Z861 1990190
£51-8d INIVA

BuAy| usuop

JOVNONV Peseq L3N Id13d & Ul SYHOMLIN
40 NOILVDIIdIH3A PuUe NOILVIIdIO3dS

£168-G01L0 NSSI

M. Kyng: Specification and Verification of Networks

PB-153

NVI3H/INIva NAHL



SPECIFICATION and VERIFICATION of
NETWORKS in a PETRI NET based LANGUAGE

Abstract

In this paper we present a system description language and a technique
of top-down specification and verification of distributed systems. Our
language is called Epsilon, and it has been developed for the descrip-
tion and analysis of systems containing concurrent components. We have
used and developed concepts from the Simula [2] and Delta [5] languages
and from Petri net theory [1]. A system described in Epsilon consists
of a number of concurrent objects. Each object has a set of attributes,
€.g. variables and procedures, and executes a sequence of actions.
Epsilon includes both normal algorithmic statements and first order
predicate logic as description elements.

In the paper we bring out the main features of the language and of our
specification and verification technique through an example. We describe
a simple ring-structured transport system by a stepwise specification
and verification of its properties. Properties of all reachable states
(partial correctness) are expressed directly in the Epsilon description
by first order predicate logic. Proof of partial correctness is a matter
of proving that the Epsilon-description is consistent. Properties con-
cerning progress are not specified directly in the Epsilon description,
but stated separately. Proof of total correctness is a matter of proving
that the Epsilon description meets the progress specifications.

The semantics of Epsilon is defined by means of a model based on high-
level Petri nets, i.e. a model founded on the notion of concurrency.

This implies that our proof techniques a priori cover concurrency in

the specified systems. The use of high-level Petri nets keeps the size

of the nets relatively small. The complexity of the proofs is further
reduced by transforming the logic expressions specifying partial correct-
ness into a "local" form. OQur technique avoids the "state-space
explosion" often encountered in verification based on finite state models.
With more complicated systems the "factorization" of the proofs becomes
increasingly important. However, the proof method works for non-local
expressions as well, which gives one the possibility of allowing a few
"global" expressions, e.g. if these do not have any natural local
counterparts.

An abbreviated version of this paper has been presented at the third
European Workshop on Applications and Theory of Petri Nets. A similar
system is analysed by Owicki in [14].

Keywords: communication networks, high-level Petri nets, specification,
verification, distributed systems, concurrency.



2

1. Specification of safe states

The example which we consider throughout this paper, is a simple ring-
structured transport system in which packets are sent in one direction
only. The system is composed of L aggregates, each of which may produce
a packet for consumption by any other aggregate. An aggregate consists
of a producer, PROD, an output-process, OUT, an input-process, IN, and
a consumer, CONS. The OUT of aggregate i is connected to the IN of
aggregate i®1 (where ® is cyclic addition in 1..L). This, and the in-
ternal connections, are depicted in Plg. M=

——

— ~
aggregate x// \
"/ ®

P = PROD
0 = OoUuT
I = IN
C = CONS
Figure 1 i T

Stated simply, we want our system to behave in such a way that the
packets sent from a producer to a consumer are delivered in the order
in which they were sent without loss.

This rather informal description of the network is the basis for our
first Epsilon description, given in Fig. 2. A system described in
Epsilon consists of a number of objects, which each has a set of attri-
butes and executes a sequence of actions. The attributes of an object
may be constants, variables, types, functions, procedures, tasks and
internal objects. The objects may synchronize their actions with each
other via variables or by direct communication. The actions of an ob-
ject consists of an alternating sequence of equational-actions and
event-actions.

Most of the time objects execute equational-actions. Such an action is
specified by an equation consisting of a list of changeable variables
and a predicate to be kept unceasingly satisfied during the execution

of the action. When a number of objects concurrently execute equational-
actions the conjunction of their predicates constitutes the effective
predicate, while the union of their variable-lists constitutes the set
of changeable variables. Informally the semantics of a set of equational-
actions concurrently executed by different objects can be described as
follows: the effective predicate is kept unceasingly satisfied by vary-
ing the value of the changeable variables. In other words, the effective
predicate defines an equation system, which is solved with respect to
the set of changeable variables and these are changed accordingly. If
several solutions exist one is chosen non-deterministically.

Event actions are instantaneous and specified by sequences of algorithmic
commands. Each event-action constitutes one indivisible state transfor-
mation. The effect of an event-action does not depend on concurrently




3

executed actions. However in some cases two or more objects jointly
execute a single event-action. The purpose of the description in Fig. 2
is to specify the safe states of the system, i.e. the pProperties which
we want all states of the system to fulfill. Safe states have something
of the flavour of partial correctness. The description contains some

type and constant declarations and a number of different objects:
PRODucers, OUTput-processes, INput-processes, and CONSumers. The elements
transported by the system are PACKETs.

