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A THEORY OF
BIPOLAR SYNCHRONISATION SCHEMES

Abstract

The aim is to better understand the relationships between
choice and concurrency that lead to the good behaviour of
distributed systems. In order to do so, we formulate a model
based on Petri nets and develop its theory. The model is

called bipolar synchronisation schemes (bp schemes) and the

theory we construct is mainly devoted to synthesizing, in a
systematic fashion, all well behaved bp schemes. We also pro-
vide a computational interpretation of well behaved bp schemes.
Through this interpretation the insights gained by developing
the theory of bp schemes can be transferred to concurrent

programs.
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0. INTRODUCTION

This paper presents the theory of a model of concurrent

systems called bipolar synchronization schemes (bp schemes).

The model is based on a class of Petri nets. The theory we
develop is oriented toward the synthesis of well-behaved bp
schemes.

The main motivation is to deepen our understanding of the
relationships between choice and concurrency in a systems con-
text. More specifically we wish to understand why certain means
of combining alternative and concurrent courses of actions lead
to "good" distributed systems. To achieve this goal, we ask:

What are the proper means of combining alternative and concurrent

courses of actions that result in only and all "good" systems?

A crude translation in programming terms would sound as
follows. Consider a class of concurrent programs in which the order
of execution of the statements is solely determined by the control
structures of the programs; there is no scheduler, hidden in the
background, which ensures that the value of a variable is not
altered in two portions of the program concurrently during exe-
cution. Suppose that for each program its control structure is
composed out of the ";" construct which enforces the "followed
by" ordering relation; the IF (FI) construct which signals the
initiation (termination) of one out of a set of alternative
courses of actions; the PARBEGIN (PAREND) construct which signals
the initiation (termination) of a set of concurrent courses of
actions. We then ask: How should these constructs be put together
so that the resulting program is "consistent"? By consistent,
we mean at this stage that the control flow does not lead to dead-
locks and it is guaranteed that two statements which share a
variable will never execute concurrently.

We should like to caution the reader that we have given the
above translation merely in order to convey our concerns in more
familiar terms. Our statement of the problem in programming terms
is naive and misleading in a number of important respects. In

the latter part of the paper however, we attach a computational



interpretation to our model. It will then be possible to discuss
and evaluate in more precise terms, what implications our work

has for the theory of concurrent programs.

Returning to our original line of thought, the problem as
stated is very vague, general and hard. Hence as a first step, we
propose to carry out our study in a specific and restricted setting.
We formulate the bp scheme model precisely in order to set up such
a setting.

Now for a few words about the model. A bp scheme consists of
a directed graph which represents the structure of the system
under study. Token distributions over the arcs capture the dis-
tributed, generalised states of the system. We consider directed
graphs which have two kinds of nodes called V-nodes and &-nodes.
V-nodes are used to model the branching and merging of alternative
courses of actions. &-nodes are used to model the forking and
joining of concurrent courses actions. We place two kinds of
tokens called H-tokens (HIGH tokens) and L-tokens (LOW tokens)
on the arcs to represent the distributed state of the system.
H-tokens are used to denote the commissions of actions. L-tokens

are used to explicitly represent the omissions of actions (as a

result of choices made between alternative courses of actions).

The dynamics of the system is modelled by the transition rules
which specify how local transformations in the token distribution
are effected through the firings of nodes. The transition rules

exploit the notion of L-tokens to capture what a good flow of

control is, in the presence of choice (V) and division (&) of work
in a concurrent system. This leads to the concept of a well
behaved bp scheme. We then study the problem of synthesizing well

behaved bp schemes.

Formulating interrelated models of concurrent systems is a
major activity within the net theory of systems and processes
[19, 4]. In this sense, our work may be viewed as a fragment of
this general theory of systems. In particular, a bp scheme can be
interpreted in terms of the basic system model of net theory called



Condition/Event systems [ 4 ]. Our schemes can also be viewed

as a sub-class of the higher level net model called Predicate/
Transition nets [ 5] and the closely related Coloured Petri nets
[10], and Relation nets [21]. '

In the context of the synthesis problem we propose to
attack, the papers by Jadwani and Jump [12 ] and Valette [24]
deserve mention. In both these papers, the problem of refining
free choice nets (which are a restricted class of Petri nets)
while preserving properties such as liveness and safety is con-
gidered. Our work is also, at least in spirit, related to that
of " Leter “et al. - [15] who investigate the syntax of path
expressions that have the so-called adequacy property.

Finally, the approach taken by Milner [17] who studies concurrent
systems from the very beginning from the synthesis standpoint
has also been a source of inspiration.

The computational interpretation that we attach to well
behaved bp schemes yields a kind of flow chart model of a class
of "well formed" concurrent programs. This part of our research
has been strongly influenced by the work Mazurkiewicz has
carried out for a more general class of nets [16]. The key
difference is the way in which our interpretation is interwoven
with the theory of the underlying class of nets. It will be con-
venient to postpone the review of other related pieces of work

to the concluding part of the paper.

The organisation of the paper is as follows. In the next
section, we rapidly review the theory of live and safe marked
graphs which are a well understood sub-class of nets. In section
2, we formulate the bp scheme model as a generalisation of live
and safe marked graphs. We then define the notion of well behaved-
ness. In sections 3 and 4 we develop some analysis results con-
cerning bp schemes. In section 3, we show where bp schemes fit
within the hierarchy of known classes of nets. Exploiting their
respective theories, we then obtain an important necessary con-
dition, essentially in terms of its structure, for a bp scheme to

be well behaved. In section 4, we prove a sort of all-or-none



property about the state space of a well behaved bp scheme
and derive some useful consequences of this property.

Though these results are interesting in their own right,
their main function is to aid in solving the synthesis problem.
This is done in the subsequent two sections. In section 5 we
present our synthesis procedure which basically consists of
starting with a "trivial" well behaved bp scheme and repeatedly
applying a small set of transformation: rules. We show that
this construction is consistent in that it yields only well
behaved bp schemes. In section 6, the only part of the paper
which is rather technical, we establish the completeness of the
synthesis procedure; every well behaved scheme can be constructed
using our technique.

Section 7 provides a computational interpretation for a
class of well behaved bp schemes. Stated briefly, we allocate
variables to the arcs, test predicates to the V-nodes and opera-
tions to the &-nodes of a scheme. What then obtains is a
flow chart representation of a concurrent program, which by
construction, is guaranteed to satisfy a set of consistency cri-
teria.

In the last section, we summarize the contents of the paper

and take one more look at related work.



1. LIVE AND SAFE MARKED GRAPHS

We shall formulate bp schemes as a generalisation of live
and safe marked graphs. Hence as a first step, we briefly review
the relevant portions of the theory of live and safe marked
graphs, the earliest part of "token mathematics" of net theory.
In doing so, we shall also develop some basic terminology that

we need through the rest of the paper.

In what follows, N and Z denote the set of non-negative
integers and integers respectively. If X is a set then |X|
denotes its cardinality and X* the free monoid generated by X.
If ¢ is a sequence of symbols then, risking confusion, we will
let |o| denote the length of o. For a symbol x, |U|X is the number
of times x appears in the sequence o. A is the null sequence and
|2 ]=0.

For our purposes, directed graphs which in general may con-
tain multiple arcs and self-loops are required. So our notion of

a directed graph (digraph) is:

Definition 1.1 A digraph is a quadruple G =(V,A;Q,%2) where:

V is a finite non-empty set of vertices (nodes);

A is a finite non-empty set of arcs (edges) that is

disjoint from V;
+ Q:A - V is the source function;
Z:A » V is the target function. [ |

In diagrams, the nodes are drawn as boxes and the arcs
as lines with arrowheads such that E;}T;AE; stands for Q(b)=u
and Z(b)=v.

Let G

(V,A;Q,Z) be a digraph and ve€V. Then,

<
1l

{a€A | z(a)=v} is the input arcs of v
' {a€a | Q(a)=v} is the output arcs of v.

<
]




A directed path is a non-null sequence of arcs
L= S i = p—t
n = aApdqe--ay such that for 0£i<n, Z(ai) Q(ai+1). If Q(ao) u
and Z(an}=v, then T is said to be a directed path of length n+1
from u to v. T is said to pass through (contain) the arc b, iff

Jﬂ]b>0. M is said to be a directed circuit iff Q(a0)=z(an). mis
called an elementary directed circuit iff T is a directed circuit

and no proper subsequence of T is also a directed circuit. If T
is not a directed circuit and no proper subsequence of M is also
a directed circuit, then N is said to be an acyclic directed path.
The digraph G = (V,A;Q,Z) is said to be connected iff for
every non-trivial partition {U,W} of V (U,W#@, UNW=@, UUW=V) there
is an arc b with Q(b)€U and Z(b)eW or Q(b)€W and Z(b)€EU. G is said
to be strongly connected iff for non-trivial partition {U,W} of v,
there are arcs b1 and b2 such that Q(b1)€U, Z(b1)€W, Q(b2)€w
and Z(b2}€U.
All digraphs considered in this paper, unless otherwise

stated, are assumed to be connected. In addition, we will be
dealing with only directed paths. Hence, for brevity, we almost
always drop the qualifying "directed" in talking about paths,

circuits etc.

Let G = (V,A;Q,Z) be a digraph. Then a marking of G is a
function M:A - N. If b€EA and M(b)=k, then in diagrams this will
be indicated by placing k tokens on b. An example of a digraph

together with a marking is shown in fig. 1.1

Fig. 1.1
Definition 1.2 Let G = (V,A;Q,Z) be a digraph, M a marking
of G and 1T = apaqe--a, a path of G. Then,
(1) M (M) denotes the token locad of T under M and is
)
defined as: M(T) = ¥ M(ai).
i=0
(2) M is said to be token free iff M(M)=0.
(3) M is called a basic circuit of G at M iff 1 is an

elementary circuit of G and M(M)=1. |






Markings of a digraph may be changed through the firing

of nodes according to the following rule.

Definition 1.3 Let G = (V,A;Q,Z) be a digraph, M a marking

of G and v a node. Then the transition rule for marked graphs is

applicable to v (v may fire; v is firable) at M iff all input
arcs of v are non-zero marked (M(b)>0 for each be°V). When v

fires at M, a new marking M' is reached which is given by

M(b)-1, if be'v-v!
M(b)+1, if bev'-‘vy
M(b), otherwise |

vbeA: M' (b)

The transition from M to M' through a firing of v is
denoted by M[v>M'. This notation is extended to a seguence of
nodes as follows. Let MO be a marking of the digraph G = (V;A:Q;%)

_ " : ; ; e
and ¢ v1v2...vn€V . Then ¢ is firable at MO (¢ 1s a firing
sequence at MO) iff there exist markings M1,M2,...,Mn+1 of G
<9 .

such that for 0£i<n, Mi[vi>Mi+1' The change from MO into Mn+1
through the firing of ¢ starting from M0 is denoted by M0[0>Mn+1'
By convention, for every marking M of G, M[A>M.

In general, a set of nodes may fire independently in one
step, at a marking. Consequently changes in a marking are, in
general, effected through partially ordered sets rather than
sequences of node firings. In this paper however, we are con-
cerned mainly with establishing certain properties of the be-
haviours of our systems and not so much with the behaviours them-
selves. Hence for establishing our results we will employ firing
sequences as the primary tool and on occasion rely on the notion
of partially ordered sets of node firings.

We now specify two state spaces defined by a marking of a

digraph.



Definition 1.4 Let G (V,A;Q,2) be a digraph and M a

marking of G. Then,

(1) [M>, the forward marking class of G defined by M is

the smallest set of markings of G given by:

- Me[M>
- If M'€[M>, vEV and M" is a marking of G such that
M'[v>M", then M"€[M>.

(2) [M], the full marking class of G defined by M is the

smallest set of markings of G given by:

M€ [M]
If M'€[M], vEV and M" is a marking of G such that
M'[v>M" or M"[v>M', then M"€[M]. B

We can at last start looking at marked graphs.

Definition 1.5 A marked graph is a quintuplebk3==(V,A;Q,Z,MO)
where G = (V,A;Q,2) is a digraph and MO is a marking of G called
the initial marking. |

Liveness and safety are two fundamental properties of marked

graphs.

Definition 1.6 Let MG = (V,A;Q,Z,MO) be a marked graph. Then,

(1) MG is live iff for every marking M'E[M0> and for
every node ve€V, there is a M"€[M'> such that v is
firable at M".

(2) MG is safe iff for every marking M'E[MO> and every
arc bea, M' (b)<1. |

The marked graph shown in fig. 1.1 is live and safe. Let
G = (V,A;Q,2) be a digraph and M a marking of G. Then G is said
to be live (safe) at M iff the marked graph (V,A;Q,%Z,M) is live
(safe). The results concerning marked graphs that we now mention

without proofs have been assembled from [ 3] and [ 6 ].
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Theorem 1.1 Let MG = (V,A;Q,Z,MO) be a marked graph, 1 a

path in MG leading from node u to v and ¢ a firing sequence at

M0 leading to the marking M (MO[0>M). Then,

M(m) = My(M) +|o| -|o], 3

Theorem 1.2 Let MG = (V,A;Q,Z,MO) be a marked graph and n

a circuit of MG. Then for every marking ME[MO], M(m) = Mo(ﬂ).l

Theorem 1.3 Let MG = (V,A;Q,Z,MO) be a marked graph. Then,

(1) MG is live iff for every circuit T of MG, MO(H)>O.

(2) MG is live iff G = (V,A;Q,Z) is live at every
Me[Mo]. |
Theorem 1.4 Let MG (V,A;Q,Z,MO) be a marked graph. MG is live

and safe iff
(1) For every circuit 1 of MG, MO(H)>O.

(2) For every arc b, there is a circuit m with M(m) =1

which passes through b. |

Theorem 1.5 Let MG = (V,A;Q,Z,MO) be a live and safe marked

graph. Then,
(1) For every ME[MO], G = (V,A;Q,Z2) is live and safe at M.
(2) For every M,M'e[MO], M'e[M>.
(3) MG is covered by basic circuits, i.e. G is covered by
elementary circuits with token load 1 at MO' Consequently,

G is strongly connected. [ |

For stating the next result, we need some additional notions.
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Let G

(V,A;Q,Z) be a digraph and M a marking of G.

Then the binary relation <,, € VxV is given by

M

Vv1,v2€V:‘v1<vaziff there is a token free path from
v1 to Vo at M.
Now let MG = (V,A;Q,Z,MO) be a live marked graph and

Me[MO]. Then <, is irreflexive since we demand a path be composed

out of a non—ngll sequence of arcs and theorem 1.3 +tells us

that for every circuit T, M(T)>0. <y is clearly transitive

which then implies - that <M is asymmetric, Thus

(V;<M) is a strict partial order. We note that the minimal ele-
ments of (V;<M) are exactly the set of nodes that are concurrently

firable at M. Given ME[MOJ and vEV, the relation <,, can be used

to determine the "least work" one has to do to obtgin a marking
M' at which v becomes firable.

To bring this out, we need to introduce an equally con-
venient idea. Let MG = (V,A;Q,Z,MO) be a marked graph and veEvV.
Let M,M'E[MO] and g€V* such that M[o>M'. Then ¢ is said to be

a v-enabling sequence of M iff v is firable at M'. o is a minimal

v-enabling sequence at M iff it is v-enabling sequence at M and

for every v-enabling sequence ¢' at M, |o| £ |o'].

There is a close and general relationship between the two
notions introduced above. We shall however state the relevant

result only for live marked graphs.

Theorem 1.6 Let MG = (V,A;Q,Z,MO) be a live marked graph,
ME[MO] and V€V. Then,

(1) There is a minimal v-enabling sequence at M.
(2) If o is a minimal v-enabling sequence at M, then
VVv'EV:

T¢ if w? <M v

0, otherwise
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Proof The first part is trivial. To prove the second part

let ¢ be a minimal v-enabling sequence at M. Set

v, = {v'ev |v' %4v}. Suppose that v'€V,. Then by theorem 1.1,
|0|V,>O. We shall now show that, starting from M, it is sufficient
to fire every node in V.I exactly once to obtain a marking M' at
which v becomes firable. To this end, let V4 be a minimal ele-
ment of (V1,<ﬁ) where <ﬁ is <M restricted to V1xv1.-v1 exists
because V1 is a finite set. Now vy is firable at M. Let M[v1>M1.

Set V, = {v'ev | v' <y vV} . It is easy to see that V,=V,-1{v,} and

2
1
the rest of the proof is routine. d

The last result we wish to mention deals with extremal

markings.

Definition 1.7 Let MG = (V,A;Q,Z,MO) be a marked graph and
ME[MO]. Let v€V. M is said to be a v-extremal marking iff v is

the only node which is firable at M. |

Theorem 1.7 Let MG = (V,A;Q,Z,MO) be a live and safe marked
graph, ME[MO] and veEV., Then there exists a v-extremal marking
M'€[M>. Moreover v is the minimum element of the strict partial
order (V;<M). In other words, at M there is a token free path from

v toevery node weV-{v}.
Proof Follows easily from the previous results. [

The only result which is not explicitly mentioned in the

published literature is:

Theorem 1.8 Let MG = (V,A;Q,Z,MO) be a live and safe marked
graph. Let v€V and M1,M2€[MO] such that M1 and M2 are v-extremal.

Then M1 = M2.
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Proof As pointed out earlier (Theorem 1.5), G = (V,A:Q,Z%)
is strongly connected. Hence G is covered by the set of paths
of finite length that lead to v. As a result, it is sufficient
to show that every finite path leading to v is marked in the
same way by M1 and M To this end let T = agaqe-.ay be a path

5-
with Z(an) = v. The proof is by induction on 1 = |T| (= n+1).

1) 1=1 v is firable at M1 and Mz; MG is safe. Hence M1(a0)

1 = M2(a0).

