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ABSTRACT

This paper presents the Epsilon language and defines its formal
syntax and semantics. Epsilon is a language for the description
of systems, which contain concurrent components, some of these
being edp-equipment or by other means representing highly struc-
tured information handling. The actions consist of continuous
changes described by equations, of communication between the

components and of normal algorithmic actions.

Epsilon may be used for the description of computer systems to-
gether with their environments, e.g. production equipment and
human operators. Parts of such a description may serve as the
system specification from which computer programs are developed.

Epsilon is not itself an implementable language.

This paper defines the semantics of Epsilon by means of a model
based on high-level Petri nets, i.e. a model founded on the no-
tion of concurrency. The model also uses denotational semantics

and equation systems.

Keywords and phrases: system description, concurrency, high-

level Petri nets, denotational semantics.
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1.1 SYSTEMS

As the societies evolve human beings have to cope with phenome-
na of growing complexity. In many situations a system concept
is used to identify and delimit a set of phenomena, which some-
one wants to describe or analyse. This includes social, econo-
mical, ecological and technical systems. In a number of areas

conceptual frameworks are developed to assist people in under-

standing and changing svstems. These frameworks differ widely

from one another as do the kinds of systems.

Below we sketch three different systems to illustrate variations

with respect to:
the scale of the system and the resources involved.
the timespan over which the system exists.

+ the construction of the system (is it from scratch,

does the system evolve slowly and is it reasonable to

think of it as "constructed" at all?).

+ the stability of the system (how fixed are the rules

governing the processes in the system?).

Some systems, such as the political system in Denmark, evolve

over hundreds of years by the actions of millions of people.
Radical changes are few. But some happen, and over the years
significant changes accumulate, e.g. in the role of the royal

institution.

Other systems are designed and implemented over a few years, e.g.

the process control system of a plant. Are in operation for some

years and then disposed of. The changes constituting the con-

struction and destruction of a system is usually not considered



as being part of the system. In the present case different de-
grees of destruction of the plant may or may not be considered

as invalidating our conception of the process control system.

Still other systems exist only for a brief period of time and
are the result of the actions of a few people, e.g. a system

consisting of two chess players. In this case any diviation

from the rules of chess could be considered as being outside

our conception of the system.

As indicated above each system is a part of the world. It is

possible to treat it in a number of different ways and by dif-
ferent conceptual frameworks. The actual choice depends on the
purpose for which the system is considered. Obvious choices in
the three cases above would be conceptual frameworks from poli-

tical science, engineering and chess.

In all three cases system description play an important role in

understanding the considered system: the process of making a
system description often adds considerably to ones understand-

ing, as do the reading and discussion of a system description.

In some cases system descriptions may be more or less formally
analysed to deduce properties of the system [Kyng, 82]. For many
consciously constructed systems the construction is based on

system descriptions.

When direct analysis of the system description is complicated,

computer simulation may often be useful. For exampel simula-

tion has been used to predict voter-response to different kinds
of campaign strategies. For the process control system, testing
of the involved programs may be viewed as simulation. And in

the chess example simulation may be used to create chess-robots.

A simulation program may also be viewed as a system description,
and Epsilon is heavily influenced by the description tradition

and the conceptual framework of Simula fDahl, Myhrhaug & Ny-



gaard, 70]. It was observed that the process of making and dis-
cussing a simulation program often is more important in under-
standing a system than the results from running the program.
This, and the inadequacy of existing descriptional tools, led
to the development of Delta [Holbazk-Hanssen, H&ndlykken & Ny-
gaard, 75], which is a language aimed solely at system descrip-
tion, and not itself implementable on a computer system. Delta
incorporates a number of the main concepts from Simula, but
tries to avoid the restrictions imposed to make Simula execut-
able on computer systems. Delta may be used to describe a large
variety of systems containing human beings, edp-equipment,

physical/chemical production processes etc.

