A Proposition for a Theory of Testing:
An Abstract Approach to the Testing Process

Luc Bougé

The author is currently visiting Aarhus University, Denmark,
supported by an INRIA grant. He will be working for CNRS after

October 1983.

Mailing address: LITP, Université& Paris 6 & 7,
2, place Jussieu
F-75221 Paris Cedex 05
France

Abstract

We describe an abstract model for the program testing process,
based on first-order egalitary logic. We define the notion of

a battery of tests for a given testing context. Its properties
are studied: reliability, validity, bias and acceptability.

A preorder is defined and studied, which leads to an equivalence
relation among batteries of tests. This equivalence turns out to

be. of great interest, both theoretical and practical.

We show the application of this model to some classical guestions:
effective (automatic) test generation, test optimization, quality
assessment of the testing process, and relationships between

program proving and program testing.

Program testing, as GOODENOUGH & GERHART stated some years ago
[Good 75], is certainly the most widely used way of assessing
program correctness. It is also certainly one of the least

studied from a theoretical viewpoint.

Program testing is a part of the program validation process.

To validate a program, or better, a given implementation of this

program, is to decide, with a certain level of confidence, whether

this implementation is correct or incorrect with respect to a

given specification. We are here mostly interested in functional

specifications (a compiler specification for example). We have
in an earlier work analysed the many problems arising in a

rigorous approach to program validation [Boug 82a].

It has been written that program testing and program proving

are essentially two complementary activities, both supporting
program correctness assessment [Gerh 79]. Program proving has
received for a long time some very strong and efficient theore-
tical interest, whereas program testing has been regarded as an
empirical and less interesting problem. Some formalization
attempts may be found in the scientific literature, but, to our
mind, they do not seem to have tackled the problem at an abstract

enough level.

The aim of this work is to present an abstract formalization for
program testing notions, based on a rigorous utilization of
first-order predicate logic as an underlying mathematical tool
(see [Shoe 67] for a complete introduction to mathematical logic).

We have designed this formalization to meet two requirements

- to be as faithful as possible to the common intuitive
understanding of program testing (for a discussion about

this point, see [Boug 82 b]);

- to be as faithful as possible to the internal requirements

of our underlying mathematical tool, remaining at an

abstraction level enabling some powerful references
to testing theory, putting into evidence their comple-

mentarity.

The first section sums up briefly some earlier work in this
area of research and states the basic framework of this work:

the Testing Process Diagram.

The second section recalls some basic facts about first-order
egalitary logic, our basic mathematical tool. It then states

our main definitions: Testing Context, and Battery of Tests for

a given Testing Context. Many examples illustrate these abstract

notions.

We study the basic properties of a battery of tests in the
third section: Projective Reliability, Asymptotic Validity,

Lack of Bias, Acceptability. Testability of specifications is

discussed according to thelr syntactical form.

The fourth section is devoted to (pre-)ordering testing contexts
and batteries of tests for a given context according to their

"quality". We introduce the notions of Conservative Context

Restriction and Asymptotic Sharpness. The equivalence relation

deduced from the latter is extensively studied, and leads to

the Fundamental Theorem of Testing: two comparable acceptable

batteries of tests are in fact equivalent.

In the fifth section, all these theoretical and abstract develop-
ments are applied to formalize precisely some essential practical

problems about testing: Effective Test Construction Method,

Test Optimization, Testing Process Quality Assessment.

The conclusion of this work tries to assess the expressive
power gained by using a sound but rather heavy mathematical
tool. It makes more precise the better understanding we have
got about the relationships between testing and proving. Some

further research goals are described.

1. BACKGROUND: TESTING PROCESS DIAGRAM

We sum up here briefly some of the main attempts one can find in
the literature to give a precise formalization of what it is

to test a program. Rather than describing their very technical
details, we shall emphasize the intuition, the philosophies
which underlie them, in order to pick out themain ideas to build
a general model for the testing process: that is the Testing

Process Diagram. This modelling process can be mainly characterized

by a Formal Approach and an Asymptotic Approach to the notion of

testing.
1.1 GOODENOUGH & GERHART's Proposal

GOODENOUGH & GERHART [Good 75] were some of the first to proclaim
the need for a testing theory bearing comparison to proving
theory. As a first attempt to solve this problem, they described

the following notions.

Consider a given implementation of a program, any F, working over
an input domain D. Suppose that, for each data d4 of D, one is
able to decide whether the implementation behaves correctly or
not with respect to the given specification. This induces a
(calculable) predicate over D, say OK, OK(d) means that the
implementation behaves 'correctly' for de€eD. The correctness of
the implementation with respect to the specification is thus
expressed by vdeD OK(d).

In this framework, a test can be viewed as a subset of D, say
T (the authors, curiously, allow an infinite subset of D to be
a test in their sense). The elements of T can be called test

cases, or elementary experiments.

One of the main ideas of their paper is that "test cases are
chosen typically to satisfy some data selection criterion, C,
where C denotes a predicate over subsets of D". T is a test if
and only if C(T). Thus, a key to testing theory is to focus on
the property of a criterion with respect to a certain predicate

OK over D instead of considering the properties of a test.

The authors are led to define two fundamental properties for a

criterion C. Reliability "refers to the consistency with which

results are produced, regardless of whether the results are

meaningful". It can be expressed by

RELIABLE(C) =

(VT1,T2 e 1) {(C(T1) A C(T2)) -
(SUCCESSFUL(T1) - SUCCESSFUL(TZ))]
where SUCCESSFUL(T) = Vt€T OK(t)

On the other hand, Validity "refers to the ability to produce
meaningful results, regardless of how consistently such results

are produced". It can be expressed by

VALID(C) =
(vdeD) [90K(d) -» (2T < D) (C(T) A ISUCCESSFUL(T))]

Obviously a "good" criterion (but not a good test!) should be
both reliable and wvalid. Such a criterion is said to be IDEAL.
The successful execution of any test satisfying such a criterion

demonstrates the correctness of the implementation with respect

to the specification.

We would like to point out some features of the above

proposal. Note first that it is based on the functional behaviour

of the implementation being tested (we use the word "implemen-
tation" where the authors used the word "program" to underline
this fact). Correctness has nothing to do with the internal

structure of the program or of the machine executing it. Then,

a first-order logic-like language arises naturally as the best

tool for dealing with those objects, though the reasons for this
choice are not stated by the authors. Note that a sentence like
vdeD OK(d) can be more clearly expressed by D F vd OK(d), where

P is the obvious structure with universe D.

The most important feature of the proposal is, to our mind, the

notion of criterion and the properties which are defined about it.

Notice that building any test satisfying an ideal criterion

demonstrates the correctness. So testing is viewed as a

special case of proving with certain restrictions on the kind

of proof that is used. It must in fact be split into a

transcendental part (proving ideality of the criterion and

adequacy of the test) and a calculable part (running of the

test cases).

Lastly, it should be noticed that such a formalization is

"anistrope" with respect to correctness. It only deals with

successful execution of test cases, and does not say anything

about failure. In fact, any failure demonstrates, in this case,

the uncorrectness of the implementation. But we feel that this
"anistropy" is a general feature in this area. The famous
DIJKSTRA's statement "Program testing can be used to show the pre-
sence of bugs, but never to show their absence!" should be under-
stood in this context. Any testing theory should focus rather on
success of the test than on failure, because only the former is

actually informative.

1.2 Criticisms and Improvements

Several authors, following the above work, have described related
notions. WEYUKER [Weyu 80al has shown the extreme importance of

the socalled Oracle Problem captured above by the predicate OK.

One must be able, in a sensible way, to decide whether a given
test has been passed or not. It follows that a test should con-
tain at most a finite number of test cases, the successful exe-
cution of each being decidable. This will lead us to the notion

of an experiment.

WEYUKER & OSTRAND [Weyu 80b] point out the central problem in

the testing area, that is to infer an infinitary conclusion

(vdeD OK(d)) from some finite knowledge (VAET OK(t)), where T

is a finite subset of D.. We thus need some a priori infinitary
hypothesis. They claim the need to part the domain D into
subdomains that are uniform with respect to correctness. Whenever

any data in such a subdomain is correctly handled, so are all of

them. A uniform subdomain Di of D is thus such that

[(adEDi OK(d)) - (VdEDi OK(d))] or, more clearly,

D |=[3d (deD; A OK(d))] - [vd (deD, - OK(d))]. We will call
such hypothesis a uniformity hypothesis. Notice that it is

only concerned with the specification (the predicate OK) and the
given implementation (the structure D), but not with the selection
criterion, it is only a postulate about the testing context inde-

pendant of the criterion being used.

BUDD, LIPTON, SAYWARD & De MILLO, followed by HOWDEN have been
developing a genuine approach to testing that is called Mutation
Testing [Budd 81]. Its most important feature is, to our mind,
consideration not only of the implementation to be tested, but
instead a "neighbourhood of potential implementations". This
formalizes the idea that we do not know perfectly the implemen-
tation we are testing, but only to some extent. We thus have to
deal with a set of potential implementations, which the actual
one is known to belong to, without being able to pick it out
precisely. Any definition we state should only depend on this
set rather than on the actual implementation. It must be uniform

with respect to this set of objects.

This set itself is, in practice, only known through certain
hypotheses about the implementation to be tested (among them
are, for example, some uniformity hypotheses). Thus, the pro-
perties of a selection criterion must depend on those formal

hypotheses, rather than on the actual implementation being run.

We will refer to this principle as the Formal Approach to the

notion of testing.

The advantages of this approach are twofold. Though we are only
considering implementations as functions, the description of

- the set of potential implementations will take account of the
syntactical features of the given program. It will in fact most
likely contain the syntactical mutants of this program, as
described by the above authors.

On the other hand, this makes the properties of a criterion
independent of the syntactical evolutions of the program

(design improvements), which is highly wvaluable.

1.3 Reliability, Validity and Bias

Let us now focus on the fundamental properties defined by
GOODENOUGH & GERHART. Firstly, reliability means that all the
tests selected by a reliable criterion are equivalent with
respect to the correctness assessment of the implementation.

Such a criterion should be viewed as "flat", just as a partial
order is. It is obviously more interesting to consider some

more complex criteria, where test powers (and costs) may vary.

It suffices, in fact, to find one test for each level of power
(or cost). We are thus led to consider, rather than a flat
ordering, a total ordering, for example the N-ordering. Reliability
expresses in this case that a test which is "higher" than another
is better for correctness assessment. We will call this notion

Projective Reliability (see §3.1).

Validity of a criterion C expresses that, for each "error" in
implementation behaviour, one can find in C an adequate test.
But we are now dealing with a chain, and we can consider the
"limit" of the tests of C, which is more powerful than any of
them, and which can be "approximated" as closely as wanted if

a sufficient cost is allowed. A quite sensible condition is thus
to require this limit test to be adequate for each "error". This
means that the above adequate test may be eventually rejected

to the infinity. This is the main feature of what we call the

Asymptotic Approach to the notion of testing. We will thus speak

of Asymptotic Validity (see §3.2).

However, our feeling is that those two notions are not able to
give a precise account of the intuitive notion of testing.
Statistical test theory is based on the notion of Bias. A test

is said to be unbiased if it is passed by an implementation more
probably than failed . if and only if this implementation is correct.

This should be described as a coherence property, just as relia-

bility is a consistency property. This property has been left

implicit by GOODENOUGH & GERHART since all the tests they
consider are actually unbiased, because VdeED OK(d) implies

VtET OK(T). In other words, whenever the implementation is
correct, it will pass any test. In our proposal, which deals
with a more abstract testing notion, the notion of bias

arises naturally as a highly valuable property. It is discussed

in more detail later (see §3.3).

1.4 Testing Process Diagram

We are now in a position to draft the Testing Process Diagram.

It should model the sequence of operations that take place from
the definition of the property to be tested, up to the decision
of whether the implementation is correct or not with respect to

the above property (specification).

concrete implementation ____ test T __fff_> lusi
level specification I genclusion
representation application

abstract initial testing
level context CO >battery of tests T
(first-order .

. construction
logic)

From the problem to be solved: "Is this implementation correct
with respect to this specification?", we build, in the repre-
sentation phase, an abstract problem, (intuitively) equivalent

to the concrete one, expressed in the first-order egalitary logic

language. This defines an initial testing context CO {see §2.2).

We now construct for this testing context an acceptable
battery of tests (see §2.3 and §3.4), exactly as GOODENOUGH &

GERHART were loocking for an ideal criterion. However, this will

not be possible in general, because at this point we do not have
enough knowledge about the implementation to create any precise

enough test.