2) 1>1 Then My = aja,...a, is a path of length 1-1 leading to wv.
By the induction hypothesis, for 1<ic<n, M1(ai) = M, (a;).
Suppose that Q(ao) = v. Then M is a circuit and by theorem 1.2,
M1(ﬂ) = Mz(n). We can now conclude that M1(a0) = M2(a0L

So assume that Q(ao) = u # v. Then there is a token free path

m' from v to u at M1 since M1 is v-extremal. Let NM" be the con-
catenation of TM' with M (' followed by M). Then NM" is a circuit
and once again by theorem 1.2, M1(ﬂ") = Mz(ﬂ"). This implies that,
n — ] = !
M, (") = M, ") = M1(a0) + M1(n1) M, (') o+ M,(a,) + M2m1)
Mz(ﬂ“). By the induction hypothesis, M1(H1) = Mz(ﬂ1); by the
construction of ', M1(ﬂ') = 0; by definition,Mz(ﬂ')zo. Hence
M, (ao) 2 Mz(ao).
In a similar fashion, by considering a token free path
from v to u at MZ’ we can show that Mz(ao) 2 M1(a0). Hence
M1(a0) = M2(a0)' [

We conclude this review of marked graphs with the adoption
of a useful convention. Let MG = (V,A;Q,Z,MO) be a safe marked
graph, and M€[MO]. Then for every arc beA, M(b)=0 or M(b)=1.
Thus M is the characteristic function of the subset of arcs which
carry a token at M. With this in mind, from now on we shall
represent a marking in the full marking class of a safe marked
graph in either one of two equivalent ways. As a subset of the
arcs which carry a token at the given marking or as the corres-
ponding characteristic function. Thus for example, if (V,A;Q,%Z,M)
is a safe marked graph and vev, 'ng would imply that v is firable

at M. If M[v>M', then M'=(M-('v))Uv".
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2. THE MODEL

In our formalism, the structure of a system is represented

by a digraph with two kinds of nodes.

Definition 2.1 A bipolar graph (bp graph) is a quintuple
BG = (VV,V&,A;Q,Z) where vaWV& = @ and {VVtJV&,A;Q,Z) is a
digraph. [ |

The set of nodes of a bp graph BG, V = VVLJV& is divided
into V-nodes and &-nodes. In diagrams, a V-node <&-node> will be
drawn as a box carrying the inscription V <&>. The graph theoretic
terminology and notations that were introduced in the previous
section are carried over to bp graphs in the obvious way. The

underlying digraph of BG will be denoted as ﬁb.

As mentioned earlier, V-nodes will be used to model the
branching and merging of alternative courses of actions. The
&-nodes will be used to model the forking and joining of con-
current courses of actions. In addition, anticipating the con-
tents of section 7, V-nodes will represent the tests and &-nodes
the atomic actions (transformations of variables) associated
with the system. To illustrate the main idea it is perhaps useful

to consider some examples.

Loosely speaking, the construct if P1+ O1 0 P, = (02;03) £i
will be, in our approach, modelled by the subgraph shown in
fig. 2.1(a). The construct parbegin (O,I;OZHIO3 parend will be
modelled by the subgraph shown in fig. 2.1(b). However, in our
theory, the control flow represented by the subgraphs shown in
fig. 2.1(c) and (d) will have the same prestige as those of (a)

and (b).

Fig. 2.1
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Fig. 2.1
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What we are after is a set of notions through which we can
formalize our intuition that the control flow represented in
fig. 2.2(a) is a "good" combination of choice and concurrency
whereas the control flow represented in fig. 2.2(b) is a "bad"
one. (In fig. 2.2, for the sake of convenience, we have abstracted

away the tests and actions.)

Fig. 2.2

The notion of a marking (control state), the firing rules
(propagation of control) and the notion of well behavedness are
together meant to serve that purpose.

We shall start with markings. Our notion of a marking, to
represent the distributed control state of a system will enable
us to view our model as a gentle generalisation of live and safe

marked graphs.

Definition 2.2 Let BG = (Vv,V&,A;Q,Z) be a strongly connected
bp graph. A marking of BG is an ordered pair M = (MH,ML) where
MH’ML < A and MHrWML = @ such that (VVLJV&,A;Q,Z,MHlJML) is a
live and safe marked graph. |

Now strong connectedness of a digraph is a necessary and
sufficient condition for a live and safe marking to exist [6] and
recall that we have agreed to, where convenient, represent a mark-
ing of a sage marked graph through an appropriate subset of arcs.

If M = (MH,ML) is a marking of a bp graph BG, then the corresponding
marking MHLJML of the underlying digraph BG shall be denoted as M.

Let BG = (Vv,v&,A;Q,Z) be a bp graph and M = (MH,ML) be a

marking of BG. Let b be an arc, beA. If bEEMH <My > then b is

said to carry an H-token <L-token> under M. In diagrams, this

will be indicated by placing a dark <plain> token on the line
representing b. An example of a bp graph together with a marking

is shown in fig. 2.3.

Fig. 2.3
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Next we specify the firing rules by applying which a

marking of a bp graph can be transformed into a new one. The

definition might be easier to grasp, if the reader glances at

the illustrative examples shown in fig.

Definition 2.3 Let BG =

2.3 and 2.4.

(VV,V&,A;Q,Z) be a bp graph and

M = (MH,ML) a marking of BG. Let u be a &-node and v a V-node.

1)

2)

3)

4)

)

6)

7)

8)

v is enabled (to fire) at M iff 'vc M and ['vfﬁMH] <1.

u is enabled at M iff ‘ucM, or

H

If a node (&-node or V-node) w fires, a new marking

Ml

(M',Mﬁ) is obtained which for the underlying digraph

BG and its marking M corresponds to the firing rule for

marked graphs - In other words,

M' = (M- 'w) Uw"'.

Moreover,

- ¥Ybea - (*wuw'): bemM, <M!> iff be M, <M >.

H L

If a node w is enabled and some input arc carries an H-token

(MHr]'w # @), w may H-fire.

When the V-node v H-fires, the new marking M' satisfies

My vt = 1.

When the &-node u H-fires, the new

If a node w is enabled and 'wc M

LI

When w L-fires, the new marking M'

If [Mg n'v] > 1, then the V-node v

If MH(]'u # @ and M
lock at M.

L

A node which is in deadlock cannot

Fig.
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n'u # @, then

marking M' satisfies u'cM}.

w may L-fire.

satisfies w' = MI','

is in deadlock at M.
the &-node u is in dead-

become enabled any more.
|
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H-firing L-firing Deadlock
Fig. 2.4
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First we note that if M' = (Mﬁ,Mﬂ) is the result of a node
firing at a marking of BG, then M' is also a live and safe
marking of BG and MYNM] = @. Thus M' is also a marking of BG.

Now for some explanations of the firing rules. When a
V-node H-fires, the execution gof one course of action and the
omissions of the remaining ones within a set of alternatives
are terminated at its input side, and at its output side a choice
is made to follow one course and omit the remaining ones within

another set of alternatives.

When a &-node H-fires, a set of concurrent courses of
actions are terminated at its input side and another set of con-

current courses are started at its output side.

When a node L-fires, it propagates the omission of a whole

substructure to which the node belongs.

In case we associate an atomic action (transformation of
a variable state) with a &-node, an H-firing <L-firing> signals

the execution <omission> of that action.

If a V-node has more than one input arc marked with an
H-token, then this indicates that more than one of a set of
alternative courses have been executed. Dually, if some input
arc of a &-node carries an H-token and some arc carries an
L-token, then this indicates that some but definitely not all
courses of a set of concurrent courses have been accomplished.
We have not provided special rules for dealing with these con-
tradictory (and undesirable) situations. Instead we will look
for ways of constructing marked bp graphs in which such situa-

tions can never occur.



2.1

We note that the notion of definite omission of actions
which is modelled by the L-tokens comes in handy for determining
one kind of bad control flow, in which a &-node gets into dead-
lock. More importantly, it is through this second type of tokens,
we hook up with the theory of live and safe marked graphs. How
crucial this is will become clear by the way in which we exploit
the results on marked graphs to build up our theocry. Once a
marked bp graph with the desired behaviour has been obtained
however, we can if we wish to, discard the L-tokens. This is more

or less what we do in section 7.

Let BG be a bp graph, w a node and M = (MH,ML) a marking of
BG. If w fires at M and leads to the marking M’ =(Mﬁ,M£), we de-
note this by M[w>M'. The two state spaces of interest associated

with a marking are given in

Definition 2.4 Let BG be a bp graph and M a marking of BG.

1) The forward marking class of M is denoted as [M> and is

the smallest set of markings of BG given by

a) MEe [M>;
b) if M' € [M> and for some node w, M'[v>M", then M" € [M>.

2) The full marking class of M is denoted as [M] and is the

smallest set of markings of BG given by

a) Me [M];
b) if M' € [M] and for some node w, M'[w>M" or M"[w>M',
then M" € [M]. .

Finally, we can identify the objects of study of this paper.

Definition 2.5 A bipolar synchronization scheme (bp scheme)
is a 6-tuple BP = (VV,V&,A;Q,Z,MU) where BG = (Vg ,V,,A;Q,Z) is
a strongly connected bp graph and M’ is a marking of BG called

the initial marking of BP. .
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The notion of good behaviour is given in

Definition 2.6 Let BP = (VV,V&,A;Q,Z;MO) be a bp scheme.
BP is well behaved iff for all forward reachable markings

MEZ[MO>, there is, for all nodes w, a marking M' € [M> such that
w may H-fire at M'.

The bp scheme shown in fig. 2.3 is well behaved. Also,
the bp scheme shown in fig. 2.5(a) is well behaved but not the
one shown in fig. 2.5 (b) (compare with fig. 2.2).

Flgs Zab

Let BG = (VV,V&,A;Q,Z) be a bp graph and M a marking of BG.
Then BG is said to be well behaved at M iff the bp scheme
(Vv,v&,A;Q,Z,M) is well behaved. We shall now work out an equiv-
alent formulation of definition 2.6. This will reveal that our
notion of good behaviour is intimately tied to the notion of
deadlock. Before doing so it is necessary to introduce some

notations that will be used throughout the paper.

Let BP = {VV,V&,A;Q,Z,MO) be a bp scheme. Then BG =
(VorVesA;Q,%) is the supporting bp graph, BG = (V,A;Q,%), where
¥ = VV:BV&' Ehe gnderlying digraph, and BP = (V,A;Q,Z,ﬂo),
where M~ = MHLJML, the underlying marked graph. The terminology

concerning token loads on paths, basic circuits etc. that were
introduced in section 1 are carried over to bp schemes, via their
underlying marked graphs, in the obvious way. In particular, the

strict partial order <, at a marking is carried over to bp schemes,

M
too. Finally, the notion of a firing sequence is extended to bp

schemes as follows:

1

Let BP be the generic bp scheme and M e:[M0>. Let

g = w1...wnEEV*. Then o is a firing sequence of BP at M1

iff
there exists a sequence of markings M2,...,Mn+1 such that for
1£isn, Ml[w.>Ml+1. The change from M1 to Mn+1 through o is
denoted as M1[0>M

n+1
graphs, the resulting marking M

Note that, unlike in the case of marked

. is not uniquely determined by



Fig. 2.5
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M‘I and 0. This is due to the choice associated with the firing

of a V-node. More precisely,

Proposition 2.1 Let BG be a bp graph, M a marking and w a

node of BG. If M[w>M', M[w>M" and M' # M", then w is a V-node,
|

> 1 and w is enabled to H-fire at M.

|w
Proof Follows easily from the firing rules. R
Two other useful observations are:
Proposition 2.2 Let BP be a bp scheme, MEI[M0> a marking of

BP and o€ V*¥ a firing sequence of BP at M. Then ¢ is a firing

sequence of the underlying marked graph BP at M. Moreover, if

M[o>M' in BP and M[o>M in BP, then M ==ﬁ'==(MﬁlJMi).

Proof Once again, follows from the firing rules for bp schemes
and marked graphs. |
Proposition 2.3 Let BP be a bp scheme, ME?[M0> a marking of

BP and 0 € V¥ a firing sequence of BP at M. If there is no
M' € [MO> and no node w such that w is in deadlock at M', then o

is a firing sequence of BP at M.

Proof The result is again an immediate consequence of the

firing rules. |

We shall encounter the last proviso of proposition 2.3

often in the sequel. So let us give it a name.

Definition 2.7 Let BP be the generic bp scheme. BP is said

to be deadlock-free iff there is no marking MEZ[MO> and no node
w such that w is in deadlock at M. |

Our next result shows when, and how, in a deadlock-free
bp scheme, a node can be enabled to H-fire and when to L-fire.
In its proof, we use notations and results on marked graphs

presented in the previous section.
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Proposition 2.4 Let BP, the generic bp scheme, be deadlock-
free, w a node and MGE[MO> a marking of BP. Let A =
{a€M | z(a) = w or Z(a) <5 w} and o,a minimal w-enabling sequence

of BP at M.

1)

2)

Prootf

It ﬁr1MH # @, then there exists M' € [M> such that
M[coc>M' and w is enabled to H-fire at M'.

g i ﬁr]MH = ¢, then for every marking M' € [M> with M[ g >M',

w is enabled to L-fire at M'.

Since BP is deadlock-free, o is also a firing sequence

of BP at M (proposition 2.3).

1)

2)

Let bGEﬁIWMH, and w' = Z(b). If w' = w, we are done because
in this case w' is enabled to H-fire at all markings M’

with M[ o >M'.

If w' #w, there exists a token-free path 1 leading from w'

to w at M. All nodes touched by T , except w, occur in o, and
they occur in ¢ in the same order in which they are traversed
by T. Now during the firing of ¢ in BP, the H-token carried
by b at M can be steered to flow along T until it reaches

w such that w is enabled to H-fire when the w-enabling firing
sequence ¢ is completed. This is because, regardless of w' being
a &-node or V-node, thereisa firing of w' such that after-
wards the output arc of w' belonging to M (there is only one
since the token-free path T must be cycle-free) carries an
H-token. So when the successor of w' on T is to fire in o,

it is to H-fire. And again, there is a firing putting an
H-token on its output arc belonging to M. And so on, until
finally w is enabled to H-fire at a marking M' € [M>

(M[ o >M'").

Let Arme =@ and 0 = w eV Then L is enabled to L-fire

1
at M because 'w, cA. Let M[w,>M' and A' = {a€fi' | z(a) = w
or Z(a) <M1 w}. Then it is easy to verify that MéflﬁT = @,

and o L in BP

= w L is a minimal w-enabling sequence at M

1 -
The required result is obtained by induction on |o]|.
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At long last we can state an equivalent and perhaps more

illuminating version of well behavedness.

Theorem 2.5 A bp scheme BP is well behaved iff

a) it is deadlock-free, and
0
b) MH 7 @.

Proof
= : Assume that, at some MGE[MO>, some node w is in deadlock.

Then due to the firing rules, there is no M' € [M> at which
w 1is enabled to fire let alone H-fire. This contradicts

the well behavedness of BP.

Now assume that Mg = . Then due to the firing rules, for all
Me [MO>, MH = @. So fer no node w there is marking in [M0> at

which w is enabled to H-fire. This once again contradicts the well

behavedness of BP.

< : Let M(E[MO> and we V. Since Mg # @, MH # @. Let x be a node
with 'xrlMH # @. There is a firing sequence ¢ not containing
x leading in BP from M to an x-extremal marking M'. Since

BP is deadlock-free, o is also a firing sequence of BP at M

with M[o>M' for some M' (with M' = My UM{). Since x is not
contained in o, 'xNM} # @. Let A = {a€M'| z2(a) = w or

Z(a) g w}. Then 'xcA because M' is x-extremal and thus
A f]Mﬁ # @. So proposition 2.4 can be applied at M' to

derive a marking M" € [M'>, at which w is enabled to H-fire.

Clearly M" € [M>. |

The last result of this section characterizes a typical

situation under which a V-node may get into deadlock.

Proposition 2.6 Let BP be the generic bp scheme and MEZ[M0>.

- ] — 4
Let T = apdq-.-ay and ' = b0b1"'bn be two acyclic paths such

that (see fig. 2.6)
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Fig. 2.6
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a) M and M' are disjoint: for 02ism and 0<j<n,
a; # bj.

b) Z(am) - Z(bn) = vaVv.

c) aO’bOE:MH and M(TT) = M(') = 1.

Then BP is not well behaved.

Fig. 2.6

Proof In the underlying marked graph BP, there is at M a
minimal v-enabling sequence ¢ = wo...wp. If 0 is not a firing
sequence of BP at M, then BP is not deadlock-free (proposition 2.3)
and we are done. So let us exercise ¢ in BP starting from M. The
two H-tokens can be steered along the two disjoint paths until
they meet at the first V-node touched by both paths, and there

is at least one such V-node, namely v. This V-node, however,

is then in deadlock since more than one input arc of this node

will carry an H-token. So BP is not well behaved.
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3. THE FC REPRESENTATION OF A BP SCHEME

In this section we develop a close connection between bp
schemes and a class of Petri nets called (marked) free choice
nets. Then using this connection, we exploit the theory of free
choice nets to derive an important necessary condition for a
bp scheme to be well behaved. This condition will help us
establish the results of the next section. It also forms the
basis of the computational interpretation of bp schemes worked
out in section 7. To start with we introduce some terminology

concerning nets.

3.1 Nets and Marked Nets

Definition 3.1 A directed net is a triple N = (S,T;F) with

SNT = @ and SUT # @;
F < (SxT) U (TxS) such that
dom(F) U rng(F) = SUT. |

S is the set of S-elements, T is the set of T-elements

and F is the flow relation; X = SUT is the set of elements of N.

In diagrams, the S-elements are drawn as circles and the T-elements
are boxes. If (x,y)EF then there will be a directed line from
x to y. Since we shall be dealing with only directed nets, from now
on we will Jjust say nets instead of directed nets.