1 RING TRANSMISSION - VERSION 1:

2 (system

3 type N: 1..L; type M: finite

4 type PACKET: (record SOURCE : N

DEST : N
MESSAGE: M record)

7 type PACKETSEQ: seq PACKET

8 PROD (ID:N) :

9 (object

10 SENT: PACKETSEQ init EMPTY

11 ¢ SENT | m(ID,-)SENT %

12 object)

13 OUT(ID:N), IN(ID:N):

14 (object '

i5 BUF: PACKETSEQ init EMPTY

16 * BUF 3%

17 object)

18 CONS (ID:N) :

19 (object
20 REC: PACKETSEQ init EMPTY
%4 t* REC| Vi€EN [A(i,-)RECﬁA(i,ID)route(i,ID)
22 = A(-,ID)PROD(i).SENT} #
23 object)
24 system)

Figure 2

In lines (8-12) L PRODucer objects are declared, each having a constant,
ID, indicating that object. Each PRODucer has a sequence variable SENT
as data attribute. It represents the sequence of PACKETs sent by the
PRODucer. SENT is initialized to the empty sequence. A PRODucer executes
only one action, described by the equational-statement (11). Such a
statement is comprised of a list of changeable variables, a vertical

bar and a predicate, enclosed in round, starred brackets. Its execution
consists of changing the values of the variables to the left of the




vertical bar, i.e. SENT, in such a way that the predicate to the right,
m (ID,+)SENT, is satisfied. The functions m, and A used in (21-22), are

defined on subsets of producer and consumer identifiers and yield func-
tions on PACKETSEQuences:

m: P(N)xP(N) - PACKETSEQ - {true,false}
A: P(N)xP(N) - PACKETSEQ - PACKETSEQ

The function i (P ,C1) is used to test that all packets in a sequence
has a SOURCE in §1 and a DESTination in C,; A(Pl,C ) picks out the
maximal subsequence with this property. Formally wé define

W(PT’CT)A is true, X is the empty sequence
H(P1,C1)Gp is true iff n(P1,C1}G and p.SOURCEEPT and
p.DEST€C1, CEPACKETSEQ, pEPACKET.

A(P1,c )o is the maximal subsequence, Omrs ©f 0 such that n(P1,C )Om is

true. By convention n(P,,-)=n(P N mn(P.,c) = n(P,,{c}); 'an
n(P,,~c) = (P JN~{c}). Analogous conventions are used for the first

parameter, for both in combination and for the function A.

Returning to Fig. 2, we may paraphrase the predicate n (ID,)SENT in
line (11) in the following way: all PACKETs SENT have the right SOURCE
value.

In lines (13-17) L OUTput objects and L INput objects are declared.
Each has a sequence variable BUF and executes an equational-statement,
changing the value of BUF. It is not specified how the value is changed.

Each of the L CONSumers, (18-23), has a Sequence variable, REC, which
represents the sequence of PACKETs received. A CONSumer executes one
equational-statement, changing the value of REC in such a way that the
predicate of the statement is satisfied. The predicate may be para-
phrased as follows: The PACKETs RECeived from PROD (i) concatenated with
the PACKETs on route (i, ID) having SOURCE=i and DEST=1ID equals the
PACKETs SENT by PROD(i) to CONS (ID). The function route: Nx N-PACKETSEQ
concatenates the BUFfer sequences of the OUTputs and INputs on the route
from a PRODucer to a CONSumer. It is defined in the following way (cf.
Fig. 1, with xek=i):

route (x6k,x) = IN(x).BUF ™
OUT (x61) .BUF 'IN(x©1) .BUF

OﬁT(Xe(k—T)).BUFAEN(XS(R*1)).BUFA
OUT (x8k) .BUF

The sequence variables SENT and REC of the PRODucers and CONSumers re-
spectively, are needed to specify the safe states. In our final descrip-
tion, Fig. 7, they will function as history variables, [6], [15], and
need not appear in a program implementing the specification.

Semantics

In [10] we define the semantics of Epsilon by means of a syntax-directed
translation into Equation nets, which are high-level Petri nets, [3],
[8],[9], with equations attached to the places. In this paper we do not
define the semantics of Epsilon, but, for each Epsilon description,
simply present the corresponding Equation net. In such a net places
correspond to equational-statements and transitions to event-statements
(these are discussed in a succeeding section). The semantics of the
description in Fig. 2 is the Equation net in Fig. 3. In this paper we



5

avoid aliasing, and this allows us to use a simplified form of net in-
scriptions, which combine the environment and store described in [10].
Furthermore we do not include the part of the net corresponding to the
system object, since this plays no part in our analysis.

The net consists of four isolated places, PROD, OUT, IN and CONS,
corresponding to the four equational-statements in Fig. 2. (Since the
description in Fig. 2 has no event-statements, the net has no transi-
tions.) Each place has attached a set of possible token-colours. All
tokens marking a place have a colour (information content) belonging to
the colour set of the place. In our Equation nets a token-colour always
describes the state of the local data attributes of an object.

Tokens on place PROD are of the form
(i,o?s) € N x PACKETSEQ

where the first component represents the PRODucer IDentifier and the
second SENT. To stress the relationship we may write IDxSENT instead of
NxPACKETSEQ. IDXSENT is referred to as the token-colour set of PROD.
The other places have token-colour sets with analogous interpretations.
Below the following conventions are used: "i" ranges over PRODucers and
OUTputs, "x" over INputs and CONSumers.

. _ps ps ¥ o§ PS8
(1,ci ) EIDx SENT {Gi_ | (i, )ai }

PROD
(i,cib)EIDxBUF {ogb}
OUT
. .
(x,oi ) € IDxBUF {o;b}

(x,of{r) € IDxREC {o;’r | VieN[a (i, -}g}c{r"f_\.(i,x) route (i, x)

0o

= A(',X)UES]}

The initial marking m, = (Z (i,2); = (i,N); T (x,)\); = (x,7))
ieEN 1€EN XEN XEN

Figure 3

In addition to a token-colour set an equation enclosed in braces is
attached to each place. An equation consists of a list of changeable
variables, a vertical bar, and a predicate. It is a straightforward
translation of the equation of the equational-statement corresponding
to the place. In our definition of the initial marking, m,, above, the
sums refer to the markings of PROD, OUT, IN and CONS in tgat order.