We thus have at first to postulate some new hypothesis about

the implementation (uniformity hypothesis, typically). We thus
restrict the initial context CO to a new context C,I (see §4.1),
for which we can effectively construct an acceptable battery

of tests T. Of course, this new hypothesis must be coherent with

the property to be tested; the restriction must be conservative.

Note that the construction phase is entirely abstract, and deals

only with first-order logical objects.

Having now obtained an abstract battery of tests, we can pick
some test from it, according to our quality/cost requirements,

and apply it to the given problem, leading to the conclusion.

The Testing Process Diagram is the basic motivation for the
precise definitions that we shall now study. It has been briefly
sketched here to give the reader some insight into our general

viewpoint. However it will be discussed extensively in section 5.

1.5 Conclusion

This section is intended to give some background for the theory
of testing we are now going to develop. Our approach is mainly
based on GOODENOUGH & GERHART's earlier proposal [Good 75].

Following them, we use first-order logic as an underlying mathe-

matical tool, and we focus on the properties of a battery of

tests (a selection criterion) rather than on those of a test.

We have emphasized several weaknesses and inadequacies in

the work of GOODENOUGH & GERHART, many of which have already
been pointed out in the literature. This has led us to define
some precise guidelines for our modellling. By the Formal
Approach, we mean that the construction of a battery of tests
must be founded on some formal properties, deduced or postulated,
about the functional behaviour of the given implementation. By

the Asymptotic Approach, we mean that we must deal with a "chain-

like" criterion rather than a "flat" criterion, tests being

ordered by their positive quality (ability to be passed rather

than to be failed). We can then study the property of the limit

test of a criterion.

10

As we shall see later, these two approaches allow us to give an
account of the main usefulness of testing with respect to proving:

the "likely feature" Proving only leads us to conclude whether

a program 1is correct or not. Testing allows us to conclude that
an implementation is probably correct, where the probability

is as high as possible for the cost of this assessment (see 8§5.3) .

11

2. BASIC NOTIONS: TESTING CONTEXT AND BATTERY OF TESTS

We now focus on the precise and abstract mathematical definitions
of the entities involved in the Testing Process Diagram above.

These are mainly Testing Context and Battery of Tests. Their

properties and the relationships between them will be extensively

studied in the following sections.

2.1 Mathematical Tools

Most of the work in the area of program testing theory has been
carried out in a logic-like mathematical framework [Good 751,
[whit 81], [Weyu 80b], [Budd 81] etc. This rather surprising
unanimity leads us to choose also the first order egalitary logic
formalism as a basis for our work. Yet we must take care of the
results we get. They must be considered as direct consegquences

of this choice. Another one, statistical test formalism for
example, would probably have led us to a quite different approach

to the notion of program testing.

Having chosen a mathematical tool, we will try to use, as much

as possible, its powerful features. That is we will have to

keep in mind the "spirit" of our tool. We feel that one of the
main features of logic is the duality between semantic and
axiomatic approaches. Most of our statements will thus be split
into a logical part and a formal part. The logical part tries to
stick as closely as possible to the intuition we have in mind.
The formal part expresses this intuition in a maybe more restric-
tive way, but allows handy and fruitful mathematical treatments.
As a rule, the formal statement implies the logicali.one. This
duality disciplin will lead us to somewhat cumbersome sentences,
but it will be shown to be a very fair bridge between practice
and theory, basic intuitions and mathematical requirements. We will

refer to it as the Duality Principle.

12

Most of the notions that are used in our work are extensively
described in the book "Mathematical Logic" &©f SHOENFIELD [Shoe 67].
We will only state here the main features we use, and introduce

some notation.

Language , Structure

The languages we consider are first-order egalitary languages,
denoted L. We identify such a language and its set of non-logical
symbols. L = {P} means that L is the (first-order egalitary)
language whose only non-logical (predicate) symbol is P. If S
denotes a set, L(S) is the language obtained from L by adding the
elements of S as constant symbols. If L and L' are two languages,
L' is called an extension of L if it contains all the (non-logical)

symbols of L: LcL'. Then, L'(S) is an extension of L(S).

Given a set S and a language L, a structure § is obtained by
associating with each functional symbol of L a function and with
each predicate symbol a predicate. They are called interpretations
or meanings of those symbols. § is said to be an L-structure with
universe S. It can be canonically extended to an L(S)-structure
by giving to the elements of S their obvious meanings. We am-
biguously denote this structure S. By addressing an L(S)-structure

we always mean an L-structure extended in this way.

Formulas, Theories, Logical Validity

Given a language L, we can construct L-formulas. They look like

Fx (P(x) v Vy Q(y) v R(z)). We are only interested in closed
formulas, in which each variable x is in the scope of some 3x or
¥x. Now, given an L-structure S, we can associate with each closed
formula ¢ a truth-value T or F. If it is T, ¢ is said to be wvalid
in 8. Then § is said to validate ¢. We write S |= ¢. Note that

S validates ¢ if and only if the canonically extended L(S)-

structure does so.

A theory T on a language L is a set of L-formulas. They are often
called axioms. They are divided into two parts. The logical axioms
only depend on L, and are in any L-theory. They mainly express..

that the equality symbol "=" acts as a congruence. They are valid

13

in any L-structure. The other axioms are said to be non-logical.
We identify a theory with its set of non-logical axioms. If T and
T' are two L-theories, T|lT' is the L-theory whose non-logical

axioms are those of T joined with those of T'.

An L-structure S validates an L-theory T if it validates all its
axioms. It is obviously sufficient that it validates the non-
logical ones. This is written S |= T. We say that S is a model for
T. Obviously, S F THT whenever S |= T and S E T'.

Formal Validity

Given an L-theory T and an L-formula ¢, we say that ¢ is formally
valid in T, or provable in T if 9 can be deduced from the axioms
of T by the usual inference rules for first-order calculus. These
are briefly Propositional Calculus rules and Quantifier Introduc-
tion rules: if x is not free in Y, infer 3x ¢ - ¥ from ¢ - ¥ , and

dually with vx. If ¢ is formally valid in T, we write T |- ®.

More generally, if T and T' are two L-theories, T + T' means that
any axiom of T' can be proved in T. It is obviously sufficient
that any non-logical axiom of T' can be proved in T. Provability
relation " F " is reflexive and transitive. Obviously, T ¢+ T'L]T"

whenever T + T' and T + T".

If T+T' and T' T, T and T' are said to be formally equivalent.
We then write T HT'.

Let T be an L-theory, and ¢ be an L-formula, such that T F ¢.

The proof of ¢ in T can only use a finite number of axioms. Thus,
there exists a subtheory TO of T, with only a finite number of
non-logical axioms (finite subtheory), such that TO ¢®. This

result is known as the Compactness Theorem for First-Order

Egalitary Logic.

14

Let T be an L-theory, S an L-structure and o an L-formula. Suppose
that S is a model for T S |= T and that ¢ is provable in T: 7 |- D .
Then S | ¢. This result is known as the Validit Theorem for

First Order Logic. It will ensure that our formal Statements imply

our logical ones, following our Duality Principle.

2.2 Testing Context

We are now going to make more precise the components of the TEsEing
Process Diagram (cf §1.4). Let us first turn to the Testing Context
notion. This notion should model the problem to be solved (i.e.

"is the implementation correct for the given specification?")
independently of the battery of tests we will build to solve it,

Remember that we are interested in the validation of large pro-
grams, for example compilers. They are considered by (most) users
as "black boxes". Users are only concerned with input/output beha-
viour, and generally not with their internal structure. an abstract
data type-like model thus arises naturally. An implementation will
be so modelled by its functional behaviour. In the first-order

logic formalism we use it will be thought of as a Structure
==—2tture
(abstract data types hackers could however think of it as a

Z-algebra).

We thus take a universe §, usually the domain of the program, ang

a language L, containing usually at least the functional symbols
occurring in the pProgram, plus a symbol Tépresenting the functional
behaviour. The model of our implementation will be an L(S)-structure
S. But, as we argued before, we must not only deal with one imple-
mentation, but with a family of potential implementations, among
which belongs the one under test (cf. §1.3). We thus deal with a
family (S) of L(S)-structures.

set of first-order formulas. The implementation is then correct

if and only if the actual structure abstracting it (remember that

15

we do not know which one it is) validates those formulas. It is
not restrictive to consider a (first-order) theory A whose

non-logical axioms are those formulas.

Definition: Testing Context

A testing context C is a 4-uple <L,S, (S),A> where
1, is a first-order equalitary language

¥ § is a set

* (S§) is a family of L(S)-structures

* A is an L(S)-theory.

Example
Consider, as an example, that we are testing a square-root program

P, which should output the square-root of any natural number
given as input. Then a sensible testing context C = <L,S,(S) ,A>

would be the following:

« L={F; % < _<_;_+_1}
the symbol F represents the functional behaviour of the
implementation;

* & = Ny

* (8) could be the family of the L(S)-structures such that
the symbols of L different from "F" have their standard
meanings, and such that F has a calculable meaning;

x A= {vx[F(x)? £ x < (F(x)+1)°]}

Notice that many first-order formulas are validated by all the
structures of the family (S): for example 0+1=1 or Vn[n<n+1<n+2].
These formulas can be viewed as some formal hypothesis about the
implementation being tested. Again, it is not restrictive to

structure them in an L(S)-theory H.

This theory H captures the formal knowledge we a priori postulate
about the implementation. We may, for example, postulate that the
implementation is not "too" incorrect: take H =

{Vx[OéF(x)2<(x+1O)2]}. Then we need only to consider those struc-

tures which actually validate H.

16

Definition: H-context

Let C = <L,S, (S),A> be a testing context, and let H
be an L(S)-theory.
C is said to be an H-context if every structure of (S)

validates H.

Notice that though the family (8) is a part of the testing
context, H is not. Even if the actual conditions of the testing
process do not change, the formal knowledge we make postulates

about may vary (in most cases increase) during the testing process.

2.3 Battery of Tests

We can now define what a battery of tests for a given context is.

As we saw in the first section, a test for a given problem (a
given testing context) is a finite set of experiments. An

experiment is a question about implementation whose answer can

be decided finitarily. We are thus led to the following definitions:

Definition: Experiment

Let C = <L,S,(S),A> be a testing context.
An experiment E for C is a (closed) L(S)-formula

without gquantifier, such that

for any non-logical symbol p of E
for any structure S of (8)

the meaning of p in § is calculable.

We do not want to make more precise what "calculable" means; in
most cases, S = N and we will use the classical definition of a
calculable function (predicate). We just note that a (theoretically)
calculable,.but extremely complex function should not, in practice,
be considered to be a "humanly" calculable one. This is the

so-called Oracle Problem [Weyu 80al.

ki

Definition: Test
Let C = <L,S5,(S),A> be a testing context.

A test T for C is an L(S)-theory with only a finite

number of non-logical axioms (finite theory), each

of them being an experiment of C.

Note that the property that T is a test does not depend on A
(the property to be tested), but only on L, S and (S) (the postu-

lated features of the implementation).
The distinction between experiment and test is only a matter of
convenience, as a test can always be identified with the con-

junction of the experiments it is made up of.

Let us now turn to the definition of a battery of tests for a

given context. It must cover the formal approach and the asymptotic

approach we have outlined. A battery of tests should be a family
of tests, ordered by a gquality criterion that depends only on some
formal hypothesis about the implementation. Two batteries of

tests built on distinct formal hypotheses must, in our approach,

be considered to be distinct.

Definition: Battery of Tests

Let C = <L,S,(S),A> be a given testing context.

A battery of tests T for C is a pair <H’(Tn)n€N> where

* H is an L(S)-theory such that C is an H-context
(valid formal hypothesis)

* (Tn)nEIN is a family of tests for C such that for all
neN T _,LHF T

(formal projective reliability, see §3.1)

The second condition is discussed more extensively in §3.1. We
note here that, for any structure S of (S), and any néeN, if

§ F Tn+1f
uniformly with respect to (S). These properties thus express the

then S F Tn: the tests Tn are more and more precise,

essence of the asymptotic approach.

18

We sometimes write (Tn) instead of <H’(Tn)n6m> for the sake of

conciseness.

2.4 Examples

In this section we give some basic examples that (hopefully) will
help the reader to understand the different aspects of the above
statementss We use freely the abbreviations and notation described

above, as no confusion should arise.

We consider C = <L,S,(S),A> with L = {pP}, 8 =N, A = {vx P(x)},
and (S) being the family of the L(S)-structures such that P has

a calculable meaning.
C is a @-testing context.

(D Take T = <H,(T,) >, with H = § and T = § vneN. T is
actually a battery of tests for C. It is called the
empty battery of tests for C.

C) Take T = <H,(Tn)HEN with H = @ and Tn = {P(0)A...AP(n)}.
T is also a battery of tests for C. It corresponds to the
exhaustive testing strategy for A; if a structure S validates

all the Tn’ then § validates A. But notice that H || T_ does
nelN
not prove A! Keep on reading for more details.