A very useful notation is: Let N = (S,T;F) be a net and

x€EX = SUT. Then

' = {yeX | (y,X)€F} is the pre-set of x, and
x' = {y€X | (x,y)€F} is the post-set of x.
For YcX we extend this to 'Y = | 'x and Y' = (J x°'.
XeY xX€eY
Definition 3.2 Let N = (S,T;F) be a net. Then,

(1) N is an S-graph iff for all teT, |'t|, |[t*|=s1;
(2) N is a T-graph iff for all seS, |'s|, |s'|<1;
(3) N is a free-choice net iff for all se€S,
|s*]|>1 = *(s') = {s}. B
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In fig. 3.1 we have shown the constraints placed on the
structure of nets through conditions (1), (2), and (3) of the
definition above.

Fig. 3.1

An S-graph represents the structure of a conventional sequen-
tial state machine. A T-graph.is the dual of an S-graph. The struc-
ture of a marked graph can be represented as T-graph. 'This will
become clear toward the end of this section. Thus marked graphs
and sequential state machines are in some sense duals of each
other. A free choice net is their common generalisation. This is
brought out in the structural theory of live and safe marked
free choice nets developed by Hack [ 8 ]. For now we merely observe

t

that if in a free choice net N, two different T-elements tT’ 5

n 't2), then 't., = 't, = {s}.

share a pre-element s(s€'t 1 9

1
We shall now generalise the notion of a marked graph and the
related notions to marked nets. Let N = (S,T;F) be a net. A marking
of N is a function u: S » N. In diagrams, we indicate a marking
U by placing on each S-element s, u(s) tokens. A net together with
a marking is shown in fig. 3.2.
Fig. 3.2

Definition 3.3 Let N = (S,T;F) be a net, u a marking of N

and t€T. Then t is enabled (to fire) iff for every se't, u(s)>0.

When t fires, a new marking p' is obtained such that for all s€S,

u(s)=-1 if se('t-t*);
' (s) = pu(s)+1, if se(t'-'t);

u(s), otherwise. B

The transformation of u into u' through a firing of t
will be denoted by u[t>u'. If Uy is a marking of N and
g =t ...tn€T*, then ¢ is said to be a firing seguence at yu,

1
iff there exist markings Horeeerll such that for 1£izn,
through the

n+1
Ui[ti>“i+1‘ The transformation of u1 into u

firing sequence ¢ is denoted by u1[o>u

n+1

. ion for
n+1 By conventio O

every marking u of N, uli>u.
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S-graph T-graph Free choice net

¥Y VY S

not allowed " not allowed not allowed

Fig. 3.1

Fig. 3.2
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Definition 3.4 Let N = (8,T;F) be a net and y a marking of N.
Then [u>, the forward marking class of N defined by u, is the

smallest set of markings of N which satisfies:

nelu>.
If p'el[p> and for some t€T and some marking p" of N
we have ('et>u", then u"€lu>. g
Definition 3.5 A marked net is a quadruple MN = (S,T;F,uo)
where N = (S,T;F) is the underlying net of MN and My is a
marking of N called the initial marking of MN. [ |

Fig. 3.2.can now be viewed as an example of a marked net
whose underlying net is a free choice net. As in the case of
marked graphs, two important behavioural properties of a marked

net are liveness and safety.

Definition 3.6 Let MN = (S,T;F,uo) be a marked net. Then,

(1) MN is said to be live iff for every marking
uE[u0> and every t€T, there is a marking p'€[u>

at which t may fire.

(2) MN is said to be safe iff for every marking

pE[uO> and every s€S, ul(s)<1. [ |

The marked net shown in fig. 3.2 is live and safe. If
N = (S,T;F) is a net and p is a marking of N, N is said to
be live <safe> at p iff the marked net (S,T;F,u) is live <safe>.
This concludes our rapid introduction to marked nets. For more

details, the interested reader is referred to [11].

3.2 Bp Schemes and Marked Free Choice Nets

The aim here is to represent a bp scheme as a marked net.
More precisely, we wish to use a marked free choice net to simulate

the flow of H-tokens in a well behaved bp scheme. The basic idea

behind this representation is shown informally in fig. 3.3.

Fig. 3.3
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Fig. 3.3
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To formalise this idea we need some additional notations.
Let BG = (VV,V&,A;Q,Z) be a bp graph. Viewing Q and Z as binary

relations which are subsets of AxV, we now define:

1

o, = {(v,a)eQ | vev,]
-1
Q, = l(ua)eQ * [ uev.}
Z, = lla,v)€z | VeV,
z, = f{la,u)ez | uev,}
Definition 3.7 Let BG be a bp graph and N = (S,T;F) a net.

N is called an fc representation of BG iff there exists a

bijection f: AUV, UV, UQ,UZ, » SUT such that, with x = f(x)

and xy = £((x,y)),

(1) £(AUV) = S and £(V,UQ UZ,) = T
(2) (v,a)EQv & (v,va)€Er and (va,a)cF

(3) (a,v)EZv < (a,av)€eFr and (av,v)EF

(4) (u,a)EQ& o (u,a)er

(5) (a,u)EZ& & (a,u)Er |

The terminology "fc representation" is suggested by

Proposition 3.1 Let BG = (VV,V&,A;Q,Z) be a bp graph and
N = (S,T;F) be an fc representation of BG (by virtue of the

bijection £ (" )). Then N is a free choice net.

Proof From def. 3.7 it is easy to verify that for every arc
a€A, |a'|=1. Thus if s€S with |s'|>1, s = v for some vEV,. But
for every t€s', t = va for some a€v’® ((v,a)GQv); since Q is a

function, we have once again from def. 3.7 that *t = {s}. [ ]

As in the proof above we shall let the *'-notation do double
duty; from the context it should be clear whether we are dealing

with a bp graph or a net.
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The notion of fc representation is extended to bp schemes

as follows:

Definition 3.8 Let BP = (VV,V&,A;Q,Z,MO) be a bp scheme
and MN = (S,T;F,uo) a marked net. Then MN is said to be an

fc representation of BP iff

(S,T;F) is an fc representation of BG, the supporting
bp graph of BP, by virtue of some bijection f;

0
¥

1, if £ -

s)€EM
. for all s€sS, uo(s)
0, otherwise

An fc representation of the bp scheme of fig. 2.5(a) is

shown in fig. 3.2.

3.3 A Necessary Condition for Well Behavedness

Through the remaining part of this section, we shall employ
the ~ notation to denote 'the' - up to isomorphy unique - fc
representation of a bp graph. The main result we are after is
that the fc representation of a well behaved bp scheme is live
and safe. We first prove safety. To do so, we need two new

notions concerning marked nets.

Let MN = (S,T;F,uo) be a marked net and uE[uO>. p is said

to be a safe marking, in the forward marking class of MN, iff

for every S-element s, M(s)<1. Clearly MN is safe iff every

uE[uO> is a safe marking. Now let u1€[u0> and ¢ = t1 FE tn€T*

be a firing sequence at Hy such that for 1£isn, ui[ti>u Then

i+’
o is said to be a safe firing seguence at P iff for all 1<isn+1,

My is a safe marking.

In order to show that the fc representation of a well behaved
bp scheme is safe, it is convenient to first prove that the bp
scheme can simulate the flow of tokens in its fc representation.
The simulation idea is somewhat delicate and is contained in the

proof of the following technical result.
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Lemma 3.2 Let BP = (VV,V&,A;Q,Z,MO) be a well behaved bp
scheme and MN = (S,T;F,uo) its fc representation. Let CET* be a
safe firing sequence of MN at Mg with uo[c>u. Then,

(a) VV€VV: u(v) + 1 (U0 13 oy
"
a€'v

Moreover there exists, in BP, a marking ME[M0> such that

(B) Va€A: if u(a)=1 then aeM;
(C) vaea: if aEMH then either u(a)=1 or
[Z(a)=v€Vv andd p(v)=1];

(D) VV€VV: if u(v)=1 then v is H-firable at M.
Proof The proof is by induction on the length of o, k = | &) .
Since Mg is by definition (3.8) a safe marking in [u0> and
UO[A>UO, we can start with

k=0: Let veV . Then once again by definition, u0(§)=0.

Suppose that I 1,(a)>1. Then there must be a a ,a,€' with
P acty "0 R
a, # a, and a1,a2EMH. This, however, implies that v is in dead-

lock at MO, contradicting the well behavedness of BP. So

(A) uoh'r) + aé'vuo(a) <1.

(B), (C), and (D) are trivially satisfied for MOE[MO>.

k>0: Let o = o,t with t€T. Then 01€T* and |o,|=k-120.

Since ¢ is a safe firing sequence at Mgr SO is oy Let
u0[01>u1[t>u. Then by the induction hypothesis, Hy satisfies
part (A) and there is a marking M1€[MO> which satisfies (B),
(C) and (D) with respect to UT' To establish (a) through (D)
for u, we need to consider three cases according to the origin

of t.
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Case 1 Tt
Then VEV

va with (v,a)EQv.

v ac€v', 't ={v}and t* = {a}.
(A): Since u1,u are safe markings and u1[t>u, we can conclude

that u1(§0 =u(a) =1 and u1(5) =p(v) =0. Since u1(6) =1 and u,

gatisfies (B), = u1(5) =0. And t' = {3}, so even if a€'v, we must
be v
have Z. u(b)£1. With pu(v) =0, as already seen, u indeed satis-
be v

fies (&) for wv.

So assume that v'€V, with v' #v. Once again we have to prove

that p(v"+ = u(b)s1.
bev! B
If a¢'v', we are done because then u(v') + =% u(b) =
bey!

v

U, (v') + I 1. (b) and u, satisfies (A).
1 fog Vgl 1 1
€E'v
So assume that a€'v'. Again since p is a safe marking and

t* = {a}, we have u1(5)=0 and p(a)=1. The situation is shown in

fig. 3.4.
Fig. 3.4

We claim that u1(§')=0. Otherwise both v and v' are
H-fireable at M (part (D)). But this would imply that the under-

lying marked graph of BP is not safe contradicting the definition

of a bp scheme.

So at this stage we have p(a)=1 and p(v')=0. Now consider
some b€'v', b#a. Suppose that u(b)=1. Then H,(B) =1 also. So by
é, and vevv is H-firable at M1 (part
(D)) . Consequently there is a marking M’ in BP with M1[v>M2 such
that a€Mé. Clearly bEMé alsg because b€'v' and v'#v. This means
that v' is in deadlock at M™, contradicting the well behavedness
of BP. Thus for every be'v', u1(5) =u(b) = 0. This at once lets

us conclude that u(v')+ I u(b)<1. So (A) holds for u.
be v’

part (B) for My we have beM

To show (B), (C) and (D), recall that v is H-firable at M‘l

because u1(§)=1. Let M be such that M'[v>M with a€M,. Then it

is routine to verify that M satisfies (B), (C) and (D) w.r.t.

U



38

Fig. 3.4
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Case 2 t = av with (a,v)€Zy.

Then VEVV, a€'v, 't = {3} and t' = {v}.

(A) : Both My and p are safe markings, so u1(a)=p(v)=1 and
p1(v)=u(a)=0. Clearly we have for every V-node v',

uv')+ 2 uib) = u1(§')+ % UT(E)’ consequently p satisfies (A)

| [}
becauSQEUY does so. HE™Y

(B), (C) ,(D): Let &' = {beA | Z(b) = v or Z(b) <y v} (recall
that M1 is the marking in BP satisfying (B)-(D) w.r.t. U1)-

Since Z(a)=v we have a€A1.

Claim A1ﬂM1 = {al}.

Supposthhat b6A1nM; with b#a. If Z(b)=v, v is in deadlock
at M1 which is a contradiction.

So there is at M1 a token-free path II from Z(b) to v with
bEM;. We also have the path of length 1 consisting of the arc
a leading from Q(a) to v. Set H1=bH and I,=a. Then from propo-
sition 2.6, it follows at once that BP is not well behaved which

is a contradiction. This proves the claim.

1

Now let Te€V* be a minimal v-enabling sequence at M' and

M1[T>M. Because A1nM; = {a}, it is easy to see that in going

from M1 to M via 1, every node that appears in 1 will only
L-fire (the idea is contained in the proof of the second part
of proposition 2.4). Thus M is the unique marking in [M1> such
that M1[T>M. More importantly, for every arc b we have bEMH iff
bEM;. It is straightforward to verify that M satisfies (B), (C)

and (D) w.r.t. u.

Case 3 t = u for uEV&.

The proof is similar to and simpler than the proof of the first

case and hence we omit it. B
Theorem 3.3 Let BP = (Vv,v&,A;Q,Z,MO) be a bp scheme and
MN = (S,T;F,uo) its fc representation. Then MN is safe.

Proof Let 0€T* be a firing sequence at Ho - We shall show

that ¢ is a safe firing sequence at Mg - The proof is by induction

on the length of ¢, kK=|o
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k=0: uo[k>p0 and o is a safe marking by definition.

>0z Let ¢ = o1t with t€T. Then 01

pO[U1>p1. By induction hypothesis, P is a safe firing sequence

€T* and |o1|=k-1;0. Let

at Hp SO that Mg satisfies part (A) of lemma 3.2. Moreover we

can find M1€[MO> which satisfies parts (B), (C) and (D) of the

lemma w.r.t. p,. Once again there are three cases to consider:
1 g

Case 1 t = va with (v,a)€Q_.
Then veVy, aev', t* = {3}, 't = {v} and 1, (v)=1.

First suppose that a€'v too (see fig. 3.5).

Pig. 3.5

Since p1(v)+b§'vu1(5)§1, we have u1(5)=0. But t® = {a}.
Hence o1t =g is a safe firing sequence at Ho-

Now assume that a¢'v. If U1(5)T1 the? aEM;. But v is

(= M

the underlying marked graph BP is not safe which is

H-firable at M| implying that *vcM UML). Consequently
a contradiction. Thus u1(5)=0 which lets us conclude that

U1t = g is a safe firing sequence at Hg -

Case 2 t = av with (a,v)EZv.
Then VeV, acYy, Y& = fa¥, &* = [¥}k.
Now t is firable at Hyr @ safe marking, so that u1(5)=1.

By induction hypothesis, u1(§)+ Z. u1(5)§1. Thus u1(§)=0. But
‘ BE Sy d
t* = {v}, hence o,t = o is a safe firing sequence at .
Case 3 t = u with uev,.
Once again we omit the proof because it is similar to and

simpler than the proof of the first case. B

We now wish to prove that the fc representation of a well
behaved bp scheme is live. To do so we shall first show that
the fc representation can simulate the flow of H-tokens in

the well behaved bp scheme. This is quite easy.



Fig. 3.5
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Lemma 3.4 Let BP = (VV,V&,A;Q,Z,MO) be a well behaved bp
scheme and MN = (S,T;F,uo) its fc representation. Let geV* be
a firing sequence at MO with MO

such that

[o>M. Then there exists a Ue[p0>

(1) for all a€A, aeM, iff na)y=13

(2) for all vev, u(v)=0.

Proof By induction on k=|¢|. 5
=0: Trixvial..
k>0: Let 0 = oyw with weV. Then ¢,€V* and |o,|= k-1 2 0.

1 i
Let MO[U1>M1 and M1[w>M. By induction hypothesis, we can find

in MN a marking uqe[u0> such that for all ae€a, aEM; iff u1(5}=1,
and for all vev, pT(G):O. Now consider three cases:

Case 1 w L-fires at M1 to lead to M.
Then MH = M;. Consequently, u = M, can serve as the required
marking.
Case 2 w is a V-node which H-=fires at M‘I to yield M.
(] ] 1
Let a1E w and a2€w such that a1EMH and aZEMH‘

First let us suppose that azefM% also. We claim that this

is the case iff a,=a If a2€'w then the underlying marked graph

2
BP is not safe which is a contradiction. If aZE'w but a1#a2 then

w is in deadlock at M1 which once again is a contradiction. And

if it is the case a1:a2€M;, then at u; we can first let by = ETG
fire, followed by a firing of t2 = wa, to obtain the marking

U (p1[t1,t2>Lo. Since MN is safe, p(a1):1 and p(v)=0. It is
straightforward to check that uE[u0> is the marking we are looking
for w.r.t. ME[MO>.

In case azeMé, then at u1 we can fire t1 = a1w followed by

a firing of t2 = wa, to obtain the required marking yu.
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Case 3 w is a &-node which H-fires at M1.
Then t = u may fire at Hq- Clearly u with u,[t>! satisfies

the requirements w.r.t. ME[MO>. ]

At long last we are ready to prove the central result of

this section:

Theorem 3.5 Let BP = (Vv,v&,A;Q,Z,MO) be a well behaved
bp scheme and MN = (S,T;F,uo) its fc representation. Then MN

is a live and safe marked net.

Prootf From theorem 3.3 we know that MN is safe. So let
u1E[u0> and t€T. We shall show that for some uE[u1>, t may

fire at u.

To begin with we should like to go over from M, to a marking

W, at which for every vev,, u2(§)=0. Let V; = {vev, [ u1(§)=1}.

1 _ : _ 1 _
If V; = ¢ we are done with Hy = Hy. For vg = {v ..,vn}, n>0,

="

choose a ,a_ such that for 1<i<n, a.€v'. Set t. = v.a. for
1] A 1 L 1 i U

i W
12130, Clearly each t, may fire at = and for 1=i,jsna, i#j
implies 'tiﬂ'tﬁ = ¢. Consequently, tity...t =0'€T* is a firing
sequence at u1. Let u1[c'>u2. Now MN is safe so that for 1<isn,
uz(Gi)=O. Furthermore, {vEVv |p2(§)=1}==®.
Since UZE[uO> and MN is safe, there is a safe firing se-

quence ¢ such that uo[o>p2 By lemma 3.2, there exists a marking
M E[M > such that for all a€a, aEM2 iff u2(5)=1. (The ‘orily df*tpart
follows from part (C) and the fact that u2(§)=0 for every VEVV.)
The point is, MN2 = (S,T;F,uz) is the fc representation of
Bp? = (VV,V&,A;Q,Z,Mz).

We need to show that for some u€[u2>, t may fire
at p. Since BP2 is well behaved, lemma 3.4 tells us what to do

in the three cases we need to consider.

