HIGH-LEVEL PETRI NETS

Kurt Jensen

DAIMI PB-151
September 1982

ISSN 0105-8517

Computer Science Department
AARHUS UNIVERSITY
Ny Munkegade — DK B00O Aarhus C — DENMARK
Telephone: 06 - 12 83 55

This paper was presented at the 3rd European Workshop on
Applications and Theory of Petri Nets, Varenna, Italy, September 1982.
The proceedings of the workshop will be published as a volume in
Informatik Fachberichte, Springer Verlag.

HIGH-LEVEL PETRI NETS

Kurt Jensen

Computer Science Department
Aarhus University, Ny Munkegade
DK-8000 Aarhus, Denmark

Abstract This paper combines two closely related net models,
predicate/transition nets and coloured Petri nets, intoc a new net model
called high-level Petri nets. The new model is intended to combine the
qualities of the twooldmodels intoa single formalism, and we propose in
future to use high-level Petri nets instead of both predicate/transition

nets and coloured Petri nets.

1. INTRODUCTION
The practical use of Petri nets to describe concurrent systems has shown

a demand for more powerful net types, to describe complex systems in a

manageable way. In place/transition nets (PT-nets) it is often necessary
to haﬁe several identical subnets, because a folding into a single sub-
net would destroy the possibility to distinguish bewteen different pro-

cesses.,

The development of predicate/transition nets (PrT-nets) was in this

respect a significant improvement [1]. In PrT-nets information can be
attached to each token as a token-colour and each transition can fire
in several ways represented by different firing-colours. The relation
between a firing-colour and the involved token-colours is defined by
expressions attached to the arcs. Restrictions on the possible firing-
colours are defined by predicates attached to the transitions. It is
now possible to distinguish between different processes, even though
their subnets have been folded into a single subnet. It should be em-
rhasized that the "colour" attached to a token or a firing can be a
complex information unit, such as the entire state of a process or the
contents of a buffer area. New colours can be created by transition
firings and there may be an infinite number of them.

Although PrT-nets turned out to be very useful in the description of
systems they have a serious drawback concerning formal analysis. One of

the most important analysis methods in place/transition nets is the

2

construction of linear place-invariants by means of homogeneous matrix
equations [4, 5]. This method is generalized to PrT-nets in [1], but the

place-invariants there contain free variables (over sets of colours).

To interpret the place-invariants it seems necessary to bind the frge
variables via a substitution, where at least partial knowledge about the
firing sequence leading to the marking in question must be used. Until
now no satisfactory solution to the problem is published, although some
substitution rules are sketched in [1] without a proof of their sound-

ness.

To overcome this problem coloured Petri nets (CP-nets) were defined in

[2]. The main ideas of CP-nets are directly inspired by PrT-nets, but
the relation between a firing-colour and the involved token-colours is
now defined by functions attached to the arcs and not by expressions.
This removes the free variables, and place-invariants can now be inter-—
preted without problems as demonstrated in [2]. Moreover CP-nets
explicitly attach a set of possible token-colours to each place and a
set of possible firing-colours to each transition. Compared to PrT-nets,
where the colour-sets are only implicitly defined, this often gives a
mcre comprehensible net. On the other hand the functions attached to
arcs in CP-nets sometimes seem to be more difficult to understand than

the corresponding expressions of PrT-nets.

As indicated above there is a strong relation between PrT-nets and CP-
nets, and from the very beginning it has been clear that most descrip-
tions in one of the net models can be informally translated to the

other model and vice versa. This paper shows how to combine the gualities

of PrT-nets and CP-nets into a single net model called high-level Petri
nets (HL-nets). We propose in future to use HL-nets instead of both

PrT-nets and CP-nets.

An HL-net can be represented in two different forms: by drawing a direc-
ted bipartite graph with inscriptions attached to nodes and arcs, or

by defining a 6-tuple containing formal mathematical elements such as
sets and functions. The first form uses mainly the notation known from
PrT-nets, i.e. expressions and predicates containing free variables.

It is appropriate for the description and informal explanation of a
system. The second form uses mainly the notation known from CP-nets,
i.e. functions and colour-sets. It is appropriate for the formal analy-
sis of a system. e.g. by place-invariants. The two forms are eguivalent

in the sense that a formal translation between them exists.

