

If the active «circuit is a types its data in D has a
more complex logical structure of some succession of conmon
and private segments. It is a rather surprising fact that
the simplest possible algorithm will dos namely the copying
of the entire block of DSIZE integers with no modification
at all.

Data in M.

Elements of M in the active area are considered one by
one and each "translated" into a new record. The various
fields are treated separately.
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"VYalue"™ fields are simply copied.

"Link" fields are incremented by MSIZE, if they are
positive. Negative "link" fields are decremented by DSIZE,
if the active circuit is a type, and by the size of a 1local
store, if it is a primitive.

"Next", "last™ and "father" fields are changed ac-

cording to a more complex algorithm. See section 4.4.2.

4.4 Discussion.

The design of the run-time system was to a large extent
guided by the principle:

If possible, the execution of a connection
statement should take constant times and a duplication
operation should take time proportional to the size of
the active area.

This goal has been fully achieved, but only at the
price of a difficult=-to-understand implementation. It may
well be questioned whether this was a reascnable choice. The
time spent in the run phase is short in absolute terms, and
often neglighble compared to either compilation or simulation
time. A simple implementation would mnultiply -execution
times by a factor proportional to the length of equivalence
listss and this would perhaps be entirely acceptable.

4.4.1 Connection.

At first glance, the algorithm suggested by figures 6
and 7 seems to contain a flaw: For each port, a field "last"
pointing to the last element in the port's equivalence list
is postulated. But after the connection has been made;
"last" fields in all elements of the original right list are
wrong and cannot be updated in constant time.

However, it can be proved that these "last" fields, ex-
cept that of Y itself, never are used again, neither in con-
nection statements nor in duplications, and therefore need
not be updated. The proof uses the scope rules and flow-of=-
control of HL and each of the restrictions placed on connec-
tion statements.

The same 1is not true of the "last" fields in the list
to the left. But with the chosen merging algorithm, their
value is still correct.
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4.4.2 Duplication.

The purpose of the duplication operation is to provide
one oOr more circuits that are different from, but "func-
tionally equivalent"™ to a given circuit. This is what
governs the reasoning below.

Data in D.

It may be observed that the duplication of types is
somewhat wasteful of space: Dope vVvectors are copied but
never used for address computation. But the waste is not
inordinate, and to avoid it would be complicated as well as

expensive.

Data in M.

"Yalue" fields.
If a port has been fixed to a value, that value is found in

its "value" field. Otherwise, the "value" field contains 0.
Therefore, value fields can be copied without modification.

"Link" fields.
The seemingly complex algorithm is best wunderstood by

looking at the example data structures and observing that
positive "link" fields point into M, negative into D.

"Next", "link" and "father" fields.
I shall first propose a simple algorithm to deal with these
fields, and will then show how it fails in certain cireum-

stances.

Proposed algorithm:

Increment "next" and "link" fields by MSIZE, if
they are positive (decrement them by MSIZE, if they
are negative), since they are pointers into the active
area in M. If they are 0, copy them, since they point
to nothing at all (0 is used as pointer value NIL).

Copy "father" fields, since they indicate whether
the port they belong to is pointed to by some "next™"
field.

Basically, the algorithm is correct. But consider the
following correct HL program:
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61 TYPE t1;

62 IN a;

63

64 TYPE t2;

65

66 PRIMITIVE p; Y

o7 I b3 321
68 BEGIN

69 END;

70 A b PP
71 COMP pp:p;

72

73 BEGIN (% t2 #) a

T4 a=>pp.b;

75 END; HBala]
76

78

79 BEGIN (% t1 #)

80 END;

81

82 COMP tt1:t1;

83

84 BEGIN (% main #)

85 END;

The connection statement a=>pp.b in the body of t2 con=-
nects a port outside t2 to a port of a component declared
inside t2. When the data structure corresponding to t2 is
duplicated in line 77, this means that a "next"™ pointer from
outside points into the active area. I refer to this
phenomenon as an external pointer.

Fig. 9 illustrates the point and also shows what the
result of the duplication must be.
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This is clearly not what happens according to the sim-
ple proposed algorithm. Extra data fields must be added, or
existing ones modified, to indicate the presence of external
pointers, and extra algorithms must be added to take ap-
propriate action.

I shall not go into the solution I have implemented.
Instead, I want to ask the question: Is it really necessary
to permit external pointers ?

I think not. In more than 2000 lines of HL programs, I
have never used this facility, except when testing the im-
plementation of HL. Furthermore, external pointers have a
curious interpretation in the physical systems HL is sup-
posed to model: Connecting a port outside a type T directly
to a component inside T seems to suggest that you can pull a
wire from outside a system to some point inside the system,
but without ever crossing that system's boundary or inter-
face to the outer world.

In programming terms, external pointers share some of
the characteristics of side effects. It seems likely that
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their use can result in needlessly obscure programs.

In conclusion, I think it would be a good idea to ban
external pointers from HL.

This would mean a further departure from the scope
rules of Pascal. But it would remove an unpleasant asym=-
metry from HL; connections "from outside to inside™ would be
prohibited as well as connections "from inside to outside".
In practical terms, condition 1 a) page 11 would be changed
to

Both involved ports (in a fix statement: The involved
port) must be declared within T. ’

and a minor change would be made to the compiler.

4.4.3 Compaction.

The compaction phase was added to speed up the
simulation by shortening pointer chains.