Case 1 t = va with (v, a)eqy
Let M E[M > such that v may H—flre at M3 Then by lemma 3.4, we

can find a p3€[u2> such that for all be€a, u3(5)=1 iff bEEMé.
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Let b be the one arc with bE'vﬂM;. Then u3(5)=1 and t' = bv
may fire at u, since *+"= {b}. For ualt'>u, L(v)=1 so that t
may fire at p because 't = {v}.

Case 2 t = av with (a,v)€Zg.

Since BP2 is well behaved, there is a marking M3€[M2> such that
Q(a) may H-fire at M3 in such a way that for the resulting
marking M€[M2>, a€M,. By lemma 3.4, there is a marking ue[u2>

at which p(a)=1. Clearly t may fire at p since 't = {a}.

Case 3 t = u with uev, .

There is a marking M€[M2> at which u may H-fire, so that 'ugMH.
By lemma 3.4, there is a marking n€lu,> such that for each be'y,

p(u)=1. Since 't = {b | be'u}, t may fire at y.

To conclude this proof we observe that in all three cases,

u€[u1> since u€[u2> and u2€[u1>u_ B

The converse of theorem 3.5 is false.It will be convenient,

however, to bring cut this fact in a later subsection.

3.4 The Structural Components of a Well Behaved bp Scheme

Theorem 3.5 makes the rich and elegant theory of free
choice nets accessible for our study of bp schemes. In this
subsection, Hack's decomposition results for live and safe free
choice nets [ 8 ] will serve as a basis for deriving quite
analogous and very useful results concerning the structure of
well behaved bp schemes. As before we have to start with intro-

ducing several notions.

Definition 3.9 Let BG = (VV,V&;a;Q,Z) and BG' =
(Vé,Vé,A';Q',Z') be bp graphs. Then BG' is said to be a
(bp) subgraph of BG iff

* Vg € Vg V2V,
+ A' < {b€ea | Q(b)eEV' and Z(b)eEV'} (V' = Vg U V)
Q' = QN (A'xV) and 2' = Z n (A'xV). i
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In what follows, whenever we talk about a bp graph BG and
one of its sub-graphs, the '-notation denoting the input and
output arcs of a node will always refer to the incidence struc-

ture of the original bp graph BG.

Definition 3.10 Let BP = (VV,V&,A;Q,Z,MO) be a bp scheme
and BG' = (V&,Vé,A';Q',Z') be a bp subgraph of the supporting
bp graph of BP. We call BG' a V-component of BP iff

. VVEV% s (Yvu v')g Al
Vuevy :|'unAar| = jutna| =1
- BG' is strongly connected
. |A'ﬂMg]=‘I |

Every V-node of a V-component has the same set of
input arcs and set of output arcs as in the given scheme.
A &-node has exactly one input arc and one output arc. Moreover,
a V-component is strongly connected and exactly one arc carries
an H-token at MO. The key feature of a V-component is that w.r.t.
node firings in the original scheme, it can neither gain nor lose

H-tokens. More precisely,

Proposition 3.6 BP = (VV,V&,A,Q,Z,MO) be a bp scheme and BG'
a V-component of BP. Then for every ME[MO], BG' is a V-component
of the bp scheme (VV,V&,A;Q,Z,M).

Proof Follows easily from the definition. i

The dual notion is that of an &-component. Here however
we cannot say anything definite about the submarking acquired

by the component.

Definition 3.11 Let BP = (VV,V&,A;Q,Z,MO) be a bp scheme and
BG' = (Vé,Vé,A';Q',Z') be a subgraph of the underlying bp graph
of BP. We call BG' an &-component of BP iff
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vuevg = 'uuu' <A
- vvevg :|'vona'l = [v!P A =1
. BG' is strongly connected.

The bp scheme of fig. 2.5.a hastwo Vv-components and two
&-components. They are shown, together with the corresponding
submarkings in fig. 3.6.

Fig. 3.6

It turns out that every arc - and thus every node - of a
well behaved bp scheme is contained in a vVv-component as well
as an &-component. To derive this result we need to first

develop the corresponding notions for marked nets.

Definition 3.12 Let N =(S,T;F) and N' = (S',T';F') be nets.
N' is a subnet of N iff

S'c Sand T' c T

Fl

u

Fn ((8"xT') U (T'x8")) [ ]

Once again, when using the *-notation in connection with
a net and one of its subnets, we shall be referring to the in-

cidence structure of the original net.

Definition 3.12 Let MN = (S,T;F,uo) be a marked net. Then
a 1-token, strongly connected S-graph component (S-component for
short) of MN is a subnet N' = (S',T';F') of (S,T;F) which
satisfies
. VseS' : ‘s U s'cT';
VteT' : |*t n s*| = |[t*'ns'| =1;

The graph of F' is strongly connected;

A X UO(S) = 1' [ |
seS'!
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&~-components

Fig. 3.6
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Definition 3.14 Let MN = (S,T;F,uo) be a marked net and
N' = (S',T';F') a subnet of (S,T;F). Then N' is a strongly

connected T-graph component (T-component for short) of MN iff

YEET' ¥ U €' & 8§
« V¥s€S' : |'snT'| = |s*nT'| =1;
The graph of F' is strongly connected. |

A T-component is sometimes referred to as a strongly connected
marked graph component [ 8 ]. A marked graph, however, comes with
a marking class while we cannot say anything definite about the
induced submarkings of a T-component.

There is a close relationship between the notions of
V-components and &-components on the one hand and the S-components

on the other hand. In particular we have

Theorem 3.7 Let BP = (VV,V&,A;Q,Z,MO) be a bp scheme and
= (81,T1;F1) be an

MN = (S,T;F,uo) its fc representation. Let N1

S-component and N2 = (SZ,TZ;FZ) a T-component of MN. Set for
i=1,2

i_ -
vy = {vevy [ VES, }
i -
vy = {uev, | ueT,}
A" = {a€n | aes,}
ot = o n (atxv)
zt = 7z n (atxv)
1 17,1 .1 1 1 .
Then BG = (VV,V&,A ;Q ,Z2 ) is a v-component of BP and
BG2 = (Vé,Vﬁ,Az;Qz,Zz} isa &-component of BP.
Proof Follows easily from the definitions. |

The following fact, among many others, is known about the

structure of live and safe marked free choice nets.
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Theorem 3.8 (Hack) Let MN = (S,T;F,uo) be a marked free
choice net which is live and safe. Then for every element of

MN, x € SUT, there is an S-component (ST,TT;F1) and a T-component
(82,T2;F2) of MN such that XEES1 1 22

UT and x € STUT".

Proof See [ 81]. |

We can now extract the result that we have been after all

along.

Theorem 3.9 Let BP = (VV,V&,A;Q,Z,MO) be a well behaved bp
scheme. Then there exists for every arc a€A a V-component
(V;,V;,A1;Q1,Z1) and a &-component (Vé,Vi,Az;Qz,Zz) such that

aEA1 and a€A2.

Proof Let MN = (S,T;F,uo) be the fc representation of BP.
By proposition 3.1 and theorem 3.5, MN is a live and safe free
choice net. The required result now follows easily from

theorems 3.8 and 3.7. . B

3.5 The Relative Expressive Power of Well Behaved bp Schemes

We shall conclude this section with some remarks about the
relationship between well behaved bp schemes and known classes
of live and safe marked nets. For convenience, we will assume
that every net we refer to is connected. Also, instead of

repeatedly saying live and safe, we will shortly say ls.

The first class of marked nets of interest are state machines.

A state machine is a marked net SM = (S,T;F,uo) in which the
underlying net SG = (8,T;F) is an S-graph (see definition 3.2).
It is trivial to verify that SM is live and safe iff SG is
strongly connected and I uo(s)=1.
SES

The dual notion corresponding to an ls state machine is
an ls marked T-graph. To start with, we observe that a marked
graph can be viewed as a marked net as follows. Let

MG = (V,A;Q,Z,MO) be a marked graph. Then the net representation
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of MG is the marked net MN = (S,T;F,uo) where 8§ = A, T =V,
- ] _
F = Q UZ and UO = MO'

verify. And we have seen in section 1 that an l1ls marked graph

That (S,T;F) is a T-graph is trivial to

is strongly connected.

Now under some reasonable definition of the notion "eqguivalently
represented by", every ls state machine as well as every ls marked
graph can be equivalently represented by a well behaved bp schemne.
We shall not work out the details here. Rather, we indicate the

main ideas through two examples shown in fig. 3.7.

Bié: 3.7

In fig. 3.7, diagram (b) shows the bp representation of the
marked graph shown in (a), and (d) is a bp representation of the

marked S-graph of (c).

Now we already know what it means to represent a well behaved
bp scheme as an 1s marked free choice net. The simulation ideas
contained in the proofs of lemmas 3.2 and 3.4 can be used to prove
that every well behaved bp scheme has an 'equivalent' represen-
tation as an 1ls marked free choice net.

It is trivial to observe that every ls state machine and
every ls marked graph (through its net representation) can be
viewed as an ls marked free choice net. The interesting point
about well behaved bp schemes is that they lie properly between
ls marked free choice nets on the one hand and 1ls state machines
and ls marked graphs on the other hand. In other words, the
class of fc representations of well behaved bp schemes is properly
included within the class of 1ls marked free choice nets. Once
again we will not express this formally but rather, illustrate
the idea by an example.

The bp scheme shown in fig. 3.8 (a) is not well behaved but
its fc representation is live and safe. And we feel confident
that under any reasonable choice of definitions, one can show
that the ls marked free choice net shown in fig. 3.8 (b) is not

an fc representation of any well behaved bp scheme.

Fig. 3.8
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Fig. 3.7



(a)

Fig. 3.8
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Incidentally, this example also shows that the converse

of theorem 3.5 is indeed false. Thus in well behaved bp schemes

we have identified a more restricted way (than the one expressed
by marked free choice nets) of combining state machines and
marked graphs. The schemes fit neatly within the hierarchy of

the three well understood classes of 1ls marked nets (fig. 3.9).

Fig. 3.9



54

Is state machines

e Is free choice nets

e Wwell behaved bp schemes

/ \. Is marked graphs

Fig. 3.9
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4. THE MARKING CLASS OF A WELL BEHAVED BP SCHEME

In this section we establish a number of properties of the
two marking classes associated with a bp scheme. In particular,
we wish to prove that a bp scheme BP is well behaved iff the
underlying bp graph is well behaved at every marking of the full

marking class of BP. We have called this

4.1 The All-or-None Property

First we show that if the result we are after is false, the
choice between good and bad behaviour can be made to hinge on
just one decision. The following result based on the theory of
marked graphs will be often appealed to in the proofs of the
subsequent results. As before, BP will denote our generic bp
scheme, BP = (VV,V&,A;Q,Z,MOJ, and BG its underlying bp graph,
BG = (VV,V&,A;Q,Z).

Proposition 4.1 Let BP be a bp scheme, w€V and c€V* with
|0}w = 0, and M,M1,M2€[M0> such that M[W>M1 and M[G>M2. Then
3

there exists M3€[M0> such that M1[G>M3 and M2[w>M .

Proof We merely need to observe that in a marked graph a node
can lose its concession to fire only through its own firing.
|

Proposition 4.2 Let BP be a bp scheme and M,M'€[MO] - the

full marking class of BP - such that BG is well behaved at M but

1,ﬂ2€[MO] and wé€V such that

i [w>i® and BG is well behaved at M2 but not at M.

not at M'. Then there exist M

Proof Since M,M'E[Mo] we can find w1,w2,...,wn€v and markings
Mm%, ..., M Te(m®] such that m'=m, M**
M [w, >t or Ml+1[wi>Ml. Since BG is well behaved at M

1
at MIH1,we must have for some i, 1£is<n, that BG is well behaved

l+1. If Ml[wi>Ml+1, BG would also be well
l+1[wi>Ml. Now set ﬂ1=Ml+1, fi®=m* and W=,

=M' and for 1£izn,
1 but not

at ﬁl but not at M
behaved at Ml+1, so M
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Proposition 4.3 Let BP be a bp scheme and as before,
M,M'E[MO] such that BG is well behaved at M but not at M'. Then
2,ﬂ3€[MO] and VeV, such that:

there exist M',H

1

v is enabled to H-fire at M' and |v'|>1,

ﬁ1[v>ﬂ2 and ﬁT[v>M3,
BG is well behaved at M° but not at M.
Proof By the previous proposition, we can find MT,M2E[MO]

and a node w such that M1[W>M2, and BG is well behaved at M2

but not at M. By theorem 2.5 we have that Mé#@ so that Mé#@.

Since BG is not well behaved at M1, we can find, once again due
to theorem 2.5, a marking MBE[M1
deadlock at M3. Let 0€V* be such that M1[0>M3.

We claim that |o| >0. If [c|w=0, there is - due to proposi-

4 and M3[w>M4.

> such that some node w' is in

sition 4.1 - a marking M® which satisfies M2[0>M
Hence W' would be in deadlock at M4 contradicting the well
behavedness of BG at M’ (M7€[M°>). So indeed | o, >0.

such that |o Let M?,M°€[M1> such that
3

Let o = o1w02

| =0.
1 4 5 1w
M [01>M [w>M [02>M

(6ee fig. 4.1).

Fig. 4.1

Since ]01Jw=0, we have from proposition 4.1 that for some
E[MT>, M2{01>M6 and M4[W>M6. BG is well behaved at M6 since
E[M2> and BG is well behaved at M2. BG is not well behaved at

3. So MS#M6 although

. It follows from proposition 2.1 that w is

M
M
M~ since M3€[M5>, w' 1is in deadlock at M
M [w>M5 and M4[W>M6
a V-node which is enabled to H-fire at M: and |w®|>1.

Now set ﬂ1=M4, ﬂ2=M5, ﬁ3xM6 and v=w to get the required

Lo O B« ) We )}

result. |

To establish the all-or-none property, we need to go one
step further; our proof strategy depends on the fact that the

marking M1 mentioned in the above lemma can be assumed to be

v-extremal.



M‘i
N
w N
M2 ~ .
N I
W
~ w 5
~ M
5 ~
M \\02
\\

Fig. 4.1

37



58

Definition 4.1 Let BP be a bp schemne, ME[MO] and wevV. M is

said to be w-extremal iff

w 1is enabled. to H-fire-at M,
» no other node is enabled at M, and

no node is in deadlock at M. ]

We note that if M is w-extremal in BP, M (= MHUML) is
w—extremal in the underlying marked graph BP. The converse is
in general not true, due to the first and the third restriction
in the above definition. We wish to show that the choice between
good and bad behaviour can be made at an extremal marking asso-

ciated with a V-node. We do this in two steps.

Lemma 4.4 Let BP be a bp scheme with MS#@. If BP is not well
behaved then there exists a marking ME[MO> such that no node is
enabled to fire at M.

Proof By theorem 2.5, we find MTG[MO> and we€V such that w

is in deadlock at M1. Now in the underlying marked graph BP, if

starting from any marking in the marking class, some node is
prevented from firing, the remaining nodes can each fire at most
a bounded number of times. This is an easy consequence of theo-
rem 1.1 since the graph is strongly connected.

Thus starting from M1 nodes other than w can fire at most
a bounded number of times while w remains in deadlock. Hence
eventually, we can reach a marking M at which no node can fire.

|

Proposition 4.5 Let BP be a bp scheme and M,M'G[Mo] such

that BG is well behaved at M but not at M'. Then there exists

a V-node v and markings ﬂT,ﬁz,ﬁBE[MO] such that

-~

M1 is a v-extremal marking,

. MT[v>ﬂ2 and ﬂ1[v>ﬁ3,

BG is well behaved at M2 but not at M.
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Proof By proposition 4.3, we find a vV-node v and markings

M1,M2,M3E[MO] such that v can H-fire at M1, Mq[v>M2 and M1[V>M3,

and BG is well behaved at M2 but not at M3 Then M #@ so that

M #@, and BG is not well behaved at M1 because M36[M1> Thus

by lemma 4.4 we find M C[M > such that no node can fire at Md

Let 0€V* such that M [G>Md. Since v can lose its concession

to fire (at M1) only by its own firing, we have |0|V>0. So there
are 0,,0, such that o = 0,V0, and |01|v=0. We now assume that the
firing of v in ¢ has been postponed as much as possible: It

1

o'€EV* such that M [o'>Md, and g' = O%VUé w1th|o | 0, then
loyl<loy]- :
Let M® and M~ be such that M [01>M [v>M [02>Md Because

o] =0, we can find M6 such that M [v>M6 and M2[o >M
1'v 1

fig. 4.2.)

6. (See

Fig. 4.2

Since M6€[M2> and BG is well behaved at M2, it is also well

behaved at M6, but not at MS. So all that remains to be shown is

that M4 is v-extremal.

Firstly we note that v can H-fire at M4. Secondly, no node is
in deadlock at M4 because it would also be in deadlock at M°
but BG is well behaved at M6.

Now suppose that some node w#v can also fire at M4. Since no
node can fire at Md, w must appear in P Let 0, = G5qW0,5 where

|o Then it is easy to see that o' = 04WV0,,0,, is also a

| =0

21w 1 1 d
firing sequence at M’ with M [¢'>M . The existence of ¢', however,
contradicts our assumption that the firing of v in ¢ is as late

as possible. So no node different from v is enabled to fire at
4 4

M"; M™ is v-extremal.
Set ﬂzz?M6 and M3=M> to complete the proof. §

The second step in our proof of the all-or-none property
is to establish that the situation at an extremal marking as
outlined in proposition 4.5 can never arise. First a simple

observation.
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g = G1V02
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Fig. 4.2
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Lemma 4.6 Let BP be a well behaved bp scheme, a€A and Z(a)=w.
Then there exists a w—extremal marking ME[MO> with aed;.

Proof First we can find a marking M1E[MO> at which Q(a)=w'
can H-fire. Then we choose a marking M2 with M1[w'>M2 such that
aEMé. At M2, there is a minimal w-enabling firing sequence o¢;
let M2[0>M3. Then w can H-fire at M3 and aEMg.

