NVYJI34/INIVA NAHL

.. 55 £8 21 - 90 ‘auoydapy

Ll U HYYINNIQ — O shyiey 0008 Ma — apeBayunyy Ay
- ALISHIAINN SNHUEVYY

_ —I_I_l_ _ uswuedaq 8ouaiag sendwo)

¢861 Arenue[
941-dd TNIVd

sa1Q [yuery

TANILINETS D019 ANV
‘SINOYALYD YOIDNAA ‘SVIIII TV AdAL

F.J. Oles: Type Algehs, Functor Categories, and Block Structure

LT48-G0T0O NSSI

PB-156

This is a preprint of a paper given at the U.S.-French Joint
Symposium on the Applications of Algebra to Language Definition
and Compilation, June 9-15, 1982, Fontainebleau. References to
this paper should cite the Proceedings of that Symposium.

TYPE ALGEBRAS, FUNCTOR CATEGORIES, AND BLOCK STRUCTURE*

Frank J. Oles
Aarhus University

Aarhus, Denmark

ABSTRACT 1In this paper we outline a category-theoretic approach
to the semantics of ALGOL-like languages in which particular
attention is paid to the use of functor categories as a
mechanism to reflect stack discipline. Also, we explore the

idea that implicit conversions can be modelled by making the
phrase types of a language into a poset, and we show how any

poset freely generates a type algebra.

* Work supported by National Science Foundation grant MCS-8017577.

1. The Utility of Functor Categories

An intuitive grasp of the nature of variable declarations
and of what is happening as one enters and exits from blocks
is essential to programming in an ALGOL-like language. However,
a precise semantic description of the constructs involved is
difficult, and it is particularly difficult if one wants seman-
tics for block structure that mesh elegantly with semantics
for procedures.

Our goal is to outline in general terms how functor cate-
gories can be used to explain the semantics of ALGOL-like
languages which possess

1) a rich type structure,

2) higher-order procedures, whose types may be arbitrarily
complex,

3) imperative capabilities,
and

4) block structure.

The principal intuition we will try to capture is that during
the execution of a program written in a language that obeys a
stack discipline not only is the store changed by commands
(statements), but also the shape of the store is changed by
variable declarations during block entrances and by block exits.

An extended description of the characteristics of the kinds
of languages in which we are interested can be found in [6]. We
have not worked out the details of the semantics of every
languages feature mentioned there, but we do know how to deal
with the most important features, and we can tell a complete

story about block structure.

On some points our treatment will be sketchy. A detailed
discussion of this approach to the semantics of programming
languages (including much more on types, implicit conversions,
substitution, the algebraic nature of languages, the role of
homomorphisms in semantics, and continuation semantics) can be
found in the author's Ph.D. dissertation [5)], written under
the supervision of John C. Reynolds. By generously sharing his
ideas and time, he was of invaluable assistance in completing

this work.

We have a vision of a method for dealing with the semantics
of ALGOL-like languages. Of course, there are many ALGOL-like
languages, but at the heart of each is something that we can

call an appropriate setting. In due time we will precisely define

the components of an appropriate setting. Informally, it consists

of a collection of sets of storable values, coercion conventions

that indicate when values of one kind can be used uniformly as

values of another kind, and operations on the sets of storable

values that we want to implement. An appropriate setting is a
basis for creating a typed programming language with both impe-
rative features and arbitrarily complex procedures.

We hold strongly to the view that programming languages
should be presented as free algebras of some sort. Nowadays,
this is not a very radical position; it only slightly generalizes
the point of view in [1]. It is rooted in three observations.
First, programming languages are algebras because phrases are
formed by algebraically combining other phrases. Second, the
constituent subphrases of any phrase are uniquely determined.
Third, the process of phrase decomposition eventually results

in indecomposable phrases.

It would be nice to have a language for each appropriate

setting, which we might term Desugared ALGOL (DA) for that

setting, whose features were as general and extensive as possible,
and whose semantics were elegantly described. Then giving seman-
tics for an arbitrary ALGOL-like language A might proceed in
two steps:

1) identify the underlying appropriate setting for A,

thereby determining DA, and
2) explain how to translate all phrases of A into phrases
of DA, thereby fixing the semantics of A.
We have in mind a rather precise notion of translation to be used
in the second step. In general, A will be presented as a free
algebra of one kind, generated by a set GA’ whereas DA will be
presented as a free algebra of another kind, generated by a set
GDA' The key is then to describe how DA can be viewed as an
algebra of the same kind as A; then by defining a function
translation € GA - DA
one automatically obtains a homomorphism
Translation € A - DA.

Does DA already exist? Since procedures are so important
to an ALGOL-like language, two candidates immediately present
themselves. On one hand, perhaps we could use an untyped
A=-calculus for DA. The lack of any type structure is an obvious
and important drawback. On the other hand, maykbe an ordinary
typed A-calculus suffices for DA. Here we raise four objections.
A major objection is the lack of implicit conversions between
types. Another major objection is that for a typed A-calculus

type-checking is trivial; one cannot say anything meaningful

about type-checking if all phrases under consideration are
properly typed. A less important, but not insignificant, problem
is that all the identifiers are typed at the outset, preventing
an adequate reflection of the fact that in a real programming
language an identifier can have a variety of types even in single
program. Finally, although this is a matter of taste, a typed
A-calculus is inherently a many-sorted algebra. We would prefer
to deal with a one-sorted algebra if this is possible.

By the way, we reject an unnatural the idea that giving the
semantics of a typed programming language hinges on giving a
set of possible meanings for phrases.. Just as the study of
data types naturally involves many-sorted algebras rather than
one-sorted algebras, so also programming language semantics
naturally requires some categories with a variety of different
meaning objects. Giving semantics for a phrase requires both
picking out a meaning object (possibly a set) and also assigning
a meaning involving the meaning object. Speaking of the set of
meanings for all phrases at the wrong point can mislead our
intuition. It turns out that the means of integrating the pre-
ference for one-sorted languages with the necessity for many-
sorted semantic categories is provided by the activity of type-
checking.

Unfortunately we cannot yet describe Desugared ALGOL for each
appropriate setting, but we can give an approximation to it that

can be called Basic Desugared ALGOL. The major deficiency of

Basic Desugared ALGOL is that it does not completely handle
generic operators and polymorphism, although it takes some steps

in that direction. Technically, each appropriate setting gives

rise to a language L (Basic Desugared ALGOL) as a special

instance of a family of languages called coercive A-calculi

(called "coercive typed A-calculi" in [5]) that are obtained by

a modified A-calculus construction. One of their features is

that the only binding mechanism is A-abstraction, and this is
important because of the difficulty of handling binding elegantly.

In this section we will be outlining an approach to the
nature of denotation for Basic Desugared ALGOL based on functor
categories. It is our feeling that, far from being abstract
nonsense, functor categories are a natural vehicle for giving
mathematical substance to intuitions about stack discipline.

