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1. Introduction

One of the intriguing questions in combinatorial complexity
theory is the power of negation. Pippenger [3] has shown that

for almost all monotone Boolean functions fn in n variables,
cy (£,) = 8(2%/n/?
5 D

functions and CB(f) is the size of the smallest circuit repre-

) where B2 is the set of all 16 two-argument

~ senting f using operations from B. Following Lubanov [2] we

get that for all monotone Boolean functions fn' C{A'v}(fn) =
0(2"/n) so for most monotone Boolean functions fn only a factor
of order v/m in circuitsize can be gained by allowing negation.
No family of functions has yet been found where either formula-
or circuitsize has been less by more than a constant factor by
allowing negation.

A question in the same line has been considered by Bloniarz
and Meyer (see [1]) who show that there exist monotone Boolean
functions fn in n variables such that L

BZ(fn] = 0(n) and
_ 2 . ;
L{V,A}(fn) = @(n”) where L (f) is the formulasize over B of £.
This latter result does not indicate the power of negation
since L () = e(nzl It rather indicates the power of &
{v,A, 7} n
(exclusive or).

In this paper we demonstrate that for more restricted

representations negation can be exponentially powerful. The



representation uses the notions of projections and universality
from [5] and the result shows that nonmonotone projections can
be exponentially more powerful than monotone ones. This solves

one of the problems left open in [5].

2. Notations and definitions

We will use the three operations v (OR), A (AND) and 7 (NEGATION).

1x will be written as x. 0 and 1 will represent FALSE and TRUE.
A formula is defined inductively as follows:
(a) 0 and 1 are formulae, (b) x and X are formulae if x is a
variable, and (c¢) (F1)V(F2) and (F1)A(F2} are formulae if F1
and F, are formulae. We omit redundant parentheses.
A formula F represents in the usual way a (Boolean) function.
The size L(F) of a formula F is the number of occurrences of
0, 1, x; and X, (for all i) in F. The formulasize L(f) of a
function £ is min{L(F) | F represents f}.
The function f(x) is monotone iff for all j€{1,..,n} and
b1,...,bnE{0,1}, f(b1,...,bj_1,0,bj+1,...,bn} =1 =

£ awisn byt gl by

3_1 j+1l---tbn) = 1.

The function f!x1,...,xn) is a projection of g(y1,...,ym)

if there is a mapping o: {y;,...,y } = {0,1,x1,...,xn,§1,...;§ }

n
such that f(x1,...,xn) = q(c(y1),...,c(ym)). The projection is
monotone if o: {y1,...,ym} - {0,1,x1,...,xn}.

A family P of functions is a sequence {Pn}nES Qhere P
n

is a function of n variables and ScN.

A family P is (monotone) universal if all (monotone) func-

tions f are (monotone) projections of some members of P.

The (monotone) representation size with respect to a

(monotone) universal family P for a (monotone) function f is

defined to be the smallest m such that f is a (monotone)

projection of P We denote the measure P(f) (P _(f)).

Example
Let DNF be given by -

DNF , (x) = \n_/ /n_\ Xig -
n i=1 j=1
Since all functions can be represented by a formula in disjunctive
normal form, we have that DNF is (monotone) universal. We can
furthermore note that for all monotone functions £, DNF (£) =
DNF+(f) so negation does not help with respect to DNF.

Let x = {xij | 15i<jsn} be n(n-1)/2 Boolean variables. We
consider x as an nxn adjacency matrix for an undirected graph
G[x] with n vertices {1,2,...,n} and edges {i,j} according to
the values of X4 We can denote an edge {i,j} by {i,j}:1
and no edge by {i,j}:0. Since all our graphs will be undirected

we will just write "graph" and assume that it is undirected.

Let v(x) denote the number of vertices, n, of G[x].

3. The connectivity problem

In [5] it is shown that similar looking families can give sub-
stantially different monotone measures. If we define s-t

connectedness STCON as

1 if two designated vertices
s and t in G[x] are

connected.