3

HL-nets differ from PrT-nets in the following ways:

=~ The set of possible token-colours at a place is explicitly
defined.

- The number of tokens added or removed at a given place may

be different for two firing-colours of the same transition.

- The set of allowable expressions and predicates is not
explicitly defined (but if desired this can be done by means
of a many-sorted algebra, from which the allowable expres-
sions, predicates, functions and sets can be built up).

HL-nets differ from CP-nets in the following way:

- The incidence-function is split into a negative and a

positive part (which allows us to hande side-conditions).

Place-invariants can be interpreted without problems in HL-nets, but
they may be difficult to find. The problem is that the elements of the
incidence-matrix are no longer integers (contained in a field), but
functions (which only constitute a non-commutative ring) and thus divi-
sion of two elements may be impossible. For this situation no general
algorithm is known to solve homogeneous matrix equations. To overcome
this, four transformation rules were defined in [3]. The transformation

rules are inspired by the method of Gauss-elimination used for matri-
ces, where all elements belong to a field. They can be used to trans-
form the incidence-matrix of a CP-net. It is proved that the transfor-
mation rules are sound, in the sense that they do not change the set of
place-invariants, By the remarks above we cannot expect them to be
complete, in the sense that all place-invariants can be found by them.
But, as demonstrated in [3], it is often possible to transform the
original incidence-matrix to such a degree that a number of place-
invariants immediately can be found by inspection of the simplified

matrix. An interactive Pascal program has been created, which allows a

user sitting at a terminal to evoke the different transformation rules
on a given incidence-matrix. This edp-system greatly enhances the prac-

tical value of the transformation rules.

In this paper we define the simple HL-nets to be those nets, where the
number of tokens added or removed at a given place is the same for all
firing-colours of a given transition. Each simple HL-net has an under-

lying PT-net, obtained by ignoring all colour-information. Analogously

4

we define a class of simple place-invariants for HL-nets, and it can be
shown that each simple place-invariant of a simple HL-net, by ignoring

all colour-information, transforms into a place-invariant of the under-—
lying PT-net. Since all place-invariants of PT-nets can be found, e.qg.

by Gauss-elimination, this shows us where to lock for simple place-

invariants of simple HL-nets.

2. HIGH-LEVEL PETRI NETS IN TUPLE-FORM AND GRAPH-FORM
In this section we define the tuple-form and graph-form of HL~-nets and

we show how to translate between the two forms. But first we need to
introduce bags.

A bag, over a non-empty set S, is a set, which may contain multiple
occurrences of elements from 8. In this paper we shall only deal with
finite bags, and each bag b over S is represented as a formal sum

Z b(s)s

SES
where the non-negative integer b(s) denotes the number of occurrences
of the element s in the bag b. The formal sum is convergent since b is
finite, i.e.

Z b(s) < =

SES
The set of all finite bags over the non-empty set S will be denoted by
BAG(S) .

As an example {a,b,d,b} is a finite bag over the set {a,b,c,d}, and it

is represented by the formal sum a+2b+d.

Summation, scalar-multiplication, comparison, and multiplicity of bags

are defined in the following way, where b,b1,bZEBAG(S) and ney

by+b, = & (by(s) +Dbys))s
SES

Z (n b(s))s
SES

=]
x

o
Il

b,sb, e Vs€S: b.l(s) = by(s)

o
n

L b{(s)
sES

When b1§b2 we also define subtraction:

b,-b = I (b,(s) - b(s))s
= ses 2 1

5

A function FE[S-BAG(R)], where S and R are non-empty sets, can be
extended uniquely to a linear function FE€[BAG(S)-BAG(R)] called the
bag-extension of F:

VhEBAG(S): F(b) = X b(s)xF(s)
sS€S

Functions F and F defined as above are said to be simgle, with multi-
Qlicitz nEW, iff
¥s€S: |F(s)| = n

which is equivalent to
VLEBAG(S): |[F(b)| = n|b]

When F and F are simple, their multiplicity is denoted by |F| and |F|.
It can be shown that F and P are simple iff there exists a bag of func-
tions bEBAG ([S-»R]) such that
F = x b(f) £
fels-R]
where the sum and product denote the normal sum and scalar-multiplication
of functions. If |F| =|F|=0 the functions are said to be trivial.