It is our aim to draw a sharp distinction between change of

state and change of underlying structure. Block entrances and
exits in connection with variable declarations change the shape

of the store (underlying structure) whereas commands alter the
store (state). We hope that this work will eventually find appli-
cation in constructing implementations of languages and in proving
correctness of programs. Also, it leads us to speculate that there
may be important results to be found relating classes of lan-
guages (with semantic descriptions, of course!) with the "struc-
ture of their implementation", much like results relating formal
languages to the automata that recognize them.

We will simplify things by avoiding in this paper any contact
with language features that involve continuations, even though
jumps and labels do not involve theoretical obstacles.

Before going further we must review some definitions and
establish some notation. A predomain is a directed-complete poset.
A domain is a predomain with a minimal element, usually denoted

L ("bottom"). A function from one predomain to another is

continuous if it preserves least upper bounds of directed

subsets. The category whose objects are predomains (respectively,
domains) and whose morphisms are continuous functions, with the
usual composition, is denoted Pdom(respectively, Dom). Let Set
denote the category of sets. Each set may be regarded a predomain
by imposing upon it a discrete partial ordering. Thus, Set and
Dom are full subcategories of Pdom . (Recall that a subcategory

is full if it is the largest subcategory possessing its parti-
cular collection of objects.) As general references on category
theory we suggest [2], [3], and [4].

From each predomain P we may create a domain Pl by simply
adding an element not already in P as a minimal element. In
most contexts the added minimal element is thought of as an
"undefined element of P".

We abhor unnecessary parentheses. Therefore for functional
application we write £ x rather than f (x). Functional application
associates to the left, so that £ g h x means (((f g) h) x).
Also, application binds more tightly than anything else, so that
F a x G b should be read as (F a) x (G b). However, if a few
extra parentheses really enhance readability, we shall throw
them in.

Suppose C is a category. The collection of objects of C
is denoted Ob C and the collection of morphisms (or arrows) of
C is denoted Ar C. The collection of arrows from X ¢ Ob C to

Y € Ob C is denoted X >Y. We suppress the subscript when

C.
C = Sef so that X » Y is the set of functions from X to Y, and

we write £ € X - Y rather than £ : X - Y. We also use C - 7
to denote the collection of all functors from the category C to

the category P. Do not confuse C - D with C = 0, where the latter

denotes the category whose objects are functors from C to 0 and
whose arrows are natural transformations. We confess to using
a plethora of notational arrows, but we claim their meanings
are always clear from context.
Let K be a category with finite products specifically given.

In [4], K is defined to be a Cartesianclosed category if three

particular kinds of right adjoints are given. However, in order
to establish notation we give the following more verbose, but
less abstract, definition. The category K is Cartesian closed if

(1) K has a distinguished terminal object,

(2) K has a distinguished binary product functor, and

(3) for each ordered pair Y, Z € Ob K there is

Y = Z € Ob K and
ApK <Y, Z> & (Y = Z) x ¥ -;T> Z

such that whenever X & 0Ob K and

f e X x Y —> 7
K

there exists a unigque arrow

<X, ¥, Z> £ ¢ X —> (Y = Z)
K

AbK

making the diagram

AbK <X, Y, Z> f «x 1Y
X x Y > (Y= Z) x Y

£ Ap <Y, 2>

commute in K.

Some authors write g instead of Y = Z, which provides a partial
explanation of why the = construction is sometimes called
exponentiation. It is not hard to see that, for a Cartesian
closed category K, there is a unique way to extend the definition

of = to give a functor
-=2-¢e KPP x Kk —> K.

Thus = is sometimes called an "internal" hom functor. When X,

Y, and Z are understood, we write

Ab or AbK for AbK<X, Y, ¥ ("abstraction")
and
Ap or ApK for ApK<Y, Z> ("application").
The categories Set, Pdom, and Dom are all Cartesian closed.
For Seft,

For Pdomand Dom, Y = Z is the set of continuous functions from
Y to Z, partially ordered by f £ g if £ yv £ gy for all v e Y.
In all three categories, application is functional application
and abstraction is currying.

It is time to turn our attention to a more careful spe-
cification of what an appropriate setting is. An appropriate

setting has syntactic components and semantic components:

Syntactic components - 0D, Op, Id

Semantic components - Val, m. , I.

Op

The syntactic component D is a poset of storable data types.

Each relation ¢ ED ¢' indicates an implicit conversion from the

data type ¢ to the data type &'. Next there is the collection

Op of operators, which comes equipped with two functions
arity € Op -» D%, res € Op » D,

where res abbreviates result. The final syntactic component is

Id, an infinite set of identifiers.

The semantic component Val € D - Sef is a value functor

from U, regarded as a category, to the category of sets. Thus a
set is given for each storable data type, and an implicit con-

version function for each relation § gD §'. By m we mean

Op

an Op-indexed collection of interpretations of operators; if

g € Op, arity g = <61,...,6n>, and res g = &, then

mOp g £ Val 61x-~-x Val 6n -» Val §.

The last semantic component is I, the category of store shapes,

whose nature and use we will discuss shortly.
For example, it may be that D is given by the Hasse
diagram

real

bool,
int

and Op, arity, and res are given by the following table,

g £ Op arity g res g
true <> bool
false L bool
and <bool, bool> bool
0 <> int
L &P int
™ <> real
+ <real, real> real

succ int int

10

It would then be reasonable for Val to take P to the diagram

R

inclusion {thue, false}

z

and for the interpretations of the operators,

m true & {<>} > {fthue, 4alse}

Op

Mo false e {<>} = {true, false}

mOp and e {frue, false} x {true, false} -» {true, false}

mop 0 e (<>} o Z

mOp 1 ¢ {<>} » Z

mOp T e {<>} » R

mop+e[R x R 5 R

Mop SUcc € 7 - 1
to be the obvious ones.

An important idea is that for each data type § & D, val §
is a set of storable values.

Anyone familiar with initial algebra semantics, as presented
in [1] for instance, can see that Op is a D-sorted signature.
However, we maintain that because of implicit conversions there
are many more sensible expressions than are found in an initial
D-sorted Op-algebra, e.g., + <1,7>.

Instead of partially ordering D, why not just add to Op
another operation for each implicit conversion? The answer is
that implicit conversions exist conceptually on a lower level
than operations; they have special properties that are not shared
by arbitrary operations. For instance, whereas there can be many

operations with argument ¢ and result &', there can be at most one

implicit conversion from & to &' - otherwise it wouldn't be implicit.

11

The syntactic construction of L from 0, Op, and Id
requires some intermediate steps. It may help to contemplate the

following diagram

L
e \

T G

P

D Id Op

The poset D of data types is used to construct P, the

poset of primitive phrase types. For phrase types, T < 6 means

roughly that phrases of 1 can be meaningfully and uniformly used
in contexts calling for phrases of type 6.