In order to make a simple and fast algorithm possible,
type ports are distinguished by having link=0.

4.4.4 Data allocation.

In the course of the run phase, storage for some ob-
Jjects, such as type variables, is naturally allocated on a
stack. I call such objects non-permanent data, since they
only exist during part of the run phase. On the other hand,
some objects, such as primitive variables, must be preserved
throughout the run phase (and simulation). They are per-
manent data.

If permanent and non-permanent data were allocated from
the same pool, it would be close to impossible to reclaim
the space taken up by non-permanent data. This is the reason
why two arrays are used to hold integer data. D holds the
permanent data and continually grows. C holds the non-per-
manent data and shrinks and grows in a stack fashion.

Type variables and their dope vectors, and dope vectors
for arrays of components are non-permanent data kept in C.

Primitive variables and dope vectors for primitive
variables and ports are permanent data kept in D.

Dope vectors for type ports are non-permanent data.
However, since the scope of type ports extends one block

level further than given by the scope rules of Pascal, a
suitable place to store their dope vectors is in the stack
frame below the topmost (currently active) stack frame.
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It might be a good idea also to divide M into a per=-
manent part holding primitive ports and a stack part holding
type ports.

This would require the compiler and the run-time system
to be slightly more complicated, and it would be necessary
to perform a compaction at each type exit instead of once at
the end of the run phase. But the scheme would probably
result in a significant space saving.
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5. THE SYSTEM'S USE IN THE HARDWARE COURSE.

The students attending the hardware course in the fall
of 1981 were invited to use the simulation system. It was
presented to them in a one-hour lecture and a few shorter
follow=up sessions, and a user's manual was handed out, It
was stressed that the system did not represent a compulsory
part of the course.

The context.

The idea was to let the system appear as similar as
possible to the breadboard kit. Students should be able to
carry out a design in HL almost as they would have done it
using the kit, and then translate the debugged end product
almost automatically into a physical circuit.

For this reason, counterparts of the IC's in the kit
were programmed in HL and collected in a context. Prior to
compilation, the system added the context to the user
program, so that the IC's appeared to be predefined.

One IC, a monostable mnmultivibrator, c¢ould not be
defined at all, and a few had to be slightly modified, for
instance those having three-state outputs.

The context, some 1200 lines of HL, is appendix B to
this report. It also defines most of the input-output
facilities found on the breadboard, namely:

A group of 8 lights

A group of 8 manual switches

A group of 3 hexadecimal displays
A clock output

An input to stop the eclock

A button to start the cloeck

A button to single-step the clock

The first three and the last two have fixed positions
on the terminal screen corresponding to their position on
the breadboard. The clock output is not identical to the
predefined "clock" output described in section 1.2.3.

One important facility missing from the context are two
so=called "dynamic inputs™, buttons often used to effect an
initialization of the circuit. As a kind of compensation, a
special output "reset" having no ©breadboard analogue is
provided. It has the value 1 prior to the first clock pulse
and 0 ever afterwards.

Simulating EPROM's.

Micro-programming wusing an EPROM plays an important
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role in the hardware course. Students have access to an
EPROM burner controlled by a special program "PROM". Input
to "PROM"™ is a description in some format of the desired
memory contents.

To model the EPROM in HL, a program was written that
takes as input a description in the same format and converts
it into an HL primitive behaving like the programmed EPROM.

5.1 Iser reactions.

Towards the end of the semester. the course par-
ticipants were asked to fill in a questionnaire about the
use they had made of the system.,

Some of the information obtained from this and other
sources is given below together with some comments.

The user's manual was read by all students. About half
actually tried out the system. Asked whether they Judged it
a useful design tool, the most common reaction was one of
reservation and scepticism. However, this must be put into
perspective by remarking that the students had spent on the
average less than 10 hours on all related activities, atten-
ding lectures, reading the manual, programming and running
programs.

Positive comments centered around the readability of a
well-structured and well-documented HL program as compared
to a "bird's nest" of wires. Small changes are easily and
safely made in an editor. Although none of the students
remarked so, this is especially true in the case of an
EPROM. Reprogramming a physical EPROM takes some 30 minutes,
albeit without the need for permanent human attention,
whereas a new HL EPROM can be obtained in less than a
minute. ‘

Finally, the type concept was commended as a good way
to convey the structure of a design.

As for negative comments, the most frustrating thing
about the system appeared to be its long "start-up" time.
The complete "want list" was, in order of decreasing impor-
tance:

- Faster compilation
- Dynamic¢ inputs

- Adjustable ecloeck period
- WITH statement

Common to these complaints and wishes is that they do not
point to any basic deficiency of the system.

Compilation of the context takes approximately 40
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seconds of machine time. The user program in most cases adds
insignificantly to this figure. Compilation could be
speeded up by the following means:

1) More efficient compilation techniques.
It would probably be difficult to gain very
much in this direction.

2) Introduction of c¢ircuit parameters.
The context could be shortened somewhat.

3) Precompiling the context.
What I mean is: Compiling the context once and
for all, and not every time anew. This way,
compilation time could be reduced to a frac-
tion.

Dynamic innnkﬂf

The analogue of dynamic inputs would be keyboard com-
mands having an immediate effect, even when the simulation
system 1is not expecting any input. The only reason why this
was not included in the context were implementational dif-
ficulties: The local version of Pascal does not provide a
way of inquiring about the presence of a character in the
keyboard buffer without actually waiting wuntil a key is
depressed.