C) idem with T = {P(n)Aa...AP(0)}. This new battery of tests
should obviously be egquivalent to the previous one for any
sensible notion of equivalence (and fortunately it will,
see §4.3).

(9 idem with T = {P(0)AP(2)A...AP(20),P(1)AP(3)A...AP(i)]}
with i = E(¥n/10) (why not?). Same conclusion as above.
One can easily generalize these examples with an enumeration

(possibly not monic) of N.

19

C) Consider T = <H’(Tn)n€m nElN>, two batteries

of tests for a testing context C. Then it is easy to prove
that TUT' = <HLJH',(TnLJT') > is also a battery of tests

n’ neM
for C. Note that the empty battery of tests is a neutral

> and T' = <H',(T£)

element for union.

C) Consider now another testing context C = <L,S, (S),A>, with
L, S and (S) as before, and A = {P(0),P(1),...}(= {P(i), i€N}).
Notice that for any Li{$)-structure S,

S E {vx P(x)} if and only if S E {P(0),P(1),...},

but that the latter theory cannot prove the former. Look
back at the example (:). It is still a battery of tests for

this new context, but we now have the property HI[/ Tn F A.

Yet, for any k&N, H|] T_ ¥ A. Heh
n
nzk
Let us now-'consider a more restricted (and realistic) family

(S) of potential implementations. Consider for example, a keEN

being fixed, the theory H is
H = {P{(0)Aa...AP(k) » ¥Yx P(x)}.

This hypothesis means that, for any potential implementation, if
that implementation works correctly for any data of "complexity"
less than k, then it works correctly for any data. This is a
basic (but always hidden) hypothesis in path analysis testing

methods where implicitly the "complexity" of data is the "complexity

of its path in the program.

Consider now the H-context C = <L,S,(S),A>, with L = {P}, S = NN,
A = {vx P(x)} and (S) being the family of all those L(S)-structures
S such that § F H and the meaning of P for § is calculable.

Then T = <H,(Tn)n€N>, with Tn = {P(0)A...AP(n)} is a battery of

tests for C, with the property H || Tnl— A (in fact, HL,lTk F A,
neN
and this remark is general, see §3.2).

20

This kind of hypothesis is called a regularity hypothesis.

Another classical (and hidden) hypothesis in path analysis
testing strategy is a uniformity hypothesis. Two data items

which follow the same path in the program are equivalent with
respect to correctness: if one is correctly handled by the

implementation, the other will be as well.

We can give an account of this fact by postulating a hypothesis
H = {3x P(x) -» vx P(x)}. These two kinds of hypotheses play an
essential role in this work. In particular we can see that a
regularity hypothesis is minimal in some sense in order to get
a "good" battery of tests, and that using different constants

leads to equivalent batteries of tests (virtual constants).

2.4 Conclusion

In this section we have stated the basic definitions for our work.

We have tried to give an account of the principles outlined in

the previous section, namely the Formal Approach and the Asymptotic

Approach. A battery of tests is thus a family of tests, ordered
by a certain quality criterion, together with a set of formal
hypotheses about the implementation to be tested. Different hypo-
theses lead to different batteries of tests.

We should emphasize the perhaps hidden but fundamental choice
which underlies this work: The definitions we deal with are in-
duced by our intuitive understanding of the notion to be modelled;
but they are at the same time strongly influenced by the mathe-
matical tool we use, namely the first-order egalitary logic. This
leads us to produce somewhat unelegant and cumbersome formulations

and notations.

Our claim is that this effort,i.e. rigour and faithfulness to
our underlying mathematical tool, is globally quite fruitful.

We will try to assess it more precisely at the end of this work
(see §6.1).

21

3. FUNDAMENTAL PROPERTIES OF BATTERIES OF TESTS

We have, up to now, got mathematical and precise definitions
for the basic notions we are dealing with: a testing context
and abattery of tests for a given testing context. Those
definitions are strongly related to GOODENQUGH & GERHART's
ones; however, they take care of the so-called Asymptotic
Approach to the notion of testing, and of the fact that the
implementation is only partially known, if not partially

specified.

Following GOODENOUGH & GERHART's work, we now define by im-

proving and adapting their propositions, the notion of Reliability

and Validity for a battery of tests in a given testing context.
Furthermore, we claim that by working at a perhaps too low level

of abstraction, those authors left implicit the notion of Bias.

From this background, we finally define what is a "good" battery
of tests for a given problem (a testing context). Such a battery

of tests will be called acceptable.

As we noticed before, we are trying to stick as closely as
possible to the mathematical tool we are using; mainly first-
order logic. This formalism is largely concerned with the duality
between formal statements (expressed with "I="), and logical

ones (expressed by "k "). Henceforward, we must take account of
this duality in our definitions. These will be split into two
dual parts: logical and formal. In all cases, the formal state-
ment will imply the logical one, the converse being generally
false (because of the non-categoricity of the first-order logic,
see [Shoe 67] §5.3).

3.1 Reliability

The reliability property expresses the internal consistency of
the battery of tests which is being considered [Good 75],[Whit 81]
From our viewpoint, consistency means that a test with an upper
index is more powerful, with respect to success, than a test with

a lower index.

22

In fact, for technical reasons, this property was already
required when we defined a battery of tests in a given testing
context (see §2.3). But because of its importance we feel that

it should be stated here for itself.

Definition: logical and formal projective reliability.

Let C = <L,S,(S),A> be an H-context, and (Tn)nGlN a countable
family of tests for this context.
* (Tn)ne[N is said to be logically projectively reliable

(log. proj. reliable) if
for every structure S of (S)
for every né€mN
if S F:Tn+1’ then S F=Tn
* (Tn)nEEJ is said to be formally projectively reliable
if for every neN

T+ LJH F T

Obviously, since C is an H-context, the second statement implies

the first one.

As we stated before, a battery of tests for a given context
(more precisely, its family of tests) is formally projectively
reliable (and thus, logically too). We will only deal with such
families of tests: in practice, it would be strange to consider
a collection of tests (remember that a test is a set of experi-
ments) such that an expensive test is not necessarily better

than a cheaper one!

The work "projective" was chosen because of the analogy between

the formula

Tn+1 LJH | Tn

and the definition of a projective sequence of sets, for example.

We will sometimes abbreviate logical and formal projective

reliability by reliability, when the addressed property is evident.

23

3.2 Validity

We now turn to validity. Reliability was concerned with the
consistency of a family of tests. Validity is concerned with

its power and its usefulness. GOODENOUGH & GERHART gave a

strong definition of this property: a collection (criterion)

is valid if, when the program is incorrect, it fails at least
some test (see §1.1). Our formalism allows us to give a slightly
more general statement: the failed test may be incidentally

rejected to infinity, i.e. may be (virtually) T .

Definition: logical and formal asymptotic validity.

Let C = <L,S,(S) ,A> be a testing context, and
T = <H,(Tn)nElN
* T is said to be logically asymptotic valid

> a battery of tests in this context.

(log. as. valid) if
for every structure S of (S8),
if .§ I=Tn for every neN ,
then § |=A
* T is said to be formally asymptotically wvalid

(form. as. valid) if

L TnLJ H A
neN

Again, the second statement implies the first one, because every
S of (S) is such that S |=H. Notice that by (formal projective)
reliability, the first statement is equivalent to the following
one:

for every § € (8), there exists nSEEN such that
if S F=Tn Vnzns, then § |=A.

In the same way, the second one can be written

anoem L] T |JH A
n
nzno

These facts justify the informal description stated above.

As before, we will sometimes say validity for logical or formal

asymptotic validity when the addressed property is evident.

24

Examples

Let us look at some examples.

®

©

®

Let C be a context, and T = <H,(Tn)
for all neN .
T is formally valid (for C) iff A=@.

n€mJ>’ with H=@, Tn=®

Let ¢ = <L,S,(S),A> be a context and T = <A'(Tn)n€ml> a

battery of tests for (. This implies that every structure S

of (S) is a model of A, i.e. the property being téested is veri-
fied by all the potential implementations being considered.

T is formally wvalid for C.

Let C = <L,S5,(S),A> be a context, with L = {P}, S = N,

A = {vx P(x)}, and (S) being the family of all the
L(S)-structures such that P has a calculable meaning.

Take Tn = {P(0O)A...AP(n)}. Then T = <®’(Tn)n€EJ> is a

logically asymptotically valid battery of tests for C,

but not a formally valid one, because {P(n), nelN} fF vx P(x).

Take C as in (:), but restrict (S) to those structures
such that S FH, with H = {P(0)a...AP(k) » V¥x P(x)}.

Then T is formally valid. Notice that this does not depend
on the value of k. k is called a virtual constant. In the

example C:), we had virtually k=e. H is called a regularity

hypothesis.

As (:), but now with H = {3x P(x) - ¥x P(x)} the same con-
clusions hold. Following WEYUKER & OSTRAND [Weyu 80bl, H is

called a uniformity hypothesis.

Notice that in (:), T is in fact valid in the "classical" sense,

since H|_JTk A. This fact is general indeed. More precisely,

we define the finite validity, that matches the classical validity.

25

Definition: (formal) finite validity.
Let C = <L,S,(S),A> be a testing context, and
T = <H,(Tn)nEN
T is said to be formally finitely wvalid if

> a battery of tests for C.

EInO€IN TnOLIH FA

Note that if T is finitely wvalid, then Vnzno TnLJH o
so T is formally asymptotically wvalid.

Remember that a finite theory is a thecory having only a finite

set of non-logical axioms. A straightforward consequence of
the compactness theorem of the first order egalitary logic (see

[Shoe 67] §5.1) is the

Compactness theorem

Let C = <L,S,(S),A> be a testing context, with A a finite

theory, and T a battery of tests for C. T is formally
asymptotically wvalid iff it is formally finitely wvalid.

Proof

If T is asymptotically valid, HL___ITn FA. But each non-
n

logical axiom of A can be proved by using only finitely

many axioms of HL_an. Because of the finiteness of A,
n

we can find i1""’ip such that Hl_,JT:.L L_I...LJTi A,

1 p
Take n, = sup(i1,...,ip). By reliability,

HLT HLT. for k=1,...,p-
nO lk

So HUUT A, B
n
0
Thus, if A is finite, our definition is nothing more than
a restatement of the previous one. If A is not finite, this
is not true. Take H=@, A = {P(n), neEN }; Tn = {P(O}A...AP(n)};
is formally asymptotically valid, but not finitely valid.

26

Example (:) shows that no logical dual of this theorem may

be expected. In this case, and in many others, formal properties
are more fruitful in their theoretical consequences than the
logical ones. They allow us to understand better the'relation—
ships between the many objects we are dealing with. On the other
hand, they are sometimes too strong with respect to our intuitive
perception of the testing process, which leads us to use logical
definitions. Our approach, taking account of duality, is a
possible mathematical answer to bridge the gap between theory

and practice (see §6.1).

3.3 Bias

The bias concept is fundamental in statistics. A (statistical)
test is said to be unbiased if it leads to the right conclusion
with a higher probability than to the wrong one. Because we do
not have any probability concept in our formalism, we will simply
state that a battery of tests is unbiased if every correct imple-
mentation passes all the tests. So, if the tested implementation
fails a test, we can conclude that it is certainly incorrect

with respect to the considered specification. This is therefore

a basic requirement for a battery of tests to be unbiased.

Definition: logical and formal lack of bias.

Let C = <L,S,(S),A> be a testing context, and let

T = <H'(Tn)nEmJ> be a battery of tests in this context.

* T is said to be logically unbiased if for every structure
S of (S) if S A, then § I=Tn for all neWN

* T is said to be formally unbiased if

HL]A I_Tn ¥YnemN

Once again, the second statement implies the first one. Both
are the converses of the corresponding asymptotic validity

definitions (cf. §3.2).

As far as we know, no bias-like property has yet been stated
about program testing. In fact, it was implicit in most of the

previous work on this subject.

2ol

Let us consider for example GOODENOUGH & GERHART's theory
(see §1.1). A test T is a (finite) subset of the input domain
D of P. The implicit theory associated with it is

T = {VtET OK(t)}
The implicit theory A to be tested is
A = {v¥deD OK(d)}

i.e. the program is correct for every input value. But, of course,

A + T, so the criterion C = (T) is formally unbiased.

Our formalism is more general than their one, and allows us to

point out this property, left implicit so far.

Examples

Let us now look at some examples.

C) Let C be a context, and T = <H'(Tn)nEEJ>’ where H=@,
Tn=® for all nElN. T is formally unbiased.

