Zsl-ad

S1eN Miad |19AsT-yBiY pue sonuewsg |euoielouaq (usspely £ Ussuey

Formal Semantics by a Combination of
Denotatio nal Semantics and High-Level
Petri Nets

Niels Damgaard Hansen
Kim Halskov Madsen

DAIMI PB-152
September 1982

ISSN 0105-8517

Computer Science Department BT
AARHUS UNIVERSITY - - E‘_
Ny Munkegade — DK 8000 Aarhus C — DENMARK ﬁr
Telep hone: 06 — 12 83 55 |' W

FORMAL SEMANTICS BY A COMBINATION OF
DENOTATIONAL SEMANTICS AND HIGH-LEVEL PETRI NETS

Abstract

Denotational semantics has proved to be an excellent tool for
the specification of nearly all kinds of declarations and
commands in sequential languages, but the description of con-

current processes is in practice nearly impossible.

High-level Petri nets, on the other hand, have proved their
value in the specification of communication and synchronization

of concurrent processes.

We propose to combine the two models into a single approach,
where denotational semantics is used to build up environments
and to describe store transformations, while Petri nets are used

to describe sequencing and communication.

This paper has been presented at the 3rd European Workshop on
Theory and Applications of Petri nets, Varenna, Italy, September
1982 . The proceedings of the workshop will be published as a
volume in Informatik Fachberichte, Springer-Verlag.

1. INTRODUCTION,

The purpose of the paper is to introduce a semantic model based on a
combination of denotational semantics [Gordonl and high-level Petri
nets [Genrichr Lautenbachl, [Jensenl. The basic idea behind our ap-

proach is due to Kurt Jensen.

Denotational semantics has proved to be an excellent tool for the
specification of nearly all kinds of declarations and commands in se-
guential languages. Even complicated manipulations of stores and en-
vironments are described in a natural way. The description of sequen-
tial control structures is handled by continuations, which have a very
nice underlying mathematics but yields rather abstract descriptions
difficult to use for non-experts. The description of concurrent

processes is in practice nearly impossible.

High-level Petri nets: on the other hands has proved its value in the
specification of sequential and especially concurrent processes. Com-
munication and synchronization are described in a natural way. It iss
however, difficult to handle complex data structures and the descrip-
tion of even simple commands: such as assignmentsrs gets only little
support from the net structure itself. The description of scope rules

is in practice nearly impossible.

As indicated above denotational semantics and high-level Petri nets
are complementary semantic toolss in the sense that the qualities of
oner to a very large degreer coincide with the weaknesses of the
other. We propose to combine the two models into a single approach:
where denotational semantics is used to build up enviromments and to
describe store transformations: while Petri nets are used to describe
sequencing and communication. A semantics of a language is: in our
approachr given along the lines used in denotational semanticsrs i.e by
defining a set of

- syntactic domains (such as declarations and commands)

- syntactic clauses (in BNF-form)

- semantic domains (such as stores, environments and high-level

Petri nets)
- gemantic functions (defining a syntax-directed mapping from syn-

tactic domains into semantic domains)

The main difference between our approach and denotational semantics is
the inclusion of high-level Petri nets as a semantic domain. This
enables wus to avoid the use of continuationss since jumps and control
structures can be represented by branches and loops in the nets. Nets
can be bound into enviromments and the semantic functions of programs
and commands map into nets. The inscriptions of the netsr on placesr
transitions and arcss are obtained by means of other semantic func-
tions. The marking of a program—-net contains a token for each sequen-
tial process. The position of the token acts as a program counter
representing the current progress of executions while the colour at-
tached to the token represents the current store of the process.

The approach is intended mainly to contribute to the specification of
concurrent languagesr, although it can be used for sequential languages
too. It 1s in section 2 introduced by means of a little sequential
languages MINIPASC, inspired byr but not being a pure restriction of
Pascal [Jensens Wirthl. Section 3 defines a concurrent languager
MINICONC: designed as an extension of MINIPASC in the direction of
Concurrent Pascal [Hansenl. The small languages reflect to a large
degree the substantial features of the corresponding large languages.
The reader 1s assumed to be familiar with Pascal and Concurrent

Pascal.