Analysis of VERSION 1
We analyse the Epsilon description by considering the set of possible

behaviours of the net above. For the purpose of this paper the following
simplified definition is sufficient:




6

The behaviours, B, of an Equation net is the set of marking sequences
which start in the initial marking and satisfies

= <oco .
B {(mi)0§i<n’ 0<nsge | Myj_q > My or my_ .-»m; for 0<i<n},

where - as usual denotes the firing of a set of transitions having con-
current concession, and ~» denotes a change only in the colour of some
tokens within the limits of the equations of the marked places. ~» is
defined in such a way'that it can be applied to dead markings only, i.e.

m. g - mo= 2(Im': m. - m')
i i

1= =

When we are not interested in the sequence in which markings appear, we
may consider the reachability set, R, instead of -the behaviours. A mar-
king is reachable iff it is contained in a behaviour. R consists of all
reachable markings. Throughout this paper we consider reachable markings
only. :

We say that a marking is consistent iff it satisfies the predicates of
the equations attached to all marked places. An Equation net and (if
the net is a translation) the corresponding Epsilon description, is
consistent iff its reachable markings are consistent. Notice that if a
non-consistent marking is reached it will always be via a transition

[ 2

firing, "-", and not a change in colour only, ~ ",
g g

All we want to show about our first description is that it is consistent.
This is trivial:

Theorem 1 VERSION 1, Fig. 2, is consistent.
Proof We must show that the reachable markings of the net in Fig. 3

are consistent. But this follows directly from the definition of " —~aw
and the facts that the initial marking is consistent and that the net
contains no transitions. o

2. Local predicates

Some specification and verification techniques restrict the use of
variables in predicates (invariants) to special kinds of local variables,
when dealing with concurrent processes, [14]. This may complicate the
task of making the first formal specification of an informally conceived
system; and in turn obscure the inherently unformalizable process of
convincing oneself that the first formalization is adequate. Our seman-
tic model does not impose such restrictions. The CONSumer predicates
rather directly reflect our informal understanding of a system that
transmits packets from producers to consumers, which means that it is

a relatively simple task to convince oneself that the description is

an adequate formal specification. On the other hand, the CONSumer pre-
dicates tie together all objects in the system, which complicates both
verification and modification. Therefore we shall give a modified de-
scription with local predicates; we give a description in which the
predicate of an object only involves variables of the object itself and
of objects from which it receives PACKETs {ef. Fig: 1),

To this end we introduce a pair of auxiliary sequences, REC and SENT,
in each OUTput and INput. These play roles similar to REC and SENT of
CONSumers and PRODucers. The new version is presented in Fig. 4.

The description of the PRODucers is not changed, since the predicate
used in their specification only involves local variables. OUT is
supplemented by predicates stating that what is SENT concatenated with
the contents of the BUFfer is equal to what is RECeived. And that the



sequence RECeived is an element in the set of sequences consisting of
A(s ,~ID)IN(ID).SENT merged with PROD (ID) .SENT (17), i.e. PACKETs with a
DESTination different from ID, SENT from IN(ID) merged with PACKETSs
SENT from PROD(ID). The predicates of the INputs is similar, but a bit
simpler, since they only RECeive PACKETs from the preceding OUTput.

The new CONSumer predicate states that what CONS(ID) RECeives is equal
to what IN(ID) has SENT with DESTination equal to ID.

1 RING TRANSMISSION - VERSION 2:
2 (system
. type N: 1..L; type M: finite
4 Etype PACKET: (record SOURCE : N
5 DEST : N
6 MESSAGE: M record)
7 type PACKETSEQ: seq PACKET
8 PROD (ID:N) :
9 (object
10 SENT: PACKETSEQ init EMPTY
11 (* SENT | (ID, - ) SENT ¥
12 object
13 OUT (ID:N) :
14 (object
15 SENT, BUF, REC: PACKETSEQ EEEE EMPTY
16 * SENT,BUF,REC | SENT"BUF = REC,
17 RECG:{A(-,NID)IN(ID).SENTIIPROD(ID).SENT}ﬁ
18 object)
19 IN(ID:N):
20 (object
21 SENT, BUF, REC: PACKETSEQ init EMPTY
22 ¢ SENT,BUF, REC ISENT”BUF==REC, REC = OUT(ID®1) .SENT %
23 object)
24 CONS (ID:N) :
25 (object
26 REC: PACKETSEQ iﬂi& EMPTY
27 ¢ REC|REC = A(-,ID)IN(ID).SENT ¥
28 object)

29 system)

Figure 4



8

Analysis of VERSION 2

The net of VERSION 2 has four places, like the net of VERSION 1, one
corresponding to each of the equational-statements. The token-colour
set of OUT and IN have, compared to VERSION 1, been extended with com-
ponents representing the Sequence variables SENT and RECeived. The
four place equations are direct translations of the equations of the
corresponding statements.