Dynamic idinputs could be implemented by resorting to
subroutines in assembly language. They could be interfaced
to the system through a small number of predefined input
routines and a predefined output port indicating the presen-
ce of an unprocessed character. In effect, this would amount
to an interrupt system, and the component(s) connected ¢to
the new port would constitute the interrupt handler.

Adjustable clock nazigdﬁ

Whereas the breadboard clock period can be adjusted
within certain limits, the system's clock at present runs as
fast as possible (real time). An adjustable clock period
could be obtained simply by introducing a predefined
procedure "setclock".

WITH statement.

Was discussed in section 1.3.14.

Personal ideas.

Something I have been missing myself is a debugging
system. After all, the system is supposed to support the ac-
tivity of design and testing, and I feel that its usefulness
would be greatly enhanced by the addition of carefully
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designed debugging aids.

It is possible to do debugging with the present system;
one can, for example, declare a special debugging component,
give it an input from every "strategic" point in the circuit
and let it continuously evaluate some expression represen-
ting ™Mall is OK". When this condition fails, the debugging
component displays the information available to it.
However, this is a comparatively tedious process, and there
might be better ways.

Taking speculations one step further, one could imagine
the simulation system coupled to some sort of graphics
systems so that the user could

a) Give the input to the system interactively in the
form of a series of (changes to) diagrams.

b) Make the system display the object system it had
perceived, or some specified part of it.
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6. OTHER SIMULATION SYSTEMS.

In this chapter, I shall try to compare the simulation
system to other systems designed to perform similar tasks.
For ease of reference, the system described in this report
will be called "HSIM™,

I have never actually worked with another hardware
simulation system, and my knowledge is based exclusively on
a small number of articles, some of which do not even deal
principally with simulation. I shall therefore not attempt
any extensive analysis but restrict myself to a few general
and qualitative remarks.

My most important sources were [5] and [6]. [5] offers
a useful classification of simulators in various directions,
and [6] is my only detailed example of a description
language.

I have also studied [7] and [81].

Dela&ai

The most significant distinction between HSIM and other
systems probably concerns the handling of delays. The great
majority of simulators presented in [7] have some form of
assignable delays, i.e. delay times are specified by the
user. Simulation with =zero delays, equivalent to the
simulation done by HSIM, is termed "logic verification" in
[5] and is by and large discarded as too primitive and too
far removed from physical reality.

Primiti .

[5] discusses whether basic ecircuit building blocks
should be restricted toc gates or whether elements such as
flip-flops should also be supported (parameterized versions
are also considered). In [6]s, the set of basiec elements is
small and fixed, although general combinational circuits can
be specified in another way (through boolean equations). The
idea that the wuser should be given the freedom to define
whatever primitives he wishes does not seem to enjoy great
popularity; at 1least, I have not found a single example in
the literature of anything comparable to primitive
definitions.

It might be suspected that a flexible and extensible
set of primitives were a mere theoretical gadget with no
practical usefulness. However, at least for the use I have
made of HSIM, this is not true.

Unless the macro expansion is supposed to be restricted
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to one level, the macro preprocessor approach in [5] gives
the user the same advantages that the type concept gives the
HL programmer. In [6], there is no equivalent to types.

Comparing HL directly to the one competitor I have
discovered in the literature, the language described in [6],
it can hardly be disputed that HL is superior as concerns
generality and elegance, probably also, except in the case
of very small systems, ease of use. But this is not sur-
prising; you cannot fairly compare two systems separated by
nearly 20 years.

Concluding, it may be said that HSIM is definitively in
the lightweight end of simulation systems, but that it still
compares well with other systems in a number of ways.
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7. CONCLUSION.

The presented system is simple and easy to use. It is
probably not sufficiently sophisticated to be of much use in
a conmmercial context, but it is well suited to assist in
designs that are carried out according to simple logical
models without definite circuit delays.

Being a pilot projeect, it lacks all but the most essen-
tial facilities. There is ample room for improvement and
extension.
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The following terms are used in a precise and technical sen-
se in the report. The page numbers indicate their point of
introduction.

Active area 38 Local store 26
Active circuit 38 Logical model y
Logical value b
Circuit 9
Clock 13 Non-permanent data Ly
Common segment 26
Compaction 34 Object system 4
Compilation 3 OQutput 9
Component 8
Component execution 13 Permanent data L4y
Connection statement 10 Port 8
Constituent parts 9 Primitive 9
Primitive component 9
Defining circuit 11 Primitive port 12
Duplication 34 Primitive variable 12
Dynamic data 25 Private segment 26
Equivalence list 25 Run 33
Excited 13
Expanded system 12 Static data 25
External pointer 42
Type 9
Fix statement 10 Type component 9
Type port 12
HL 6 Type variable 11
Input 9 Variable 9
Instance 9 Wire 8
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Appendix A

{program> ::= <declaration part> <body> ;

{declaration part> ::= <{declaration sequence}
/ Lempty>

{declaration sequence)> ::= <{declaration)>
/ <declaration sequence}
<declaration>

<header> ; <declaration part)> <body> ;
VAR <item list> ;

IN <item 1list> ;

OUT <item list> ;