It should be remarkedr that this is the very first attempt to use
the new approach. It should be evaluated remembering the long time.
and the many effortsrs used to get denotational semantics to its cur-
rent state. If our approach turns out to be valuables much work
remains to be done. On the practical side notation and auxiliary
functions have to be improvedr while on the theoretical side analysis
methods and the well-definedness of the recursive functions involving

net domains have to be established.

2. MINIPASC.

In this section we define the syntax and semantics of a small sequen-
tial language MINIPASC inspired by Pascal. The syntax is defined in
Backus-Naur form and the semantics is defined by a combination of
denotational semantics and high-level Petri nets. In the part
described by means of denotational semantics we use as far as possible
the same notation and auxiliary functions as in [Gordonl.

For each kind of commands, Cr we define a subnet with two
distinguished places called BEGIN and END:

When a token is present at the BEGIN-place the command is ready for
executions, whereas the finish of this execution is represented by a
token present at the END-place. The colours: attached to the token at
these two placesr represent the store before and after the execution.
If not explicitly indicated the colour set attached to places is
Storer and the predicate attached to transitions is s # errs. Unless
explicitly mentioned all places are initially unmarked. Sequencing of
two commands 1is obtained by identifying the END-place of the first
command with the BEGIN-place of the second.

In Denotational semantics we use the *-operator defined in [Gordon]
p.47%f:

f*g is the function corresponding to first doing £, if £ produces
an error then error is the result of f*g otherwise the result of £
are "fed to" g. f*g is like geof except that
i) Brrors are propagated.
Suppose f: Dl—>[D2+{error}] and g: D2—>[D3+{error}] then

f*g: Dl—>[D3+{error}] is defined by

f*g = Ax.(fx = error)->errorr g(£fx)
ii) g may be curried.
Suppose f: Dl—>[[DZXD3]+{error}] and

g: D ->D ->[D +{error}] then
2 3 4

f*xg Dl =13 [D4+{error}] is defined by:

f*g = Ax. (fx=error)->error,(fx=(d',d"))->gd'qan

In nets errors are handled in two ways. If an error occurs in
evaluating the functions attached to the arcs of the net,s the token
colour is transformed into a special error-store, errss which cannot
be used in any transition firing. If an error occurs during the con-
Struction of a subnet by means of the semantic function Cr a special

error-nets errns is included as a part of the obtained program-net:

s

e

errs

In the following we define the semantics of MINIPASC along the lines
used in [Gordon]. That iss by defining syntactic domains, syntactic
clauses: semantic domains and semantic clauses.

SYNTACTIC DOMAINS.

. Primitive syntactic domains.
Ide - the domain of identifiers I.
Bas - the domain of basic constants B. The domain includes

true and false .
the domain of binary operators O.

Opr

. Compound syntactic domains.

Pro - the domain of programs P.
Com - the domain of commands C.
Dec - the domain of declarations D.
Exp - the domain of expressions E.

SYNTACTIC CLAUSES.
P ::= program D:;C

€

1]

Dg_g_incl;Cz; e+« ;C end | 1I:=E | read (I) | write (E) |
n

I(IA) I.i_.tEj;n_e_nClﬁ_Ls_eczlﬂhllgEdQC

P

D ::=D ;D ; ... ;D | var I | const I=E | procedure IP(IF);D;C

E::=B | I | EOE
1 2

where n>0 and m2 0.

The expression in the constant declaration const I=E, is composed of
constants only.

SEMANTIC DOMAINS.

. Primitive semantic domains.
Bv — the domain of basic values e. The domain includes
the truth values true and false, and an error-value, errv.
Loc - the domain of locations 1. The domain includes
two special locations "input" and "outputr.
Net - the domain of high-level Petri nets n.

- Compound semantic domains.

File = Bv * - files 1i.

Sv = Bv + File — storable values v.