Each data type § ¢ D gives rise to three primitive phrase

types:
1) é&-exp (for §-expression),
2) d¢&-var (for &-variable),
3) dé&-acc (for 8-acceptor).

Another primitive phrase type is comm (for command). The reader
probably has an excellent intuitive feeling for the nature of

phrases that are assigned the phrase types §-exp, &-var, and

comm. A phrase has type §-acc if it gobbles up values of type
¢ and produces commands. Thus, if x and y are §-variables, then
in the assignment command x := y the d§-variable y is used as a

d-expression and the d§-variable x is used as a §-acceptor. (Hence,

12

even if a language turns out not actually to have any phrases
of type 6-acc, it is still useful to introduce that phrase type
in order to explain §-var.)

The partial order on D is given by

il EP m' dff 7= v,

[}
where § SD &',

i
o=}
|
it
g

or m = 6-exp, w'

or T =¢6'=-acec, T'

I
o
I
IQJ
Q
5!

where § 59 By

or 7w = d=var, w'

I
(@]
|
(D
i

where § gp §',

or w =§"'-var, 7' d—-acc, where § éD 6",

Note that comm cannot be compared with the other primitive

phrase types. For example, if D were given by

real
bool
int
then P would be
int-acc real-exp
| ' bool-acc bool-exp
real-acc 1HE~-8xh \\\\ comm

\\\\ //// bool-var

real-var int-var

For more discussion, see [8]. (However, unlike [8], we do not
permit fully generic operations. As a consequence, the 6162—variable
construction is not needed.)

Why is P so complicated? Why not just use ¥ or 0 U {comm}?
Well, D would be adequate only for a language that lacked im-
perative features. Furthermore, to catch all errors due to mis-

matched types of compile time we must distinguish carefully

13

between ¢-variables and S-expressions. Thus D U {comm!} is
inadequate for an imperative language.

From P we construct T, the poset of all phrase types.

Technically, T is the free type algebra generated by P, and the

details of its construction are the subject of the second part

of this paper. In particular, we defer discussion of the partial
order on T. An important phrase type of T is Tns' the nonsense
type; it is the type assigned to phrases which contain errors

due to mismatched types, thereby allowing us to meaningfully
discuss type-checking. Also, for all elements 1, 6 of T, there

is a phrase type T = 6 that is assigned to procedures accepting
arguments (i.e., having formal parameters) of type T and producing
results (i.e., having calls) of type 6. The use of the same symbol
for both procedural phrase types and exponentiation in a Cartesian
closed category is, of course, intentional.

The entity G is a typed set of generators; it is derived

from Op. As the terminology indicates, G comes equipped with a

function
type ¢ G - T

which assigns a phrase type to each generator. Structurally G is

a disjoint union of Op and another set Op'. For g & Op let

type g = 51"E§E = 52'§§B = cee 5n—g§£,
where arity g = <61,...,6n> and res g = §. So, partly because
product types are not in T, G contains curried versions of
operators in Op. This works out very neatly. The typed set Op'
is given by the following table, where § e P is a data type and

T eT is a phrase type.

14

g £ Op' type g
skip comm

comm = comm = comm

-
r

1= j-—acc = §-exp = comm

8
ifthenelseT bool-exp = T = T = T
recT (T = 1) = T
newvar (§=var = comm) = comm

§
It is the presence of Op' as a subset of G that entitles us to
regard L as Basic Desugared ALGOL. Intuitively, skip is the
"do nothing" command, the operator ; concatenates commands, 2=
is assignment for the data type § ifthenelseT is the conditional
for the phrase type T, rec_ is used in the desugared denotation
of recursively defined entities, and newvar . is used to desugar
declarations of d-variables.

We are now in a position to describe how | comes from T,
Id, and G. The idea is that for each g € G, x ¢ Id, t € T and

for arbitrary phrases £, m ¢ L, we want
g, O0xI0 , 02 mI, and [Ax:71.21

to be in L. Thus we create a signature A (for 1-sorted algebras)
such that there is a 0-ary operator for each identifier, there

is a unary operator Ax:T for each identifier x and each phrase
type 1, and there is a binary operator ap. Then [is the free
A-algebra generated by G. So the language L is generated by
operations rather than identifiers; the identifiers are incor-
porated into the signature. This is not just a technical trick.
It is in keeping with the intuition that how identifiers are used
in programming languages never varies; what varies are the ope-

rations and their meanings. Note also that despite the appearance

15

of phrase types in A, L is a 1-sorted algebra like the untyped
A-calculus. Thus there is a single set of parseable phrases

that we seek to analyze. This is simple and satisfying. (But as
we said before, we reject the idea that there is a single set

of meanings for phrases. Having a single set of meanings for
phrases in a typed language is as unnatural as positing the
existence of a set of "all elements" as a basis for set theory.)
Of course, since L is 1-sorted, is has in it many strange phrases,

such as

i 1 ifthenelsec 1.

*Tint ommn

However the nonsensical semantics of such expressions can be handled
elegantly and simply. Furthermore, we need such phrases to under-
stand the nature of type-checking. The idea is that the algebra L
consists not necessarily of those phrases meaningful at run-time,
but rather is the collection of parseable phrases, and that the
compiler can check if a parseable phrase will be meaningful at
run-time.

On the subject of binding, note that identifiers are untyped
except in the scope of a Ax:T operator. The intended intuitive
semantics of [[Ax:71.£]] is that it represents a procedure which can
be applied to any argument that can be coerced into type T.

As an aid to understanding L, we offer the following table of

popular ALGOL phrases and their informal translation into L.

16

Favorite Phrase

51 By

Translation

[[[[;c1]]c2]]

if b then ¢, else ¢,

while b do ¢ [rec

IIor ifthenelsecomm bl c1ﬂ c2]

A [Ax:comm.2 T]

where { = translation of
if b then (¢x) else skip
let x:7 be m in n L I *x:7t.nl m 1
letrec x:T be m in »n 00 Ax:Tt.n 1 rec [Ax:t.ml 1 T

begin d-var x; c¢ end [newvar [ix:é-var.c]]

Observe that the informal meaning of ErecTﬂ Ax:T. 2 1 is “the
most natural solution of x =f". Note that we make explicit in L
that variable declaration involves two steps theoretically:
(1) the binding of an identifier to a phrase type, thereby creating
a A-expression, and (2) the creation of a command from the
A-expression.

A syntactic matter of fundamental importance is type-checking.
We have a function type € G » 7. Can we extend it to a function
Type € L 5> T ? For a simple reason, the answer is no. The problem
is the typeless nature of unbound occurrences of identifiers. A
quick way out might be to assign types only to phrases in which
all identifiers are bound, but this is not good because we would
not be able to express the type of a phrase in terms of the types
of its components. A better solution is to recognize that the
function Type requires another argument whose purpose if to give
typing information about identifiers. Perhaps Type e L - (TId-, Ty,

i.e., maybe the extra argument for Type is a function from Id to T.