A system description language imposes by its construction (con-

ceptual framework) a set of restrictions on any description

which can be made in the language. This limits the kinds of
systems, which can sensibly be described. Furthermore, when
making a description, it is in general not possible (or desir-
able) to include all aspects of a system: a limited set of prop-
erties must be selected and described, while the rest is ignored.
When the same part of the world is described with different pur-
poses, the obtained descriptions may differ widely, but still
each of them may be very adequate for its purpose (and inade-
quate for the other). The remarks above indicate, that each sys-

tem description should be evaluated in accordance with the purpose

of making the description. Thus a simulation program describing
voter-response can be evaluated pragmatically as an aid in allo-
cating resources in a political campaign or scientifically as

an aid in exploring a sociological theory. In the latter case

an important part in the evaluation is the relation between the
sociological theory and the simulation program: How easy is it

to express the central concepts of the sociological theory in the
programming language? How much is needed to explain the program
to people familiar with sociological theories as the one consid-

ered? Et cetera.



1.2 BACKGROUND AND INTENDED USE OF EPSILON

The Epsilon language is based on concepts from computer science
and it is primarily intended to be used in this area. We have
used and developed concepts from Simula [Dahl, Myhrhaug & Ny-
gaard, 70] and Delta [Holbzk-Hanssen, Handlykken & Nygaard,

75]. Most notably the classes of objects and interruptable con-
tinuous state-transformations. Our semantic model is based on

high-level Petri nets [Genrich & Lautenbach, 81], [Jensen, 81a, 81b, 82].

The conceptual framework of nets, especially the notion of con-
currency [Petri, 75, 76], has influenced the development of
Epsilon. Finally we have tried to use the insight recently gain-
ed in the area of concurrent programming [Hansen, 78], [Hoare,
78], [Ichbiah et. al., 80] and [Kristensen, Madsen, Mgller-Peder-
sen & Nygaard, 81].

As indicated by the examples on simulation, a language like
Epsilon may be used to describe a large variety of systems. The
primary candidates to be considered for description in Epsilon

are, however, systems containing concurrent components, some of

these being edp-equipment or by other means representing highly

structured information handling. Parts of such a description may

serve as the system specification from which computer programs
are developed. Epsilon is not itself an implementable language.
As a typical example consider the process control system men-
tioned earlier. To develop the edp-components of such a system
one needs descriptions of the production equipment, the daily
actions of the workers, demands from management etc., as well
as descriptions of the edp-components themselves. Systems ana-
lysts, workers and management will need different descriptions
of the edp-components and their interaction with the other com-
ponents of the system. Epsilon is intended to contribute to the

development of tools to be used in such cases.

The degree of technical knowledge required of users of Epsilon

depends on how they are supposed to use the language. People who



are to make comprehensive descriptions themselves or to study
formal specifications in detail need a thorough knowledge of
the language. This is the case for people who are to make an
edp-implementation or perform detailed analysis. Those who are
to read and discuss descriptions should need to know only the

basic concepts.

In this paper we emphasize the description of object-structure,
control-flow, synchronization and the distinction between inter-
ruptable, continuous actions and non-interruptable, instantaneous
actions. In contrast, we only sketch how to describe predicates,
partial-events, parameters, expressions, and types. For these
syntactic categories a user of Epsilon is free to choose any
suitable notation. If Epsilon is used in the design of an edp-
system, it may be convenient to use the corresponding constructs

from the intended programming language.

We have kept the language relatively small, and a number of
additional concepts are needed in order to make Epsilon a full-
fledged system description language, capable of dealing with
large systems in a manageable way. These additional concepts are,
except for a "virtual" concept, discussed in the sections on
extensions. For an introduction to the virtual concept see
[Holbak-Hanssen, Handlykken & Nygaard, 75]. A preliminary ver-
sion of Epsilon has been described in [Jensen, Kyng & Madsen,

79b] and in [Jensen & Kyng, 80].
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1.3 SOME EPSILON CONCEPTS AND AN EXAMPLE

A system described in Epsilon consists of a number of objects,

which each has a set of attributes and executes a sequence of

actions. The attributes of an object may be constants, vari-

ables, types, functions, procedures, tasks and internal objects.
The objects may synchronize their actions via variables or by
direct communication. The actions of an object consists of an

alternating sequence of equational-actions and event-actions.