We shall use [....] [....]L and [....]SL to denote the sets of all

SJ’
simple/linear functions.

Definition An HL-tuple is a 6-tuple H = (BT, I_,I+,M0) where
(1) P is a set of places
(2) T is a set of transitions
{3) PNT = @, PUT # ¢
(4) C is the colour-function defined from PUT into non-empty sets
(5) I_ and I, are the negative and positive incidence-function

defined on PxT, such that L fp,t)y, I+(p,t)E
[BAG(C(t))—»EAG(C(p))]L for all (p,t)eEpxT

(6) M, the initial marking is a function defined on P, such that
Mg (p) €BAG(C(p)) for all pep.

Next we define the graph-form of HL-nets, but first we need to define

expressions and predicates.

Let DO’D1'D2""’Dn be a sequence of non-empty sets, where n21. When
the typed lambda-expression

Av 2 2,...,vn:Dn. EXP:DO

1:D1’V :D

defines a function from D1xD2x...an into D, we say that EXP is an

expression with type DO and with the set of free variables

Vo {v1:D1,v2:D2,...,vn:Dn}. A predicate is an expression with type
Boolean.
Definition An HL-graph is a graph with two disjoint sets of nodes

called places and transitions. Any pair of a place and a transition may

be connected with a set of directed arcs (which may go in both direc-

tions).

(1)

(2)

(3)

Places

aArrows.

Each place p has attached to it a non-empty set of token-

colours C(p) and an initial marking Motp)EBAG(C(p)).

Each arc (with place p as source/destination) has attached
to it an arc-expression with type BAG(C(p)) and with an

arbitrary set of variables.

Each transition has attached to it a predicate called the
guard. The guard can only have those variables which are
already in the immediately surrounding arc-expressions.

To avoid degenerate transitions with no firing-colours the

guard must differ from the constant predicate FALSE.

are drawn as ellipses, transitions as rectangles, and arcs as

Next we show how to translate HL-graphs into HL-tuples:

(1)

(2)

(3)

B, ‘T, MO’ and C's restriction to P, are immediately defined
by the places, transitions, initial-markings and token-

colours of the HL-graph.
For each te€T we define:

Cle)={(d;,dys-.,d) ED xDyx. . %D | (A (V3 #Vys - e 0sV,) -PRED)(E, ’dZ""'dn)]

where PRED is the predicate attached to t and V(t)=
{v1:D1,V2 Sres
immediately surrounding arc-expressions.

:D ,vn:Dn} is the set of all variables in the
Let (p,t)€PxT be given and let C(t) and V(t) be defined as
above. If a single arc from p to t exists, with expression

EXP, we define I_(p,t) to be the bag-extension of the

7
following function with domain C(t):
A(v1,v2,...,vn): C(t) . EXP

If several arcs from p to t exist, I_(p,t) is the sum of
the corresponding bag-extensions, constructed above. If no

arc from p to t exists, I_(p,t) is the trivial function.

(4) I, is defined in the same way as I_, but by means of the

arcs from transitions to places.

Next we show how to translate HL-tuples into HL-graphs. We only use a

single variable x: |/ C(t) typed with the union of all firing-colours:
LeT

(1) Places, transitions, initial-markings and token-colours are

immediately defined by P, T, My and by C's restriction to P.
(2) Each transition t gets the predicate x€C(t) as guard.

(3) There is an arc from place p to transition t iff I_(p,t) is
non-trivial. The expression attached to the arc is I_{p,t)(x).

(4) There is an arc from transition t to place p iff I, (p,t) is

non-trivial. The expression attached to the arc is I+(p,t)(x).

Let GRAPH and TUPLE be the set of all HL-graphs and HL-tuples respective-
ly, and let

9l GRAPH -» TUPLE

1F
TZ: TUPLE - GRAPH

be the two translations defined above.

Theorem 1
T1 is surjective, but not injective.

T2 is injective, but not surjective.