C) Take now T = <A,(Tn) it is unbiased too.

n€[N>;
(3) Take s=IN, H=@, A = {Vx(~(x=0) - P(x))}; let (S) be the
family of the L(S)-structures such that P has a calculable
meaning.
Then T = {P(0)A...AP(n)} is biased (not even logically
unbiased). But T} = {P(1)A...AP(n)} for nz1 with T,=9 is

unbiased.

C) non-calculable properties

Consider now the case where a property about a non-calculable
symbol is being tested. The natural way to test it is to look
for a stronger calculable property.

Take S=IN ; H = {vx(Q(x) » P(x)}, A = {P(0)}, with (S) the
family of the L(S)-structures such that Q (and not necessarily

P) has a calculable meaning. The natural battery of tests

28

{Q(0)}. It is valid, but biased, unless we

is then Tn
have Q(0)«+P(0) for all the considered structures.

C) existential properties
Take S=N, L = {p}, A = {3x P(x)}, and let (S) be the
family of the L(S)-structures such that P has a calculable

meaning. Take H=@. It can be shown that the only

T = <H'(Tn)n€mi> unbiased in the context C = <L,S, (S),A>
is such that Tn=® for all neN.

If we can now restrict (8) to those structures that

validate H = {3x P(x) - P(0)v...vP(k)}, with k a (virtual)

constant, then Tn = {P(0)v...vP(k)} is unbiased (and valid),

but depends on k.

3.4 Acceptability

We can now define what a "good" battery of tests for a given
problem is. We do not want to reject a correct program, so we

need the lack of bias property. We obviously cannot demand

conversely, that a program which passes some test is necessarily

correct. Yet we can require that any incorrect program fails

some test, namely asymptotic validity.

Definition: logical and formal acceptability.

Let C be a testing context, and T a battery of tests in

this context.

* T is said to be logically acceptable if it is logically
asymptotically valid and logically unbiased.

* T is said to be formally acceptable if it is formally
asymptotically valid and formally unbiased.

From the previous remarks, it is obvious that formal accepta-
bility implies the logical acceptability. With the now-usual
notation, logical acceptability means for every structure §

of (8)

S F’Tn for all neN iff S F A.

29

Formal acceptability means simply

H L] Tn HHLA,
ne N

i.e. with respect to H (the formal hypothesis about the program),

A (the property being tested) is equivalent to |] Tn (which
neN
can be viewed as T_).

We define a "good" battery of tests for a given context as a

formally acceptable one. We will sometimes just say acceptable,

when no confusion is threatened.

As we pointed out before, a natural choice might rather have
been logical acceptability. But in this case, the acceptability
of a given battery of tests would have been very strongly depen-
dent on the underlying testing context (more precisely, on (S)).
The context can be viewed as the way of using the battery of
tests, and, in practice, it is not a well-defined entity. Spe-
cifically, it is very difficult to define precisely the family
(S) of all the potential implementations of the program (inclu-

ding incorrect implementations).

Therefore, we choose a more intrinsic notion: namely formal
acceptability. This property can be states as an entirely abstract
relation between abstract entities A, H, and (Tn)nemi' It there-
fore depends on the way of using the battery of tests only through

H, that is the formal hypotheses about the implementation being
considered. The more precise they are, the closer is this notion

to logical acceptability.

3.5 Examples
(:) Let ¢ = <L,S,(S),A> be an A-context. Then T = <A,(Tn)

>
ne N
with Tn=®,is (formally) acceptable. The problem is therefore

to describe an acceptable battery of tests with a hypothesis

H as weak as possible.

30

(2) Take L = {P}, S=N, H=@, A = {P(n), nEN}. Let (S) be a
family of L(S)-structures such that P has a calculable
meaning in each of them; then T, = {P(O)A...AP(n)} is

acceptable.

(3) The same with A = {vx P(x)}. Notice that, with respect
to (S), {P(n), nEN} and {vx P(x)} are logically eguivalent.
But now, (Tm}nG{N is not acceptable.

(:) Let us restrict (S) to those structures which validate
the regularity hypothesis H = {P(0)a...AP(k) - v¥x P(x)},

k being a virtual constant. Then (Tn) is acceptable:

ne N
it is nothing more than our old friend the exhaustive

testing strategy.

(:) Instead of a regularity hypothesis, let us consider a
uniformity hypothesis H = {3x P(x) -» vx P(x)}. Add to

the language, if there is not one already, a special

constant symbol a (see §4.1). Then T = {P(a)} is acceptable.
This is our dear friend the random stampling testing

strategy.

(:) existential properties
In §3.3, we examined the case of not purely universal

properties, for example 3Ix P(xX). We can construct an acceptable
battery of tests by assuming the hypothesis

H = {3x P(x) » P(0)v...vP(k)}. Note that this can be written
AP(0)Aa...A7P(k) » V¥Vx 1P(x), i.e. as a regularity hypothesis

for nP.

Note also that the natural family of tests is then

Tn = {P(0)v...vP(k)}, which depends on k. In fact, it is not

possible to build an acceptable family (Tm)n&:[N that does

not depend on k.
This is why we state informally that existential (more

precisely not purely universal) are not testable. Another

good reason will be stated in §4.1.

32

actual implementation being tested; this is a very valuable pro-
perty. Furthermore, it gives us more confidence when extrapola-
ting, in the conclusion of the testing process, the success of

one test say Tp, to the success of all the tests Tn' neEN (see
55.3) »

31

C) non-calculable properties
We already noticed that non-calculable properties "naturally"

lead to a biased battery of tests.

mutation testing strategy
This strategy (including testing-quality measure) has been
described by LIPTON et al. (see [Budd 81] for details and

references). It can easily be expressed in our framework.

Let C = <L,S,(S),A> be a testing context, and T = <H (T Jew
a battery of tests for C.
Suppose there exists at least one SO in (8) such that SO = A.

Suppose that (Tn)nEIN discriminates between the structures
of (§): for every ©pair of distinct structures §,S' of
(S), there exists neIN such that =3[(S F T,) A (S'F Tn)].

Suppose that T is (logically) unbiased (this hypothesis is
in most cases left implicit).
Then T is logically acceptable for C. It suffices to show

that it is logically asymptotically valid. Note that, by

lack of bias, SO
S € (S) such that § P=Tn vneE N . Because (Tn)n discriminates

|=Tn vne N . Consider now any structure

between the structures of (S), we can conclude that S actually

is SO’ so that S |=A.

3.6 Conclusion

This section was devoted to the fundamental properties of batte-
ries of tests for a context. Following GOODENOUGH & GERHART,

and taking account of the asymptotic approach which we outlined
previously, we defined the properties of projective reliability
asymptotic validity. We pointed out the (lack of) bias properties,
left implicit by those authors.

We then defined a "good" battery of tests to be a formally

valid and unbiased one. By this choice, we got a quite intrinsic
notion, which depends on the actual utilisation conditions only
through the formal hypothesis H. This means that the acceptability
property is very stable with respect to the evolution of the

33

4. ORDERING CONTEXTS AND BATTERIES

Up to now, we have only been restating the main ideas of
GOODENOUGH & GERHART in a more general framework, translating
informal descriptions into precise and rigorous mathematical
definitions, and sugaring the whole thing with asymptotic and

formal approaches and duality.

We now turn to some new ideas. In the previous examples (cf.
§3.5) we sometimes found it necessary to restrict the family

of structures (S) in order to construct an acceptable battery of
tests. That meant that, in some way, we had obtained more know-
ledge about the program being tested. The new context was then
more precise than the old one. This remark leads us to a pre-

order on testing contexts.

On the other hand, once a context has been given, we would like
to be able to compare its batteries of tests. Thus, we want to
be able to describe precisely what it means to improve, to
optimize, a testing strategy. We want to be able to describe,
as well, what two equivalent testing strategies are. This leads
us straightforward to a preorder on batteries of tests for a
given testing context. The equivalence induced turns out to be

of great interest.

4.1 Conservative Restriction of a Testing Context

In most cases, there does not exist any acceptable battery of
tests for a given context C = <L,S,(S) ,A>. One reason could be
that L does not allow us to express precise enough properties,
so we would want to be able to extend L. But this reason is ob-

viously rather technical.

Another more crucial reason could be that (S) is too large, tod
heterogeneous. We would like to restrict it to a more homogeneous
family, but without eliminating any correct potential implemen-
tations of the program being tested. The restriction must be

conservative.

34

Let L be a language, and L' an extension of L. Let §' be an L'-

structure. We denote by S'IL the L-structure obtained by removing

the symbols of L'-L. Let A be an L-theory. We denote by AIL'

the L'-theory having the same non-logical axioms as A (but con-

sidered as L'-formulas). We can now state the definition.

Definition: conservative restriction

Let C = <L,S,(S),A> and C"' = <L',S',(S'),A'> be two
testing contexts. (' is said to be a conservative restriction
of ¢ dif

1) L' is an extension of L

2) &' =8

3) (S)IL(S) c (S)

4 BAiLig T A

5) conservative condition

for every structure S8 of (S) such that S E A,
there exists a structure S' of (S') such that
' -
S'iLs) =S
Note that if L' is an extension of L, then L'(S) is an extension
of L(S). Note, too, that for any L'(S)-structure S', S' |= A
s 1
iff S IL(S)

S in both cases.

IL' (S)
F A, because we are dealing with the same universe

It can easily be shown that the relation ¢ is a preorder on the
class (but not the set!) of testing contexts. Therefore, by
transitivity, we may deal only with elementary conservative

restrictions, putting them together to get the desired result.

The following theorem shows that a (conservative) restriction
cannot, in any case, discard any acceptable battery of tests.

It is therefore a safe tool.

35

(Conservative) Restriction Theorem

Lemma

Proot

Proof

Let C = <L,S,(S),A> be a testing context, and let

c' = <L',S8',(S8') ,A'> be a conservative restriction of (.
Let T = <H’(Tn)neN> be a battery of tests for (.

Let T' = <H|L,{S), (TniL'(S))naN>'

If T is logically acceptable for (¢, so is T' for (C'.

If T is formally acceptable for (€, so is 7' for ('.

Let U and V be two L-theories and L' be an extension of L.

Then U + V iff U OV

|L' IL""

By the completeness theorem of the first-order egalitary

logic (see [Schoe 67] §4.2.)

Suppose U f V. Let §' be any L'-structure that validates
1] - L}
UIL" Then 8§ IL = U, g L F V and S' E vlL" Thus

F Vv The converse is proved in the same way.

U]L' L'

of the theorem

Let us show that T' is actually a battery of tests for ('.
1 1y . 1 ' =

Lek $* & (8*); then S IL(s) € (8), S |L(s) F H and

S' E H|L'(S)' Because (S')IL(S) c (S), the calculability

of the meanings of the non-logical symbols of Tn is preserved.

is thus actually a test for (' By applying the

T
niL' (8)
lemma with L(S) and L'(S), reliability is obvious.

Suppose T is logically acceptable for C. For any S' € (S')
S' E AIL'(S) ift 8 IL(S) E A.lff S [L(S) E Tn for any
neN (because 8 L(g) € (8)) 4iEE 8* F Tn|L‘(S)

Thus T' is logically acceptable for C'.

for any neN.

Suppose T is formally acceptable for (. By the lemma,

the relation H | JT H H|JA implies
n

HinLi(g) %J Turnt 18y T E o 5y A i) ?

which expresses formal acceptability of T' for (C'.

36

Note that the converse of the above theorem is true in the
formal case: a battery of tests that was not formally acceptable
cannot become acceptable as if by (conservative) magic! This
means that formal acceptability is a rather intrinsic property
which depends little on the concrete application conditions.
Dependence only occurs through the formal hypothesis H , which

is, as we saw earlier, a valuable feature.

Yet, theorem converse is not true in the logical case: Logical
acceptability may depend on external conditions. This feature
agrees with practical intuition, but leads to conceptual diffi-

culties.

Note that the conservative condition is not used in the above
proof. It is yet needed by the intuitive meaning of our definition,

and will be of great interest later (see §5.3).

Conservative restrictions of testing contexts will be used in

two main ways in practice. On the one hand, we will add some

new symbols to L, extending the family of structures by giving

to those new symbols some specific meanings. For example, in case
(:) of §3.5 the new constant symbol "a" models an arbitrary
element of the domain. To choose a structure S' of the restricted
context means to pick up randomly a value in S. We thus give a

precise model of random stampling strategy.

On the other hand, we will use some new hypothesis H1 about the

potential implementation, for example the regularity or uni-
formity hypothesis. We then restrict (8) to those structures that

validate H, (see example (:) of §3.3). It can be easily shown

that a sufficient condition for the restriction to be conservative

is AllH } H.,. The restricted context is then an HLJH1—context.