At M3, there is a firing sequence ¢' of maximum length
which satisfies [o'| =0 (follows easily from theorem 1.1 and
proposition 2.3; see proof of lemma 4.4). Let M3[G'>M. Then

M is w—extremal with aEMH. |

The next result is crucial for our current purposes. Further-
more, it is quite an interesting result in its own right. The
result states that in a well behaved bp scheme, the extremal
markings are - almost - uniquely determined by the extremal mar-

kings of the underlying marked graph.

Theorem 4.7 Let BP be a well behaved bp scheme, w a node and

ME[MO> a w-extremal marking. Let b be an arc which is not an

input arc of w which carries a token at M (bE(MHUML)—'w). Then
bEMH iff Z(b) is a &-node; and consequently, b€ML iff Z(b) is

a V-node.

Proof Let w' = Z(b). Since b¢'w, w'#w. From the fact that
M is w-extremal it follows easily that there is, at M, a token-
free path from w to w' (w M w'). From theorem 1.6 we know that
in the underlying marked graph BP (which is live) there is, at
M,a minimal w'-enabling firing sequence ¢, and for M[o>M, there

1
1 of BP with M[0>M1 such that M :ﬁ1 {prop: 2.3).

is a marking M ]

In the proof of part 1) of proposition 2.4 we have seen
that an H-token sitting in front of w may be steered, during the
firing of o, along the token-free path leading from w to w'.

L such that for some input arc of

So we can choose M1 with M[o>M
w', say b' - which is not marked at M and hence which is
different from b-—b'EM;. Since ¢ is minimal w'-enabling,

|G|W,=O. Thus, b is marked in the same way at M1 as at M.
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If w' = Z(b) is a &-node, then beM__ because otherwise w'

H
would be in deadlock at M (”w'nM;#Q and ‘wnMg#w contradicting

the well behavedness of BP.) Conversely, if bEMH then w'EV&

because a V-node w' would be in deadlock at M (|'wnMH|>1).
So b€MH iff Z(b)GV&, and this clearly implies that bEML

iEE Z(b)€Vv. |

At last we can demonstrate that the situation as outlined

in prop. 4.5 is impossible.

Proposition 4.8 Let BP be a bp scheme, veEV-node and ME[MO>

a v-extremal marking. Suppose that M[v>M' such that BG is well
behaved at M'. Then Me[M'>. As a result, BG is well behaved at

M, too.

Proof Let a be the input arc of v that carries an H-token
at M. Since BG is well behaved at M' we find M"€[M'> such that
once again M" is v-extremal and aGMﬁ (lemma 4.6). We shall
prove that M" is the same marking as M.

First we note that M and M" are v-extremal markings in the
underlying marked graph BP. So by theorem 1.8 we have M=M", i.e.
M UM, = MﬁUMi. Thus the same subset of A is marked at both M
and M". We just need to show that the 'colour' of the tokens
match up for each marked arc at M and M".

We shall do so by induction. As a suitable index we propose
the 'depth' of each arc in M (=§"). '

Let depth: M - N be, inductively, given by

0,if be'v
depth(b) = % 4, ax{depth(b') | z(b') < Z(b), b'eM), otherwise
Let beM. We need to prove that bEMH iEE bEMﬁ. The proof is

by induction on k=depthib).
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k=0 Then b€'v. M" was chosen in such a way that bEMH Aff
bEMH.
k>0 There are two cases to consider.

Case 1: Z(b)=v'€Vv

Since depth(b)=k>0, we have that v'#v. By theorem 4.7, we also

know that bEMﬁ. Hence we need to show that bEML.

The bp scheme BP' = (VV,V&,A;Q,Z,M') is well behaved and
consequently, covered by its set of V-components (theorem 3.9).
In particular, we can find a V-component BG1 = (V;,V;,A1;Q1,Z1)
such that beA'. By proposition 3.6 we know that BG1 is also
a V-component of BP. Since b€A1 and Z(b) = V'€Vv, we have that
V'EV;

Now let He(AT)* be a token-free path at M (completely
contained in BG1) leading to v' of maximum length. The existence

of II is guaranteed by the fact that, since v' cannot fire
at M, there is a token-free input arc of v';which belongs to BG1
because v' is a vV-node.
= = i — ! i
Let I a1a2...anﬁ?nd w Q(a1). Since Z(an) v' and Il is
token-free at M, and BP is live, we have that w#v'.

Suppose that w=v. Then 'v c Al because a1€A1 and Q(aq) = W
vEV;. Now 'vnMH#Q and |A10MH|=1. Consequently, (AT--'v)nMH =@

and thus, 'v'ﬂMH==®. As a result bEML and we are done.

Now suppose that w#v but w is a V-node, i.e. wev;. Since

Since M is v-extremal, at least one input arc of w, say agy
is unmarked at M. ag belongs to BG1 since wEVé. Consequently,

the token-free path II' = a.ll leading to v' is also contained in

0
BG1 contradicting our assumption that I is such a path of maxi-

mum length. Hence if w#v then w is not a V-node.

) and a €A1,

] 1

| = {b'} for some

So assume that w is a &-node. Since w = Q(a
wEV; and, by definition of a V-component, |‘*wnA

arc b'. Because of the maximality of I, b'EMHUML = MﬁuME and

consequently, by theorem 4.7, b'€Mﬁ.

Now because of the existence of II, w <ﬁ v' and hence

depth(b') < depth(b) = k. So by induction hypothesis, we have
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b'EMH because as already observed b'EMﬁ. But this implies
that (A1—{b'}) n MH = ¢ because BG1 is a V-component. Thus

BEML and we are done with the first case.

Case 2: Z(b)=u€V&
Again from theorem 4.7 we have beMﬁ. So we have to show that
beM

Hclearly u#v. So there is an input arc b' of u which is
unmarked at any v-extremal marking such as M and M". Let w=Q(b'").
Suppose w=v. Then by theorem 4.7 and the fact that v has

more than one output arc, we have at M", a situation as shown
in fig. 4.3 which obviously may lead u into a deadlock. But this
is contradicting the well behavedness of BG at M".
Fig. 4.3
Consequently, Q(b')=w#v. Now let a1Ev nMﬁ be the output arc
of v that receives the H-token in the transition M[v>M'. Further-

more, let M"' be the result of v firing at M" in the same way

as at M, i.e. M"[v>M"' and a1€Mﬁ'. Clearly M' = M,
Define A = {aeM’ | z(a) = w or Z(a) <ﬁ.w}. Then clearly for
all a€ (A-v*), depth(a) < depth(b) = k. Hence, by induction

hypothesis, for all a€ (A-v'), aEMH<ML> iff a€M§<M£>. Consequently
n I 1 - " "
for all a€a, aeMH<ML> iff aEMH <ML >.
Now assume that bEML and, consequently, bEMﬁ. Consider first
the case that EnMﬁ#Q. Then by proposition 2.4 we find a minimal

1

w-enabling firing sequence ¢ at M' such that M'[g>M' and w can

H-fire at M1. Since |Ghl=0 and beM! beMi also. At M1, w may

’
H-fire w in such a way that b’ acqﬁires an H-token. Then u is in
deadlock, at the resulting marking; a contradiction, because BG
is supposed to be well behaved at M'.

Hence we have A ¢ M' and as a result A ¢ M7' also. Once
again by proposition 2.4, we can find a minimal w-enabling
firing sequence ¢ at M"' such that M“'[0>M2 and w can L-fire
at M2. At the marking obtained by w L-firing (at Mz), however,
b' carries an L-token while b still carries an H-token. So u
is in deadlock at a marking reachable, via M", from M'. A con-

tradiction.
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Thus indeed bEMH. This completes the induction step and
we have M = M". Consequently ME[M'> and because BG is well
behaved at M', BG is well behaved at M, too. [ |

The all-or-none property follows now easily.
Theorem 4.9 Let BP = (V V (A;Q,2Z, M ) be a bp scheme.

BP is well behaved iff for every ME[M l, BG = (VV' o rBiQ,7)
is well behaved at M.

Proof Suppose that BP is well behaved, but BG is not well
behaved at some ME[MOJ Then due to proposition 4.5 we find a
V-node v, a v-extremal marking M E[M ] and two other markings
M2,M €[M ] such that M [V>M2 and M [v>M3, and BG is well
behaved at M2 but not at M3. According to proposition 4.8,
however, M1€[M2> so that BG is also well behaved at M1. Conse-
quently BG must be well behaved at M3, too. A contradiction.

The second half of the theorem is trivial. |

4.2 Some Additional Properties of the Marking Class

As we have seen already, the result stated in theorem 4.7 is
a very useful one. Here we shall bring out just one of its main
consequences. It is: The marking class of a well behaved bp
scheme is uniquely determined by the marking class of the under-
lying marked graph (which is not determined uniquely by the
supporting strongly connected digraph).

Theorem 4.10 Let BP1 = (V &,A Q2 M ) and BP2 =
(VV,V&,A,Q Z, M ) be a palr of well behaved bp schemes based on
the same bp graph. Then [M 1 = [M ] iff for the underlying marked

graphs, ('] = [%%].

Proof If [M1] = [M2] then clearly [ﬁ1] = [ﬁzl. So assume
that [M1] = [M2]. To start with we observe that by definition
of the full marking class, [M1] = [M21 1EE [M1] n [MZ] # @.

So we shall show that there is a marking which is both in [MT]
and [M2]. To this end let w be a node and ME[M1] and M'E[M2] two
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w-extremal markings such that ('wnMH) = ('wnMﬁ). Clearly ™ and
M' are two w-extremal markings for the digraph BG. Since [M1]
= [ﬁz], we have through theorem 1.8 that M = M'. Let aeMHuML.
If a€'w, then by construction, aEMH iff aeM'. If a¢*w, then

H
by theorem 4.7 aEMH iff Z(a) is a &-node iff aEMﬁ. Thus indeed
A€M <M > iff a€M/<M;>. In other words M = M', hence [M1] n [MZ]# @
and we are done. i

The last result of this section states that a well behaved bp

scheme shows a unique 'steady state' behaviour.

Theorem 4.11 Let BP be a well behaved bp scheme. Then for
every M,M'E[MO], [M> n [M'> # @.

Proof By theorem 4.9, the underlying bp graph is well behaved
at M and M'. Let w be a node of BP. Then we find two w-extremal
markings M1E[M> and.M2€[M'> such that 'w€M; = 'WEMé. As shown

in the proof of theorem 4.10, M1 = M2 and thus indeed

[M> n [M'> £ @. ]

To finish this section we state two conjectures closely
related to the results of this section. The first one is con-
cerned with the question of how long it may take a well behaved
bp scheme to reach its steady state behaviour. We believe that
the following is true: Let BP be a well behaved bp scheme and

let M0[o>M' where for all wev, |U|W>0 (each node fires at least

1 2 1

once). Then M is 'reproducable', i.e. there is M7¢[M >, MZ#MT,

such that M1€[M2>.

Our second conjecture is an all-or-none property of the
second kind. Let BP be a well behaved bp scheme and M be an
arbitrary live and safe marking of the underlying digraph. Then
there exists a marking M of BG with M = M such that BG is well

behaved at M.

Once the synthesis procedure has been presented, it will
be easier to see why the two conjectures stated above are impor-

tant.
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5. THE SYNTHESIS PROCEDURE

We shall now present a technique for systematically con-
structing well behaved schemes. The idea, as one would expect,
is to start with "small" bp schemes which are trivially well
behaved and then repeatedly apply a set of transformation rules
to obtain more complex well behaved schemes. The seed schemes are

called elementary schemes and they can be of two types.

Definition 5.1 1) A V-elementary bp scheme is a scheme
BpP = (VV,V&,A;Q,Z,MO) which satisfies:
la) |Vg|=1 and V_=@; hence a=m2un’
Vv & g HL®
0,_
b)  [Mg[=1.
2) A &-elementary bp scheme is a scheme BP = (VV,V&,A;Q,Z,MO)

which satisfies:
2a) V. =¢ and |V_|=1; hence a=mOupm?
v & ? H L*
0_
2b) MH—A.

3) A bp scheme is called elementary iff it is either V-elementary

or &-elementary. B

Fig. 5.1 shows an example of a vV-elementary and an &-elementary

scheme.
Fig. 5.1

We note that every elementary scheme is well behaved.

5.1 The Transformation Rules
In what follows we let S,§, 80,81 etc. denote bp schemes. We

shall present our transformation rule in a (hopefully) precise
but pictorial form accompanied by explanations and remarks.
A textual formulation will not contribute signifi-

cantly to understanding the rules (quite the opposite, we
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believe) and hence we shall forego the pleasures of doing so.

The general format will be to apply the transformation rule

Ti to the source scheme S = (VV,V&,A;Q,Z,M); and obtain the

target scheme § = (Vv,?&,ﬁ;é,ﬁ,ﬂ}. The specification of a rule

will consist of four parts.

1) The restrictions on M, the marking of S at which the

rule is to be applied.

2) The restrictions that the structure of S (often w.r.t. M)
must satisfy in order for the rule to become applicable.

3) The change effected in the structure of S, to yield the

structure of §.
4) The specification of M, the marking of 5.

There are eight rules on the whole and the first seven rules
will have parts 1) and 4) in common. So we shall state them first.

For the rules T, through T, M, the marking of the source

1
scheme must satisfy: If an arc appears in S but not in § then

this arc must not be marked at M.

The force of the above restriction is that in going from S to
S we do not want to lose tokens. Indeed often what causes headache
in transforming S to 8§ is that we must ensure that § is a bp
scheme; the underlying marked graph of S should be live and safe.

Part 4) for the first seven rules reads:

The marking M of § is obtained as follows. If an arc appears
both in S and S then it is marked in the same way at M as it was
at M. If an arc appears in 8§ but not in S then such an arc is

left unmarked at M.

Thus in stating the (first seven) rules we need to mostly
deal with just the structural restrictions and the changes in

the structure.
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21 (Arc Refinement)

Fig. 5.2

There are no restrictions. An arc a can always be extended
by introducing a new 1-in 1-out node w (which can be either a

V-node or an &-node) and a new arc a' as shown.

22 (Node refinement)

Fig., 5.3
A node w of trpe x is split into two nodes W, and Wo of the

same type; a non-elpty set of new arcs A12 is created each of
which originates from w, and terminatesat w,; 'w, the input arcs
of w in S is partitioned into ('w)1 and ('w)2 so that ('w)1
becomes the set of input arcs of W, and ('w)20A12 becomes the
set of input arcs of W, in 8; w', the set of output arcs of
w in S is partitioned into (W')1 and (w')2 so that (w"),iUA.]2
becomes the set of output arcs of W, and (w')2 becomes the set
of output arcs of W, in S. The crucial restriction this rule
must satisfy is:

The partitioning of °

w - into ('w)1 and ('w)2 - and the
partitioning of w' - into (w')1 and (w')2 - must be such that

the underlying marked graph of § is live and safe.

This rule is unsatisfactory in that its applicability is not
a "local" condition. For each instance of its application, we
must check globally that S, the target scheme is - viewed as a
marked graph - live and safe. Matters are improved somewhat by
observing that in going from S to § liveness is automatically
preserved. What can get destroyed is safety. It is known to us
that the safety of the underlying marked graph of § can be
checked in time bounded by O(|A|3) [ 1. And we might be able to
do even better by keeping around and updating some information
concerning the basic circuits of S, the underlying marked graph
of the source scheme S. After all, to ensure that the underlying
marked graph of § is safe, just two things must be guaranteed.
Firstly, in § there must be at least one basic circuit passing
through some arc in ('w)1 and some arc in ('w)z. This provides

safety for each of the new arcs (A12). Secondly if in S and arc
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Fig. 5.2
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Fig. 5.3
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b is contained in a basic circuit passing through some arc

in ('W)2 and some arc in (w')1 - this basic circuit will be
destroyed by the application of T2 - then there must be a basic
circuit in S containing b which does not pass through any arc

in ('w)2 or any arc in (w')1. This guarantees that no "essential"

basic circuits are destroyed in going over to S.

23 (V-diamond Transformation)
Fig. 5.4

The arc & is replaced by two arcs a, and a, as shown. The
restrictions that must be satisfied are:

M, the marking of S in addition to the general restriction
stated at the beginning must be such that no arc in {b,b1,b2}
is marked at M. As for the structure, in S, the environment of
the V-node v is no more than what is shown. In other words,
in 8, v = {b} and v*' = {b1,b2}.

The effect of this rule is to distribute the fork (&) operation
over the split (V) operation. Stated differently, this rule can
be equivalently, and for our purposes less conveniently, presented

as shown in fig. 5.5
Fig. 5.5

ik (&-diamond Transformation)

—4
Bigs 5.6
Once again, the arc a is replaced by the two new arcs a, and
a, as shown. As in the previous rule the restrictions to be met
are:

At M, no arc in {b,b1,b2} should be marked. Moreover,
the environment of the &-node u is no more than what is shown;
by = {b1,b2} and u' = {b}.

One of the pleasing aspects of the theory of well behaved bp
schemes is that the V and & operations have some strong duality
relationships. Most of our theorems about well behaved schemes
remain valid if we interchange V and & and reverse the direction
of all the arcs. And this duality will be strongly reflected in
our synthesis procedure. T4 and T, are reverse duals of each
other. As can be easily verified, each of the remaining ones

(except the last one) is its own reverse-dual.
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IS (M Transformation)

Fig. 5.7
The two &-nodes u, and u, are replaced by a single v-node v.
The two V-nodes V4 and v, are replaced by a single &-node u. The
four arcs Ci1r Cqpv Coqr €y, are replaced by a single arc c.
The restriction to be satisfied is:
The environments of each of the nodes in {u1,u2,v1,v2}

is no more than what is shown in fig. 5.7.

The effect of generalising the three previous rules is ob-

tained by introducing two additional rules.

26 (Arc Reduction)

Fig. 5.8
There are no structural restrictions except the obvious one
that w must be 1-in 1-out. The arc sequence aa' can be shortened
to a through the elimination of the 1-in 1-out node w and the

arc a'. This rule is the "reverse" of T1.