. DS ps . ps
1,05 €1ID = .
(i, ] ) € IDxSENT PROD {Ui [m(i, )oi }

Os

i ob or O0s ob or, os ob . or
(1,07 10§ 407 )EIDxSENTXBUFxREC{Ui 105 107 Jci oy =95

OF L A
0. €la(-, i)oy Hoi™1}

is _ib _ir is ib ir| is ib _ ir
(x,0.7,0, 1Oy )EIDXSENTXBUFXREC< N >{Ox 10 10y lcx Oy =1,

ir_ Oos }

% = 9%081

cr Cr; cr _ . is
(x,0 )EIDxREC{Gx iox =4a(+,x)0 "}

Initial marking my = ( L (i,M);: £ (i,x,2,X); £ (x,A,A,2); = (x,A))
1€EN i€N XEN XEN

Figure 5

First we observe that VERSION 2 is consistent, and then we show that it
correctly implements VERSION 1.

Theorem 2 VERSION 2, Fig. 4, is consistent.
Proof As for VERSION 1 this follows directly from the definition of

"~s " and the facts that the initial marking is consistent and that the
net contains no transitions. o

Implementation

As we develop a sequence of descriptions which are gradually more de-
tailed, we need to prove that a description A is correctly implemented
by its successor B. Intuitively, we must map B onto A in some reasonable
way. Formally we do this on the Equation net level. We define a mapping
from the places of B to the places of A and a mapping from markings of

B to markings of A. Then the reachability set of B must be mapped into
the reachability set of A:

Let two Equation nets A and B, with places P, and p r colour-functions
CA and C, and initial markings m, and m. be given together with two
mappings? hP: PB - PA’ and hc de%ined on PB such that

VpBEPB[hc(pB): Cplpg) - CA(hp(PB))].

h (pB) maps token-colours of p_€P_ into token-colours of h_(p )EPA.

hg can uniquely be extended to & 1fnear function which mapspsegs of
markings of B on sets of markings of A. For convenience we shall denote
this extended function also hc' This should cause no confusion.



Definition B implements A with respect to (hp,hc) iff RAghc(RB).
Theorem 3 VERSION 2 implements VERSION 1 with respect to (id,proj)
where:

id: maps a place of VERSION 2 on the place of VERSION 1
with the same name

proj: skips the SENT and REC component of OUT and IN token-
colours, otherwise it is the identity mapping.

Proof We have to prove that Proj maps any reachable marking m (of
VERSION 2) into a reachable marking (of VERSION 1).

The only non-trivial part of this is to prove that the CONS predicates
of VERSION 1 are fulfilled, i.e. that proj(m) fulfills:

crn

V1,x€N[A(1,-)O A(i,x)route(i,x) = A(-,X)GES]

First we prove fintuitively "no packets cycle in the ring"):

Lemma Any reachable marking, m, of VERSION 2 satisfies the predicate:
A(i,x)c?s = A(i, X)Gor
Proof From the OUT predicate we get

o %€ [A( ~1) 01511 oS |
%3 i]

so it is sufficient to prove that A(1,~1)ois = A. We do this by contra-
diction.

Assume that p€PACKET is contained in A(1,~1)cls, i.e. p=(i,iek,a),
KETowIL~1) s

From the PROD predicates we get that p is not contained in opg1,.., ?;k
From the IN and OUT predicates we get that p is contained in
251""'609k’ and finally that p is contained in A ,~(iBk) )0 ek But

this contradicts our initial assumption that p=(i,iek,a). o

Then, using this, we prove that m itself satisfies the CONS predicates
of VERSION 1.

A(-,x)oPS

ib ob

= A(Xek’x’ x0(k-1) “x6(k-1) %xok

a

X6k

= A(xek, x)opgk (m fulfills PROD predicate of
VERSION 2)
= A(xek,x)oogk (lemma)
= A(xek,x) {G ok xekj (OUT predicate)
= A(xek,x) [ %6 (k=1) ;gk] (IN predicate)
= A(x6k,x) {U o (k-1) ;g(k 1) ggk] (IN)
%

](PROD and QUT)



10

is _ib _ob ob
= A(x6k,x) [OX GX Gx91 "'Gxek]
is~ ib ob ob |
. A{xek,-)A(-,x)ox A (x6k,x) [Ox Opo1 **- fxekj
ib ob
= A(xek,-)oir’h(xek,x) [ox Sid Uxek} (CONS)
= A(xek,-)Uzrhh(xek,x)route(xek,x)

Finally we have to show that proj(m) also fulfills the aboye predicates,
but this follows directly because proj does not change (skip) any of the
involved token-colour components. o

3. Communication and progress

In the next step we describe the transfer of PACKETs explicitly. As we
shall see, the description restricts the behaviours of the system in a
way that ensures progress of information flow. (The descriptions of
VERSION 1 and 2 in fact allowed the system to "run backwards"). Further-
more, since this is the last description of a system intended for imple-
mentation as a set of computer programs, we want all equational-
statements to be without any effect on the state of the system. This is
achieved simply by demanding that all equational-statements have empty
variable lists. (Such statements play a role similar to that of inva-
riants in Hoare-style proof techniques, see e.qg. [14].) Descriptions of
this kind are well suited for implementation in a programming language
with CSP-like communication primitives, [4], [7].