1

As a special case, we can take H1 = A. We then get an A-context.

A trivial acceptable battery of tests is T = <A, (T.) EIN> with
n'n

Tn = @ for all neilN. If we consider the property to be tested

as a hypothesis, testing becomes triviall!

37

This is why we must only consider some likely hypothesis H1.
A must ocbviously not be considered as a likely hypothesis.
The regularity or uniformity hypothesis may, in most cases.
This "likely" feature will get a crucial place for quality

assessment (see §5.3).

For purely universal properties, the regularity or uniformity
hypothesis leads actually to conservative restrictions. For the

regularity hypothesis,
[P(O)A...AP(k) » Vx P(x)] - [¥x P(x)]
holds for any k. But this is not true in general. For example,

in example (:) of §3.3, consider the structure S such that
PS(X) = (x = k+1) then S F A ={3x P(x)}, but S does not validate

H1 = {3x P(x) -» P(O)v...vP(k)}. The restriction is not conser-

vative, we implicitly eliminate some correct potential imple-

mentations of our program. That is why properties which are not

purely universal are not testable in general.

4.2 Asymptotic Sharpness

We now consider a given testing context, and look at its set of
batteries of tests. Informally, we wish to be able to compare

two of them with respect toithe quality of information we can
gain. But we consider only positive information, i.e. information
about correctness of the implementation, and not information about
its possible incorrectness. As with conservative restriction, we
are interested rather in correct implementation than in incor-

rect ones.

A battery of tests is said to be sharper than another if the
success of its tests implies the success of the tests of the

other, irrespective of indexes.

This is the intuitive, logical definition. For the formal one,

we have to deal with formal hypotheses H and H'. It is, of course,
a highly valuable property for a battery of tests to involve weak
hypotheses, because we do not know if they are actually wvalid for
the concrete implementation. Our definition must reflect this view-

point.

38

Definition logical and formal asymptotic sharpness
Let C = <L,S,(S),A> be a testing context.
— I —= ' 1
Let T <H'(Tn)n€N> and T <H ’(Tn)n€N> be two
batteries of tests for C.

* T is said to be logically asymptotically sharper
than T' if

for every 1i€lN

there exists Jj€N, such that

for every structure S of (S)

if S E Tj’ then S E Ti
* T is said to be formally asymptotically sharper than
¥ ix
1) VielN 3jeN HLJTj F H'LJTi

2) H'UA F HUA

As with previous definitions formal sharpness implies logical
sharpness. Both of them define partial orders on the set of
batteries of tests for the context C. However, the logical order
is more "complete" than the formal one. For example, two batteries
of tests have a logical least upper bound, but not necessarily

a formal one.

We will sometimes write sharpness instead of logical or formal
asymptotic sharpness, when no confusion will result. The sharp-
ness orderings will be denoted :. The equivalence relations

canonically associated with them will be denoted ~.

Examples

C) Let C = <L,S,(S),2A> be a context, and T = <H’(Tn)naN> be
a battery of tests for C such that A |- H (this is in
practice often true). Then T' = <®’(®)nEN> is a battery
of tests for C, and T7's T strictly.

C) Let C = <L,S,(S),A> be a context, and let T = <H’(Tn)nEm>
and T' = <H"(Tﬁ)n€m> be two batteries of tests for C.

L] s] L) 3

Then TUT' = <HLUIH ’(TnLJTn)naN> is a battery of tests

for €, and it is the least upper bound of T and T' for
logical sharpness.
If AUH H AQH', then this is so for formal sharpness as well.

39

C) Let C be a context, and T = <H’(Tn)nGN> be a battery
| I ' "o "
O testE For 0. Let T <H’(Tn)nem> and T <H’(Tn)nem>
; | B - 1 "
with Tn = T2n and Tn TE[E]' Then T' and T" are

two batteries of tests for“(C, formally equivalent to T.

® Take L = {P,Q},S=N,H = H' = {vx (Q(x) - P(x))}.
A = {¥vx P(x)}. Consider T = <H'(Tn)ngN> and
T' = <hl’(T£)n€N> where
T, = {P(0)a...aP(n)}

T {Q(0)A.. AQ(R)}

Theti T'2 T strictly.

) Take L = {P}, S = N, & = {P(n), neN}, T, = {P(0)a...AP(n)}
H = {P(n), n<k, n odd}
H' = {P(n), ngk, n even}
s o] = L} T
Consider T = <H’(Tn)nem> and T' = <H ,(Tn)n€N>. Then

T~T', but H ¥ H', and H' | H.

Properties of sharpness equivalence will be studied more precisely
in the following paragraph (see §4.3). The following theorem

shows that sharpness ordering is relevant with respect to vali-
dity and bias. Informally, validity is an increasing property,

and lack of bias a decreasing one.

Monotony theorem

Let C be a testing context, and let T and T' be two

batteries of tests for C.

Suppose T is logically (resp. formally) asymptotically

sharper than T'.

If T' is logically (resp. formally) asymptotically wvalid,
so is T.

If T is logically (resp. formally) unbiased, so is T'.

40

Proof
We consider only the formal case (the logical one can be

proved in a very similar way).

- - LI, T 1
Take C = <L,S,(S),a>, T <H'(Tn)n€N>’ T <H ’(Tn)nEN>'
*# Assume now that T'is wvalid, and examine H Ll T_;
neN

HLT F H'LJTi and this is true for all i€eN;

newN
thus H L Tn F H' LlTé, and H' [Tﬁl— A by hypothesis.

nem neN nelN
Thus H U Tn F A.

neN

* Assume now T 1is unbiased and examine H'|[]A. Given any
neEN; H'JA F HIJA, and HUUA F Tn by hypothesis. So

H'LIA F Tn; but H'JYA F H obviously, and thus H'|JA F HLJTn,
and this is true for all neN. Thus H'[UA F H L] Tn’ and, as

neN
we have shown previously, H LI Tn F H' L Tﬂ. Thus
neN nen
H'UJAa F BH' U Tﬁ, and, as a consequence H'|JA | T for all
nen. T 0

(Counter-) examples
() Consider example (:) above; T' 2z T, T is unbiased but T'

is biased.

D,
{P(0)A...AP(n)}.

(2) Take L = {P}, S =N, A = {vx P(x)}, H
H' = {P(0)A...AP(k) » Vx P(x)} and T
Consider T = <H,(Tn)n€N> and T' = <H ’(Tn)n€N>'
Then T' 2 T , T' is wvalid and T is not.

4.3 Asymptotic eguivalence

We shall now study more closely the properties of the equivalences
induced by the asymptotic sharpness (pre) orders. In fact, it
should be noticed that those pre-orders, especially the formal

one, are rather poor, and are mainly valuable because of their

induced equivalences.

The following theorem makes precise the relationships between

sharpness equivalence and acceptability.

41

Stability theorem
Let C be a testing context, and T, T' be two batteries

of tests for this context.

If T is logically (resp. formally) acceptable,

and T' is logically (resp. formally) asymptotically
equivalent to T,

then T' is logically (resp. formally) acceptable.

In other words, acceptability is preserved by (asymptotic)

equivalence.

A very surprising fact (at least for the author) is that, in
practical cases, two acceptable batteries of tests are actually

equivalent.

Equivalence theorem

Let C = <L,S,(S) ,A> be a testing context, and T = <H'(Tn)nﬂN>
and T' = <H"(Tﬁ)nEN> be two batteries of tests for C.
Suppose that there exists a finite sub-theory Ay of A such

that AOLJH14 AOLJH' (finiteness condition).

Then, if T and T' are formally acceptable, they are

formally asymptotically equivalent.

Proof
Notice at first that the finiteness condition implies that

AUHkﬁﬁﬁﬂiHAOUH'HAUHU
By acceptability,

HLJTn HHUA, H'LJTA HH'LUA
n n

(we write |J instead of |]J when no confusion is threatened).
n neN

Then we have
H1L11Tn F HLA F HLIAO - AO.

By the same trick we used for the compactness theorem
(cf. §3.2), we get j such that

42

HLIT, + a,.

Then HL_JTj - HLJAO + H'LJAO i H'EfTﬁ.

Thus for all 1i€N, there exists JEN such that
1]
Hi_,[Tj F H LJTi

From the first remark, H'|JA F HLIA.
Thus 7T 2 T', and, by symmetry, T~T'. o

Intuitively, the finiteness condition means that T and T' are
not too different from one another. The theorem then states
that two acceptable batteries of tests are either equivalent,

or very differearnit.

Consider such an example:
Take L = {P}, S =N, A = {P(n), neN} (A must of course be infinite!).

Let T = <H, (Tn)nEiN> with

H =0, T = {P(0)A...AP (D)},
and T' = <E',(T]) >s With
Hl - A' T;l = @

"

Then T and T' are formally acceptable, T' =2 T but not T =z T'.
Notice that HIJA H H'LJA'. It can be seen that a finite AO
such that HLJAO I—IH'L_lA0 does not exist.

N
b

Another example is the following one: take S = N, L = {P},
A = {P(n), nem}, Tn = Tﬂ = {P(0)A...AP(n)}; take

fas
I

{P(O)A...AP (k) = V¥x P(x)}
{P(O)A...AP(k) =» P(n), nent}

o
1l

43

However, such examples are not very common, and, in most prac-

tical cases, the finiteness condition holds.
Let Cbea testing context, and T a battery of tests for (. We say
that T is (formally) finitely acceptable if T is formally accept-

able and (formally) finitely valid (cf. §3.2).

Fundamental lemma

Let C be a testing context, and let T and T' be two batteries
of tests for C.
Suppose that T and T' are (formally) finitely acceptable

and are comparable with the formal asymptotic sharpness

preorder.

Then the finiteness condition holds.

Proof
We use the above notation.
Let us examine 7. By finite acceptability we get k such
that HLJTk F A. By acceptability then,

HUT HHLUAHHLT,
n

By the compactness trick, we get a finite subtheory of A,

say B, such that

HU T, HHUAHHUT, HHUB.
n
With T', we get in the same way k' and B'.
Suppose now T 2z T' for example.

From the first condition, it can be easily shown that

] 1
HUT F H'T!
n n
SO

HU B + H'|JB'

44

From the second one we get

H'LIB' + HLIB.

Take now Aq BLIB', which is actually a finite subtheory

of A: HLJAy H H'LJAO. o
We can now state our so-called fundamental theorem of testing.

Fundamental theorem of testing

Let T and T' be two (formally) finitely acceptable batteries
of tests for a testing context C.

If T and T' are comparable with the formal asymptotic
sharpness preorder, then they are equivalent for this

preorder.

In practice, the theory being tested is often finite, and by

the compactness theorem, the above theorem applies.

Let us conclude this paragraph by showing that the potential
dual statement of the above theorem is not true in general. For
this purpose, take § = N, L = {P,Q}, A = {v¥Vx P(x)}: let (S) be
the family of those L(S8)-structures. that wvalidate

H = {(Vx Q(x)) <« (Vx P(x))}, and such that P and Q have cal-

culable meanings; take

Tn = {P(0)A...AP(n)}, TA = {00} As « +AD (1) Fos

Then T = <H'(Tn)nEN > are both logically

acceptable, but not comparable.

> and T' = <H ’(Tn)nEN

4.4 Conclusion

In this section, we have described some preorders for the class
of testing contexts, and for the set of batteries for a given

context.

45

Context (conservative) restriction models increasing knowledge
about the implementation being tested during the testing process.
One is (in most cases implicitly) led to postulate new hypotheses
in order to be able to infer correctness from the success of the
tests. The main result is that context restriction cannot

eliminate any potential acceptable batteries of tests.

Sharpness formalizes the relative quality of a battery of tests.
We have shown that our definition is consistent with the funda-
mental properties: they have been proved to be monotonic. Thus,
those properties are preserved by equivalence, and we can deal
with acceptable equivalence classes. Furthermore, the Fundamental
Theorem of Testing asserts that, in practical cases, each of those

classes is maximal for asymptotic sharpness.

Notice that these nice results are not true in general with logical
definitions. Once again, formal definitions turn out to be more
fruitful, though less intuitive, than logical ones. Duality prevents
us from stating any definition unfitted for the concrete reality

of testing.

46

5. CONSTRUCTION, OPTIMIZATION AND QUALITY ASSESSMENT

The earlier sections were devoted to studying, from a theoretical
viewpoint, the properties of testing contexts and batteries

of tests. They have shown that the behaviour of those abstract
objects may be quite directly related to the common intuition

about program testing.

This section describes the application of this theoretical model
to three important practical problems arising in this field: the
effective construction of a suitable battery of tests for a
given problem, the optimization of a given battery of tests
according to some given criterion, and the global quality assess-

ment of a testing process.