17

This is a workable idea, but not a desirable one. There are two
objections. The mathematical objectién, which can only really

be appreciated after a careful study of the semantics of L, is

that using functions defined on all of Id eventually leads to the
requirement that certain infinite products ("infinite environments",
loosely speaking) exist in categories used for semantics, thus
limiting the generality of this approach. More accessible is the
programming language objection: using functions defined on all of
Id means all identifiers at all times have a type, an assertion at
odds with intuition. Before program execution begins, no identifier
has a type; during execution some have types, and some don't. Keep
in mind also that the assignment of types to identifiers has a
dynamic aspect in that an identifier has the ability to be bound

to different phrase types in different blocks. So we are led to
introduce A, the poset of phrase type assignments. A phrase type

assignment o is a function

> T

o e I

where I = dom o is a finite set of identifiers. Thus,

emp; € e > T,

the phrase type assignment with empty domain, is the phrase type
assignment most appropriate to the beginning of program execution.
The partial order on A is such that a £ B is interpreted as

"o can be used for B", i.e.

(1) dom B < dom.o, and
o £ B iff

IIA

(2) o x B x for all x £ dom B.

Thus the proper functionality of Type is

18

Type ¢ L » (A = T),

where A = T denotes the monotone functions from A to T, although
the reader may here ignore monotonicity if he finds it unpala-
table. When £ ¢ L, o e A, we read Type Lo as "the type of £ in
the context of a phrase type assignment a." The astute reader
may feel that we have not vanquished the problem of typeless
identifiers because the domain of a phrase type assignment is
finite; possibly even empty. However the judicious use of the
nonsense type TnS for those identifiers saves the day. We cannot
here delve into the nature of Type except to assert that it is a
A-algebra homomorphism.

This completes the discussion of the syntactic nature of L.
Next we turn to the nature of the semantic component ¥ and how

Val, m and X jointly determine the semantics of L.

Op’
An integral part of the semantics of a typed language is the
assignment to each phrase type 1t of a meaning, denoted Mng T.
Perhaps with the plan of arranging matters so that program frag-
ments of type 1 denote elements of Mng 1, one might suppose Mng T
is a set. However, the possible existence of nonterminating pro-
grams, which lead to an "undefined" state, provides an inducement
to partially order Mng 1, where the relation x £ y means x is
"more undefined" than y. For instance see [7] and [9]. Following
this line of reasoning, a command which never terminates, such
as while true do skip, denotes the minimal element in Mng comm.
The need to give meanings to recursively defined expressions of
type T causes us to require that directed subsets of Mng T have
least upper bounds, i.e., that Mng 17 is a predomain. (Also, we

generally want Mng T to have a minimal element, but we must tread

19

cautiously at this point to avoid becoming overcommitted to the
use of D¢m rather than Pdom. As we shall see later, Dom is tech-
nically inadequate.)

Suppose we try to give the semantics of programs which do
not contain block entrances and exits. We start by positing the
existence of a set S of possible stores. Regard sets as discretely
ordered predomains. Since a command is a transformation of S that
possibly may not terminate, and a function from S to SL is the

same as a continuous function from S to SL' we expect

Mng comm = S = SL'

Here = is the internal hom functor for Pdom.

Also, for each data type 6§,

Mng §-exp = S = (val §) ,
Mng §-acc = Val § = Mng comm,

Mng é-var = Mng d-acc x Mng §-exp.

I

In other words, a d-expression attempts to compute a value of
type § from the current store, a §-acceptor uses a value of
type ¢ to update the current store, and a §-variable may be
used as either a §-expression or a §-acceptor. Finally, for all

7, B ¢ T, we expect
Mng (t = 6) = Mng T = Mng 9,

i.e., the predomain of meanings for the procedural phrase type
T = 6 is the predomain of continuous functions from Mng T to
Mng 6.
Although the approach of the preceding paragraph is attrac-
tively comprehensible, it is inadequate for the semantics of

block structure because the set S is fixed throughout the expo-

20

sition. The whole point of block structure is to permit S to
vary during program execution. For instance, if we view stores
as being functions from finite sets of locations in memory to
the set of data-type values, then the domains of those functions
may be regarded as store shapes. Variable declarations at the
start of a block alter the shape of the store by adding loca-
tions to it, whereas block exit restores the shape of the store
to its condition at block entrance. The semantics of a language
obeying a stack discipline should reflect this dynamic behavior.
Therefore, let I be the collection of all store shapes.
To each X ¢ I, there is a set St X of stores of that shape. Since
the meaning of 1 ¢ T varies with the store shape, Mng T is not
a predomain, but is rather a Z-indexed collection of predomains.

For instance we might arrange matters so that

Mng comm X St X= (st X)L'

Mng §-exp X St X= (vVal 6)1,

Mng d-acc X Val § = Mng comm X,

Mng d§-var X Mng $§-exp X x Mng §-acc X,

where X ¢ £,8 £ D..

It is important to realize that for 1t ¢ 7T and X, Y ¢ ¢
the predomains Mng T X and Mng 1 Y cannot be arbitrarily dif-
ferent. After all, we want the notion of command to have a
uniform meaning for all store shapes or else the definition of
operations like ; (concatenation of commands) will be bizarrely

complicated. For instance, consider the program skeleton

21

begin int-var x;

begin bocl-var y;

.

¥ = 3

end;

end.

Suppose X is the store shape corresponding to the outer block and
Y is the store shape corresponding to the inner block. Then

Mng comm X is relevant to the first occurrence of the assignment
command X := 3, while Mng comm Y is relevant to the second
occurrence. However, both occurrences are meant to alter the
contents of the same location. Roughly speaking, the fact that X
can be "expanded" to give Y induces a function from Mng comm X

to Mng comm Y. So it becomes important to contemplate the notion
of an expansion from a store shape X to a store shape Y. Certain-
ly, expansions ought to be composable. The composition ought to be
associative. For each store shape X, there ought to be an identity
expansion which involves "doing nothing" to X. 1In short, we assert
that we erred in letting I be the collection of store shapes. From
now on, take X to be the category of store shapes. The morphisms
of I are called expansions. Furthermore, for each phrase type Tt

we should require that Mng v be a functor

Mng T £ I > Pdom:;

this will elegantly take care of how an expansion

22

> ¥

o £ X

induces a function

Mng 7 ¢ € Mng 1 X > Mng T Y.

Pdom

In this paper we shall not be more explicit about the
nature of I, but a more comprehensive treatment would require
that I be a precisely determined category. Actually, there are
a number of candidates for Z. A very general one can be found
in [5], and another can be found in [6].