27 (Node Reduction)

Fig. 5+9
Two nodes W, and Ws of the same type such that @#A12 =
w‘ﬂ'wz, can be collapsed together, after eliminating

>
A12, to one node w of the same type as W and Wy

In S, 'w = 'w1U('w2—A12)

that must be satisfied is:
In S at M, there is no token-free path of length greater than

and w' = (w;—A12)Uw5. The condition

one from w1 to w2.

As opposed to T2, in going from S to S through T safety will

’
be preserved. What might get lost is liveness. The a;plicability
condition stated above is designed to ensure that the underlying
marked graph of § is live. This rule is also non-local, but

as before, the applicability condition can be checked guite effi-

ciently.
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28 (Marking Transformation)
The effect of applying this rule to S = (VV,V&,A;Q,Z,M) is
to yield the scheme § = (VgrVesA;Q,2,M) where HMe[M].

In other words the rule consists of firing the nodes of g

forwards or backwards a finite number of times.

This completes our presentation of the transformation rules.

The synthesis procedure is outlined in the next definition.

5.2 Well Formed bp Schemes

Definition 5.2 The class of well formed bp schemes is denoted

as WF and is the smallest class of schemes given by:
1) Every elementary scheme is well formed.

2) If S is well formed and § is obtained by applying one
of the eight transformation rules to S then § is also

well formed. B

In fig. 5.10 we show the generation of a well formed bp
scheme which differs from the scheme of fig. 2.5.a just in the
initial marking. The resulting scheme is well behaved and we
have also demonstrated through this example that the scheme of

fig. 2.5.a is well formed.

Fig. 5.10

An interesting sub-class of WF is what we call strongly well
formed bp schemes. Intuitively, they are schemes in which the

V and & operations are properly "nested". Formally:

Definition 5.3 The class of strongly well formed bp schemes

is denoted as SWF and is the smallest class of schemes given by
1) Every elementary scheme is strongly well formed.
2) If S is strongly well formed and S is obtained by

applying T1 (arc refinement) or T, (node refinement)

to S then § is also strongly well formed. 2
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Clearly every strongly well formed scheme is also well
formed. That the converse is not true will become clear once we
obtain - in the next section - behavioural characterisations of
WF and SWF. It will then be easy to demonstrate that the scheme
of fig. 2.5.aisnot strongly well formed.

5.3 The Consistency of the Synthesis Procedure

We now wish to prove that our synthesis procedure yields
only well behaved schemes. To do so, we shall first argue in
detail that T2,

The main idea is that S, the source scheme, can simulate the

the node refinement rule preserves well behavedness.

behaviour of § with a bounded amount of "delay". The remaining

parts of the proof are quite straightforward.

Lemma 5.1 Let 8 = (VV;V&,A;Q,Z,M) be a well behaved bp scheme
and § = (Vv,?&,ﬁ;é,z,ﬁ) be obtained by applying T, to S. Then

S is also a well behaved scheme.

Proof We assume that the situation is as shown in fig. 5.3.
The node w has been split into w, and w, with Bigy = w;rW'w2=ﬁ—A.
The key observation concerning the behaviour of § is:

Y S
Let M €[M>. Then VXEVOUV, s wy <g1 X = X {MT Wo e

This is true because if 7w, is a token free path from w

! 1

, is a token-free path from x to w, at M

Ty would be a circuit (passing through w) which is token-free

1
then in S,

to x and T
at every marking in [M]. And this is ruled out because S is a
live and safe marked graph.

To proceed with the main proof we note that MH#Q and hence
ﬂH%a. By assuming that § is not well behaved we will derive the
contradiction that S is also not well behaved. To this end suppose
that o is a firing sequence at M with M[o>M' and u is a node
which is in deadlock at M'. The underlying marked graph of 5
is live and safe. Moreover no arc in A12 is marked at M. Hence
in any firing sequence in S starting from M, the nodes W and w,
would fire alternatingly with Wy firing first. The proof is by

induction on k=|0|w "



81

1) k=0 Then |o| <1. If |o| =0 then o is also a firing
1 1
sequence of S at M. Moreover we can find a marking M' with

M[o>M' such that either the node u is in deadlock at M' in case
u¢{w1,w2} or w is in deadlock at M'. In either case we have
the contradiction we are loocking for.
So suppose that o = O Wq05- Let Oy = Yqi¥oreeer¥y with
yiEV (= ?VU?&) and let ﬂ[61>ﬂit be such that M1[W1G2>ﬁ'. We
shall assume that for 12isn, w1 <M1 Y- To see that this does
not involve any loss of generality:
Let 1 be the least integer in {1,2,...,n} such that
W, ¢ﬁ1 yi:1Then y; 1s firable at ﬁ1?nd we can
obtain M [yiw1y1...yi_1yi+1...yn>M'.By repeatedly applying this
transformation we can arrive at a firing sequence which satisfies

-

our regquirements. Which, to recall, are: M[01w102>ﬂ'; some

node u is in deadlock at M'; ﬁ[01>ﬁ1[w102>ﬂ'; with o, = Yq¥oee ¥yr
it is the case that for each Yir W9 <1 Y-

12 is marked at ! and hence by firing o, at M
(in 8) in the same way in which it was fired in S, we can obtain

1 ' (in 8).

Now no arc in A

M[o1>ﬁ . Let 0' be a minimal w-enabling sequence at M

If o' does not exist then S is not well behaved and we are done.
Assuming that ¢' indeed exists,we claim that for 12isn,

|0'|Y =0. This is because w, is firable at M' (in 8) so that o'

i 1
1

is a minimal wz—enabling sequence at M' in S. We know that

W <ﬂ1 P for each Yy and this at once implies that Y {ﬂ1 W, as

1
we observed right at the beginning. From theorem 1.6 it follows at

once that |o'|. =0.
Yi
It is now easy to check that in S we can find a marking M'

where M[O1O'W02>M' such that some node is in deadlock at M'.

1

2) k>0 Let 0 = 0,w,0 with |o =0=|o,, | . Let M
-l 1 12w

%4 2%3%s . ;
i M1 M 1 M =
be such Ehat M[01>M and Ml[w, 0, ,w,0,>M". Set 9y 9 Y1Y¥ge- Y,
with yiEV. As observed in the proof of the basis step we can

1[w

assume without loss of generality that W <ﬂ1 Yy for 12izn.
Which lets us conclude that Y, {ﬂ1 w,. As a result,

o' = 0,w,w,0,,0, is also a firing sequence at M with M[o'>H'.
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Finally let ﬁ[o1w1w2>ﬁzio1202>ﬁ'. Then it is straightforward
to verify that M[O.lw>b7£2 in S also. The required contradiction

can now be obtained by applying the induction hypothesis at

2. |
Theorem 5.2 Every well formed bp scheme is well behaved.
Proof Every elementary scheme is well behaved. Hence we

merely need to prove that the transformation rules preserve well
behavedness. To do so, let S be a well behaved scheme and S be

obtained by applying the rule Ti to s for some i€{1,2,...,81}.

-

i=1,6 S is obviously well behaved.
i=2 By lemma 5.1, S is well behaved.
i=3,4 That S is a bp scheme (i.e. the underlying marked

graph of S is live and safe) is easy to establish. The proof that
S is well behaved is very similar to - and a shade messier than -

the proof of lemma 5.1 and hence we shall omit it.

i=5,7 Again the fact that § is a bp scheme is easy to prove.
To show well behavedness we follow the proof idea of lemma 5.1

(along much smoother paths this time).

i=8 Theorem 4.9 tells us that S is a well behaved scheme.
i
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6. THE COMPLETENESS OF THE SYNTEHSIS PROCEDURE

As the title of the section suggests, the aim here is to
show that the synthesis technique introduced in the previous
section yields all well behaved schemes. The proof is somewhat
involved and we shall do our best to chop it up into digestable
pieces. We will start with a set of reduction rules using which

one can "parse" bp schemes.

6.1 The Reduction Rules
As in the presentation of the synthesis rules we specify

the reduction rules only graphically. There are six rules on
the whole. We denote the source scheme to which the reduction

rule Ri is to be applied by S=(VV,V&,A;Q,Z,M) and resulting
target scheme by § = (VV,V&,E;Q,Z,ﬂ). As before, the specifica-

tion of each rule will consist of:

1) The restrictions on M, the marking of S at which the

rule is to be applied.

2) The restrictions on the structure of S that must be

met for the rule to be applicable.

3) The changes in the structure effected by the application
of ithe rule.

4) The specification of M, the marking of §.

The first and fourth parts of the specification is common

through R So we shall put them down first.

to the rules R1 5
The marking M must satisfy: If an arc appears in S but not

in § then such an arc should not be marked at

The new marking M of § is obtained as follows: If an arc
appears in S and § then it is marked in the same way at § as
it was marked at M. If an arc appears in 8 but is not in S, then

it is left unmarked at M. The first two reduction rules are renamed

versions of two transformation rules.
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R, (Arc Reduction) Same as the transformation rule T6'

32 (Node Reduction) Same as the transformation rule T7.

R

R, (X Reduction)

Fig. 6.1
This is the "reverse" of a generalised version T5. The
restrictions are:
The environments of v and u in S are no more than what is

shown in fig. 6.1. In other words ‘v = {a1,a2,...,am},

. _ _ e '
v'! = {c} = 'u and u {b1,b2,...,bn}.

54 (V-diamond Reduction)
Figs 62

The V-node v, is split into two V-nodes v; and v; ; a new
&-node u is inserted in between through the addition of the arcs
b and b' as shown. The key part of the reduction is to replace
the arcs a1,a2,...,an by a single arc a. The restrictions are:

At the marking M in addition to the general restriction
stated at the beginning, no arc in {a1,b1,a2,b2,...,an,bn} should
be marked. And as indicated in the diagram, for 1£isn,
|ul[22. Finally, the environment of the V-node v, is no more than

what is shown in fig. 6.2.

This rule is the "reverse" of a generalised version of T3.

Re._(&-diamond Reduction)

5
Fig. 6.3
This is the reverse dual of R4. The restrictions are:
At M, in addition to the common restriction, no arc
in {aT'bl’aZ'bZ""'an’bn} should be marked. And as indicated,
for mid » 2idn, I'Vi\22. Finally, the environment of the

&-nodelljin S is no more than what is shown in fig. 6.3.

R

Re_(Marking Transformation) Same as the transformation rule Tg.-
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Fig. 6.3
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These are all the reduction rules we need to show the
completeness of the synthesis technique. To start with we shall
show that each reduction rule transports well behavedness from

source to target and well formedness from target to source.

Definition 6.1 Let S be a bp scheme.

a) For 1£i25, 8§ is said to be Bi—reducible i.EE

the reduction rule Ri can be applied to S.

b) S is said to be reducible iff for some i with 1<i<5,

S is Ri—reducible.

c) S is irreducible iff S is not reducible.

d) S is a reduction of S iff § can be obtained by

applying a reduction rule to S. [ |
Theorem 6.1 Let Sbe a reduction of the well behaved bp scheme
S. Then 8§ is also a well behaved bp scheme.
Proof By definition, § is the result of applying the reduction
rule R; to S for some i in {1,2,...,6}.
i=1,2,6 We have already dealt with these cases in theorem 5.1.
i=4,5 That § is indeed a bp scheme is not difficult to prove.

To show that §is well behaved we can borrow the proof technique
of lemma 5.1 to simulate § with S; in the present two cases

without any "delay" even. The required result then follows easily.

i=3 If § is a bp scheme then once again through some straight-
forward simulation we can show that § is well behaved because 8
is well behaved. The part that requires an argument is that §
is a bp scheme, i.e. the underlying marked graph of § is live
and safe.
There is no trouble about verifying liveness. To show safety

we must prove that each of the new arcs in {cij | 1<izm, 1<js<n}
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is contained in a basic circuit. To do so, it is sufficient to
prove that in §, the underlying marked graph of S, there is a
basic circuit containing aj and bj for 1£is<m and 1=2j<n.

Let i,j be such that 12i<m and 1<jsn. While § is live and
safe there is a basic circuit 7 passing through ay (in §). Since
v = 'u = {c}, (see fig. 6.1) 7 must contain an output arc of
u, say bk where 1<ksm. Similarly let 7' be a basic circuit of §
containing bj and which of necessity must pass through some input
arc of v, say aj - Without loss of generality, let us assume that
m and n' originate from u. Now 7 and 7' can be expressed as
M= My Ty, T' = ﬂiﬂé such that 4 and w% are node-disjoint except
for the initial and terminal nodes (see fig. 6.4).

Fig. 6.4

Suppose that T, and ﬂi have the V-node v as their terminal
nodes. In other words 71 and 7' meet at v for the first time after
departing from u. Then starting from a marking at which u has
just H-fired we can apply Prop. 2.6 to conclude that S§ is not
well behaved which is a contradiction. Hence 1 and 7' must meet
earlier than v. This implies that ﬂ{ﬂz is also a basic circuit
(recall that S is live) and it passes through both aj and bj. ]

Theorem 6.2 Let S be a reduction of the bp scheme S. If S

is well formed then S is also well formed.

Proof Let S be obtained by applying the reduction rule Ri to

S where 1£ic<6.

i=1 We can apply T1 to S to get back to S.

i=2 We can find a suitable application of T, to S to get S.

2
The required node splitting would be permitted because S is

known to be safe.

i=3 We have shown in Fig. 6.5 for the concrete case m=3, n=2

how S can be obtained from § through a sequence of applications
of the transformation rules. An inductive argument based on

this idea can be easily constructed.

Fig. 6.5
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i=4 Once again we have illustrated, in fig. 6.6, the proof
idea through a concrete example.
Fig. 6.6
i=5 Similar to that of the previous case.
i=6 TPrivial. [

The above result suggests a possible way of proving that
every well behaved scheme is well formed. It is sufficient to
show that every well behaved scheme can be - by repeatedly apply-
ing the reduction rules - reduced to an elementary bp scheme.
Motivated by this we shall first show that starting from a well
behaved scheme, if the reduction process terminates then the
resulting scheme is elementary. Afterwards we will show that
there is one "standard" way to do the reduction which always

terminates.

6.2 Irreducible Well Behaved Schemes are Elementary

The first result is interesting in its own right.

Theorem 6.3 Let S be a bp scheme. If the supporting bp graph

of S has one of the three structures shown in fig. 6.7 as a

(bp) subgraph (see def. 3.9), then S is not well behaved.
Fig. 6.7

Proof

(A) Assume that fig 6.7.A is a subgraph of S. Let M1

be a
v-extremal marking in the forward marking class of S. If no such

marking exists then S is not well behaved and we are done. There

are two situations to consider at M1.

Suppose there is no token-free path of length greater than
one from v to u at M1. If Q(c)=v then by H-firing v at M1 SO
that ¢ or b gets an H-token, we can create a deadlock at u.

1, without firing v, we can obtain
a marking M2 at which ¢ carries a token. If cEMé <Mi> then by

H-firing v at M2 so that b gets an L-token <H-token> we can

If Q(c)#v then starting from M

create a deadlock at u.
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Fig. 6.6
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So suppose indeed T is a token-free path at M1 of length
greater than one from v to u. Without loss of generality assume
that the first arc of 7 is a and that the last arc of = is c.

1[V>M2 such that aEMé and hence bEMZ. Starting from M2,

Let M L

without firing u, we can guide the H-token on a along 7 to
reach a marking M3 at which beME and cEMé. In other words, u
will be in deadlock at M3.

(B) Assume that fig. 6.7.B is a subgraph of S. If S is to -

be well behaved then every arc must be contained in a V-component
of S (theorem 3.9). If the arc b2 (see fig. 6.7.B) is contained

in a V-component of the form S1 = (V;',V;',A1;Q1,Z1,M1) then

a1€A1. If not |[*u|>1 and by part A) of this theorem, S is not

well behaved. But Q(a1)EVé implies that v; = Al so that a2€A1

and z(az)ev; . This once again implies that 'v2 c Al s et

b1EA1. But b1,b2€A1 so that |u'nAT|>1 contradicts the assumption
that S1 is a V-component; a, cannot be contained in any V-component

of S; S cannot be well behaved.

(C) Assume that fig. 6.7.C is a subgraph of S. Then it is easy
to verify that the arc b2 is not contained in any &-component
of 5. Once again by theorem 3.9 we can conclude that S is not
well behaved. |

Using the above result we can now demonstrate that if S is
a well behaved scheme which is not elementary and to which R1,
R2 and R3 cannot be applied, then R4 or R5 can be applied to S.
First we shall demonstrate that a "partially" irreducible well

behaved scheme must contain a particular kind of subgraph.

Lemma 6.4 Let S be a well behaved scheme which is not elemen-
tary and to which the reduction rules R1, R2 and R3 cannot be
applied. Then S has a basic circuit of maximum length

of the form 7w = ajajaz...a, such that (see fig. 6.8):

Fig. 6.8



Fig. 6.8
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1) |m|23
2) Q(a1)=v1, Q(a?’)=v2 EVV;
Z{a1)=u1, Z(a3):u2(5V&.

3) IV‘T|1 ‘.Ver [U.,TII |'1_12|>1; [.u‘]‘zivii:‘l.

Proof Let 7 be a basic circuit of maximum length in S.

R2 cannot be applied to S, for every arc b contained in 7 w

Since

e must

have that Q(b) and Z(b) are of different types. Now the required

result follows by appealing to the facts that R, and R. cannot be

1 3 o
applied to S; fig. 6.7.A cannot be a subgraph of S; and S i

live and safe marked graph.

It will be convenient to go through one more intermedia

step before we get to the result we are actually after.

Lemma 6.5 Let S be a well behaved scheme which is not
elementary and to which the reduction rules R1, R2 and R3 e
be applied. Let the structure shown in fig. 6.8 be a subgra
of S where the arcs a,ray and a; are contained in a basic c
of maximum length. Let M] be a v1~extremal marking. Then,
; there is a token-free path at M fr

v1 to Vs which contains x.