Ev = Loc + Bv — expressible values e.
Proc = Net x Loc - procedures p.

Dv = Ev + Proc - denotable values d.
Env = Ide -> [Dv + {unbound}] - environments r.

Store = [Loc -> [Sv+{undef}]] + {errs} - stores s.

SEMANTIC FUNCTIONS.

O mM ™ @ 9 o =

Bas -> Bv

Opr =-> [BvxBv] -> Store -> [BvxStore]
Pro -> File -> Net

Dec => Env -> Env

Exp -> Env -> Store -> [BvxStore]

Exp => Env -> Store -> [EvxStorel]

Com -> Env -> Net

5 and 0 are defined by

B [BI]

e iff B is a literal for e
errv otherwise
(ers) iff elO e2 evaluates to e

O[O](elrez)s =

error otherwise

where error=(errvserrg)

SEMANTIC CLAUSES FOR PROGRAMS.

(P)

Pl program D;C 1li =

(EE;U*-Hf:)

The subnet denotes the net indicated by the inscription. This
notation is used in the following.

The BEGIN-place of the program-net is initially marked by
s=(ir& / inputsoutput). We consider input and output to be part
of the store s. Initially the only used locations in the store g
are "input" and "output" which have contents i and the empty file
respectively. The declarations D are collected in the empty en-
vironment ().

SEMANTIC CLAUSES FOR DECLARATIONS.

DID)Jr is the environment r updated by the declaration D.

(D1)

(D2)

(D3)

(D4)

DID 1r*D[D 1* ... *DI[D 1 iff m>0
1 2 m

PID ;D ; «.. ;D 1r =
1 2 m .
r iff m=0
Dl var I lr = rlnew r/I]
where the auxiliary function new returns a location not used in

r.

DI const I=E Ir = RIEIr() * Ae s. rle/I]
The identifiers in E may not include variables hence E 1is

evaluated in the empty store ().
D[procedure IP(IF);D;C 1r =
new r * Al.r[(D[D]r[l/IF] * CIC]:l)/IP]
At declaration time we bind to IP a pair (nr1l)r where n 1is the

net corresponding to the procedure-body C and 1 is the location
corresponding to the parameter I . We define net(r I) = n and
F P

loc(r IP) =1y i.e. the projections on the first and second com-
ponents of r I s respectively. Similar projection are used for
B

other cartesian products.

Recursive procedures are not allowed.

SEMANTIC CLAUSES EXPRESS .

(R)

(E1)

(E2)

RIElr = E[EIr * deref

where the auxiliary function

deref : EvxStore ->BvxStore

is defined by

deref e s = isLoc e => (s e = undef -> errors«(s ers))r(ers)
where the auxiliary function: isLocr tests for membership in the
semantic domain Loc. We shall without definition use other aux-
iliary functions which in a similar way test for membership of

other semantic domains.

E[Blrs (BI[B]/s)

ElIlrs

rI = unbound => errors (rIrs)

(E3) EIE.OE Ir = EIE Ir *Xe . E[E Ir *le . 0[01(e se)
1 2 1 1 2 2 1 2

SEMANT LAUSE

2
/’____-..\ //—-—..\\ /’........\\ /’——-.—-"'\
S e CH o) o L
\--.__,_// \'-.-._.._// M \""‘""/

The END-place of the net corresponding to C is identified with
i

n

the BEGIN-place of the net corresponding to C'+l'
1

(C2) ¢[1I:=E 1lr =

Elrlrs * Loc? * X1.R[E]r * update 1

where the auxiliary functions

Loc? : Ev -> Store -> EvxStore
update : Loc -> Sv ->» Store -> Store
are defined by

Loc? e s = isLoc e -> (ers)s error
update 1 v s = s[v/1]

=3

Elr]lrs * Loc? * read

where the auxiliary function
read : Loc -> Store -> Store
is defined by

(C3) CI read (1) 1r =

read 1 s = null(s input) =-> errs, update 1 (head(s input)) s
* update input (tail(s input))

(c4)

(C5)

Cl write (E) 1r =

R[E]rs * Je.update output {(s output)®e)

where ™ denotes list-concatenation.
Cl I (I) 1r = isProc(r I) AND isLoc(r I) => n, errn
P A P A

where n =

E[IA]rs * Al S.update 1 (S loc(r 1)) s

If the same procedure is called at several different places only
a single copy of net(r I) is included in the program-net.
P

The place with colour set {¢} guarantees that we return to the
correct place.
The parameter passing mechanism ig "call by value and result™.