Procedural phrase types are a bit tricky. Let 1, 6 ¢ T.
Recall that in the simpler setting the predomain of meanings of
type T = 0 was the set of continuous functions from Mng 1 to
Mng 6. One might hope that in the more sophisticated setting,
where Mng (1t = 0) is to be a functor, that the set of proce-
dural meanings of type 17 = € in the context of a store shape X
would be the set of continuous functions from Mng T X to Mng §

i.e.,
Mng (t = 6) X = Mng 7 X = Mng 6 X.

Alas, this does not define a functor because = in Pdom is
contravariant in its first argument. (For the same reason, one
cannot define a functor from Set to Set by diagonalizing the
hom functor, i.e., by letting X to go X - X.) Another idea might
be to recall that Mng 1 and Mng 9 are objects of a functor ca-
tegory and to try letting Mng (1 = 6) be the set of natural
transformations from Mng T to Mng 6. That's plain nonsense,
because there is no way to regard such a set of natural trans-

formations as a functor. We are, however, getting closer to the

23

heart of the matter. In [5] we prove that the functor category
£ = Pdom is Cartesian closed. Therefore, the appropriate equation

governing meanings of procedural types is Jjust
Mng (1t = 6) = Mng T = Mng 9,

where the heavy arrow on the right is exponentiation in the
functor category I = Pdom. Further evidence of the essential
rightness of this equation will be presented at the conclusion
of this section.

The reader may wonder why we didn't engineer this discussion
so as to end up with the functor category I = Dom. Unfortunately,
contrary to the claim in [6], it does not appear that I = Dom
is a Cartesian closed category, in spite of the fact that Dom
is Cartesian closed.

This all sounds nice enough, but we have lost somewhere the
idea that phrases of type 1 should have denotations which are
elements of Mng 17, because Mng T doesn't seem to have any
elements if it is a functor. The solution is to reject even in
the simple setting where block structure is ignored the intuition
that a phrase of type T denotes an element of Mng 1. Actually,
this is a rather conventional notion. This is where environments
enter semantics. Each function A ¢ Id - T determines a predomain
E A of environments by taking E A to be the product in Pdom of the
Id-indexed collection {Mng (A x) | x ¢ Id}. Thus, each element
of E A associates a meaning of the right type to each identifier.
Then even in the simpler setting we conceive of the denotation
of a phrase of type T as being a (continuous) function from
E A to Mng t. We have thus been led to the idea that the seman-

tics of a phrase is a morphism in a category from an environment

24

object to a meaning object. We will give more details shortly,
but at least we need not worry that Mng T is a functor rather
than a set of elements.

The question is how to describe environments in a way
that meshes smoothly with our intuitions about store shapes
and about the connections between identifiers and phrase types.
The answer is that each phrase type assignment o determines an
environment Env o, which is a functor in I = Pdom, defined by
taking the product in I = Pdom of the (dom o)-indexed collec-
tion of functors {Mng (a x) | x € dom a}. If X is a store shape,
then Env o X is the product in Pdomof the (dom o)-indexed
collection of predomains {Mng (o x) X | x € dom o}, which is a
"conventional environment". In fact, if we regard the poset A

as a category, then
Env € A - (£ = Pdom)

is a functor.

What we have seen, then, is that the meanings of types
and consequently the semantics of [depends on the category I
of store shapes and the functor Val € D - Set. Of course, we
must still tackle the basic question of what phrases of | actually
denote. Whatever denotations are, on the most concrete level
determination of the denotation of £ € L requires a phrase type
assignment a £ A and a store shape X ¢ Ob I. Let Den be the
function that assigns denotations to phrases of L. It is then

intuitively satisfying to assert

> Mng (Type £ a) X,
Pdom

i.e., the denotation of £ in the context o when the store shape

Den £ o X & Env o X

in X is a continuous function from the conventional environment

29

for this situation to the predomain of meanings for £ for this

situation. Now, in order to incorporate the intuition that when
there is an expansion from the store shape X to the store shape
Y the denotations Den £ o X and Den £ o Y must be consistent

with one another, we assert

Den £ oo ¢ Env ¢ —> Mng (Type £ a),
L = Pdom

i.e., Den £ o is a natural transformation from the functor

Env o € £ » Pdom to the functor Mng (Type £ a)e £ - Pdom

How does m enter into this? In [5] we show that m canonically

Op Op
determines denotations for all the generators of the free
h-algebra L[; then it can be shown that there is in certain sense
a uniquely determined function Den which extends the denotations
of the generators to all phrases of [. A pleasant byproduct of

the development in [5] is that Den £ is itself a natural trans-

formation:

Den £ e Env > Mng ¢ Type £.
A = (I = Pdom)

Our final topic in this section is a discussion of how this
approach lends itself to an explanation of the interactions
between procedures and block structure. However, we must preface
this with the definition of the functor

5 g 9P 4 K, where K = & = Pdom.

hom
The usual hom functor is

homZ £ Zop x L = Seft.

Let

E e Set ——> Pdom

26

be the embedding functor which gives a discrete partial order

to each set. By composing, we get

E o homy € 9P « 3 > Pdom.
Then curry to get
homZ e 5P > (L = Pdom).
Thus, for store shapes X and Y, homZ X Y is hom <X,¥> = X —> Y,

‘ 5

equipped with a discrete partial order.
Let's take a look at a phrase % & L, which in the context

of o € A, has a procedural type; say
Type 4 o = 17 = 6§

where 17, 0 ¢ T. Recall that we have an equality of functors:
Mng (T = 6) = Mng T = Mng 0.

Therefore,

Den £ o e Env « > Mng 1 = Mng 6.

K

Suppose the procedure { is defined in a program in a block
whose store shape is X. In this context, the denotation of the

procedure is

Den & o X ¢ Env a X > (Mng T = Mng 0) X.

Pdom

A peek at the proof in [5] that K is a Cartesian close category
shows that the predomain (Mng T = Mng 6) X is obtained by par-
tially ordering the set of natural transformations

z

(hom™ X) x (Mng T) > Mng 6.

Let e € Env o X be the conventional environment existing when
%2 is defined. Then

Den ¢ o X e ¢ (homZ X) x (Mng T)

> Mng 9.

27

Now suppose the procedure % is called in an interior block

whose store shape is Y. Thus, there is an expansion

> Y.

g g X
bh

The denotation of % constructed at the time of its definition
should be clearly connected with an element of the predomain
Mng T Y = Mng 6 Y, which is the proper collection of conven-

tional meanings at the time of the call. Note that

Den £ o X e Y ¢ (X > Y) x (Mng T Y) > (Mng 6 Y).

Pdom

Using the fact that Pdom is a Cartesian closed category we obtain

Ab (Den £ oo X e Y) ¢ (X —> Y) > (Mng T Y= Mng 6 Y).