In order to simplify the analysis of progression we now assume that all
PACKETs are produced before the transmission begins and contained in a
sequence variable NOTS, "not sent". The essence of this restriction is
that once a message has been wrapped up as a packet at the transport
level (corresponding to the producers/consumers) the system will try to
deliver it until it succeeds (or deadlocks) - a packet cannot be can-
celled or called back. Furthermore, since this last description should
be easy to implement in a programming language, we limit the size of
the buffers. For the sake of Simplicity we set the limit to one. The
restrictions on the communications between the objects resulting from
the limit on buffer size is summarized in Fig. 6, which may be para-
phrased as follows: whenever a PRODucer has PACKETs to send, it is ready
to send to the OUTput of. the aggregate. When the BUFfer of the OUTput
is empty, it is ready to accept a PACKET etc,

The third description is presented in Fig. 7. The new constant SEQ (N)
of PACKETSEQences contains the PACKETs to be sent by the PRODucers.
It is for all i€N used to initialize NOTS (i) in such a way that all
PACKETs have SOURCE equal to i.



Aggregate i

i PROD ' /
\ /
NOTS # A
\ /
\ /
r IF'. . =i
BUF # A,BUF.HEAD.DEST = i " )
b BUF = A /
— BUF + A
UF # ) /
BUF . HEAD.DEST # i UF = A
/
/

Figure 6

In the description of the PRODucers we have added a seqguence variable,
NOTS, representing those of the produced PACKETS which are not sent vet.
The actions of a PRODucer are described by an equational-statement (14)
controlled by an event-statement (16-17). Execution of an event-statement
is always instantaneous (and indivisible). When constructing the net of
an Epsilon description event-statements are translated into single
transitions. A PRODucer begins its actions by executing the equational-
statement. During its execution none of the variables of the PRODucer
are changed since the statement has an empty variable list. But for the
system to be consistent the predicate has to be fulfilled. Thus the
initial state should satisfy the predicate. Execution of the equational-
statement continues until the controlling event-statement is executed
(see below). When this happens the procedure PUT is executed and then
execution of the equational-statement continues. Thus PUT should not
destroy the predicate.

The event-statement of the PRODucer, (16=17) , consists of a match-clause,
a when clause and a do-clause. The match-clause specifies another object
and a procedure of that object (with an actual input parameter), which
must be executed jointly with the local procedure specified in the do-
clause. The when-clause contains a predicate, which must be satisfied,
when execution begins. In this case the event-statement in PRODucer
matches (28) in OUT: PROD(i).PUT is executed jointly with OUT(i) .GET,
and only when PROD (i) .NOTS#EMPTY and OUT (i) .BUF=EMPTY.

The equational-statement of the OUTputs is controlled by three event-
statements. If, in any state, it is possible to execute more than one
of these, a non-deterministic choice is made. After execution of one of
the controlling event-statements execution of the equational-statement
continues.

The repeated declarations of identical or similar data and procedures,
e.g. the three declarations of the PUT procedures, could be reduced to
one by the use of the SIMULA prefix-concept. This is discussed in [10],
but will not be considered in this paper.



12

The net of VERSION 3

The net has four places, one for each of the equational—statements..In
this version all place equations consist of predicates only, and this
means that they have no effect on the markings. The net has four tran-

1
2
3
4
5
6
7
8

10
11

12
13

14
15
16
17
18

19
20
21
22
23
24

25
26

27
28

29

30
31

32

RING TRANSMISSION - VERSION 3:
(system

type N: 1..L; type M: finite
type PACKET: (record SOURCE : N
DEST : N
MESSAGE: M record)
type PACKETSEQ: seq PACKET
SEQ(N): const PACKETSEQ where V i € N[M(i,-)SEQ(i)]

PROD (ID:N) :
{obiject
SENT,NOTS: PACKETSEQ init EMPTY,SEQ(ID)

PUT: (procedure SENT:="NOTS.HEAD
NOTS.DELETE procedure)

¢ SENT"NOTS = SEQ(ID) %

control

— [* match OUT(ID).GET (NOTS.HEAD)
when NOTS # EMPTY do PUT *

object)

OQUT (ID:N) :
(object
SENT,BUF, REC: PACKETSEQ init EMPTY

GET (PCK: PACKET) : (procedure REC,BUF ="pCK procedure)
PUT: (procedure SENT:="BUF.HEAD

BUF .DELETE procedure)
® 0<IBUF|<1,SENT"BUF = REC,
REC € {A(-,~ID)IN(ID).SENT||PROD (ID).SENT} ¥
control
= [*match PROD(ID).PUT when BUF=EMPTY do GET |

— [* match IN(ID).PUT when BUF=EMPTY do GET *

— [ match IN(ID®1).GET (BUF.HEAD)
when BUF # EMPTY do PUT %]

cbject)



13

33 . IN(ID:N):

34 (object

35 SENT,BUF, REC: PACKETSEQ init EMPTY

36 GET(PCK:PACKET):

37 (procedure REC,BUF:="PCK procedure)

38 PUT: (Erocedure SENT :="BUF.HEAD

39 BUF .DELETE procedure)

40 * 0§[BUF!§1,SENT“BL%‘= REC, REC = OUT(ID®1) .SENT #)
41 control

42 - [* match OUT (ID®1).PUT when BUF=EMPTY do GET %]
43 -~ [* match CONS(ID).GET(BUF.HEAD)

44 when BUF+EMPTY, BUF.HEAD.DEST=ID do PUT ¥
45 — [* match OUT (ID) .GET (BUF.HEAD)

46 when BUF+EMPTY, BUF.HEAD.DEST4#ID do PUT #
47 object)

48 CONS (ID:N) :

49 (object

50 REC: PACKETSEQ init EMPTY

51 GET(PCK:PACKET):

52 (procedure REC:="PpPCK procedure)

o3 * REC = A{(-, ID)IN(ID) .SENT %

54 control

55 = [*match IN(ID).PUT do GET #]

56 object)

57 system)

Figure 7

sitions, one for each matching pair of event-statements in Fig. 7.
Transition P-0 corresponds to the match (16-17)-(28), i.e. transfer of
a PACKET from PRODucer to OUTput. I-0 corresponds to the match
(29)-(45-46), 0-I to (30-31)-(42), and I-C to (43-44)-(55).