Proof From the definition of T.I and T2 it can be checked, that
T1°T2 is the identity function on TUPLE. This implies surjectivity of
T1 and injectivity of TZ' Proof of the two negative properties is

trivial. [s]

T1 induces, by its preimages, an equivalence relation on GRAPH:
g~ g'le T(g) = T(g")

For each equivalence class there exists exactly one element, which is
contained in T2(TUPLE) and this element is said to be in normal form. The

8

translation T,2T, maps each HL-graph into an equivalent HL-graph in
normal-form. The normal-form is, except for minor differences, identical
to the graph-form used for CP-nets in [2]. In the following figure

normal-forms are shown by *.

As an example the following HL-graphs are equivalent. The right-most one

is in normal-form:

AxB B xB B
(a,b) X (2P2)(x)

TRUE XEAxB

F(a) b FeP. (x) PZ(X)

3. PLACE-INVARIANTS FOR HL-NETS
In this section we define the dynamic properties of HL-nets. We do

this in terms of the tuple-form, but all definitions can easily be
translated to cover the graph-form.

Let an HL-net H = (P,T,C,I_,I+,M0} be given. For convenience we shall
assume P and T to be finite.

A marking of H is a function M defined on P, such that M(p)€BAG(C(p))
for all p€P. A step of H is a function X defined on T, such that

X(t)EBAG(C(t)) for all t€T. The step X has concession in the marking Miff

YpEP: I I_(p,t) (X(t)) £ M(p)
teT

which can also be written

where I_, X and M are viewed as matrices (of size |P|x|T|, |T|x1, and
|p|x1, respectively), % denotes generalised matrix-multiplication (to be
defined below) and £ denotes element-wise comparison of matrix-elements

(which are bags).

Let & = (a,.) \ .. be a matrix with elements which are linear
1j"1gise,TEyse

functions mapping bags into bags and let B = (bjk)1§jgs,1§k§t be a ma-

trix with elements which are bags or linear functions mapping bags into

bags. Then we define the generalised matrix-multiplication such that

A*B = (c, where

1k’1§i§r,1§k§t'

s
¥i€l..r vkel. .t: Sy T E a..b

The juxtaposition aijbjk means function composition (when bjk is a func-
tion) or function application (when hjk is a bag). We shall only use the

generalised matrix-multiplication in situations where the matrix-
elements fit together, in the sense that the function compositions/
applications and sums are possible. The generalised matrix-multiplica-
tion was already introduced in [2] and it is a standard construction in

the theory of non-commutative rings.

When X has concession it may fire and thus transform M into a directly-
reachable marking M', such that

M' = (M- I_*X) + I *X

Reachability is the reflexive, symmetric and transitive closure of
direct-reachability. M is reachable iff it is reachable from MO.
A weight-function of the HL-net H, with respect to a non-empty set U,
is a function W defined on P, such that W(p)€[BAG(C(p))+BAG(U)]L for
all peP.

Theorem 2 If a weight-function W satisfies W*I_:W*I+, we have
W*M=W*M' for all markings M and M' reachable from each other.

Proof If M' is directly-reachable from M by firing of step X we get,
due to distributivity and associativity of the generalised matrix-

multiplication:

10

WXM' = W ox (M - I+ 1)
=W XM - WAL RX 4+ AT
= W * M- (WXI_-w*1)#x
= W*M

Thus the desired Property is satisfied when M' is directly—reachable
from M and the proof is finished by induction over the number of steps

between M and M', a
Corollarz Bt W*I_:W*I+, the equation W*M:W*M0 is satisfies for all

reachable markings M, and it is called the linear pPlace-invariant in-
duced by W.

4. SIMPLE HL-NETS AND SIMPLE PLACE*INVARIANTS

When A is a matrix, of bags or simple linear functions, we shall use [A[
to denote the matrix obtained from a by replacing each matrix-element
by its multiplicity.

Lemma
ﬁA1*A2f = fA1I*[A2f whenever A,*A, is defined,
Proof The compeosition of two simple linear functions F1=F is a

simple linear function with multiplicity {F10F2{=[F1iiF2J and the appli-
cation F(b) of a simple linear function to a bag is a new bag with mul-
tiplicity [F(b) |=|F||b]. o

A? HL-net H* = (P,T,C,I_,I+,M0) is simple iff I (p,t) and I+(p,t) are
simple for all (p,t)EPxT, and we then define its underlying PT-net by
w0 : .