5.1 Towards an Effective Construction Method

As shown by the Testing Process Diagram (see §1.4) the construc-
tion phase consists of, starting with a testing context CO’

defining a new testing context C which is a conservative

11
restriction of CO’ together with a formally acceptable battery
of tests T for C1

& > T acceptable for C1
construction c. < ¢

T 0

In practice, we must, of course, only deal with "likely" con-

servative restrictions. This means that the new hypothesis

we postulate (regularity or uniformity hypothesis) must be

sensible with respect to the concrete problem).

Consider the following example. Let C0 = <L0,S,(SO),A> be an
initial context with formal hypothesis HO' CO is an Ho—context.
Suppose that A is {vx ¢(x)} where ¢ is an LO(S)—formula, without
any quantifier, and without any variable but x, such that any
non-logical symbol of ¢ has a calculable meaning for every
structure of (S). Suppose that S is countable, say S = N.

In order to construct T and CT’ we may use two kinds of hypotheses,

depending on the practical context.

47

(:) Take Hy = {6 (0)A...AD (k) » Vx ¢(x)}, restrict CO with H,
to get an HOLJH1—context C1 (notice that HOLJA - H, for
any choice of k!).
Then T = <HyjUH,, (T) o> with T = {¢(0) ... ¢(n)}
solves the problem. Note that the choice of k does not

need to be explicit (exhaustive testing strategy).

(:) Add a new constant a to LO’ and consider H1 = {¢(a) » ¥x ¢(x)};
0 to get C1
B = {¢(a)} solves the problem (random sampling testing).

restrict C as above. Again, HOLJAI— H1. Now

We thus know how to effectively construct T and C1 for the basic
case A = {Vx ¢(x)!} in many practical problems (other special
sensible hypotheses could however be used). We now show that the

syntactical form of A may be modified.

Construction lemma
Let C = <L,S,(S),A> and T' = <L,S,(S),A'> be two testing
contexts with the same family of L (S)-structures (S).
Let T = <H,(Tn)nElN
Suppose that AL|H H A'LlH.
Then T is an acceptable battery of tests for C' if and only

> be a battery of tests for C.

if it is for C.

Proof
T is obviously a battery of tests for (' (this does not

depend on A4).

T is wvalid for C': HLJTn A (validity for C), HL_ITn - H,
n n
HI_l'I‘n F HJA F HUA' and thus HI_ITn F A'.
n n
T is unbiased for C': for any n, HUA F Tn (lack of bias

for C), and HLIA' b HUA F Tn'
The converse is proved by symmetry. o

48

Now,

the Decomposition Theorem transforms the problem of

constructing a battery of tests for a complex theory A into

(probably) infinitely many basic problems by splitting A into

piece

S.

Decomposition theorem

Let C = <L,S,(S),A> be a testing context, with A a

countable union A = | A(i).
1N @)

For each i€N, let E be the testing context
<1,s,(8),aM) s, and 1et T H(l),(T(l)) _—
a battery of tests for C(l).
Let H = o ud)

1€N

_ (1) _ (D) (n)
Tn = T = Tn L_J...L_ITn
izn

Then T = <H, (T.) > is a battery of tests for C.

(i) n’ nelN (1)
If each T is logically acceptable for C , SO 1is
1 $T0% Uu

If each T(l) is formally acceptable for C, so is T for C.

Proof

0,

T is a battery of tests for C.

(1) being a test for C(l) and T, being the

(1)

Fix n. Each T
union of flnltely many T Tn is actually a test for
C (C and C(1) ake bulilt on the Bdme (S)1).
Each C(l) is a testing context. For each S¢€ (S),
S E H(l),r for each index i; so S E U H(l) and S E H.
i

- . .
For the same reason, for each index i, H(l“LjTéii i Tél)
for each n. Thus
(1)

n

L! (H(i)LJT(i)) |- I T

. n+1 .
ign+1 ign+1

This can be rewritten
(((1)) \ L ()
W e &) P Ty

i<

49

This shows

(n+1)
n I—lTn

(\
\H[_JTn+1} F T
and as a special case

HI]T o Tn, which holds for all n.

n+1

We now focus on the formal case; the logical one can be

handled in the same way.

T is valid for C.

Consider HLJTn. This can be rewritten
n

LJH(i)LJ(U Téi)) , that is
i n

i i<n

Fppda) (1)) %
LiJ\H Il T) (*)

nzi

But, by projective reliability, we have

(i)

n

H(i)LJTii) - LT

nsi

for any i
So (*) proves actually

(1) | i)
Uy,

i
o o (1) (1)
and by the validity of T for € , that proves

Ua?) that is a.
e}

T is unbiased for C.

Consider H|JA. This may be rewritten

)| (1)

@ galt)y,

i
By lack of bias of T(l) for C(l), this proves, for any n,
LJTél) and, as a special case, L] Tél), that is Tn' o

3 1LSn

50

It should be emphasized that the "diagonalization method”
(i)

used to build Tn does not work if there are uncountably many A

Given the Construction Lemma, and the Decomposition Theorem,
we can now describe an effective and general method to achieve

the construction phase.

Remember firstly that, following the discussion in section 3

(see mainly §3.5), we only have to deal with some purely universal
"calculable" formulas. Consider therefore an initial context

C = <L,S,(S),A>, with A = {vx Vy ¢(x,y)} with ¢ a formula as
previously. Suppose S = N.

C) Firstly, restrict C with a uniformity hypothesis H, (or some

]
other suitable likely hypothesis) for the formula
vx[Vy ¢(x,y)]. We then obtain C1 = <L,S,(S1),A>

Hy = {(Vy ¢(0,y)Aa...avy ¢(k,y) - Vx Yy ¢(x,y)}.

Under HT’ A is now equivalent to

A1 = {vy ¢(i,y), iem}.
C) By the Construction Lemma, it suffices now to consider
the context 02 obtained by replacing A with A1 in C1.
C2 = <L,S,(S1),A1>.
(:) The Decomposition Theorem may now be applied. It suffices
to consider the (infinitely many) contexts
Cél) = <L,s,(s1),A{l)>, with

alt = vy si1,m)1.
(:) The example described earlier may now be applied.
Notice that the Decomposition Theorem can be applied at point

(:) precisely because S is countable. With an uncountable §,

we might not have been able to conclude anything.

21

The method can obviously be extended to a more complex A.
The following definition states some sufficient practical
conditions on the testing contextsthat can be handled in this

way .

Definition Testable Testing Context
Let C = <IL,S,(S8) ,A> be a testing context.
C is said to be testable if

* § is at most countable

* A is a theory with at most countably many non-logical
axioms (countable theory), each of them being a purely
universal formula each of whose non-logical symbols
has a calculable meaning, whatever structure of (S) is

considered.
Notice that if L has at most countably many non-logical symbols
(countable language), one can always (by the Construction Lemma)

reduce A to a countable theory (L(S) being countable).

5.2 Construction vs. Optimization

We are now able to construct effectively an acceptable battery
of tests for a (possibly restricted) given testing context.
However, it is often the case that this battery of tests is not
satisfactory, for some practical and/or theoretical reasons.

We are thus naturally led to the optimization problem with

some given criterion.

Consider firstly the formal sharpness criterion, this is, to

our mind, a quite natural criterion in our formalism. Given a
context C and a battery of tests T, which is acceptable for C,

we try to optimize T to get a strictly sharper acceptable

battery of tests. The Fundamental Theorem of testing applies

(at least if the theory to be tested is finite - that is actually
often the case). It states that any sharper acceptable battery

of tests is in fact equivalent to T, and thus can be easily

characterized.

52

We must therefore turn to some more precise criterion which

results from some external considerations. Those considerations
are not, in general, expressable in our formalism. They often
deal with testing cost or profitability. Nevertheless, we can,
to a certain extent, provide a method for assessing their

legitimacy.

The idea is to look at the likelihood, the legitimacy, of the
hypotheses which are involved in sharpness equivalence. Consider
the HO-initial context CO = <L,S,(SO),A>. H0 can be considered

as the set of fundamental, initial hypotheses about the imple-

mentation, whose validity may not be in doubt.

Now, suppose we have already constructed (probably using the
above method) an HOLJH1—context C1 = <L,S,(S1),A>, which is a
conservative restriction of CO (in most cases, HOLiAI— H1),
and an acceptable battery of tests T = <H0LJH1’(Tn)n > for

€N
C1. H1 is a set of technical construction hypotheses, probably

uniformity and regularity hypotheses, which have been postulated

about the implementation for theoretical reasons. They should
have been carefully chosen as likely hypotheses, but in any case

they may be considered as less legitimate than the initial

hypotheses.

Consider now a battery of tests T' = <H0LJH1'(Tﬂ)n€N>’ which is
an optimization of T according to some external and inexpressible

extra criterion. T' is equivalent to T, and we thus have
1 *
HOLJH1LI;|Tn H HOLJH1Lr;|Tn (%)

This means that, given the initial hypotheses and the construction
hypotheses, L_ITn and LJTA are equivalent. We say that this
optimizationllis of " level 0 if equivalence still holds

under the initial hypotheses. Otherwise, it is said to be of

level 1.

53

A level 0 optimization can be considered as perfectly safe and
legitimate. It can be seen that a typical optimization of level 0
is to increase the redundancy of the battery of tests, by

adding some new experiments, already implied by the old ones,

to the tests. Such an optimization will probably increase the
cost of the testing process, but also the quality of the con-

clusion (see §5.3).

A level 1 optimization must be considered not to be as safe as

a level 0 one. A typical example is to decrease the redundancy

of the battery of tests, and thus the cost of the testing process.
Consider for example a theory A = {vx ¢(X)} to be tested under

a construction hypothesis H, = {ax ¢(x) - vx ¢$(x)}; a test

{¢(a), ¢(b)} will be, at level 1, optimized into {¢(a)}

These two kinds of optimization are quite usual in practice and
are often left implicit. In fact, the word "optimization" tends
to be used when some extra hypotheses are involved, leading to
some simplifications. In our formalism, we can express this by
restricting the context once more with a new hypothesis theory

H2.

Ho—initial context Hy ,UHl " HOUHlu H,
construction context C1 optimization context C2

Hy By

(remember that conservative restriction is transitive, see §4.1).
Hy
mization is said to be of level 2.

is called the optimization hypothesis theory. Such an opti-

Such extra hypotheses must be considered a priori to be ille-
gitimate and not useful. Their validity should be examined very

carefully, as should the profitability of such an optimization.

An optimization of level 2 leads in general to some considerable

alteration of the battery of tests.

54

5.3 Quality assessment of a testing process

As we are reaching the end of this work, - we cannot avoid any
longer the question of assessing the quality of a testing process.
Even though we are not able at present to answer this question

in a satisfying way, we will give here some insight into this
very difficult but fundamental problem.

We can now proceed with the discussion of the Testing Process
Diagram first sketched at §1.4.

implementation —
specification _________ test T _—" conclusion
representation application

|

initial testing
context CO

® battery of tests
construction

From the implementation features and the specification to be
tested, we get an abstract version of the problem as an Ho—testing
context CO = <LO,S,(SO),A>. We then construct an acceptable
battery of tests T = <H0LJH1’(Tn)n€N> for a (possibly) conser-
vatively restricted HOLJH1jtesting context C1 = <L1,S,(ST),A>.

In the application phase, we choose a test Tp from (Tn) and

ngN
run it. If Tp is passed, the implementation is declared to be
correct with respect to the given specification; if Tp fails, it

is declared to be incorrect.

We suppose that the representation phase is coherent in that the

concrete problem is intuitively "correctly" translated into an

abstract formulation. As a special case, we suppose that there
is an (unknown) structure Sr which actually represents the

implementation functional behaviour.

25

Suppose now that the selected test Tp fails. Suppose that the

implementation is nevertheless correct. Then Sr F A (coherency).
Because of the conservative restriction, there exists S;,€(S1)

1 - i
such that SrfLO(S) Sr. Then by an earlier remark,

S£ E A[L (S) and, by hypothesis, S£ E (HOLJH1). But, by lack of
1

. . ; ,
bias, AIL (S)L_IHOL,JH,l F Tp (in fact for any p!). So Sr - Tp and
we get a contradiction. We then can conclude that the implemen-
tation is certainly incorrect, whatever the index p chosen.
This should be related to the discussion of §1.1 about the

testing "anisotropy" property.

The above proof shows that if the implementation is correct, then

all the tests Tn will be passed. Conversely suppose that the

selected test Tp is passed, and that the implementation is not
correct. In general we cannot conclude anything. We need some

more hypotheses, called coupling hypotheses.

First coupling hypothesis

Everything happens exactly as if Sr is conserved by the
restriction: one can find an S' € (S,) such that §!

r 1 rlLO(S)
behaves like Sr

Second coupling hypothesis

Everything happens exactly as if all the tests Tn' neN

were passed - instead of TP only.