(C6) CL if E then c else C_ Ir =

In this and the following net the transitions may fire only when
their predicates are satisfied.

(C7) CI[while E do C Ir =

(

10

3. MINICONC.

In this section we define the syntax and semantics of a small concur-
rent languager MINICONC. MINICONC 1is an extension of MINIPASC
described in the preceding section. 1In this section we specify only
the extensions and modifications made. MINICONC reflects to a large
degree the substantial features of Concurrent Pascal.

SYNTACTIC DOMAINS.

. Compound syntactic domains.
Ent - the domain of entry procedure declarations:, Y.

SYNTACTIC CLAUSES.
C = initmonitor I | initprocess I (I) | I .I (I) |
M P A M E A
delay (IQ) | continue (IQ) I eue
D ::= monitor IM;D;Y;C | process IP(IF);D;C |
Jueue 1 T Feoasrl | wws
Q1 a2 an
Y =Y ;Y ;...;Y | procedure entry I (I):D:C
1 2 n E F

where n > 0 and m > 0

The program clause defines an anonymous parameterless process called
the initial processs and its purpose is to declare and initialize
other processes and monitors. Each process and monitor can only be
declared and initialized by the initial processr and it can only be
initialized once.

Each process has exactly one monitor as parameter (except the initial
process). Entry procedures and queue variables may only be declared
within a monitor; queue variables can only be referenced from inside
the monitors whereas the entry procedures can only be referenced from

outside the monitor.

11

SEMANTIC NS.

. Compound semantic domains.

Menv = Ide -> Proc - monitor environmentss y.
Mon = NetxMenv - monitorss m.
Prcs = Menv -> Net - processesr p.
Que = Ide* - queuesrs ¢.
Dv = Ev + Proc + Mon +
Prcs + Que + Ide - denotable valuesr d.
SEMANTTI NS .

Y : Ent -> Env -> Mon

SEMANT SE ARATION
(D5) P [monitor IM;D;Y;C lr =

D{D](IM/monitor) * APL.YIYIE * Xy.r[(nry)/lml

where n =

ODELAY(I)
M

{# queue}*{empty, fulll

FR }
EE(I,

{E} Storex[(¥ gueue)+{any}]

The identifier "monitor" is used for remembering the name of the
monitor.

The monitor environmentr yr contains for each entry procedure the
corresponding net and parameter location.

There is a FREE-place for each monitor, and the token-colours at
this place are pairs. The first component represents the store
of the local variables of the monitorr while the second component
may take the names of the queue variables and the reserved iden-
tifier "any" as values. The marking of the FREE-place indicates
which processes are allowed to use the monitor: no token in-
dicates that the monitor is already occupiedr (srany) indicates
that any process may enter it, while (s:IQ) indicates that only

12

(D6)

(D7) D[dueue I

(Y1)

(¥2)

the process delayed at IQ may enter.

There is also a DELAY-place for each monitor. This is always
marked with exactly one token for each queue variable in the
monitor. The second component of the token-colour indicates
whether the queue variable is empty or not. The initial marking
of the DELAY-place is

mO(DELAY(IM)) = {(IQlaempty)}+{(IQ2:empty)}+ e +{{IQm:empty)}.

DI process IP(IF);D;C lr = r[(;&y.D[D](y/IF) % clel)/IP]

When the process is initiated it is passed a monitor environment,
yr which contains the entry procedures of the actual monitor
parameter.

_Ir[() /queue | m=0

ew rI_ 1r
! Qm lrl

E '
Q se
Ql 2 (IerIQ2r rIQm)/queue 1 m>0

A sequence of dueue-identifiers is bound to the reserved iden-
tifier "queue".