P* = (P,T,[I_[,1I+§,JMOJ). A weight-function W of H* ig simple iff W(p)

is simple for all PEP, and we then define its underlying weight-function

by |W|, which is a weight-function of p*.

Theorem 3 If a simple weight-function w induces a linear place-
invariant of a simple HL-net H*, then its underlying weight-function | W]
induces a linear place-invariant of the underlying PT-net p*, .

Proof
IWi*1_| = [w*z_| = W, | = [w[*|z,]. @

1l

The above theorem shows us where to look for simple place-invariants in
a simple HL-net H*. First we calculate a maximal set of linear indepen-
dent weight-functions inducing place-invariants of the underlying pT-
net P*, e.g. by means of Gauss-elimination. Then, for each of these
weight-functions W, we try to construct an overlying simple weight-
function w* inducing a place-invariant of H*; and to do this, we know
that each element of W* must be a simple function with a multiplicity
which equals the corresponding element of W. Since functions do not con-
stitute a field, but only a non~commutative ring, there may in some
cases be several "independent" weight-functions of H* overlying the same

weight-function of p*.

Given a weight-functicn W of P*, there is always at least one overlying

weight-function W of H*:
VPEP: W(p) = ABSoW(p)

where ABS is a function which counts the number of tokens in a bag by map-
pPing each token-colour into the only element of a singleton E = {&ds

This means that we in W forget about all colour-information and thus W

is that, of the weight-functions overlying W, which provides us with the

least information.

5. AN EXAMPLE: THE TELEPHONE SYSTEM

In this section we describe a telephone system, as it may be viewed by
users. The status of a phone may change from INACTIVE to the situation,
where the receiver has been LIFTed and you hear a CONTINUOUS tone. NEXT
a number may be DIALled and you hear NO TONE, until you either hear a
tone with SHORT intervals (indicating that the dialled phone is ENGAGED)
Or a tone with LONG intervals (indicating that the dialled phone is

RINGING). In the latter situation the receiver may be LIFTed at the

called phone and the two phones are CONNECTED until one of the two re-
Ceivers are REPLACEd. When a number is DIALled, a REQUEST is set up at
the telephone exchange. If the dialled phone is INACTIVE, the REQUEST
may be transformed to a CALL, and next to a CONNEXION, if the receiver

is LIFTed at the called phone.

An HL-graph for the telephone system is shown in Figure 1. There are
two different colour-sets: the set of all phone numbers, U, and the set
of all pairs UxU, where the first component represents the calling
phone, while the second component represents the called phone. REQUEST,
CALL and CONNEXION have V = UxU as the set of token-colours, while all

12

other places have U as the set of token-colours. ENGAGED is the com-
plement of INACTIVE. This means that ENGAGED is marked with 'a colour
wEU iff INACTIVE is not. In Figure 1 we have omitted the arcs which up-
date ENGAGED.

Inspired by [6] three different kinds of arcs are used to indicate the
three possible expressions: x:U, y:U, (x,y):UxU. This visually splits
the graph in three superposed parts, which describe the actions of a
calling phone, a called phone and the telephone exchange, respectively.
Initially Mo(inactive) = Iu = I u while all other places are unmarked.
uel
The HL-graph in Figure 1 and its corresponding HL-tuple constitute a
formal model, which allows us to determine even the more subtle proper-
ties of the specified telephone system. As an example, we can investi-
gate what happens when a phone is calling itself; and it can be seen
that a CONNEXION can be removed only by the calling phone and not by the
called phone. If only an informal description was given, it would be
easy to overlook some of these special cases.

The HL-graph in Figure 1 can easily be translated to an HL-tuple with
the incidence-matrix shown in Figure 2. We have represented the negative
and positive incidence-function in a single matrix, where negative terms
belong to I_, while positive belong to I,. By means of the transforma-
tion rules from [3] we can obtain a simplified matrix containing only
four columns (cl-c4 in Figure 3). By simple inspection we find six
weight-functions (wl-wé in Figure 3) inducing six place-invariants
(i1-16 in Figure 4). It is easy to interpret the invariants in terms of
the described system. As an example, i6 says that the RINGING phones are
exactly those for which a CALL is waiting; i4 says that a phone is CON-
NECTED or REPLACED iff it is contained in a CONNEXION.