COMP <component declaration sequence>

{declaration>

NN\

<header> ::= PRIMITIVE <identifier>
/ TYPE <identifier)>

<itemlist> ::= <item>
/ <item list)> , <item>

{item>» ::= <identifier>
/ <identifier)> [ <range list> ]

{range list> ::= <range>
/ <range list> , <range>

{range> ::= <{expression> .. <expression>
{component declaration sequence> ::= <{component declaration)
/ <component declaration sequence)
{component declaration

{component declaration> ::= <item list> : <identifier)
<body> ::= BEGIN <statement sequence)> END

{statement sequence?> ::= <{statement)
/ <statement sequenced> ; <{statement>

<elementary statement>

<if part) <then part)> ELSE <statement®
<if part> THEN <statement>

{<while part> DO <statement>

{for part> DO <statement)

{statement>

NN\

<if part> ::= IF <expression>
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<then part> ::= THEN <restricted statement>
<while part> ::= WHILE <expression>

{for part> ::= FOR <identifier)> := <expression>
TO <expression>

/ FOR <identifier> := <expression>

STEP <expression> TO <expression>

{restricted statement> ::= <elementary statement>
/ <if part> <then part> ELSE <restricted statement>
/ <while part> DO <restricted statement)
/ <for part> DO <restricted statement>

{elementary statement)> ::= <variable> := <expression>
{compound> => <compound>

{source> => <{compound>

REPEAT <statement sequence> UNTIL <expression>
REACH ( <expression> s <expression)> )

REACH ( <expression)> , <expression> : <expression) )
READ ( <variable)> )

WRITE ( <field list> )

WRITE ( <string)> )

<body>

<empty>

RN B 85 N N NS,

<identifier>
<identifier> [ <expression list> ]

<variable>

~

{compound> ::= <variable>
{variable> . <variable>

~

{source> ::= <constant>
/ ( <expression> )

{expression list)> ::= <expression>
/ <expression list> , <expression>

{expression> ::= <arithmetic expression>
{relational operator> <arithmetic expression>

/ <arithmetic expression>

{arithmetic expression> ::= <arithmetic expression>
<adding operator)> <term>
/ <term>

<term> <multiplying operator> <primary>
{primary>

<term> ::

g

{primary> ::= <variable>
/ <constant>
/ ( <expression> )
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{field list> ::= <field>
/ <field list> , <field>

<field> ::= <expression
/ <expression)> : <expressiond

{relational operator>

NN
VAV AAIDN
v

{adding operator> +

/
<multiplying operator>

DIV
MOD

S N |

{digits>
+ <digits>
- <digits>

<constant>

.
oe
~~n

{Identifier>, <digits> and <empty> have not been
{Empty> means the empty string, <digits> is one
digitss and <identifier)> is a 1letter followed by
more letters or digits.

defined.
or more

zZero

or



- B 1 =

Appendix B

(********************ﬁ*****i***********!*)

(# %)
(% CONTEXT #)
(# DESCRIBING INTEGRATED CIRCUITS #)
(® i)
(& To be used with #)
(* hardware simulation system #)
(# #)

(*********%***!**************************)

(# QUARTER T74LSO02 %)

primitive nor;
in 1[1s+2]3
out o;
begin
iff 4£L1]
then o0:=0
else o:=1-i[2];
end ;

primitive nor3;
i 4L T«»313
out o;
var k;
begin
ki=1;
repeat
if ifk]
then begin
0:=0;
k:=5;
end
else k:=k+1;
until k>3;
if k=4
then o:=1;
end;

primitive norl;
i Al Tend ]
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out o;
var k;
begin
ki=1;
repeat
if i[k]
then begin
0:=0;
keg=62
end

else k:=zk+1;
until k>4;
if k=5
then o:=1;
end ;

(# HALF 74LS260 #)

primitive nor5;
in £[1..51;

out o;
var k;
begin
k:=1;
repeat
if if[k]
then begin
0:=0;
k:=7;
end
else k:i=k+1;
until k>5;
if k=6
then o0:=1;
end;
primitive norb6;
in i[1..61];
out o3
var k;
begin
ki=1;
repeat
if il[k]
then begin
0:=0;
k=83
end
else k:=k+1;
until k>6;
if k=7

then o:=1;



end;

(# QUARTER T4LS08 #)

primitive and;
in 1[1++213
out o;
begin
if i[1]
then o:=i[2]
else 0:=0;
end ;

primitive and3;
it 3[1ea3];

out o3
var k;
begin
k:=1;
repeat
if ilk]
then k:=zk+1
else begin
0:=0;
k:=5;
end ;
until k>33
if k=4
then o:=1;
end ;
(# HALF 74LS21 #)
primitive andi;
in il1..417;
out o3
var k;
begin
k:=1;
repeat
if ilk]
then k:=k+1
else begin
os=04
k=6
end;
until k>4,
if k=5

then o:=1;
end ;

B 3



- B 4

primitive and5;
in il1.+51;
out o;
var k;
begin
ki=1;
repeat
if ilk]
then k:=k+1
else begin
0:=0;
ki=7;
end ;
until k>5;
if k=6
then o:=1;
end ;

primitive andb6;
in 1[1.4613
out o;
var k;
begin
k:=1;
repeat
if ilk]
then k:=k+1
else begin
0:=0;
len =8 5
end ;
until k>6;
if k=g
then o0:=1;
end;

(# SIXTH TU4LS14 *)

primitive inv;
in, a3
out o;
begin
o:=1-1i;
end ;