Finally, apply this function to the specific expansion connecting
the shape X of the store at the time of definition to the shape

Y of the store at the time of the call, and we obtain
AbFﬂom (Den £ oo X e Y) 0 e Mng T Y = Mng 0 Y,

a conventional meaning for the procedure at the time of call.
We have captured here two important intuitions about the

meanings of procedures:

(1) The environment used to determine the meaning
of a procedure is not the environment existing
at the moment of the call, but is rather the
environment existing when the procedure is defined.
(An intuition described by other approaches as well.)
(2) The meaning of a procedure is also dependent on
the store existing at the moment of call, the store
existing at the moment of definition, and the

expansion connecting them.

28

2. Type Algebras

Our aim in this section is the creation of mathematical
objects that define collections of phrase types assignable
to meaningful program fragments. These objects are certain
"type algebras™" freely generated by posets whose elements
are viewed as primitive phrase types. These free type algebras
are adequate for the developments in [5], but they don't
provide the final answer to the question "What is a type?"

In particular we don't delve into the nature of recursively
defined phrase types.

Some points to keep in mind are these. The phrase types
should be partially ordered and constructed in a natural way
from a poset of primitive phrase types. Also it should be
possible to define a functor Mng to some semantic category
(£ = Pdom for Basic Desugared ALGOL; perhaps Set or Pdom for
some simpler language) by specifying its restriction to the
primitive phrase types.

We will need to be a bit more careful about our notations
for posets in this section. Our terminology is as follows. A

partial order on a set X is a relation on X, i.e., a subset

of XxX, which is reflexive, antisymmetric, and transitive.

An ordered pair
P = <Ob P, Ar P>

is a poset if Ob P is a set and Ar P is a partial order on Ob P.

The assertion <x, y> € Ar P is usually written x ;P y. In

addition the expression x ép vy 1s also used to denote the

ordered pair <x, y> when it is true that <x, y> € Ar P. The

28

correct reading of x éP y will be clear from context. The poset

P becomes a category if we make the canonical definitions:
(1) domP (x ép y) = x,
(2) cod, (x éP v) = v,
(3) (y
(4) 1

~

A

p Z) o (x ép v) = (X gp z), and

"

p = (x éP %) w

For posets P and @, the object part of any functor

Fe P =il

~F

versely, any monotone function F € Ob P » Ob Q has a unique

is a monotone function, i.e. x £, v implies F x §Q F y. Con-

extension to a functor F € P » Q. The terms "embedding" and
"full" in the context of posets have the following meanings.
Following [3] rather than [4], a functor is an embedding if it
is injective on both objects and arrows. A functor F & P - 0 is

full if for all x, vy € Ob P,

A

i <
X 5p ¥ 1f £ F x) F y.

Let R be the poset whose objects are monotone functions from

P to Q and whose partial order is given by

£

IIA

r 9 iff £ = gQ g x for each x ¢ Ob P.
We may compare the canonical category derived from R with the
functor category P = Q created from the canonical categories
derived from P and Q. It is easy to see that they are isomorphic.
Indeed, the clarity of the subsequent exposition is not harmed
by writing R = P = Q and £ gP:Q g rather than f ER g.

We use ¢ to denote both the empty set and the poset whose

underlying set of objects is empty. Similarly we use {a} to

denote both the singleton set and the singleton poset whose sole

30

object is a. We say that P is a subposet of Q (notation: P c Q)
if Ob P € Ob Q9 and Ar P < Ar Q; in this case the inclusion
mapping is monotone and is consequently a functor. If the

inclusion functor is full, i.e. for all x, y € Ob P

IIA

X v i:EE X éQ Ly

P

then P is a full subposet of Q (notation: P C Q). The inter-

section P N Q of posets P and Q is defined by Ob (P n Q)

(Ob P) N (Ob Q) and Axr (P N Q) = (Ar P) n (Ar Q). Thus

1A

X iff X =

png ¥

Of course, P N 0 is a subposet of both P and Q. If P n @ ¢,
then the posets P and Q are disjoint.
There are two natural ways of constructing binary products
of posets. First, consider P x Q, the product of the ordered
pair <P,Q> of posets viewed as categories. Alas, we cannot in
general take <Ob (P x Q), Ar (P x Q)> and obtain a poset because
Ar (P x Q) = Ar P x Ar Q is a subset of (Ob P x Ob P) x (Ob Q x Ob Q)

which implies Ar (P x Q) is not a relation on Ob (P x Q). Second,

consider the poset P x Q given by

(1) Ob (P x Q) = 0b P x Ob @

(2) <x, y> gpiQ <ty ' iff X ;P x' and y gQ Vi
Of course, the definition of x has an obvious generalization
to more than two factors. If we consider the second product
P x Q asacategory in the canonical way, then it is isomorphic

to the first product P x Q with the isomorphism being
IEPXQ_’PEQ’

the functor which is the identity function on objects and which

on arrows satisfies

31

I <x gp x', ¥ §Q y'> = (<x, y> éPwQ LS >)

Given two disjoint posets, the utility of connecting them
together by providing a common top, i.e., maximal element, will
soon be seen. So suppose P and Q are disjoint posets and

t ¢ (Ob P) U (Ob Q). The poset P*t*xQ is defined by

Ob (PxtxQ) = (Ob P) U {t} U (Ob Q)

and

A

b4 iff X ép y or y = t or X §Q Voo

Prtx0 ¥
Observe that one way to completely specify a functor
F e Pxtx0Q » C is to let F t = term where term is a terminal
object of C and to define functors in P » ¢ and Q -» C that are
the restrictions of F to P and 9.

The first proposition summarizes some evident properties
of full subposets.

Proposition 2.1: Suppose PLC Q and P' [C Q'.

(1) PP o%.

(2) PxP'CQx Q'

(3) If Q@ and Q' are disjoint, and t ¢ (Ob Q) U (Ob Q')
then @, Q', and PxtxP' are all full subposets of QxtxQ'.

Proofs Trivial. o

A moment's thought shows that the union of two posets P
and 0 cannot be defined by mimicking the definition of their
intersection because (Ar P) U (Ar Q) is not in general a
partial order on (Ob P) U (Ob Q). However, this simple-minded
approach is entirely adequate for dealing with unions of
ascending chains of posets, a matter we now take up.

Consider an ascending chain

32

P

o Py = Py € e

0 1 2

of posets, which gives rise to a diagram

) P

where each Ji is an inclusion mapping. We can form the poset
P=uUA{P, | 1ie}
by letting OB P = U {Ob P, | 1 e N} and Ar P = U {Ar Pi | 1 e mN}.
Thus
X éP 3% iff b4 ép_ vy for some i & N.
i

> P be the inclusion

Of course, Pi c P for each i. Let K, ¢ Pi

mapping, so that

> P

2l i+1

commutes for all i. Then <P, {Ki}> is a direct limit (or colimit)
of the diagram (*) above, i.e., for each category C and each

N-indexed collection Fi £ Pi - C of functors such that

i i+1

i i+1

33

commutes for all i, there exists a unique functor F ¢ P » C

such that

commutes for all i. Note that if each Pi is a full subposet of

P then each Pi is a full subposet of P. Also, if

3t
0y €2 S < -
is another ascending chain of posets and
Q=U{Qi | i e N}
then
P2l € P2y € Puxly €
is an ascending chain and
PxQ =U {P,xQ, | i e NJ}.