Most of the time objects execute equational-actions. Such an

action is specified by an egquation consisting of a list of
changeable variables and a predicate to be kept unceasingly
satisfied during the execution of the action. When a number of
objects concurrently execute equational-actions the conjunction

of their predicates constitutes the effective predicate, while

the union of their wvariable-lists constitutes the set of

changeable variables. Informally the semantics of a set of

equational-actions concurrently executed by different objects
can be described as follows: the effective predicate is kept
unceasingly satisfied by changing the changeable variables.

In other words, the effective predicate defines an equation sys-
tem, which is solved with respect to the set of changeable
variables and these are updated accordingly. If several solu-

tions exist one is chosen non-deterministically.

Although some systems cannot be adequately described using a
classical time concept, there are many situations where the
existence of a global, totally-ordered and continuous time-scale
shortens the description and enhances its clarity. Thus we allow
each Epsilon object to contain an implicity defined data-attri-
bute TIME, which represents model-time for that object. Each
TIME variable can only be used by its own object, and it can
only be fead, not updated by the object. Instead each TIME vari-

able is implicitly updated by the transition rules of the seman-

tic model. For systems with a classical time concept all TIME var-
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iables are continuously increased in a synchronous way, i.e. they

all have equal values in any system state. Systems with non-
classical time concepts can be described in Epsilon, either by
avoiding use of the implicitly defined TIME variables, or by defin-

ing.non-standard rules for the way the TIME variables are updated.

The predicate of an equational-action may use a TIME variable

and in this way describe a continuous state transformation exe-
cuted over an interval of TIME values. The actual transformation
may depend on the actions executed concurrently with the one con-
sidered, but only within the limits specified by its predicate.
Also the duration of an equational-action may depend on the ac-

tions of other objects.

Event—actions are instantaneous (with respect to the TIME vari-

ables) and specified by sequences of algorithmic commands. Each
event-action constitutes one indivisible state transformation.
The effect of an event-action does not depend on concurrently
executed actions. However in some cases two or more objects
jointly execute a single event-action, this is illustrated by

the example below:

We consider four identical balls following a circular orbit,

cf. fig. 1.1. The balls may move in both directions or stand
still. Elastic collisions between the balls may occur. Two balls
which collide will exchange their velocities (speed and direc-
tion). It is assumed that no external forces influence the sys-

tem, i.e. no friction, no gravitation, and no loss of energy.

positive

direction 4

Figure 1.1
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This system can be described in a number of different ways, de-
pending on e.g. the purpose of the description and the language
used. One description has just been presented using normal English
and fig. 1.1. In fig. 1.2 and 1.3 we present more formal descrip-
tions using Epsilon. The purpose is to illustrate a variety of
Epsilon constructs, and we do not discuss the specific choices

made for these two descriptions.

1 COLLIDING BALLS:

2 (system

3 BALL (1..4):

4 (object

5 POS, VEL: REAL

6  move with constant VELocity and
7 change POSition accordingly *)
8 control

9 — [ when colliding with neighbour ,
10 ‘ exchange VELocities %]

11 restart

12 object)

13 system)-

Figure 1.2
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The system contains four BALL objects with identical specification
iines (3-12). A BALL has two variables, POS and VEL, of type REAL,
which describe POSition and VELocity. They are assumed to be
initialized, but their initial values are not specified. Each BALL
executes an equational-statement (6 —7), which describes the con-
tinuous movement with constant VELocity between two collisions.
The duration of the equational-action is determined by a control-
section (8 -11). When a collision occurs, the event-statement
(9-10) is executed jointly with the matching event-statement of
the colliding neighbour BALL. The matching pair of event-state-
ments together describe the effect of the collision, i.e. the ex-
change of VELocities. After the collision both BALLs restart exe-
cution of the equational-statement, which describes continuous

movement.

The thin lines surrounding some of the language constructs in fig.
1.2 indicate the syntactic structure of the description. They can

be omitted and have no influence on the semantics.