(# QUARTER 74LS132 #)
primitive nand;

in il1..21;
out o;
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begin
if i[11]
then o:=1-i[2]
else 0:=1;
end ;

(# HALF T4LS20 #)

primitive nandl:
in i[1-ou];

out o;
var k;
begin
k:i=1;
repeat
if ilk]
then k:=zk+1
else begin
o:=1;
k:=6;
end;
until k>4;
it k=5
then o0:=0;
end;

primitive nand5;
I 1T%..83
out o;
var k;
begin
k:=1;
repeat
if ifk]
then k:=k+1
else begin
0o:=1;
k:i=T;
end ;
until k>5;
if k=6
then o0:=0;
end;

(# T4LS133 #)

primitive nandi13;
In 1[1:%1313
out o;
var k;

begin
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k:i=1;

repeat
if ilk]
then k:=k+1
else begin

o:=1;
k:=15;
end;
until k>13;
if k=14
then o0:=0;
end;

(®# QUARTER T74LS32 #)

primitive or;
in 1[1.:2];
out o3
begin
i A4l 1]
then o:=1
else o:=i[2];
end;

primitive or4;
in i[1..471;
out o;
var k;
begin
k:=1;
repeat
if il[k]
then begin

o:=1;
kz=b
end
else k:=zk+1;

until k>4;

ift k=b

then o0:=0;
end;

(# HALF T7HLST4 #)

primitive flipflop;
in dscpsn_sd,n_cd;
out q.,n_q;
var nj;

begin
if n_sd
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then if n_ed
then if c¢p
then begin
q:=n;
n_gq:=1-
end
else n:=d
else begin

end
else if n_ecd
then begin

end
else begin
q:
n_
end;
end;

(# QUARTER T4LS86 #)

primitive xor;
16 L[ 1sw2]}
out o;
begin
o:=il[11<>il2];
end ;

(# TULS138 #)

type decoder;
in al[0..2],n_el,n_e2,e3;
out n_o[0..7];
comp y[0..2]:inv;
no:nor ;
a2:and;
nali{0..7] :nand};
var j,k,l,n;

begin
n_el=>no.il11;
n_e2=>no.il21;
no.o->a2.i[11;
e3->a2.il2];
n:=1;
for k:=0 to 2
do begin
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alkl=>ylkl.i;
1:=0; =
repeat
for j:=1 to l+n=1
do ylkl.o=->nall[jl.ilk+11];
l:=1+2%p;
for j:=l-n to 1l=1
do alkl=>naldl[jl.ilk+1]1;
until l=8;
n:=n¥*2;
end;
for k:=0 to 7
do begin
a2.o=->nal[kl.i[4];
nadlkl.o=->n_olkl;
end; =
end ;

(# 74LS153 #)

type select?l;
in i[1..2,0..3],S[O..1],n_e[1..2];
ot Zl1in2l; '
comp sy[0..1]seyl[1..2]:inv;
ab[1..2,0..3]:andl;
ult[1..2]:0rd;
var J:k,l;

begin
for k:=1 to 2
do begin

slk=-11->sylk=11.1;

n_elkl->eylkl.ig

for 1:=0 to 1

do for ji=0 to 1

do begin
s[l]l->ali[k,3-j%(2-1)].i[1+1];
sylll.o=->allk, j®#(2=-1)}.i[1+1];
end;

for 1:=0 to 3

do begin
ilks1]=->ali[k,11.i[31];
eylkl.o->al[k,1]1.i[4];
allkslleo=->uli[k]l.i[1+1];
end ; )
ull[kl.o=->z[k];
end; -
end ;

(# TULS157 #)

type selecth;
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in i[0..1,0..31,8,n_¢e;

out yl0«+3]13

comp nol[0..1]:nor;

ys:inv;

al0..350..1]:and;
ul0..3]:0r;

var k,l;

begin

for k:=0 to 1
do n_e->nolkl.il[11];
s=>nol[0].i[2];

8=>ys.i;"

yse.o=>nol[11.i[2];
for ki=0 £o-3

do begin

for 1:=0 to 1
do begin

end;

i[l,k]->a[k,1].1[1];
nolll.o->alk,1].i[2];
alks1ll.o=>ulkl.il1+11];

ulkl.o=>ylk];

end;
end;

(# THLS161 #)

type counteri;

in d[0..3],cpsn_mr,n_pescepsrcet;
Out q[0¢03]9tc;

primitive mbit;
in i,epsyn_mr;

out o;
var nj;
begin

if n_mr

then if e¢p
then o:=n
else n:=i
else begin

end;

end ;

comp y:inv;

a3:and3;

n:
0

“e

0
0

ali[0..3]:andl;
ac[0..3]5apl[0..3]:and;
¥x[0..3):x0r;
ul[0..3):0r:



b[0..3]:mbit;

a5:and5;
var k,1l;
begin
n_pe=->y.ij;

n_pe->a3.il11]1;

cep=->a3.il2];

cet->a3.i[31]1;

for k:=0 to 3

do begin
n_pe=->aclk]
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Jil11;

dlkl=>aplk]
a3.o->allk]