In our formulas we use the following conventions: i ranges over PRODucers
and OUTputs, x over INputs and CONSumers. When P-0 fires, j denotes the
IDentity of the involved PRODucer and OUTput. When 0-I fires (transmis-.
sion of a PACKET from one aggregate to the next) i denotes the IDentity
of the OUTput and i®1 that of the INput, etc. As before GEPACKETSEQ,



14

(3,0%,x,a%)!
\

(3,0%,p,0%p)

os ob or

1 1,9 ) € IDxSENTxBUFxREC

{05!0?b1§1 O?SG?b = g°%f
. i 1) 1 L

I ’

cor S is pPs
o E[A(‘, 1)Gi ”Gi 1}

. pE 2 3
(1,6 ,p0%,a%) (x,0%,p,0%p)

lO»I {(me-,~x)p}
A
\ (i®1,0%,p,0%p)
\ (x,0%,p0%,0%) /
. 4
(i®1,0%, A, 05N 7 et p 02 0%
% /
N - g
- e
- é:/'
T\ IN ib is ib i
ie  ih . s 1b _ ir ir
(x,0,%, 0, ,U;r) € IDxXxSENTXBUF xREC Oslo 71510, % T Uy v, o
\
(y.ot,po?,0%} Koot p.a? ;53
I
/
I-c| {(-,y)p}
A
{
(y,o") (y,0%p)

\

cr i
CONS {OX = A(,x)0

o2
(X,Gx ) € IDXREC

Figure 8



5

PEPACKET. Formally all arrows are of the same type. However, as an aid
to the reader the unbroken arrows indicate the direction of the trans-

mission of PACKETs.

A PACKET is sent from the PRODucer in aggregate j to the CONSumer in
aggregate y by a firing of P-0 followed by a sequence of firings 0-I,
(I-0, 0-I)* ending with the firing of I-»C when the PACKET reaches

aggregate y.

The relation between an old marking, m, and a new is incorporated in the
arc—inscriptions, except for the two transition-predicates: M(.,~x)p,
which says that I-»0 fires only when the DESTination of the involved
PACKET, p, is different from the IDentity of the INput and OUTput. And
M(+,y)p, which says that I-C fires only when the DESTination of p equals
the IDentity of INput and CONSumer.

The initial marking, My, is:

( = (ir}\rgg)? z (if}\r)\:)\)? z (XIAJAI)\); T (x,)))
i€eN ieN X€EN XEN

where the sums refer to PROD, OUT, IN and CONS in that order and
H(i,-)oi for all ie€N, (Ug corresponds to SEQ(i)).

It is easy to verify that all reachable markings may be written on the

following form: -

m= (% (irOEJ-?SrUI;n); z (irO—?Srogb;U?r)? z (X,G;S,g;b’g;r); z IX,Gf{r
1EN i€EN XEN XEN

))

Since all place equations consist of predicates only (no lists of change-
bale variables), the only way to change a marking is by transition
firings, i.e. by means of -. Thus every reachable marking can be ob-
tained as the result of a suitable sequence of transition firings start-
ing from the initial marking.

When we consider a step in a firing sequence, we use the notation m-ii,
where the components of m are named as above and:

. . ~pn . ~0s =~0b ~is aib =ir ~Ccr
fi= (£ (1,89%,80%); £ (1,895,60°,89%); & (x,618,51 10 )i T (x,557))
i€EN 1€EN XEN XEN

Analysis of VERSION 3

We state that VERSION 3 is consistent and implements VERSION 2 with
respect to the obvious mappings. We use the introduction of the "not sent"
sequence to define a set of final markings and show that this is a sub-
set of the dead markings. And we state that any transition firing gets

the system "closer" to a final marking.

Theorem 4 VERSION 3, Fig. 7, is consistent.
Proof We must show that all reachable markings satisfy the predi-

cates of all marked places:

mO _)*m =

PROD-predicates: GPS an = 09,
i i i
» ; . < ~Ob . O0s ob _ _or or . iy ois ps
OUT-predicates : 0=|0i | €71, o5 0y o;r 05 €[A(-, 1)Ui ]|Gi 1,



16

. ib is ib 1r 1% os
. - < &= =
IN-predicates : 0g] x | €1, % Ox Oy ~r O Ot
CONS-predicates: oir = A{-,x)o;s,

where m, is the initial marking and m is on the form described above.

We prove the theorem by induction on single transition firings. Since

all predicates are local, a transition firing affects at most the pre-
dicates corresponding to the involved objects and objects who receive

PACKETs from the involved objects.

Basis
m=m, implies that the predicates are trivially true.