The functions ID, P1 and P2 are all simple linear functions, with multi-
plicity 1. This means that the underlying PT-net becomes the net of
Figure 1, with all colour-information removed and all arcs having

weight 7. The simplified incidence-matrix of Figure 3 has an underlying
PT-matrix with 10 rows and 4 linear independent columns. Thus there is

a basis of exactly 6 weight-~functions inducing place-invariants of the
underlying PT-net. The weight-functions underlying wi-wé (in Figure 3)

constitute such a basis.

13

==

i

inactive

ﬂ‘-u—@

engaged ngaged I

|§fgce 3 I

Te-
place 1

b
discon-
nected

TELEPHONE SYSTEM

e

Xx:U
=t t—>

vy
— | —lb

(x,y) s UxUg,
—_—-

Mo(inactiVE) =Iu

_—
~
UxU
-
—

>4

M
~

ringing e UxU

_//
- -

~
-
~
o -
— —
|
re- I
place 7 I
|
|
re-
laced [
J
Te-
lace 8

Figure 1: HL-graph describing a telephone system

14

TELEPHONE
SYSTEM

1ift 1
dial

free
engaged
lift 2
replace 1
replace 2
replace 3
replace 4
replace 5
replace 6

replace 7

ILft .3

replace 8

o
<
<
<
<
<
a
a
<
<
=

<

(=}

<

inactive

continuous

o| ID -P -ID

connected
disconnectad

replaced

U ® {om

engaged
request
call

comexion

m
Py PP, =P, |-ID -ID PP

< < «
g
|
=]
1
=}
T
g

20 -ID -D

<
-
o

ST

-ID+ID

-ID

Figure 2: Incidence-matrix for HL-net

TELEPHONE

SYSTEM

w5

w6

inactive

no tone

cont, short,

U | -ID Zu m ID
disc U b P]31+p P +P,

u 4P bus} -ID

leng

ringing

engaged
request
call

connexion

connec, replaced | U -P,-P, m -ID

-ID

~-ID

-ID P

< < <4 g
{
H
=}

-ID

5Py

By

Figure 3:

Simplified matrix, initial-marking and

weight-functions for HL-net

15

TELEPHONE SYSTEM
(11) M(inactive) + M{continuous) + M(short)
+ M(disconnected) + M(no tone) + M(long)
+ M(ringing) + M(connected) + M(replaced) = I u
(i2) M(inactive) + M{engaged) = I u
(1i3) M(no tone) = P1c:M(request)
(i4) M(connected) + M(replaced) = (P1+P2)o M(connexion)
25) M(long) = P1<>M(calM
(i6) M(ringing) = P2c>M(Call)

Figure 4: Place-invariants for HL-net

Acknowledgements
A number of useful suggestions for this work were made by Morten Kyng,

Kurt Lautenbach, Mogens Nielsen, and P.S. Thiagarajan.

References

[11] H.J. Genrich and K. Lautenbach, System modelling with high-level
Petri nets, Theoretical Computer Science 13 (1981) 109-136.

[2] K. Jensen, Coloured Petri nets and the invariant-method,
Theoretical Computer Science 14 (1981) 317-336.

[3] K. Jensen, How to find invariants for coloured Petri nets, in:
Mathematical Foundation of Computer Science 1981, J. Gruska and
M. Chytil (eds.), Lecture Notes in Computer Science, vol. 118,
Springer Berlin 1981, 327-338.

[4] K. Lautenbach, Liveness in Petri nets, Interner Bericht
ISF-75-02.1, GMD Bonn (1975).

[5] G. Memmi and G. Roucairol, Linear algebra in net theory, in:
W. Brauer (ed.), Net theory and applications, Hamburg 1979,
Lecture Notes in Computer Science vol. 84, Springer Berlin 1980,

273-223.

[6] H. Oberquelle, Communication by graphic net representations,
Bericht Nr. 75, Fachbereich Informatik, Universitdt Hamburg,
1981.