1) For every x€v

1

2) For every y€'u2, at M, there is a token-free path
u, to u, which contains vy.
Proof Suppose that xev; and ye'u2 such that at M' there

no token-free path from v, to Vs containing x and there is

token-free path from uy to u, containing y. We shall derive

contradiction that S is not well behaved.
Let M1[v>M2 and M1[v>M3 such that a €M2

1" H
XEME - and xEMé, which implies aEME. The simple but crucial

- which implies

observation to keep in mind is that

2 2 _ 33 3
MHLJML = MHLJML

s a
|

te

annot
ph

ircuit

om

from

is
no
the
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Fig. 6.9

Consider a minimal vz—enabling sequence ¢ at Mz. Let

Z(x)=w. Then because we are assuming that there is no token-
free path from v, to v, which contains x, we can conclude
that |O|w:0. At M1 and hence at M2 and M3, there cannot

be any token-free path from U to Vs other than the one
provided by the arc asy (prop. 2.6). Hence we can assume

without loss of generality that uq fires right at the end of

0. In other words o = G1u1. Let M2[01>M4 and M5 be the marking
obtained by firing 9 at M3 in the same way in which it was
fired at M2 (see fig. 6.9). This is possible because M2=¥3 and

S is well behaved. By construction of M4 and M5 we have ﬁ4=ﬁ5
a1€M§, xEMé (recall \U[W:O). Indeed the only difference between
M4 and M5 is the way in which the two arcs a, and x are marked.

While o = O1u1 is a vz—enabling sequence we know that every input
are of Vs other than a, is marked at M4 and MS; moreover they
are marked in the same way at M4 and MS. We claim that

4 5
v, - fa,} e Mp e

To see this we merely need to observe that if some arc

] ¢ -
and ‘v, fa} e M
in 'v2 —{a2} carries an H-token at M5 and hence at M4, then at
the marking obtained by H-firing uTEH:M4, the V-node v, will
be in deadlock. This proves the claim.
We can now start concentrating on the arc y. Suppose that

yEMé. Then yEMg also. At MS, we can L-fire u, followed by an
L-firing of v, to create a deadlock at u, - If yEMi that at M4,

we can H-fire Uy, followed by an H-firing of v, to create a

deadlock at u, -
Hence assume that the arc y is not marked at M4 and M5.

Let Q(y)=w' and ¢' a minimal w'-enabling sequence at M4.

Let M4[G'W'>M6 and M7 be the marking obtained by firing o'w' at M5

in the same way as it was fired in going from M4 to M6. Because

we are assuming that at M1 there is no token-free path from u,to u

containing y, it is also true at M* and M°. Hence |c'|u =0.

1
Consequently, |0']v =0 also and it is easy to verify the following
2

2

details :

7
L

7.
1 SMp

6 _ 6. :
a,€M v, {ay} < Mp; vy - {a,l e

1=yt @



Since y is marked at M6 and it is marked in the same way
at M6 and M7 we need consider two cases. Let yEMg. Then at
M7 we can L-fire u, followed by an L-firing of Vo to produce
a deadlock at U, - 1t yGMg, then at M6 we can H-fire U, followed
by.-a H-firing of Vs to create a deadlock at U, . Hence our

original assumption must be false. [}

Theorem 6.6 Let S be a well behaved irreducible bp scheme.

Then S is elementary.

Proof Suppose that S is well behaved and the reduction rules
R1, R2 and R3
mentary. Then we need to show that R4 or R5 can be applied to S.

cannot be applied to S. Assume that S is not ele-

To this end we first note that by lemma 6.4, there is a
basic circuit of maximum length of the form = ={a1,a2,a3...an}
which fulfills the conditions laid out by that lemma (see
fig. 6.8).

Using lemma 6.5, let us first suppose that for every x€v$
there is a token-free path from v. to v, containing x at the

1 2
v1—extremal marking M1. Let xevy - {a1} and m' be such a token-

free path. If |n'|>2 then = can;ot be a basic circuit of maximum
length. If |w'|=1, then fig. 6.7.B would be a subgraph of S
which contradicts the well behavedness of 5 (theorem 6.3).
Hence |7m'|=2. Z(x) must be a &-node because R, is not applicable
to S and 7 is a basic circuit of maximum length. If |'Z(x)|>1
then once again S cannot be well behaved because fig. 6.7.A would
be a subgraph S. Hence 'Z(x) = {x}. If |Z(x)'|=1 then R, would
be applicable to S. Consequently, |Z(x)'|>1. Since this is true
of every output arc of Vi, WE now have that R4 is applicable to
S.

If on the other hand, at M1, for every yE'u2, there is a

token-free path from u, to u, containing y then by a similar set

1
of arguments we can conclude that R5 is applicable to S. B

6.3 A characterization of SWF

As a run up to the main result we will now obtain a behavioural

characterisation of SWF.
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Definition 6.2 Let S = (VV,V&,A;Q,Z,M) be a bp scheme.
Then the reverse of S is denoted as SY and is given by
s® = (vy,v,,8;Q%,2%,M) where @R=z ana zR=q. 0

The reverse of a bp scheme is also a bp scheme. This is
because from theorem 1.3 we have that the marked graph
MG = (V,A;Q,Z,M) is live and safe iff the marked graph

MR = (V,A;Q,Z,M) is also live and safe.

Definition 6.3 A bp scheme is said to be strongly well

behaved iff both S and its reverse are well behaved. |

The bp scheme shown in fig. 2.3 is strongly well behaved
but not the one shown in fig. 2.5.a. It turns out SWF is com-

pletely characterised by this property.

Lemma 6.7 Let S be a strongly well behaved scheme and S be
obtained_ by applying T1 or T2 to S. Then S is also a strongly

well behaved scheme.

Proof We first observe that if the scheme § can be obtained
from S through T1 <T,> then the reverse of 5§ can be obtained from
the reverse of S through T,| <T2>. This follows once again from
the characterisation of live and safe marked graphs and the defi-
nitions. The required result can now be derived using lemma 5.1.

Lemma 6.8 Let S be a strongly well behaved scheme and § be
obtained by applying the reduction rule R1 or R, to S. Then
8§ is also strongly well behaved. Moreover if § is strongly well

formed, then so is S.

Proof Follows at once from theorem 6.2 and the definitions.
|
Theorem 6.9 A bp scheme is strongly well formed iff it is

strongly well behaved.
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Proof Let S be strongly well formed. Since every elementary
scheme is strongly well behaved, we can conclude from lemma 6.7
that S is also strongly well behaved.

Assume that S is a strongly well behaved scheme. Let
SO’ST" be a sequence of bp schemes of maximum length such
that S=SO; for iz0, Si+1 is obtained by applying R1 or R2 to Si‘
Now the number of nodes in the target scheme is strictly less
than the number of nodes in the source scheme whenever we apply
R1 or R2 to the source scheme. Consequently the sequence of
bp schemesdescribed above must be of finite length. It must
terminate with the bp scheme Sn which is strongly well behaved
by lemma 6.8. If Sn is elementary then again by lemma 6.8, SO=S
is strongly well formed and we are done.

So assume that Sn is not elementary. Let m be a basic circuit
of maximum length in gn.While S, is not elementary |m|>1. By
construction, neither R1 nor R2 can be applied to S . We know
(theorem 6.3) that neither fig. 6.7.A nor its "reverse" (the
one obtained by reversing all arcs) can be a subgraph of the
strongly well behaved scheme Sn' Consequently, the situation
along m must be one of the two shown in fig. 6.10. In both cases
we are led to the contradiction that gn is not live and safe.
Hence Sn must indeed be elementary so that S is strongly well

formed. [}
Fig. 6.10

One of the consequences of this somewhat surprising and
pleasing result is that we can check whether a scheme is in SWF
by firing the nodes systematically forwards and backwards to
verify good behaviour; to check whether a scheme is strongly
well behaved, we can repeatedly apply R1 and R, and see whether
we end up with an elementary scheme. It is easy to see now that
the scheme of fig. 2.5.a is not in SWF.

What makes it difficult to prove a similar result for the
larger class WF is that the number of nodes does not decrease
strictly for each application of R3, R4 and RS‘ So there is no
guarantee that repeated applications of the reduction rules to
a well behaved scheme will ever result in an irreducible scheme.
What we need is a more complicated measure and a more sophisticated

reduction procedure.
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Fig. 6.10
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6.4 The Reduction Macros and the Size Factor

We shall first build up some reduction macros by stringing
together the reduction rules in appropriate ways. The motivation
for constructing these macros will become clear once we define
a measure called the size factor. It will turn out that for each
application of a reduction macro, the size factor either remains
constant or (at least for two of the macros) strictly decreases.
This will then enable us to write a reduction procedure which is
provably convergent. There are essentially three macros but for
the sake of uniformity we shall simply rename two of the reduc-

tion rules.

Bﬂ1 Same as R1.
552 Same as R2.
5@3 Apply R3 to the source scheme S to obtain the target

scheme §. Starting from §, apply R2 as often as possible
in such a way that in each application (of R2} at least

one node is involved which is in § but not in S.

EM4 <RM5> Apply R4 <R5> to the source scheme S to obtain the
target scheme S. If possible, apply RM, once to S.

To be precise, we must also include R6. But from now on, for
the sake of convenience, we assume that R6 comes "free". We shall
assume that, whenever necessary, the marking of the scheme that
we are working with is replaced by a suitable marking taken from
the full marking class of the scheme. Before we proceed to the

size factor it is useful to observe:

Lemma 6.10 Let S be a bp scheme and S' be the result of

applying RMi to S where 12i<5. If S is well behaved, then S' is
also well behaved . If S' is well formed then S is also well

formed.
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Proof Follows at once from theorems 6.1 and 6.2. |
Definition 6.4 Let § = (VV,V&,A;Q,Z,M) be a bp scheme.
Then

1) NF(S) denotes the node factor of S and is defined
as NF(S) = [vv1 + v |.

2) PF(S) denotes the parity factor of S and is defined as

— ) ]
PF(S)—|{(V1,v2)€V |V1#v2,v1I1 V0,V €V e v EVV}|'

2

3) SF(S) denotes the size factor of S and is defined as
SF(S) = NF(S) + PF(S). |

Roughly speaking, the parity factor counts up the number of
pairs of adjacent nodes that are distinct from each other but
are of the same type. We will now verify that the size factor
decreases monotonically for each application of the reduction

macros.

Lemma 6.11 Let S be a bp scheme.
a) Let S be obtained by applying RM1 to S. Then SF(S) < SF(S).

b) Let § be obtained by applying RM, to S. Then SF(5) = SF(S)-2.
Proof Follows easily from the definitions. ]
Lemma 6.12 Let S be a bp scheme and S' be obtained by applying
RM3 to 5. Then SF(S') < SF(S)-2.

Proof We shall make use of the notations shown in fig. 6.1

to develop the proof. Let § be the result of applying R, to s.
Then,

NF(S) = NF(S) + m + n - 2.

Now consider aiE’v. If Q(ai) is a V-node in S - and hence
in S - then the pair (Q(ai),v) which contributes to SF(S) is not
present in S. If on the other hand Q(ai) is a &-node then the
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pair (Q(ai),ui) will contribute to PF(8) whereas this pair

does not exist in S. Let

=
I

[{a€g'v | Q(a)€evyl}| and

a1
1

| {b€u® | zZ(b) €V }|
Then it is easy to see that

PF (S)

PF(S) + (m—m1) + (n-n1) - m1 - nT.

Thus,

SF (S) SF(S) + 2(m+n) - 2(m +n,) - 2.

Let aiE'v such that Q(ai) is a &-node. By construction the
only input arc of uy in S is a. . Hence R2, involving Q(ai) and
u; can be applied to S (subject to some change in the marking).
The node uy is in § but not in S. Hence this is a reduction
which is permitted by RMB' By the previous lemma the size factor
will go down by two. But then we can apply R2 at least
(m—m1)+(n—n1) times to § as part of the execution of RM3. Con-

sequently,
SF(S') £ SF(8) - 2 (m-m,) - 2(n-n,).

Substituting the expression for SF(8) that we have derived

above (in terms of SF(S)), we get,
SF(S') < SF(S) - 2. B

Lemma 6.13 Let S be a bp scheme and S' be the result of
applying RM, or RMg to S. Then SF(S') = SF(S).

Proof Let S' be obtained by applying RM4 to S. Once again
we shall make use of fig. 6.2 to develop the proof. Let S be
the result of applying R4 to S. Then it is easy to verify that
NF(S) = NF(S) + 2 and PF(8) = PF(S) so that SF(8) = SF(S) + 2.
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Now an application of RM3 involving v{ and u becomes
enabled for 5. But then by the previous lemma, SF(S') < SF(§)-2.

The proof for RM5 is similar and we shall omit it. [ |

Thus in a reduction procedure which involves the repeated
applications of the reduction macros, RM2 and RM3 can be each
applied at most a bounded number of times. To ensure that a re-
duction procedure involving only RM1, RM4 and RM5 will always

terminate, we need the following.

Lemma 6.14 Let S' be the result of applying RM4 or RM5 to

the bp scheme S. Then the number of elementary circuits in S

is strictly less than the number of elementary circuits in S.

Proof As usual we will give just one half of the proof. Let

S' be the result of applying RM4 to S. Let S be the scheme obtained
by applying R4 (the first step in RM5) to S. Referring to fig.

6.2, we first note that the path bix in S where X€u,; - {ai} can

be simulated by the path bb'bix in S. The paths b1a1,b2a2...bnan
can all be simulated by the single path ba. If a path in S does
not touch any of the &-nodes U, through u, then it will also be
a path in S. Using these facts, it is straightforward (but
somewhat laborious) to prove that § has strictly less elementary

circuits than S does.
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As noted in the proof of the previous lemma, RM. will be

3
applicable to §. Let g! 3 (as the

first step in RM3) to §. Then it is easy to verify that 81

be the result of applying R

does not have anymore elementary circuits than § does. Consider
the process of going from S1 to S' through a number of appli-
cations of R2 (the rest of RM3). Let W and Wy be a pair of
nodes collapsed together with w°ﬂ'w2 eliminated in one such

1

application of R2. By the specification of RM W, or w, must

’
be in S' but not in §. From the proof of 1emm§ 6.12 it is clear
that if w, <w,> is in 3! but net in S, then |w;!< |'w2|> = 1.
In either case, through the application of R2 the number of
elementary circuits does not increase. In other words, the
number of elementary circuits does not increase in any node re-
duction performed (though in general, this is certainly not
true) in going from S to S'. And as we have already seen, § has

strictly less elementary circuits than S does. [ |

6.5 A Characterisation of WF

We can at last establish the completeness of our synthesis
procedure. All that is lacking at this stage is a reduction
procedure that is guaranteed to terminate. The algorithm given

below is one such.

Reduction Algorithm

begin
input S, a well behaved bp scheme
i<0; Si+S.

do while (Si is reducible)

do while (Si is R1—reducible)

let Si+1 be the result of applying R, to Si;

1

i<i+1;

do while (Si is R2—reducible or R3—reducible)

or RM, to Si;

let Si+1 be the result applying RM2 3

i<i+1;
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if Si is R4-reducible or R5—reducible

then let Si+1 be the result of applying RM4 or RM5

to Si; i<«i+1
else skip
fi

od

S'+Si; output 8'
end
Theorem 6.5 A bp scheme is well behaved iff it is well formed.
Proof Let S be a well behaved bp scheme. To see that S is

well formed let us present it as the input to the reduction
algorithm given above. Let us assume that the algorithm
terminates. Then the output S' is irreducible. It is well be-
haved by lemma 6.10 and hence is elementary by theorem 6.6. That
SO=S is well formed follows now at once from lemma 6.10. Thus

we just need to verify that the reduction algorithm terminates.

First we observe that each application of a reduction macro
will certainly terminate. Now consider the first do loop in the
algorithm. Each application of RM1 reduces the number of nodes
by one. So that if this loop is entered with S, having k nodes,
then it can execute at most k times. For the second loop, if we
enter with Si having size factor k, then the loop will be exe-
cuted at most [k/2]([x] is the least integer greater than or
equal to the rational x) times. This follows from lemmas 6.11
and 6.12. So this loop will also always terminate.

Considering the running of the whole algorithm, the size
factor does not increase by the execution of the first loop or
by the execution of the if ... fi statement. This follows from
the first part of lemma 6.11 and lemma 6.13. As we have already
noted, for each iteration of the second loop the size factor
goes down by two. Hence if we consider the sequence of schemes
generated during the execution of the algorithm S = SO'S1’82 ey
then starting with some j20 for every kzj, Sk+1 is the result
of applying RM1 or RM4 or RM5 to Sk'

The number of elementary circuits does not increase by an

application of RM, but it strictly decreases by an application
1
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of RM4 or RM5 (lemma 6.74). Hence if we consider the sequence

schemes Sj,S. (where j is as defined above) then starting

g i
with some lz%+;e will have that for every k21, Sk+1 is obtained
from Sk by an application of RMT'

Now the sequence Sl’sl+1"" must certainly terminate
because each application of RM1 as we have already seen reduces
the number of nodes by 1. The algorithm indeed terminates.

The second half of the result is theorem 5.2. |

Thus our synthesis procedure generates only well behaved

schemes and it generates all of them.



7. A COMPUTATIONAL INTERPRETATION

In this section we shall develop a formal interpretation
for well behaved schemes. The result will be a flow chart model
of a class of distributed computations, or stated differently, a
class of concurrent programs.

A program modelled by an interpreted scheme will consist

of operations and tests applied to a set of variables. A (distributed)

state of a program will have two components: a control state and

a value state. A control state is a distribution of commission

and omission signals over a set of lQEEEiQEE' In other words, we
shall view the arcs as locations and refer to the markings of
the underlying scheme as control states.

In our model, the tests will be associated with the V-nodes
and the operations with the &-nodes. An example of an interpreted
scheme is shown in fig. 7.1. It will be convenient to postpone
explaining what this program does. Actually, as it will turn out,
what this program does is not all that interesting. But it does
fulfill its role; which is, to serve as a running example to
illustrate the various parts of the interpretation that we shall
now develop.