Firing " R .
We assume that m -»*m 5 M. And we shall prove that f fulfills the place-
predicates under the assumption that m does.

t=P-0

Due to the local predicates this transition can at most affect the
PROD- and OQOUT-predicate corresponding to the two tokens involved and
the IN-predicate corresponding to the succeeding INput. From the in-
scriptions on the net we get the following, where j is the involved
PRODucer and OUTput:

~ps _ _PS .~pn _ _pn
S () = S H o : = - 3
ps) g 0] P pn) pcj Gj
~6 os ~0 ob
0s .= . ob . = D3 . = A;
) Gj Uj ) cj 0; oj
i} sor _ L
j j B

and otherwise m equals m.
From os) we get that the IN-predicate is not affected.
In the following analysis, inscriptions on the equality signs refer to

one of the five predicates above (ps, pn, os, ob or or) or to one of the
predicates which we assume to be true for m (P,0).

PROD-predicates s - 0
We shall prove that 6? 6? = 0j- We get:
~PS .pn ps ps sbn _ PSS, .pn, pn ps pn P 0
g=- B 2 {of Gx = g3 op = ; : = g.
5 3 Pl 93 3 R S T G %3
OUT-predicates - _— & o :
Wwe shall prove that 05|83°[s1, 85° 5%° = 6°F and 5%%e[a(-,~j) 518 6PS).
5%° P o, i.e. |89 = 1
] T J
A= GQb OSQOb 98 O?bp 0 c?rp oF FOr
J ] J ] i) J

<O QO or 0 . is pPs ps sy 1S .pPS
O = O Ale,~ (o7 o% = A(e,~ ; ;
2 P € [al,~3) o] | ( 5 PN [A(,~]) o5 |bj ]
Analogously, we may show that the firing of the three other transitions
also preserves the predicates. o



7

Theorem 5 VERSION 3 implements VERSION 2 with respect to (id,proj),
where id and proj are constructed as in Theorem 3.

Proof Trivial. o

Final markings
Informally a marking is final iff all packets initially contained in
the "not sent" sequences of the PRODucers have been correctly delivered

to the CONSumers. This is formally defined below.

Definition The set of final markings, FM, is:
{(z (i.GES,GED); z (i.cis,ogbfﬁir); z (X.G;S.O;b,O;r);
i€EN 1€EN XEN
r (x,05F)) | vi,x€N: A(i,-)oSF= A(+,x)0")
EN X X i
Theorem 6 If a final marking is reached then the system is terminated.

More precisely
VYmER: mMEFM = “(3Im'ER: mem' v m~am') .

Proof Intuitively we need the "global" specification of our system,
represented by VERSION 1, in our proof. It is a simple task to use
VERSION 1 via our previous theorems:

Assume
meFM
definiti ¥ 0
(definition) A(i,-)cir = 8(-,x)o; for all i,xeN
" (Theorem 5, 3 and 1
and CONS-predicates 3
of VERSION 1) A(-,x)Oth(i,x)route(i,x)=A(-,x)OES for all i,X€N
(Theorem 4 and f
PROD-predicates of
VERSION 3) route(i,x) = A A Ogn = A for all i,xeN
(definition) U
ng = A A cib = XA A ogn = A for all i,x€EN
(net-inscriptions) ol
no transition is enabled
(definition) T

m is dead.

And since there are no changeable variables, "~a" cannot be applied. o

Deadlock
The specified transport system, with its unrestricted use of buffers
of limited size, may deadlock before a final state is reached.

Example Deadlock in a not final marking. The net is characterized
by:
3 0_ 0 _ 0
N=1..3 and 01—(1,3)(1,2),62 = (2,1)(2,3) and G3=(3,2)(3,1)
With T, = {P-0(j=1,2,3)}, T2 = {0-I(i=1,2,3)} and T3 = {P-0(j=1,2,3)1}

we have that



18

T1 T2 T3
My — ™y —— m, —— m,
where m3 is dead and m3EFM. u]

If we want to exclude the possibility of deadlock in a non-final state,
we can do this by preventing undelivered packets from filling the
buffers. This may be done in a number of different ways, but we will not
discuss the subject in this paper.

Progression
Finally we consider progressicon. We define a function, A, from markings

or is ib ir
)X (x,0." ;0

os Uob 5
i T4 ble ¥ F U

m:(Z(i,GES,O?n);Z(i,oi ’ );th,gzr))

into non-negative integers:

- . _pn . _0ob g ib
where
. . k
AP(J:(l1fX1:m1)(12;x2,m2)...(1k,xk,mk)) = F (1+2x(xhej))
» h=1
Ao(j'(i‘]’X]'m‘])-.-(lk’xk’mk)) = }_: 2)( (Xhej)
hE1

As we shall see below, A measures the number of single transition-firings
necessary to go from m to a final marking. (The system may however
deadlock before a final marking is reached.)

First we state that each time the marking changes A is decreased. We
do this by showing that a single transition-firing decreases A by one:

Theorem 7

VMER VtET: m L5 M= A(m) = A(R)+1

t=P>0, involved PRODucer j. From the inscriptions on the net we get
(cf. Theorem 4):

AP(jrgg?n) = Ap(jrpapn)r where p = (. ,y, . )
= A, (3,077« (1+2x(ve3))
. b ;
No(35057) = Ag(3,A) = 0
B (3,857 = Ag(3p) = 2x(ye3).