Assume these coupling hypotheses. Because of the validity of T,
\ .
HOLJH1thn A. Thus Sr E A (in fact A|L1(S

remark, Sr F A, which leads to a contradiction.

)) and, by an earlier

We have shown that the quality of the conclusion which our
testing process leads to is actually related to (and only to)
these two hypotheses. We may thus identify them and define the
guality of a testing process to be the validity level of the
hypotheses.

56

It should be emphasized that these two hypotheses are essentially
of the same nature. (31) may be viewed as a sampling of (SO),

the fairness of which is determined by the likelihood of the
postulated construction hypothesis H1. On the other hand, if Tp
is passed, then, by reliability, all Tn with nZp would have been
passed. (Tn)ngp may also be viewed as a sampling of (Tn)nﬂN'

the fairness of which is determined by the index p. Thus, in both
cases, we state that some results which are formally true on a
fair sampling of a domain may be considered to be true for any
object of the domain. This is no more than a special kind of
regularity or uniformity hypothesis! Such kinds of coupling hypo-

theses have been used extensively in Mutation Testing [Budd 81].

Thus we can now (re-)define testing process quality as the fairness
of those samplings. Remember that restricting the context from

CO to C1 may be regarded as increasing one's knowledge (in fact by
postulating some likely knowledge) about the implementation. On

the other hand, the criterion for choosing Tp out: of (Tn)nGN is
mainly running cost. Testing process quality is thus directly re-
lated, through fairness, to

C) the quality of information about the tested implementation

C) test running costs.

It must be verified that perfect information and infinite cost
actually lead to a perfectly safe testing process conclusion. It
is sufficient to look at an incorrect implementation. The initial
context CO looks like <L,S,{Sr},A>: the family of structures has
collapsed to a singleton. Suppose, for the sake of clarity, that
A = {vx P(x)} and S = N. There exists an integer k such that

Sr ¥ P(k), so that Sy F {P(0)A...AP(K) - Vx P(x)} (perfect
information). We restrict the context CO with this hypothesis to
C,I (that is not to do anything), and take T, = {PEO) nves o088 (5] § &
We get an acceptable battery of tests for C1, and we may pick

out T, (infinite cost), which obviously fails.

k

The above discussion shows that, under perfect conditions, testing
an implementation may prove its correctness. Proving appears here

as a special case of testing, namely as an extrapolation of

57

testing to infinity. In practice we are thus led to consider
program testing as a finite but highly valuable approximation of
program proving, which is itself, in most cases, quite untractable.

This is the very specificity of testing to give a continuous gra-

duation of correctness assessments instead of the correct/incorrect

(often humanly undecidable) alternatives of proving.

5.4 Conclusion

Our formalism, by the rigorous application of mathematical tools,

allows us to give a precise account of several important notions.

We have described a general framework for constructing a suitable
battery of tests for a given initial context. We have defined

some precise conditions about the considered context that allows

the method to be applied in a safe way. This method leads one to
postulate some new construction hypotheses about the implementation,

the likelihood of which must be examined in each practical case.

We have also given a precise meaning for the word optimization.
Using the sharpness criterion, the Fundamental Theorem of Testing
shows that any optimized battery of tests is in fact equivalent
to the original one. We have shown that extra external criteria
may, to a certain extent, be characterized. Level 0 optimization
is quite safe and typically increases redundancy. Level 1 opti-
mization is legitimate; its profitability must be assessed; it
typically decreases redundancy. And lastly, level 2 optimization
is in principle illegitimate, but may be useful in some practical
cases; 1t alters the structure of the battery of tests conside-

rably by considering some new hypotheses about the implementation.

Lastly, we have given some insight into testing process quality
assessment. We have shown that the gquality of the decision about
implementation correctness is only related to the quality of the
information about implementation, and to the testing cost. Perfect
knowledge and infinite cost lead to a perfectly safe conclusion

i.e. a proof of implementation correctness.

58

6. CONCLUSION

We have presented an abstract formalization for the notion of
program testing, based on a rigorous utilization of first-order

logic as an underlying mathematical tool.

6.1 On Formalization Power

We feel that the wideness of application of our model is its
main powerful feature. Earlier papers have concentrated on the
notion of a test (or a test criterion), rather than on the
testing process. The authors were thus unable to give a precise
account of the specific "likely" feature of testing process

conclusion .

By splitting the testing process into three phases, we can
precisely localize this "likely" feature and model the other
actions as rigorous, formal manipulations of logical theories.
The likelihood of the testing process may thus be related to the
precise intuitions of knowledge quality and testing cost (see
§5.3). However it should noticed that all of this is only con-
cerned with the abstract level of the Testing Process Diagram.
In practice, one must also carefully assess that the abstract
problem represents in a "satisfying" way the concrete problem

to be solved. Such an assessment can of course only be empirical

and is inherent in any modelling process.

Let us now focus on our underlying mathematical tool. We have
chosen first-order egalitary logic for several reasons. As most

of the earlier papers in the field (implicitly) used it, it is

quite a natural tool in this area. It allows us to express directly

and easily the common intuitions about program testing. On the
other hand, it is a well-known mathematical tool, and we may
get benefits from its classical notation and methods: its
"spiritual tradition". Yet the main reason for this choice (in-
stead of statistical theories, for example) is our conviction

about the complementary natures of testing and proving programs.

59

We therefore chose some common mathematical tool in order to

enable further comparisons (see next paragraph).

Having chosen our tool, we had to respect its own nature, and
requirements. This has led us to somewhat complex definitions
and expressions ("formally projectively reliable"!). Yet, to
our mind, this effort is quite fruitful in the long term. We
have got some precise theorems which describe and justify pre-
cisely some common intuitions. Discriminating formal properties
from logical ones allows us to make precise the relationships
between the concrete (logical) level and the abstract (formal)

level in a surprisingly efficient way.

6.2 Further research goals

Testing vs. Proving

This work allows us to understand better the relationships between
testing and proving. On the one hand, testing can be viewed as a
special case of proving (see §1.1). Building an acceptable
battery of tests for a given testing context is nothing more than
building a proof of the property to be tested, according to

some precise conditions (decidability of experiments, for example)
about the form of this proof. On the other hand, proving can also
be viewed as a special case of testing (see §5.3). We have shown

that extrapolating testing to infinity produces proving.
It should certainly be very fruitful to study those relation-
ships in a deeper way, leading perhaps to unified theory of

program correctness.

Quantity Quality Assessment

In the last section we have discussed quality assessment of the
testing process (see §5.3). In fact, we have not been able to give
a precise and quantitative assessment method. Yet such a method
would be highly valuable; it should, at first glance, deal with
some probabilistic tools, but our mathematical tool is unfor-
tunately not very well suited to these kinds of concepts. Some
further research, involving perhaps some advanced concepts of

mathematical logic, are needed here.

60

Towards Automatical Test Generation

In an earlier work [Boug 82b] we have extensively described the

application of our model to some concrete programs.

The first example deals with a quite common sorting program. It
can be noticed that the very heart of the testing process, the
construction phase, is somewhat tedious because it is so repe-
titive. The same holds also for the optimization phase. In fact,
the central problem is to choose some likely hypothesis according

to one's own intuition about implementation behaviour.

The testing process may be considerably simplified if we do not
consider any given implementation and any given specification,

but their abstract versions, that is a Z-algebra and a I-data type,
¥ being a signature (see [Gaud 80] for an introduction and a
bibliography about abstract data types). In most cases some
standard hypothesis may be used, and the testing process may be
easily handled automatically. [Boug 82b] describes an ex-
perimental test generation system we have implemented according

to this method.

There seem to exist some promising applications for our testing
theory with abstract data type specifications, leading perhaps

to powerful automatical test generation methods.

6.3 All is well that ends
We cannot find any better conclusion than GOODENOUGH & GERHART's

one in their earlier paper [Good 75]:

We know less about the theory of testing
that we do often

than about the theory of proving

that we do seldom.

This paper is a step toward redressing

this imbalance.

61

Acknowledgement
This work is mainly based on the author's doctoral thesis

[Boug 82b], which was submitted to the following jury:

B. Robinet, chairman

M.C. Gaudel, M. Nivat, J.P. Jouannaud, H. Gallaire, examiners
J.C. Rault, K. Culik II, guests.

I would like to thank all of them for their interest in this
work and their encouragement. I owe a special debt to M.C. Gaudel

for her help during the last years.

Special thanks to K. Mgller who typed this paper, and to N. Derrett
who corrected patiently many language errors, in English as in

Danish.

62

Bibliography

[Boug 82a]

[Boug 82b]

[Budd 81]

[Gaud 80]

[Gerh 79]

[Good 751

Bougé, L.
Validation de programmes par test: Théorie et

pratique.
LITP Report 82-18, Université Paris 6 & 7, Paris,

France, April 1982.

Bougé, L.
Modélisation de la notion de test de programmes;

Application a la production de jeux de tests.
% éme
Thése de 3

France, October 1982.

cycle, Université Paris 6, Paris,

Budd, T.A.

"Mutation Analysis: Ideas, Examples, Problems and
Prospects."

Computer Program Testing, B. Chandrasekaran,

S. Radicchi (Eds.). North-Holland Publishing
Company, 1981, pp. 129-148.

Gaudel, M.C.

Génération et preuve de compilateurs basé&s sur

une semantique formelle des langages de programmation.

Thése d'état, Institut National Polytechnigque de

Lorraine, Nancy, France, May 1980.

Gerhart, S.L.

"Program Validation".

Computing System Reliability, T. Anderson, B. Randers
(Eds.) . Cambridge, England: Cambridge, 1979, pp. 66-108.

Goodenough, J.B., Gerhart, S.L.
"Toward a Theory of Test Data Selection”.
SIGPLAN Notices, 10 (6), June 1975, pp. 493-510.

63

Another version may also be found in

"Toward a Theory of Testing: Data Selection Criteria".
Current trends in programming methodology, Vol. IV,
R.T. Yeh (Ed.) Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1977, pp. 44-79.

[Shoe 67] Shoenfield, J.R.
Mathematical Logic.
Addison-Wesley, Inc., 1967.

[Weyu 80a] Weyuker, E.J.
"The Oracle Assumption of Program Testing".

Proceedings of the 13th Hawaii International Con-

ference on system sciences, Vol. I, 1980, pp. 44-49.

[Weyu 80b] Weyuker, E.J., Ostrand, T.J.
"Theories of Program Testing and the Application
of Revealing Subdomains".
IEEE, Vol. SE-6 (3), May 1980, pp. 236-246.

[Whit 81] White, L.J., Cohen, E.I., Zeil, S.J.
"A Domain Strategy for Computer Program Testing".
Computer Program Testing, B. Chandrasekaran,
S. Raddicchi (Eds.). North-Holland Publishing
Company, 1981, pp. 103-113.

Appendix: Testing a sorting program

This appendix is aimed to apply the theory developed
above to test a realistic example: a sorting program. This
testing process is presented along the lines described in
section 5.

Consider a system P running the following program
(inspired by J.C. REYNOLDS). This program takes as input an
array X[1..n] of integers and sorts it. n is an integer greater

than 1.

var m,j,k,t: integer;
begin
m:=n;

while 1<m do

begin
J:=1; k:=1;
while k<m do
begin
k:=k+1;
if x[k] > x[j] then j:=k end
end
t:=X[j]; X[jl:=X[m]; X[m]:=t;
:=m-1
end

end

The input assertion is

"X is an integer array of size nz1"

The output assertion is
"X' is an integer array of size nz21, which is obtained by

a permutation from X, and which is sorted w.r.t. =",

where X' denotes the final state of X.

The property to be tested is

{Input assertion} P {Output assertion}

It can be expressed in our logical framework by

A = Vn VX [Input(X,n) - Output(X',X,n)l].

1. Representation

From the object P (the system running the sorting program)
and the property to be tested, A, we have to build an initial
testing context CO = <LO,S,(SO),A> (ct. §2.2), and a set HO of
initial hypotheses validated by all the potential behaviours SO

of the system.

Universe and language

We have to deal with lengths of arrays, elements of arrays
and arrays. Lengths vary over N~{0}, elements over Z, and arrays

over Z*. We thus choose
S = N~0} U Z U 2% | {1} (disjoint sum)

Cook the language LO in the following way. First take
predicate "symbols to distinguish between the (disjoint) com-

ponents of S: Natural, Element, Array, ..

Then add the symbols used in the program under test:

< < % - 1 (we will drop indices).