Fig. 7.1

In what follows we shall work with the generic well behaved
bp scheme Bp = (VV,V&,A;Q,Z,MO). The corresponding interpreted
scheme will be denoted by BP. As mentioned earlier, [M%> is the

set of control states of BD.

7.1 The Variables and their Allocation to Locations

With BP we associate a finite non-empty indexed set of

variables

X = {x1,x2,...,xn}

In £ig. 7.1; %, Y, b1 and t1 are some of the wvariables

associated with the program. Each X; assumes values over the

domain DT. The set of conceivable value states of BP is denoted
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as D and is given by,

Let z€D be a value state. Then s denotes the i'th component
of ¢; the value of the variable X, at this value state. A dis-

tinguished value state ;O called the initial value state is

assumed to be given.
Combining the control states and the value states we get the

states of BP. More precisely, the set of conceivable states of

BP is denoted as K and is given by,
K = % x p

The states that BP can actually visit during the course of
the computation will be called the cases and are denoted as C.
As might be expected (MO,CO) is the state in which the computation

starts and is called the initial case. In the next subsection we

shall give a formal definition C after presenting the firing
rules for BP.

We now allocate to each arc b€A a set of variables Xb c X

through

al: X » P(A), X, = {x€X | beal(x)}
where P(A) is the set of subsets of A. Without loss of generality
we shall assume that for each variable x, al(x)#@. The interpre-
tation of al and Xb are as follows. For a variable x, al(x) is
all the locations in which x might find itself during the course
of the computation. Xb is all the variables that can ever be
present at the location b. And the control state is used to indi-
cate the presence and (explicit absence) of variables at locations.

Let C = (M,z) be a case of BP, b€A and xexb. Then x is accessible

at b for the activity associated with Z(b) in the case C iff b
carries an H-token at M. In other words, x must be present in

b at ¢.
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We demand that al should be such that at each case, every

variable is accessible at exactly one location. This is to

ensure that the history of each variable is "continuous"
(accessible at at least one location) and is "unambiguous" (never
accessible at more than one location). Which does not of course
rule out the possibility of executing a number of activities
concurrently.

Our solution to ensuring this, is sufficient in that not
every "behaviourally consistent" BP will satisfy our conditions.
However our solution is simple and it comes with a number of
additional - we think - elegant properties. The idea is to
associate each variable with a V-component of BP (see def. 3.10).

Let {BGT,BGZ,...,BGk} be the set of V-components of BP
where for 12izgk, BGi = {Vé,Vé,Ai;Qi,Zi). We now define,

AL: X > {BG1,BG2,...,BGk}

and derive al: X -» P(A) that we are after, as follows:

For every x€X, al(x) = Ai where AL (x) = BGi.

Thus our proposal is to allocate a variable to all the arcs
of exactly one V-component. As an example, consider the scheme
of fig. 2.5.a with its two V-components shown in fig. 3.6.a.
Suppose that X = {XT,X2,X3} and AL associates x, and x5 with the
left V-component and X, with the right one.

Then the resulting allocation of variables to arcs will be
as shown in fig. 7.2.

Fig. 7.2

That the demand every variable should have a continuous and

unambiguous history is now satisfied is brought out in

Theorem 7.1 Let BP be the generic well behaved scheme,
{BG1,BG2,...,BGk} the set of V-components of BP and
AL: X » {BG',...,BG}. For bea, let X = {x€X | AL(x) = BG*

and b€Ai, the arcs of BGl}. Then for every ME[MO> (and for that
matter, every MG[MO]) and every X€X,



{X1.%2.%3)



| {b€A | x€X, and beM, 1| = 1.

b

Proof Follows easily from the definitions and prop. 3.6.

We mention in passing that AL is well defined because the
set of V-components of a well behaved scheme is non-empty; every
arc is contained in a V-component according to theorem 3.9. The
additional benefits of this allocation method is that it leads

to some very regular patterns around the nodes.

Theorem 7.2 Let BP be the generic well behaved scheme and

X, AL, Xb be defined as above. Then,

(1) For every V-node v, vb,b'e(*vuv?):; X = Xb"
(2) For every &-node u,
vb,b'€'u: b#b' = X N% , =@
] ", 1 e
vb,b'eu’: b#b' = anxb' @.

(3) For every node w, V) Xb = L} Xb.
be'w bew"*

Proof Follows easily from the definitions. i

The first part of the theorem states that the same set of
variables is allocated to all the arcs that touch a V-node. (2)
states that for a &-node, the sets of variables allocated to the
input arcs are pair-wise disjoint as also the sets of variables
allocated to the output arcs. The last part states that in our

schemes variables are neither created nor destroyed.

7.2 Tests, Operations and the Firing Rules
The third part of theorem 7.2 suggests the notion of the

variables accessible from a node. Let weV. Then Xw denotes the

set of variables accessible from w and is given by

x = U x.

w bE.Wb



Intuitively Xw is the set of variables the node w has
access to during an H-firing. Now given a value state r we will
often have to work with that sub-vector of r which specifies the
values of the variables accessible from the node w. For this

purpose the following notation will come in handy. Let w€V and

Ko = {xi PG reee Xy } with l1<12"'<lm (mz1) . Then,
1 2 m
D =D, xD, x ...xD. and
(w) 11 l2 Tm
C’(W} = (Ci1rCi21---r§im)-

In what follows we will assume for every node that we
encounter that the set of variables accessible from that node is
non-empty. Where we wish to drop this assumption, we will do so
in a loud and clear manner.

Turning now to the operations in BP we associate a function
fu with each &-node u. fu is defined over the variables accessible

from u:

f 7D

0¥ Py =7

(u) *

That for each such function the domain coincides with the
range is a technicality forced onius by the third part of theorem
7.2. It is however just that, a technicality, and not a serious
limitation. fu can leave a number of variables in Xu unaffected;

u can be used for pure synchronisation by setting fu to be the
identity function.

As for the tests, with each V-node Vv, We associate a family
of (test) predicates {Pb | bev'} indexed by the output arcs of v.
Each predicate is defined over the set of variables accessible

from v.

P.: D

b - {true, false} (bev?")

(v)
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Pb is said to be an exit condition for the V-node v. In an

H=firing of v, Pb determines whether the output arc b may get

an H-token. In this fashion, the exit conditions can be used

to steer the course of the computation. In general more than

one exit condition may be true at a case where the V-node in
question is H-firable; we permit non-deterministic computations.
It is also possible that none of the exit conditions of a V-node
hold at a case even though every input arc carries a token with
exactly one of them being an H-token; BP can have deadlocks even
though the underlying control mechanism, which is what BP is,
has been wired to be deadlock free.

We can now deal with the firing rules.

Definition 7.1 Let ™'z, m?,:%)em%xp .
_ 1 1 2 2
1) Let w be a node such that XW = @. Then (M ,z J[w> (M°,z°)
iff M1[W>M2 in BP and g1 = cz.
1T 1 2 .2, .
2) Let v be a V-node. Then (M ,z )[v> (M%,c“) iff
a) M1[v>M2 in BP
b) ! = g2
) IE be M2 then P (§1 ) = true
H b= (v) ——"
1 1 2 .2 i
3) Let u be a &-node. Then (M ,z )[u> (M L) AIfF
a) MT[u>M2 in BP
b) If u may L-fire at M’ in BP then g1 = ;2
c) If u may H-fire at M1 then C%u) = fu(clu)) and for
1 .2

The relation [ > specifies the transformation of the state
effected through a node firing in BP.

If a V-node v fires, the control state is changed as in
BP, and the value state remains unchanged. If the outgoing arc

b€v® is to get an H-token as a result of the H-firing of v, then
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the exit condition for b must be true. Thus the tests associated
with a V-node come into play only during H-firings which is how
it should be. If a &-node u fires at a state then the control
state is once again changed just as it would be in BP. In an
L-firing the value state remains unchanged; the operation
associated with u is omitted. In an H-firing the values of the
variables accessible from u are changed as specified by the
function fu assigned to u. The variables that are not accessible
from u are not affected. Consequently, in general, a good many
tests and operations can proceed concurrently.

The set of cases now is the set of states that can be reached

from the initial case through node firings. More precisely,

Definition 7.2 C, the set of cases of BP is the smallest sub-

set of states given by:

0 0

1) ¢ = m®%ec.
2) If C1€C and for some node w and some state C2,
C1[W>C2 then C2€C. §

7.3 The Input and Output Operations

In the interpreted bp scheme BP, we will have two special
kinds of nodes called R-nodes (R for receive) and S-nodes (S for
send) . An R-node will have one dangling input arc and an S-node
one dangling output arc. They behave like &-nodes except for
L-firings in which the dangling arcs do not participate. In
diagram 7.3 showing the variable assignment and the firing rules
for R- and S-nodes, the dangling arcs are indicated by squiggly

lines.

Fig. 7.3

The environment is expected to send only H-tokens along a dangling
input arc. It expects to receive only H-tokens along dangling
output arcs. In an H-firing, all input arcs of an R-node must
carry H-tokens; in an L-firing, the dangling arc is ignored. When
an S-node H-fires, all output arcs get an H-token: in an L=firing,

the dangling arc does not get any token.
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In the interpreted scheme shown in fig. 7.1, there is just
one R-node which receives inputs from the environment and just
one S-node through which the scheme sends out the final output.
However, we may also use a proper combination of S- and R-nodes

to introduce a kind of block structure into our schemes.

Intuitively, we consider a block to be an 'arc-like' sub-
scheme, i.e. a subscheme which may replace, or explicate, in an
interpreted scheme, a &-node with exactly one input and one output
arc. In fig. 7.4 we show two typical patterns that we would like to
be able to treat as blocks, an iteration (a) and a feed-back (or
delay, or storage) (b). Both are assumed to use an external
variable x and internal variable vy.

Fig. 7.4

Clearly, neither of the two patterns can safely replace a
one-in/one-out &-node. The iteration may receive an H-token at
its input but deliver an L-token in return. Additionally, the
allocation of the variables cannot be made consistently. The
feed-back will be in a deadlock as soon as it receives an L-token.
Using a proper combination of R-nodes and S-nodes, however, the
two patterns can be encapsulated in such a way that the resulting

schemes behave in the desired fashion. This is shown in Eig. 7.5.

Fig. 7.5

Thus through a systematic application of the R-nodes and
S-nodes, one can construct highly modularised and fairly complex

programs.

7.4 The Example and some Remarks

We shall now briefly indicate what the interpreted scheme
of fig. 7.1 does. We are given a discrete chain (X;<). For each
element x there is an immediate predecessor denoted as °x and an
immediate successor denoted as x”. Hence if x<y then x°<y and
x<’y. We assume two special elements 1 and T which are not in X.
If the chain has a least element x then °x = L and °L = L by con-
vention. If the chain has a greatest element y then yv° =T and

7% = T by convention.
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Fig. 7.4

Fig. 7.5
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The problem is, given two elements x and y, to determine

whether x<y or ysx. We assume that for each x we can compute
°x and x°. For reasons that we do not wish to go into here,
it is convenient to treat the R-nodes and S-nodes as &-nodes,
as far as the variable assignments are concerned. As a conseguence,
the variables that come into a scheme (input variables) are the
same as the variables that leave the scheme (output variables).
Once again this is a technicality and not a serious limitation.
In our example, the final value of y will indicate the answer.
If x2y initially, the final value of y is set to T . If y<x the
final value of y is set to l. As a bonus, the final value of x
will be "approximately" half-way between the initial values of
x and y.

At the initial case, the scheme waits for the inputs x
and y. The computation is finished if one of the predicates
[b1=t1] or [b2:t21 becomes true. This will lead through a suitable
H-firing of the corresponding V-node to the coding of the results
onto the (now) output variables x and y. Finally this will cause
the H-firing of the S-node indicating that the environment has
been presented with the results. The scheme will then wait for the
next pair of inputs to arrive.

This example also illustrates some of the things that can be
done to make an interpreted scheme look like a flow chart repre-
sentation of a program. As done in this example, one can suppress
a great deal of the information concerning allocation of variables
to arcs. The point however is, one could complete the picture in
a systematic fashion and check whether a correct allocation func-
tion has been chosen. Secondly we have used an
IF-THEN-ELSE construct in place of a small V-subscheme; once
again in order to avoid cluttering up the diagram. By a suitable
use of the interface nodes we can also "implement" and use a
DO WHILE construct (as already indicated in the previous section).
In this fashion, a good deal of the succinctness and readability
of sequential textual language can be transported to interpreted
schemes.

What we can not do is dynamically create (and destroy)
variables. More importantly, at this stage, we cannot have shared

data structures that can be accessed in an exclusive mode from
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different parts of the program. However, by using slightly more
complex interface nodes we know how to get around this problem.
We however do not wish to go into details here. For a more
elaborate presentation of the computational interpretation the
interested reader is referred to [ 7 ]. There we have also worked
out a more interesting example, consisting of a highly asyn-

chronous unbounded stack which can grow and shrink on demand.
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8. DISCUSSION

The motivation for the study reported here was to
better understand the interplay between choice and independence
(of actions) in the context of distributed systems. While net
theory offers the tools for clearly distinguishing between the
phenomena of causality, independence and choice and while we
were reasonably familiar with this theory, we decided to carry
out the work under the banner of Petri nets. What was needed
was a suitable model. And we decided to construct one based on
live and safe marked graphs in order to play it safe (sorry!).
That live and safe marked graphs have an extensive theory can
be guessed from the selected summary given in section 2. It is
also amply documented in the literature, [6, 13,14]. The reader
would surely agree that we have thoroughly exploited this theory
to develop our results on bp schemes. The point is, the decision
to base our model on live and safe marked graphs has paid rich
dividends.

The, at first sight bizarre, idea to explicitly represent
omissions of actions through L-tokens is crucial for establishing
a frutiful connection with marked graphs. We believe that this
idea also has some independent merits. It has led us with no
ifs and buts to the notion of good behaviour. It has opened up
the possibility of establishing strong links between intuition
regarding what constitutes "good" structure and formally provable
behavioural properties. Holt has made extensive attempts to
denote explicitly omissions in modelling systems [ 9 ]. His concerns
however go much deeper and his game board is much larger. As
mentioned at the very beginning of this paper, we decided to
carry out our study in a very restricted setting. The importance
of omission signals and the roles they play (or could play) in
systems in general and organisational systems in particular has
been often pointed out by Petri [20].

In developing the theory of bp schemes the focus of attention
has been the synthesis problem. The obvious reason is, given our
original motivation, it was the best way to gain a deep under-
standing of the model. In attacking the synthesis problem we
have indeed gained some insights and discovered a few facts. The
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general insight is that in our schemes at least, there is an
intimate relationship between choice and independence. And often
this relationship can be expressed as a beautiful duality
relation. Now we turn to some of the individual results.

In the absence of L-tokens well behaved schemes turn out
to be a sub-class of live and safe free choice nets (theorem 3.5).
And in fact they lie properly between live and safe free choice nets
on the one side and live and safe marked graphs and state machines
on the other side. Through these relationships, well behaved
schemes inherit the important and elegant structural properties
of live and safe free choice nets (theorem 3.9).

We have also established that in a bp scheme one cannot
choose between good behaviour and bad behaviour within a marking
class (theorem 4.9). We know that a well behaved scheme is
essentially determined by its underlying marked graph (theorem
4.10). Indeed if the stronger result we conjecture in this direc-
tion (the second conjecture at the end of section 4) is true,
then the synthesis procedure can be greatly simplified. One can
just generate well formed bp graphs, i.e. those that can be
endowed with a good marking. To do so, a much simpler version
of T2, one in which we merely ensure that the target bp graph is
strongly connected, can be used. Once the required well formed
bp graph has been generated, then viewing it as a digraph we
can give it a "gray" marking and get a live and safe marked
graph (for details see [ 6 ]). Finally, using the idea suggested
in the proof of theorem 4.10, we can convert this gray marking
to a coloured marking to obtain a well behaved scheme.

The next result of interest is theorem 6.3. It identifies
three kinds of local structural defects in ill behaved schemes.
Stated differently, it shows three improper ways of combining
choice and concurrency. To date, theorem 6.3 is the best struc-
tural result we have. We even conjecture that the class of well
formed bp graphs can be completely characterised with the help
of the three patterns identified in this result. Theorem 6.9
has a grain of (pleasant) surprise to it. Often what constitutes
"good" structure is settled through appeals to tradition, good
sense and taste. (Not that we are strongly opposed to these
things.) For SWF though we get some tangible confirmation of the

intuition that it is a class of "well structured" objects. They
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turn out to be Precisely the objects which have the behavioural
property of being well behaved forwards and backwards.

Turning to the synthesis procedure, our transformation rules
are not the only imaginable ones. We have selected them mainly
because they are convenient to work with. We are not sure that

they constitute a minimal set. Indeed wWe are vyvet to identify =

ness result for the smaller set of rules. The reverse of T5
namely R3 is needed in the proof of lemma 6.4 which is cruciail
for proving that every well behaved irreducible scheme is
elementary. We Suspect that if T_ could be dropped then a more

and reductions as simply attempts to restructure a net model
while pPreserving certain Properties. In this context, similar
work has been carried out for larger classes of nets by

Berthelot et al. | 2], Andre [ 1] and for live and safe marked
graphs by Murata [18]. The main difference is that our rules
provide a solution to the synthesis problem whereas in the papers
cited above, the aim is to simplify, where Possible, the analysis

problem or to provide a partial solution to the Synthesis problem.

ferring the knowledge that has been obtained about bp schemes to
concurrent programs. Here we have merely a model - byt we hope an
interesting model - of a class of distributed Computations.
However we have tried our best to make the interpreted schemes
look like pPrograms. What we have gained at thisg stage is that
notions like V-components angd &-components can be readily trans-
ported to the interpreted schemes. We have also shown that the
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interpreted schemes in "meaning-preserving" ways. Here the

techniques reported by Roucairol in [22] might provide some

guidance.
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