We have seen that the object T containing the types for a
language having coercion among its features should be a poset.
If the language is to have a general procedure-definition facility,
then for any phrase types T and & there should be a type T = 8 for
procedures which accept arguments (i.e., parameters) of type 1
and produce results (i.e., have calls) of type §. How should =
interact with the partial order on T? A procedure of type T = 6
can accept arguments of type 1' if 7' £ 71; the result of such a
procedure can be used in a context calling for a result of type

g' if 8 £06'. Thus if ' £ 7 and &6 £ 8', then we want

A

T =0 ' = 6'. So = should be antimonotone in its first argument

34

and monotone in its second, or in category-theorectic language
= is like a hom functor in that it is contravariant in its first
argument and covariant in its second.

We have argued that Mng should be a functor:
Mng € T -» K,

where K is a category with appropriate structure. One thing that
K should have is a functor contravariant in its first argument
and covariant in its second; we can call this functor =, too. We

want Mng to preserve =, i.e.,
Mng (1t = 6) = Mng T = Mng 0

for all phrase types 1 and 6. To see how plausible this is,
consider the case K = Sef with = equal to the ordinary hom functor;
then the set of meanings for phrases of type T = 6 should be the
set of functions from Mng T to Mng 0.

In order to talk about type-checking we must be able to
assign a nonsense type Tns to parseable expressions which contain
errors due to mismatched types. Since any expression can be used
in a context for which nonsense suffices, the nonsense type should
be the top, i.e., the terminal ocbject, of 7. What should be the
nature of Mng Tns? Knowing that a phrase has a nonsense meaning
amounts to asserting that its meaning contains no information.
Thus Mng Tns should be a singleton set when K = Sef, and it should
be the analogue of a singleton set, i.e., a terminal object, for
other possible K.

To make everything elegant, both T and K should be the same
sort of entities, and Mng should be a homomorphism from T to K.

This serves to motivate the following definitions.

35

An ordered triple
A = &|Al, Alsr AL

is a type algebra if

(1)
(2)

|A| is a category, called the carrier of A,

A . is a terminal object of |A|, called the nonsense

object of the algebra, and

(3) A, e |[A|?Px|A] > |A].

Alternative notations for A= <a,b> are a ﬁjﬁ%benui,when A is

readily determined from context, a = b. Cartesian closed cate-

gories give the most accessible examples of type algebras.
Thus, from a Cartesian closed category K we obtain a type

= K

algebra A by letting {A| = K, Ans term’

and A = K
=

=>-

A type algebra homomorphism consists of a domain A and a

codomain B, both of which are type algebras, and a functor F

(notation: F ¢ A > B) such that
Type Alg
(1) F e |[A]l > |B],
(2) F A = B, and
ns ns
(3) the diagram
A
|A|OPx |A| 2 > |A]
o XE‘[l F
B %
|B|°Fx|B] - | B
>
commutes.

For the purpose of assigning phrase types to program frag-
ments we need a type algebra whose carrier is a poset. Generally
we expect to start with a poset P of primitive phrase types.

The following theorem asserts that each poset P generates a free

type algebra T whose carrier is a poset. It is the free type

36

algebra generated by the poset of primitive types which provides
the phrase types for program fragments.

A few comments on this theorem are in order. In the theorem
Q is the poset of procedural phrase types. The theorem says that
the set underlying the carrier of T is the disjoint union of the
set of primitive phrase types, the singleton consisting of the
nonsense type, and the procedural types. If 71 is a procedural
phrase type, then there are uniquely determined phrase types 0
and 6' such that T = 8 == 6' because T=> is injective on objects.
Therefore, if we ignore the partial order, T is a free (universal)
algebra generated by Ob P where the signature (i.e., ranked set
of operators) consists of a single operator ns of rank 0 and a
single operator = of rank 2. In a different vein, notice how easy

it will be to define the type algebra homomorphism

Mng T > K;
Type Alg

we need only give the functor which is the restriction of Mng to P.
The proof of the theorem is an exercise in the exploitation
of the properties of unions of ascending chains of posets. We
really do have to go through the construction given. Because of
the mixed covariance and contravariance of T=, we cannot get
Theorem 2.2 by the general methods of constructing solutions to

recursive domain equations given by Smyth and Plotkin in [10].

Theorem 2.2: Let P be a poset. There is a type algebra

such that
(1) |T| is a poset, T =« [T[Op x |T] » |T| is a full

embedding, |T| = P * T, * 2, where Q is the image

S

of T , and
=

57

(2) T satisfies the following universal mapping property:
let K be a type algebra, let f ¢ P - |K|, and let =
incl € P » |T| be the inclusion functor; then there
exists a unique type algebra homomorphism

FeT > K such that
Type Alg

commutes.
Proof: Let top be such that top ¢ Ob P, and let arrow be
top

such that no element of (Ob P) U { } is an ordered triple

<x, arrow, y> whose second component is arrow.

We start by constructing inductively a sequence
QG’ T0’ Q1’ T1’ QZ' T2' e

of posets such that, for all i, P n Qi = ¢. Let

Qp = ¢-
Assuming that the sequence is constructed through Ti, let
= * *
Ti P top Qi.
Assuming that the sequence is constructed through Ti’ let

= TOP
Q417 = 75 x {arrow}l x T..

By using Proposition 2.1 it is easy to see that

Qogg—IEQz_E_--'

and

38

Let |T| =u {T, | i em} and Q =U{Q; | i e N}. Clearly

[=]T[Op x {arrow} x |T

. By the choice of arrow, P n ¢ = ¢,
and, by the choice of top, top ¢ (Ob P) U (Ob Q). It is now

apparent that Ob |T| is a disjoint union:

Ob |T| = (Ob P) U {t} U (Ob Q).
Also,
< 4 o .
T :|T[0 iff T _Ti 6 for some i
iff T éP g or &t = 8 or T EQ 6 for some i
i
i < — <
i T £p B or t 6 or 1 =4 6

Therefore, |T| = P % top * Q.
Next we will define T_ ¢ IT|® x |T| > |T|; we want to arrange
matters so that, for 1, 6 ¢ Ob |T|,
T=> <t, 6> = <1, arrow, 8>.
This is very easy. Let

He |T|°P x {arrow} x |T| - |IT|°P x |T|

be the canonical isomorphism. Then let T= be the unique functor

such that
o T;
ITI®P x |T| > |T|
H inel
|T[Op x {arrow} x |T| Q

commutes. Clearly T=> is a full embedding whose image is (.
Since top is a terminal object of |T|, we may let
Tns = top. Therefore |[T]| = P & Tns * Q. This proves the first

part of the theorem.