Now, one has to express the formula A to be tested. Thus add

the function symbols Access which returns an element of an
array, and Length which returns the length of an array. Add
also the predicate symbols Permutation which means that two
arrays are permutations one from the other, and Sorted which
indicates that an array is sorted w.r.t. £_. Lastly, choose a

Z

new functional symbol F to express the external behaviour of

the system under test: if x is an array, F(x) is the value
output by P with input =x.

Notice that 8 and L., are countable.

0

Structures and hypothesis

The family (SO} of LO(S)—structures models the potential
(correct or incorrect) behaviours of the system. We postulate,
following [Budd 81] that whatever this behaviour is, it is not
"too incorrect" (competent programmer assumption). All happens
exactly as if all symbols but F were correctly implemented.

(SO) is thus the family of all the LO(S)—structures such

that:

* all the symbols of LO but F have their ordinary
meanings on their ordinary domains, and are extended by 1
for function and False for predicates elsewhere.

* F is a calculable function on Z*, extended by 1 elsewhere,

such that for any array x, F(x) is a permutation of x.

By the way, we implicitly postulate that P halts and outputs
a value for any array given as input, and that this value is
a permutation of this array. Notice that all the symbols of
LO have a calculable meaning for any structure SO. HO is
namely the set of all the LO(S}-formulas validated by all the

structures of (SO).

Property under test

The property to be tested is

{Input (X,n)} P {output (X' ,%,a)}

This intuition can be caught by the following theory

A = {vn [Natural (n) -

vx [Array (x) A Length (x) = n -
Length (F(x)) = n A
Permutation (x,F(x)) A
Sorted (F(x))]1]1}

This choice and the previous remarks show that the Ho-context

CO = <LO,S,(SO),A> is a testable testing context (cf. §5.1).

The general method described earlier may thus be applied.

2. Construction

C0 may not admit any acceptable battery of tests. We
thus have to restrict it conservatively (cf. §4.1) to a new
context C1 by enriching LO with some new symbols and adding
some new construction hypotheses H1. Because of transitivity,
we can proceed incrementally.

We start with L, := L

1 0
H, := @ (construction hypotheses)

L
=X
.
|
n
o

First reduction

H0 contains the following formulas

vx [Array (x) - Permutation (x,F(x))]

vx [Array (x) - Length (x) = Length (F(x))].

By the Construction Lemma (cf. §5.1), noticing that we are

looking for an acceptable battery of tests of the form

<HOLJH1’(Tn)n>’ we can replace A by the theory B

B = {vn [Natural (n) -

vx [Array (x) A Length (x) = n - Sorted (F(x))]]1}

Discarding V¥vn

Following the method presented in §5.1, we now have to
discard the first quantifier. We now. describe this elimination

in some detail.

Let us add a new functional symbol b to LO and its defining

axiom to HT'

vn [b(n) © vx [Array (x) A Length (x) = n -
Sorted (F(x))1] (1)

L, := L, U{b}

Hy := H U{(1)]}

We extend the structures (ST) along this definition: this
restriction is conservative (and in fact purely notational).

By the Construction Lemma, we replace B by

{vn [Natural (n) - b(n)]} (2)

We would prefer of course {b(1),b(2),...}. Following the

method, we are led to add the regularity hypothesis

b(1)Aa...Ab(k) - ¥n [Natural (n) - b(n)] (3)
Notice that ALJHO F (3), so that the associated restriction is
actually conservative.

Intuitively, (3) means that if P behaves "correctly" for
any array of length less than k, then it does so for any array.
There always exists such a k. For if P is "correct", take k=1,
and otherwise take k the length of some array incorrectly handled.
This regularity hypothesis is thus legitimate.

We therefore make the associated conservative restriction
H, := H1LJ{(3)}, and we replace B by {b(1),b(2),...}. By the

1
Decomposition Theorem (cf. §5.1), we are led to test the theory

{b(n)} where n is a "generic" constant such that n=>1.

Thus we have eliminated the first quantifier.

Discarding Vvx: first stratification

By the Construction Lemma, we can expand b to its original

form. We are therefore now looking for an acceptable battery

of tests for the HOLJH1—testing context <L1,S,(S1),C>, with
C = {vx [Array (x) A Length (x) = n - Sorted (F(x))]}
(remember that n is here a "generic" constant).
Because there is no natural complexity order for the set
of the arrays of integers of Length n (n given), we cannot apply
the previous method. We have to use a uniformity hypothesis.
As a first attempt, we postulate that two arrays, whose
elements are in the same relative order, are equivalent with
respect to the property under test, C. That is to say the
sub-domains are described by a family of predicates Up, where p
is a permutation of {1..n}, with
Up (x) = Length (x) = n A x[p(1)]1s...x[p(n)]
Let us restrict conservatively our current context by adding
the n! symbols Up to L1, and the n! corresponding defining axioms
to H1 of the form
VX [Up (x) < [Array (x)A Length (x) = n A
Access (x,p(1)) = Access (x,p(2))A ... (4)
Access (x,p(n-1)) £ Access (x,p(n))]]

Then, any structure of (31) validates

vx [Array (x) A Length (x) = n-ﬁ-%{ Up (x)] (5)

Therefore, we can add those formulas to H1 without modifying

our current context
Hy := H,U{(5)}
Then, applying the Construction Lemma, we are led to replace C
by the fecllowing (finite) theory
{vx [Up (x) » Sorted (F(x))],p permutation of n elements}

Applying the Decomposition Theorem, we only have to deal with the

simpler theory

{vx [UP (x) - Sorted (F(x))]}
with p generic.
We have thus restricted the quantifier range to a "more

uniform" subdomain than the primitive one.

Discarding Vx: second stratification

We are thus looking for an acceptable battery of tests for

the context <L S,(S1),D> with

17

D = {vx [Up(X) - Sorted (F(x))1} P generic
Following the general method we have to assess UD uniformity.

For example, looking at the text of the program, is it likely
that system behaviour correctness for the array (0 0 0) and

the array (-3872 -683 -22) are related? It is definitely not the
case, and we have to stratify once again our sub-domains to get
some "more uniform" ones.

The problem is namely with the borders of the Up's. A good
thing to do is to cut them out. We only sketch the (maybe tedious)
method as it is the same as above.

In each UD we distinguish between strict inequalities
n-1

and equalities. We therefore get 2 sub-domains Vq. The

defining axioms of the Vq look like, for example,

Vx [Vq () [UP (x) A Access (x,p(1)) Access (x,p(2))

Access (x,p(3))

A 71 Access (x,p(2))

--+ A Access (x,p(n-1)) = Access (x,p(n))1]]

Lastly, we have only to deal with the simpler theory
{vx [Vq (x) - Sorted (F(x))]1}

with g generic.

Discarding Vx: uniformity hypothesis

We now feel that each of the n!><2n_1 sub-domains Vq is
very likely uniform with respect to the property under test.
One of the main arguments is that all the data of a Vq follow
the same path in the program.

We can now apply the general method to the context

<L1,S,(S1),E> with
E = {vx {Vq (x) » Sorted (F(x))1} g generic.

We add a new constant t to L1. We extend each structure
81 by assigning to this new constant successively all the values
of V_. The restriction is conservative (there is at least such
a value). We can add to H, the axiom Vq(t).
Then we restrict our context with the uniformity formula
Sorted (F(t))~» vx [Vq (x) » Sorted (F(x))]
Again, the restriction is conservative, and we get a
HOLJHT—testing context C1.
It admits the acceptable battery of tests T
T = <HOLJH1’(Tn)n>
with T = {Sorted (F(t))! which is actually a test by

calculability of F.

10

3. Application and optimization

We first note that, for each n, we have only finitely
many (n!) sub-domains Up, and for each Up finitely many (2n—1)
Vg.:ﬁhsuch a case, we can prove a slightly different version

of the Decomposition Theorem (cf. §5.1).

Decomposition Theorem (finite case)

Let C = <L,S, (8),A> be a testing context, with

A a finite union A = A(O)LJ...LJA(k).

For i = 0,k let C(i) be the testing context
<L,S,(S),A(i)>, and let 71 - <H(i),(T£i))n> be
a battery of tests for C(i).

Let H = H(O)LJ...LJH(k) and

Then T = <H,(Tn)n> is a battery of tests for C = <L,S, (S),A>.

If each T(l) is logically acceptable for C(l), so is T for C.

If each T(l) is formally acceptable for C(l), so is T for C.
Putting now all our pieces of batteries of tests together

with the Decomposition Theorem (general case for n, finite case

for Up and Vq), we get our final battery of tests

T = <HOLJH1’(Tn)n>' acceptable for the testing context

By = Sy
We then pick out one of its tests according to our

S,(S1),A>.

quality/cost requirements, and apply it to the system P. Figure 1
shows what applying T2 loocks like. Remember that the concrete

object associated with a uniformity constant t for Vq is nothing
more that a randomly picked out array. We are therefore typically

using a random sampling strategy.

11

(23) n=1 } m

(5 5) g=1

(-4 12) q=2 [P &)
(=20 -20) q=1 e T
(45 13) g=2 [P2

(0 0 0) q=1 E

(2 2 92) a2 |

(-8 -7 -7) q=3

(-3 6 14) q=4

(9 9 9) qg=1

(12 12 13) -

(-3 -25 -3) g=3 (P72) n=3

(6 -5 10) g=4

8 =l <5 =

(-1 ~& —3} q=

(8 8 2) =3 [P=6

(10 0 -5) q=

To test P at level 2, run P on those data and for each

run, check that the output is Sorted.

Figure 1: Application of T

2

We now look at some optimizations of 7.

Level 0 optimization

At this level, assuming H, (the initial hypothesis) is

0

enough to prove equivalence of the battery of tests and its

optimized version.

12

We can for example pack our battery of tests by letting
Tﬂ = T2n' and keeping the same hypotheses. The condition
HO%HTn kIHOEJTA obviously holds. We can also draw it out
by letting Tﬂ = TE(%)' More complex manipulations may be
designed, of course.

A more radical level 0 optimization consists in increasing
redundancy. Assume for example, that you suddenly get your
doubts about the behaviour of P. Then you may replace,in the

tests Tn’ Sorted (F(t)) by
by Array(F(t))aPermutation (t,F(t))aSorted (F(t))
Your battery of tests becomes redundant and more expensive,

but less dependent on the hypotheses H0 about P.

Level 1 optimization

At this level, equivalence proof may use H1 (construction
hypotheses, mainly regularity and uniformity hypotheses) as well.
You may increase redundancy. Assume for example that, for per-
sonal reasons, you consider 0 as a very crucial value. You
would like to add the arrays filled with 0 as experiments. At
level 1 you can optimize ('I‘n)n into (Tﬁ) with
T! = T_[l{Sorted (F(0X)), 1sksn+1}
where 0% is the array of length k filled with k 0.

You may also decrease redundancy, and, by the way, running
costs. Assuming H1LJHO, one can prove for example that the
constants associated with (0 0 0) and (9 9 9) (cf. Figure 1)
belong to the same Vq. By uniformity hypothesis one of them can

be cancelled. Using such arguments, the size of Tn may be con-

siderably reduced.

13

Level 2 optimization

By making some extra postulates H, (optimization hypotheses)
the sizes of our tests may be even more reduced. For example,
we could state that "if P works for an array of the form
(a a a), then it works for any array of the form (a a ... a) of
length greater than 3". Then, in the Tn' nz2, we can cancel all
experiments of the above form but one.

Many other kinds of extra postulates may of course be
designed according to the knowledge and the confidence one has

about the system under test.

4. Conclusion

A realistic application of our theory of testing has been
described in some detail. Several of its aspects should be
stressed.

The test we generate after optimization is roughly one
that any experienced programmer would have designed for this
sorting program. This is also typically one obtained by the
method described in [Good 75] etc. (stepwise specification refine-
ment). Our theory is thus fairly faithful to the primitive
intuition.,

In contrast to previous attempts, the core of our test
generation consists only in abstract manipulations of theories

following formal deduction rules, and is therefore correct,

exactly as proving is, whatever you prove. We are able to relate
the quality of the whole process to precise criteria (cf. §5.3).
Notice particularly that this discipline enforces explicitation

of up-to-now implicit hypotheses.

14

It should be noted that the test generation process
depends very little on the program high-level text. It is so
because of our "black box" modelization of the system under
test (cf. §2.2). In contrast, program text is the best criterion
one generally has to assess hypotheses quality.

The generated test is very closely related to the
syntactical form of the property to be tested. In fact the whole
generation process can be easily handled by a machine using
standard construction hypotheses. Of course, no assurance is given
about the quality of the result, and manual assessment is needed.
In restricted cases such as abstract data types specification
testing, syntactical sufficient conditions for gquality can be
described. In those cases, automatic test generation is fully
Justified and has indeed already been experimented by the author

[Boug 82b].