For keN~{j} A_ and A, are unchanged, and for ieN AI is unchanged. Thus
we get: P 0

Am)+ (1+2x (y83) ) -2x (ye7)
A (i) +1

A (m)

1l

t=0-I, involved OUTput i. We get:

. . .ob
Ao(l.cib) = Ao(l,pcg ), where p = (.,v, - )



19
B . ~0b ;
= Ao(l,ﬁi ) +2x (vei)

(1@1,0121) = A (i®1,1) = 0
[(81,610) = A_(ie1,p)

1+2x[ (v (i®1)) mod L]

otherwise AO and AI are unchanged and AP is unchanged. Thus we get:

A(m) = A(R)+2x (vei)-(1+2x[ (vO(i®1)) mod L])
= A(@d)+1
The cases t=I-»0 and t=I-C may be treated analogously. o
Theorem 8
VmER: mMEFM & A(m) = 0
Proof
"-" Assume
mEFM
(cf. proof of
Theorem 6) Bt . ib
Ui = A A Oi = X A Gi = A for all i€eN
(definition) I
A(m) =0

"" Assume

Afm) =0
(definition) i
pn ob _ ib _ ;
oy = AA Oi = A A o; = A for all i€EN
(Theorem 5, 3 and
1 and CONS-
predicates of |
VERSION 1)
A(i,-)cgrnk = A(-,x)GES A oPT = A for all i,xeN
(Theorem 4 and
PROD-predicates?
of VERSION 3)
A(i,- )Gcr = A(-,x)gg for all i,x€EN
(definition) [l
meFM m}
To sum up: VERSION 3 is consistent and implements the safe states spe-

cified by VERSION 1 (Theorems 4, 5, 3 and 1). Furthermore VERSION 3
meets the progress spe01f1catlons describes by Theorems 7 and 8, which
may be paraphrased as follows: the length of any firing sequence of
VERSION 3 is less than or equal to A(m ); and if it equals A(m ) the
last element is a final marking.



270

4 . Conclusion

We have defined a simple ring-structured transport system by a step-wise
specification of its properties. Properties of all reachable states are
expressed directly in the Epsilon language by predicates. Properties
concerning progress are not formulated directly in Epsilon, but stated
separately.

The first formal description of the safe states uges predicates which
directly model the informal specification. It is important that the spe-
cification language enables one to do so since this simplifies the in-
herently unformalizable task of convincing oneself that the formal spe-
cification is adequate.

The complexity of the proofs is reduced by the use of local predicates;
and with more complicated systems this "factorization" becomes in-
creasingly important. However, the proof method works for non-local
predicates as well, which gives one the possibility of allowing a few '
"global" predicates, e.g. if these do not have any natural local counter-
parts.

In an earlier paper [11] we defined the semantics of Epsilon by a model
containing a condition-event net (to model the control flow) and a se-
parate set of variables (to model all data-attributes in a system) .
That approach was inspired by Keller [12] and Mazurkiewicz [13]. Our
present model, which uses the high-level Petri nets of Genrich and
Lautenbach [3] and Jensen [81,[9], integrates the data state in the
token-colours of a net. It is simpler than the one presented in [11],
and so are proofs based on the model.

At present we are considering the inclusion of a temporal logic in
Epsilon to be able to formulate properties concerning progress directly
in the Epsilon description.

Acknowledgements

The work on this paper has benefited from many discussions on earlier
versions with Kurt Jensen, Ole Lehrmann Madsen, Mogens Nielsen, Karsten
Bank Petersen and P.S. Thiagarajan.

References

[1] Brauer, W. (ed.): Net theory and applications. Proceedings of the
Advanced Course on General Net Theory of Processes and Systems,
Hamburg 1979. LNCS 84, Springer-Verlag, 1980.

[2] Dahl, 0.-J., Myhrhaug, B. and Nygaard, K.: Common Base Language.
Norwegian Computing Center, Oslo, 1970.

[3] Genrich, H.J. and Lautenbach, K.: System modelling with high-
level Petri nets. Theoretical Computer Science 13 (1981),
109-136.

[4] Hoare, C.A.R.: Communicating sequential processes. Comm. ACM 21 ;
8 (August 1978), 666-677.

[5] Holbzk-Hanssen, E., H&ndlykken, P. and Nygaard, K.: System
description and the Delta lanugage. Norwegian Computing Center,
Oslo 1975.

[6] Howard, J.H.: Proving Monitors. Comm. ACM 19, 5 (May 1976),

273=279.



[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

21

Ichbiah, J.D. et al.: Reference manual for the ADA programming
language. Proposed standard document. United States Depart-
ment of Defense, July 1980.

Jensen, K.: Coloured Petri nets and the invariant-method.
Theoretical Computer Science 14 (1981), 317-336.

Jensen, K.: High-level Petri nets. To appear in the proceedings
of the Third European Workshop on Applications and Theory of
Petri nets. Informatik-Fachberichte, Springer Verlag.

Jensen, K. and Kyng, M.: Epsilon - a system description language.
DAIMI PB-150, Computer Science Department, Aarhus University,
September 1982,

Jensen, K., Kyng, M. and Madsen, O.L.: A Petri net definition of
a system description language. Semantics of Concurrent Compu-
tation, Evian 1979, G. Kahn (ed.), LNCS 70, Springer-Verlag
1979, 348-368.

Keller, R.M.: Formal verification of parallel programs. Comm.
ACM 19, 7 (July 1976), 371-384.

Mazurkiewicz, A.: Concurrent program schemes and their interpre-
tations. DAIMI PB-78, Computer Science Department, Aarhus
University, July 1977.

Owicki, S.: Specification and verification of a network mail
system. Program Construction, F.L. Bauer and M. Broy (eds.),
LNCS 69, Springer-Verlag 1979, 198-234.

Wang, A.: Generalized types in high-level programming languages.
Research Reports in Informatics, No. 1, University of Oslo,
1975.