+il21;
#i0171;

end;

ab[kleo=>x[kl.il1];
aclklio=>x[klsil2]1;
x[kleo=>ulkl.i[1]1;
aplkl.o=->ulkl.il2];
ulkl.o=>blkl.i;
n_mr=>blk]l.n-mr;
ep=>blkl.cp;
blkl.o->qlk];
blkleo=->aclkl.il[2];
for I:=k+1 to 3

do blkl.o=->all[1]l.ilk+21];
for l:=k+2 to 4

do 1->al[kl.i[1];
blkl.o=->a5.ilk+11];

cet=>ab5.il[51];
ab.o=>tc;

end ;

(®# T4LS169 #)

type counter2;
in d[0..3]5upscpsn_pesn_cepsn_cet;
out ql0..31sn_te;

primitive bit;
in i,cp;

out o3
var n;
begin
if cp
then o:=n
else n:=i;
end;

comp eno,stno:nor;
Py>uy,byl[0..3]ey
a1{0..3]332[01 -3]

sl
vand;
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x[0..3]:x0r;
ul0..351..2]5u1[0..3]:0r;
b[0..3]1:bit;
a4[0..351..2]:and¥;
abl1..2]:and6;

var Jjiks1l;

begin

end ;

n_cep->eno.il11;
n_cet=->eno.il[2];
n_pe=>py.ij;
up=>uy.i;
for k:=0 to 3
do begin
eno.o=->allkl.il[1]1;
a1[k]-0->}{[l{].i[1];
x[kleo=>ulk,11.i[1]1;
py.o=>ulk,11.i[21];
dlkl=->ulk,21:il11;
n_pe=->ulk,2]1si[2];
for l:=1 to 2
do ulk,1ll.o=>a2[k]l.i[1];
a2lkl.o=>bl[kl.i; -
cp=>blkl.cp;
blkl.o=>qlk];
blklio=->x[kl.il[2];
blklso=->bylkl.ij;
up->a4lk,11.il[11;
uy.o=->allk,21.il[1];
for 1:=0 to k=1
do begin
b[l]l.o=>allk,1]1.i[1+2];
byl[ll.o=>al[k,2F.i[1+2];
end; -
for l:=k+2 to 4
do for j:=1 to 2
do 1->ald4lk,jl.il1l];
for 1:=1 to 2
do allk,1ll.o=>ullkl].il[1]1;
ullkl]eo=->atlkl.il[2]1;
blkl.o=->ab6[1].i[k+21;
by[kl.o=->ab6[2}.i[k+2];
end; - -
up=>abl11.i[1]1;
uy.o=->a6l2].1i[1];
n_cet=>ey.ij
for k=1 to 2
do begin
ey.o->ablkl.i[61];
ablkl.o=>tno.ilk]1;
end ;
tno.o=->n_te;
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(# THLS175 #)

type flipflopl;
in d[0,.3]scpsn_mr;
out ql0..31»n_ql[0..3];

primitive mbit;
in i,cpsn_mr;
out o;
var n;
begin
if n_mr
then if e¢p
then o:=n
else n:=1
else begin

end;

comp b[0..3]:mbit;
y[0..3]:inv;
var k;

begin
for k:=0 to 3
do begin
dlk]=>bl[kl.i;
ep=>blkl.cp;
n_mr=>b[kl.n_mr;
blkleo->qlk];
blklso=->yl[kl.i;
ylkleo=->n_qlkl;
end;
end;

(*************!****************)

(® #)
(#* Modified version of #)
(* 7T4LS181 #)
(= %)
(= Output a_eq_b is not #)
(#* open collector #)
(#* #)

»
(¥R EXFTRARARLAFASTRITRRRRRRRER)

type aluj
in n_al0..3]sn_b[0..3]s80,81,82,83,ci,m;
out n_fl[0..3]scosn_gsn_psa_eq_Db;
comp yb[O0..3]sym:inv;
a3[0..3,0..4]1:and3;
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no[0..3]:nor;
no3l(0..31:nor3;
x100..31,x2[0..3]:x0r;
abl1..13]12and5:
nod[0..3):nor4;
na5[1..2]:nand5;
naO,nac:nand;
all:andd;

var j,k,l,n;

begin
n:=1;
for k:=0 to 3
do begin
for 1:=2 to 4
do n_alkl->a3[k,11.i[11];
n_blkl->a3[k,0].i[2];
n_blkl->a3[k,31:i[2];
50->a3[k,0]1.i[37;
s1->a3[k,11+i[31];
s2=>a3[k,21s1i[31;
s3=->a3[k,31+i[31];
n_blkl->yblk]l.i;
yblkl.o=>a3[ks11.i[2];
yblklso=->a3[k,2]1.i[2];
1=>a3fk,01.i[11;
1->a3[k,114i[11];
for 1:=2 to 3
do begin
1=->a3[k,41.i[11;
a3lks1l.o->nolkl.il1-11;
end; '
for 1:=0 to 1
do a3[k,1].0->no3[kJ].il1+1];
a3[ks4].0->n03[kl.i[31;
nolkl.o=>x1[kl.i[1];
no3[kl.o=->x1[kl.i[2];
x1[kleo=>x2[k].i[1]1;
for 1:=0 to k
do begin
no3lll.o=->a5[n+11.i[2];
for j:=1+1 to k
do noljl.o=>a5[n+11.i[j-1+21;
for j:=k-=1+3 to 5
do 1=->a5[n+11.il[j];
a5[n+1l.0=->nol[k1.i[1+1];
end;
for l:=k+2 to 3
do O=>nol#[kl.il[1l1];
n:=n+k+2; .
if k<3
then begin
ci->a5[n=-11.i[51;
nodl[kl.o=->x2[k+1].i[2];
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for 1:=0 to k
do nol[ll.o=>a5[n=-11.i[1+2];
for 1l:=k+3 to 4 '
do 1=>a5[n=1].i[11;
a5[n=1]l.0=>no4[k].i[41];
end; -
for 1:=1 to 2
do nolkJl.o=>na5[1].i[k+11];
x2[kJl.o=->n_flk]l;
x2[klco=>al.ilk+11];
end; - )
m=>ymeis;
for k:=1 to 9
do ym.o->a5[kl.i[11;
for k:=10 to 13
do 1->a5[kl.i[11];
ci=->nal0.il11%;
ym.o=>na0.il[2];
nal.o=>x2[0].i[21];
1->nab5[11.i[51;
ci=>na5[21.i[51];
na5[1].0=->n_p:
na5[2]lso0->nac.il1]1;
nold[3lso=>nac.il2];
nac.o=>co;
nodf3l.o=>n_g;
alb.o->a_eq_b;
end; -