YL Y ;Y 7 oo 3Y I = (VIY_ 1D)IVIY Ir] .. [VIY 1r)
1 2 n 1 2 n

¥ | procedure entry IE(IF);D;C lr = new r * A 1.((nrl)/IE)

where n =

B

-_— —
s -~

— -
~
(U[D]r[l,lE/lF,entry] * Clel)
— e
R e

-_ —_
s
(s,any)

Storex[f queue+{any}] @ FINISH(r monitor, IE)

The identification "FINISH(r monitorrIE)" of the END-place is

used whenever the monitor is left due to the execution of a con-
tinue commandr cf. clause (Cl2). The colour set attached to the

FINISH-place is identical to the colour set attached to the
FREE-place (cf. (D5)). The identifier "entry" is used for remem-
bering the name of the entry procedure.

13

SEMANTIC CLAUSES FOR COMMANDS.

(C8) CI initmonitor IM]r = isMon(r IM) -> ns errn

where n =

(C9) CI ipitprocess I (I) Ir =
P A

(isPres(r IP)) AND (isMon(r IA)) -> nr errn

where n =

-

(r I_){menv(r I_))
g Fyldonls 1)

O

() is the empty store.

14

(Cl0) CI I .I (I) Jr = (isMon(r I)) AND (isLoc(r I)) ->
M E A M A

(isProc(menv(r IM) IE) -> nr errn)r errn

where n =

(§,any)

)

P[lAJrS * le s.update 1 e §

e - \
(net(menv(r IM}IE;> () FREE(TY)

— s

NI
FIN SH(IM,IE)

(s,a) AJ

update (r IAJ (51) s

and 1 = loc(menv(r(r monitor)) (r entry)).

menv(r(r monitor)) is the monitor environment. When passed the
entry procedure identifier, (r entry)., it returns a pair (nr1l)
where 1 is the location corresponding to the entry procedure

parameter.

(Cll) CI[delay (IQ) Ir = (IQ IN (r queue)) => nr errn

where n =
) DELAY (r monitor)
Fs
s
(azempty)*(s,any),(errs,any)
AN
Bv) FREE (r monitor)
~ 7
update 1 e s
and 1 = loc(menv(r(r monitor)) (r entry)) cf. (C10).

A delay on a nonempty queue variable causes an error-marking of

15

the FREE-place. Otherwise the parameter value is preservedr and
the monitor is left open.

(cl2) CI continue (IQ) lr = (IQ IN (r gueue)) =-> ns errn

where n =

l) DELAY (r monitor)
=

a=full=(s,I.), (s,any}

Q

e
FINISH(r monitor,r entry) \ |

-

and 1 = loc(menv(r(r monitor)) (r entry)) cf. (Cl0).

A continue on a nonempty dqueue variable causes the calling
process to leave the monitor and hand over the monitor to the
waiting process. If the queue-variable is empty the calling
process returns from the monitor leaving it open. In both cases
the rest of the entry procedure is skipped. Therefore no arc
leads to the END-place of this command; instead an arc leads to
the FINISH(r monitor:r entry)-placer which is the END-place of
the entry procedure (cf. (C1l0)).

16

Acknowledgements.

We are grateful to Rurt Jensen for stimulating discussions and many

helpful comments.

Re e

[Genrichs Lautenbach]
Genrichs H. and Lautenbach: K.: System modelling
with high-level Petri nets.
Theoretical Computer Science 13 (1981) 109-136.

[Gordon]
Gordons G.: The Denotational Description of
Programming languages.
Springer Verlag, New York 1979.

[Hansen]
Hansens P.B.: The Architecture of Concurrent
Programs.
Prentice Halls New Jersey 1977.

[Jensen]
Jensens K.: High-level Petri nets.
DAIMI PB-151, 1982.

[JensensWirth]
Jensens K. and Wirth, N.: Pascal user manual and
report.
Springer Verlags New York 1975.

17