39

For the second part, let K be a type algebra, and let
f e P = [KJ. We will define a sequence of functors

GO’FO' G1,F1, G2,F2, ... such that

G, €0, » |K| and F, = T, > [K].

Since QO = ¢, the functor GO is uniquely determined. Suppose we
have constructed all functors through G, - Recall Ti = P * top =* Qi'

and let F, be the unique functor satisfying

(1) Fi top = Kns’
(2) the restriction of Fi to P is £, and

(3) the restriction of Fi b Qi is G;.

Suppose we have constructed all functors through G;. Our intention

is that, for T, ©® £ Ob Ti,

_ op
Gi+1 €T, dYEowW,; O = K= <Fi Ty Fi 6>.

Thus, let Gi+1 be such that

i+1
2 +1 > [K]
H:L K=>
FOP « F
O i A o]
TSR % 1, = |K|9P x |K]
1 1

commutes, where Hi £ T?p x {arrow} x Ti - Tip x Ti is the

canonical isomorphism.

Next we claim that the diagrams in the sequence

incl incl incl incl
______>Q2

9, —> Uy To >T4 2 T > T,
%ﬁ1 COENF NS N

| K| | K] | K | K]

40

are all commutative. The first diagram commutes because QO

Suppose all diagrams commute through

incl
2i-1 >
GJ—']\ ﬁi
| K]
then the commutativity of
incl
T .
1= i
Fi—1\ ﬁ'i
(*%)
| K|

is immediate from the definitions of Fi—1 and F,. Suppose all

the diagrams through (**) commute; then from the commutativity

of all the inner diagrams in

incl
24 ' == 0441

incl

K1

we get the commutativity of the outer triangle.

41

By applying the earlier remarks on direct limits of
ascending chains of posets, we see there exist unique functors

G and F such that for all i the diagrams

i

1 K] * K]

commute. The functors G and F are related by two commutative
diagrams. To obtain the first diagram, note that for each i>0

the diagram

commutes, and

42

incl

K o (F°PxF) » H

is trivially commutative. Therefore the composite vertical arrow

must equal G, i.e.,

H
|T|°P x |T| < Q
PP « e

K
|K|°P x |K]| = > | K|

commutes. Also, for each i the diagram

incl)
incl

incl jinel
> T,

commutes. Again, the composite vertical arrow must equal G, and

we get a commutative diagram

incd

Q —= | T]
NP

| K]

To conclude that F is a type algebra homomorphism, there
are three conditions that must be checked. First, from the
definition of F it is clear that F € |T| » |K|. Second, since

F extends Fo € TO > |K| we easily compute

F Tns = FO top = Kns'

Finally, we must verify that in the diagram

IT|P x |T] = >[T|
inc
H—1
Fopx F Q F
G
v K Y
|K]9F x |K| = > K|

the outer square is commutative; this follows because all the

inner diagrams commute. Thus

FelT > K.
Type Alg

Notice that

g T

P F

\
|K |

commutes because F extends F0 which in turn extends £f.

Finally, we must verify the uniqueness of F. Let

F' e T > K
Type Afg

be an arbitrary type algebra homomorphism whose restriction

43

44

to P is f, and let

be the restriction of F' to
Qol’ To.l‘ Q»]! T-Ir Qzl T2I i
respectively. We will show by induction that

Gy =G

Gy = Gor Fy 0r G1 12 By = F

17
Since QO = ¢, Gy = Gy. Suppose all the equalities through Gi = Gi
are true. We make three observations.
(1) Fi Tns = F' TnS = Kns since F' is a homomorphism.
(2) The restriction of Fi to P is the restriction of
F' to T, which is £.

(3) The restriction of Fi to Qi is the restriction of

] 3 3 L} —
F' to Qi, which is Gi = G;.

By uniqueness of the construction of Fi' we get Fi = Fi' Now
suppose all the equalities through Fi = F, are true. Observe

that in the following diagram all inner diagrams commute.

GT

i+1
incl . !
(2)
incl] |
Q T
Hy (5)
H K
(1)
| TP «
1°p
\y ' 4

T?P x T, |K|Op X |K|

. ok F'OP x pr = p9P s p,
1 il il 2 B

45

The reasons for commutativity of various diagrams is as follows:
(1) definition of H and Hi’
] 1 3 1]
(2) Gi+1 is the restriction of F' to Qi+1'
(3) F' is a type algebra homomorphism,

(4) Fi is the restriction of F' to Ti, and

(5) definition of ﬂé.

Thus the outer square commutes. By the definition of Gi+1’ we

see that Gi+ = G, Therefore all the equalities in the se-

1 i+1°
quence are valid. Since |T| = U {T, | i e N} and the restriction
of F' to Ti in all cases equals the restriction of F to Ti’ we

conclude F' = F. @O

46

References

[1] ADJ: J.A. Goguen, J.W. Thatcher, E.G. Wagner and J.B. Wright,
Initial algebra semantics and continuous algebras,
J. ACM 24 (1) (1977) 68-95.

[2] M.A. Arbib and E.G. Manes, Arrows, Structures, and Functors -

The Categorial Imperative (Academic Press, New York, 1975).

[3] H. Herrlich and G.E. Strecker, Category Theory (Allyn and

Bacon, Boston, 1973).

[4] S. MacLane, Categories for the Working Mathematician,

(Springer-Verlag, Berlin, 1971).

[5] F.J. Oles, A Category-Theoretic Approach to the Semantics

of Programming Languages, Ph.D. Dissertation, Syracuse Univer-

sity, 1982.

[6] J.C. Reynolds, The essence of ALGOL, in: J.W. de Bakker and
J.C. van Vliet (Eds.), Algorithmic Languages (North-Holland,
Amsterdam, 1981) 345-372.

[7] J.C. Reynolds, Semantics of the domain of flow diagrams,
J. ACM 24 (3) (1977) 484-503.

[8] J.C. Reynolds, Using category theory to design implicit
conversions and generic operators, in: N.D. Jones (Ed.),
Semantics-Directed Compiler Generation, LNCS 94 (Springer-
Verlag, Berlin, 1980) 211-258.

[9] D.S. Scott, The lattice of flow diagrams, in: E. Engeler
(Ed.), Symposium on Semantics of Algorithmic Languages,
LNCS 188, (Springer-Verlag, Berlin, 1971) 311-372.

[10] M.B. Smyth and G.D. Plotkin, The category-theoretic solution
of recursive domain equations, CSR-102-82, Dept. of Computer

Science, University of Edinburgh (Feb., 1982).