(*# 7THLS194 #)

type shift;
in d[0..3],dsr,dsl,s0,s1scpsn_mr;
out ql0..3]1;

primitive mbit;
in i,cp.,n_nr;
out o;
var n;
begin
if n_mr
then if c¢p
then o:=n
else n:=1i
else begin
n:=0;
0:=0;
end ;
end ;

comp yO0,yl:inv;
al0..351..4]:and3;
ul0..3]:0rk;
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b[0..3]1:mbit;
var ks,1l;

begin
80->y0.1;
s1=->y1.1i;
for k:=0 to 3
do begin
s0->alk,11.i[3];
s0=->alk,217i[11;
s1=>alk,21vi[2];
s1->alk,317i[2];
Y0.0=->alk,3].i[1];
y0.o0->alk,41:1i[11;
yl.o=>alk,11.i[2];
yleo=>alk,41s;i[2];
dlk]l->alk,215i[31;
blkl.o=>alk,41.i[31];
for 1:=1 to %
do alksll.o=->ulkl.il[11];
ulkleo=>blkl.i;
ep=>blkl.cp; -
n_mr->blkl.n_nmr;
blkl.o=>qlk];
end ; =
for k:=0 to 2
do begin
blkl.o=>alk+1,11.1i[11];
blk+1]l.0=>alk,;31.i[31];
end ; -
dsr=>al0,11.i[1]1;
dasl=>al3+31:4i[3];
end; )

(®* TH4LS3TT #)

type flipflop8;
in d[0..7]scpsn_e;
out q[0..71;

primitive bit;
in iscp;
out o;
var n;
begin
if ep
then o:=n
else neg=ig
end ;

comp y:inv;
a1{0057]!a2[0--7]:and;
ul0..7]:0r;
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b[0..7]:bit;
var k;

begin
n_e=>y.ij;
for k:=0 to 7
do begin
y.o=>allkl.il[1];
dlkl=->allki.il[2];
n_e=->a2lkl.il11;
allkleo=>ulkl.il[11];
a2lkl.o=>ulkl.il21];
ulkl.o=>blkl.i;
ep=>blkl.cp; -
blkl.o=->a2l[kl.il[21];
blklso=->qlk]1;
end; -
end ;

(# THLS379 #)

type register3779;
in d[0..3]scpsn_e;
Out Q[O.-3]sn_Q|:0..3];

primitive bit;
in i,cpsn_e;
out o,n_o;

var nse;
begin
if cp
then begin
if e
then begin
o:=n;
n_o:=1=n;
end ;
end
else begin
n:=ij;
e:=1-n_e;
end ;
end ;

comp b[O0..3]:bit;
var k;

begin
for k:=0 to 3
do begin
dlk1->bl[k].i;
ep=->blkl.cp;
n_e->blkl.n_e;
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b[k].0—>Q[k];
blklen_o->n_qlkl;
end; -
end;

(*# 74LS398 #)
type register398;
in i[(0..150..31s3,5cp;
Out Q[O.-3]tn__Q[0--3];

primitive bit;

in iscp;
out o,n_o;
var n;
begin
if ep
then begin
o:=n;
n_o:=1=n;
end

else n:=1i;
end;

comp y:inv;
al0es150..3]:and;
ul0..3]:0r;
bl[0..3]:bit;

var ks,1l;
begin
S=>¥.1;
for k:=0 to 3
do begin
s=>al1,k1.i[11]1;
y.o=>al0,k]l.i[1];
for 1:=0 to—1
do begin
ill,kl->all,k]l.i[2];
allsk]eo=>ulkl.ill+1];
end ; - :
ulkl.o=>blkl.i;
cp=>blkl.cp;-
blkl.o=>qlk];
blkl.n_o=->n_qlk]l;
end; =

end ;
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(*****‘l***ﬁ**************i*****)

(% *)
(#* Modified version of #)
(% 2101 #)
(% ®)
(# Input OD is permanently ®)
(% tied to O #)
(% Inputs all4]..al7] are #)
(% permanently tied to O #)
(% *)