STCON, (n-1) s2'¥) =

0 otherwise



n+1

and connectedness CON as

1 if G[x] is connected |

CON_, _ (x)
n(n-1)/2 0 otherwise

then for all £, STCON*(f] s 2L(f)2 while there exist infinitely
many ¢ such that CON, (g) 2 2L(g)-1_3_2L(gJ/{

The family used in [5] to demonstrate the exponential

lower bound was Glo(y)]
Figure 1
gzn(i) = (x1Ax2)v(x3nx4)v...v(x2n_1nx2n]. i
It was shown that if (x) = CON (o(y)) where o is a
Ion'2 m(m-1) /2% 'L 0 is defined such that the vertices 1 to n are connected

monotone projection then 2%-1sms/m(2%-1). .
to either vertex n+1 or vertices n+2 and n+3 in Glo(y)]. Thus

CON is not useful to project from with respect to monotone . . a4 iff _ _
CONm(m_1)/2(U(x)) = 1 iff Glo(y)] is connected i Xpi.17%54=1

projections because of the exponential lower bound. If we on
for some i iff 9yn () = 1.

the other hand allow negation, the picture changes drastically
as Theorem 1 demonstrates. Before stating the theorem we intro- . .
. The following Theorem shows that this construction can be gene-

; i "
duce the technique .by proving that Ion (%) CONm(m-T)/2(U{x)) ralized to obtain a much stronger result.

for some ¢ and m=n+3,
Let m=n+3 and define o: {yij} - {0,1,x1,...,xn,§1,...,§ }

" Theorem 1

as follows: .
For all Boolean functions f,

3 —— e

U(yi,n+1) = X559 for 1sgisn,
oly, ) ERT for 1£izn

T1n42 2i-1 ! CON(f) < L(£f)* for o =2 log, 3.

) a(yi,n+3) = Xy for 1=zisn,

U‘ ) =1 and 1

Yn+2,n+3 ! Before proving the Theorem we need two Lemmas. The first is a
oly..) = 0 otherwise. ' ‘

13 technical one to be used in the evaluation of a.
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Lemma 1 Proof of Theorem 1
For B= log, 3 we have for 1sash (a+b)® 2 2a® + bP. ' Let f(x) be an arbitrary Booclean function in n variables and
let F be a minimal suitable formula describing it. We will
Proof ! prove by induction in L(F) that we can define a pr&ﬁection
It suffices to prove that for xz1 ! gz {Y12rY13r---:Ym_1’m} i {0,1:X1;---;xn,§1r---:§n} such that
F(x) = (1+x)6 - xB -2 2 0.
(1) msL(F)+1,
This holds because it holds for x=1 and the derivative i
o 1 (2) There are two designated vertices s and t in
F'(x) = B(1+x) -xP71 i greater than or equal to 0 if x21. B p
Glo(y)] such that all nodes in G[¢ (y)] are
connected to either s or t.
The second one is about transforming arbitrary formulae into
(3) £(x) = CONm(m_”/Z(u‘(z)).
formulae which are suited for our construction. We say that
a formula F is suitable iff it is the case that if F AF, is a The construction is analogous to the construction in [5] but
subformula of F then F1VF2 describes the constant function 1. . only works for suitable formulae.

(i) If F=z (z=0, 1, X or X) then define ¢ such that

Lemma 2
Sy Glo(y)] is
If £ is a Boolean function then there is a suitable formula z "
s

for £ of size at most L(f)ﬁ where g = 1092 F. "

(ii} If F=F,vF, then G[o(y)] should be

f t t.=
Proo . 1“"“5 —5=rl 3~ e
Assume f = f1nf2 and F1,F2,Fi and Fé are suitable formulae \ \\_\ /" :
- - \ ~ / ’
- 1 -
for f1, fz' f1 and f2' Then F = F1A(F1VF2) and F' = FiVFé are q[°1‘21)] \ ,G[UZ(XZ)]
- ’
suitable formulae for f and f. Similarly if £ = £ vf, then d . / ,"
~ u ”~

F = F1vF2 and F' = FiA(F1VF§) are suitable formulae for £ and f£f. ™ ‘_,-”
Let m(f) = max{L(F),L(F')}. If we always choose f1 and f2 such 4 875475,

(111) 'If F=F AF, then G[o(y)] should be
that‘m(f1)§m(f2) then we get that for f = f1Af2 or £ = f1vf2,

- -
. -~ b -

m(f)SZm(f1)+m(f2). Combining this with Lemma 1 and ! ’ oy R

e
s=s,8 Glo,(yq)] ,I\G[csz(xz) ] pepmt
\\ ’/T\\ o~

t

m(x)=m(x)=m(0)=m(1)=1 we get the result. il
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