(¥R EXRRAR TR BN R R R DR IR R XTI RRRES)

type ram;

in a[0..31sdil1..4]1,n_w>n_cel,ce2;
out ol[1..41;

primitive wbit;

in i,w;
out o;
var nj;
begin
if w
then begin
ng=i;
0:=n;
end ;
end;

primitive or16;
in 1E1+.16]3
out o3
var k;
begin
k:=1;
repeat
if ilk]
then begin

o:=1;
k:=18;
end
else k:=zk+1;

until k>16;

if k=17

then o0:=0;
end;

comp no:nor;
easawl[0..15],ar[0..15,1..4]:and;
all[0..151:andb; -
b[0ee1551T8]:whit;
016[1..4]1:0r16;
y[ 0. s3] sdnyv;

var j,k,l,n;
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begin
n_w=>no.il[1];
n_cel=>no.il2];
ce2=>ea.il1];
no.o->ea.il[2];
for k:=0 to 15

do begin
ea.o->awlk].i[1];
ali[kl.o=->awlkl.i[2];
for 1r=1 to 4
do begin
dil[l]->blks1].i;
awlkl.o=>blks1l]l.w;
b[k,l].o->ar[k,l].i[1];
ad[kl.o=->arlk,11.i[2];
arlk,1l.o=>016[1].i[k+1];
end;
end;
n:=1;
for k:=0 to 3
do begin
alkl=>ylkl.i;
Le=03 '
repeat

for j:=1 to l+n-1
do ylkl.o=>all[jl.ilk+11];
l:=1+2%n;
for j:=1=-n to 1-1
do alkl->ad4l[jl.ilk+11;
until 1l=16;
n:=n#*2;
016[k+1]l.0->0[k+1];
end; =
end;

type zzzzzboard;
in reset,clock,switch[1..81;
out n_stop,light[1..8],display[1..3,0..3];

(¥ START OF USER PROGRAM #)
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(# END OF USER PROGRAM #)

(*i**********************i********i*i****)

(% %)
(% CONTEXT #)
(# DESCRIBING BREADBOARD FACILITIES %)
(% *)
(% To be used with &)
(* hardware simulation system &)
(% ®)

(*************i**************************)

type peripherals;
in clocksn_stop,light[1..81], dlsplay[1..3 0..3]
out reset,cl,sw1tch[1..8]

primitive lights;
in Iightl1.:81;
var i,n[1..81;
begin
for iz=1 to 8
do if lightl[il<>nl[i]
then begin
reach(11,35+1i);
write(light[1]1:1);
nlil:=lightl[il;
end;
reach(11,45);
end;

primitive displays;
in displayl[1..3:0..3]1;
var g,l,J,s,n[1..3],two[0..3]

begin
if g:O
then begin
twol0]:=1
for i:=1 to 3
do twolil:=2#%twol[i-11;
gi=1;
end ;
for i:=1 to 3
do begin
s8:=0;

for j:=0 to 3

do if displayli,jl
then s:=s+twoljl;

if s<>nl[il



- B 21 =

then begin
reach(12,8+3%i);
write(s:3);
nElli=s5;
end;
end ;
reach(12,19);
end;

primitive switches;
in clocksn_stop;
out reset,cl,switchl[1..81;
var i,m,psrsssten[1..81;
begin
if s=3
then begin
if r
then if n_stop
then p:=2
else p:=4
else p:=4;
if ecloek=0
then begin
cl:=0;
83:=p;
end;
end
else if s=2
then begin

if clock
then begin
eli=l;
s:=3;
end ;
end
else if s=U4
then begin
if clock
then
begin
repeat
reach(14,34:10);
read(m);

for i:=1 to 8
do if md>=ten[i]
then begin
switch[i]:=1;
m:=m-ten[il];
end
else switch[il:=0;
until m=0;
5:=53
end;
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end
else if s=5
then begin
if clock=0
then begin
reach(13,64:3);
read(r);
5:=2;
end;
end
else if s
then begin
if clock=0
then begin
reset:=0;
s:=h;
end ;
end
else begin
tenl[8l:=1;
for 1i:=7 step -1 to 1
do tenl[i]:=ten[i+1]1%#10;
reset:=1;
8:=1;
end;
end;

comp l:lights;
d:displays;
S:switches;
var i,j;

begin
reach(8,37);
write ('LIGHTS');
reach(9,36);
write('12345678");
reach(10,36) ;

reach(16,36) ;

write('12345678");

reach(17,36) ;

write('SWITCHES');

reach(9,13);

write ('DISPLAY');

reach(10,13);

write(t*1 2 3');

reach(11,12);

write('——recea=- 123
write(?® RUN');
reach(12,12);
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write(! 133
reach(13,1);
write(?
write(?
reach(14,1);
write(? ');
clock=>s.clock;
for i:=1 to 8
do begin
light[il->1.light[i];
Seswitch[il=>switch[i];

- -

end;
for i:=1 to 3
do for Jj:=0 to 3
do displayli,jl->d.displayli,jl;
S.reset=->reset; B
S.cl=>cl;
n_stop=->s.n_stop;
end;

comp breadboard:zzzzzboard;
io:peripherals;
var i»Jj;

begin
clock=->io.clock;
io.reset=>breadboard.reset;
io.cl=>breadboard.clock;
for i:=1 to 8 =
do begin
io.switch[il->breadboard.switch[il];
breadboard.light[il->io.Iight[i];
end ; -
for i:=1 to 3
do for j:=0 to 3
do breadboard.displayli,jl=>io.displayli,jl;
breadboard.n_stop->io.n_stop;

end;