The description in fig. 1.2 is still rather informal, especially the
statements. In fig. 1.3 we have made a more formal description of
the system. The structure of the description is the same, except
that we introduce a procedure, GETVEL, to be used in the communica-
tion between colliding BALLs. GETVEL has an input parameter V,
which is call by value. Each BALL contains an equational-statement
(8) and a control-section (9 - 19). The equational-statement speci-
fies a variable, POS, to be changed by the execution of the state-
ment and a predicate, which determines the value of P0OS, while the
BALL is moving continuously without collisions. The barred names in
(8) denote the values of the corresponding variables when execution
of the statement began. The control-section determines when to stop
execution of the equational-statement. This happens when the BALL

instantaneously collides with its left or its right neighbour.

A collision with the left neighbour is represented by the event-
statement (10 - 13). The do-clause describes that the object itself
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10
11
12
13

14

15
16
17
18
19

20

21

COLLIDING BALLS:

(system

BALL (ID:1..4):
(object
POS, VEL: REAL

GETVEL (V: in REAL):
(procedure VEL := V procedure)

control

— [* match BALL(ID O 1). GETVEL (VEL)
when POS= BALL(IDO 1).POS,
VEL < BALL(ID © 1) .VEL
do GETVEL %

restart

— [* match BALL(ID® 1).GETVEL (VEL)
when POS=BALL(ID® 1).POS,
VEL > BALL(ID® 1) .VEL
do GETVEL ¥

restart

object)

(* POS | POS = POS + VELx (TIME - TIME) %

system)

Figure 1.3
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executes GETVEL. The match-clause describes that this must be done

jointly with the left neighbour executing its GETVEL procedure.
The when-clause describes the conditions for a collision: the two
BALLs must be adjacently POSitioned (11) and the VELocity of left
neighbour must be greater than that of the BALL itself (12). The
parameter for each of the GETVEL procedures is supplied in the
match-clause, i.e. by the other BALL, and the result of the joint
execution of the two GETVEL procedures is that the two colliding
BALLs exchange their VELocities. A collision with the right neigh-
bour is described analogously (15 -18). In both cases execution of

the equational-statement restarts after the collision, with new

values for the barred variables.

1.4 EQUATION NETS AS PART OF THE LANGUAGE (EXTENSION)

The Epsilon language is essentially one-dimensional, in the sense
that each system description consists of a sequence of characters.
However, two-dimensional graphical tools are often valuable in
system description [Brauer, 80], [Bg¢dker & Hammerskov, 82]. A
simple example is fig. 1.1 and another is given in chapter 2,
where it is used to illustrate the object-structure in a system,
fig. 2.2.

Our semantic model, called Equation nets, is based on high-level
Petri nets, where colours, i.e. information, is attached to the
individual tokens [Genrich & Lautenbach, 81], [Jensen, 81a,

81b, 82]. Equation nets are themselves a powerful two-dimen-
sional graphical tool. In a later version we want to take advan-
tage of this by extending Epsilon in such a way that system de-
scriptions may directly include Equation nets. It will then be
possible to describe a system by a mixture of net elements and
sequential Epsilon text. To get the final net representing the
semantics of a system description the text part will be translated
into Equation nets, while the net part will be included directly

(i.e. viewed as being already translated).
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The extended Epsilon will be defined in such a way that the Equa-
tion nets representing the semantics of extended Epsilon descrip-
tions have all the essential properties of the nets corresponding
to the present version of Epsilon. An obvious choice will be to
define the extended Epsilon in such a way that the two sets of
properties are identical. It is however not necessarily the best
choice, since some of the restrictions placed on the present ver-
sion of Epsilon, in order to get well-structured textual descrip-
tions, may be unnecessary for the graphical descriptions to be

included in the extended Epsilon.

1.5 DIRECTIONS OF FUTURE WORK

The language presented in this paper is the result of a develop-
ment effort initiated by our analysis of the Delta language
[Jensen, Kyng & Madsen, 79a]l]. The language is syntactically and
semantically simpler than Simula and Delta (and the earlier ver-
sions of Epsilon). Two major reasons for this are: the improved
treatment of concurrency and non-determinism obtained from net
theory and the substitution of the Delta interrupt by the more
structured control/select-sections. Inclusion of additional con-
cepts needed to make Epsilon a full-fledged system description
language seems to present only few problems. Thus this paper
ends the first phase of language development and definition. Our

work in the nearest future will focus on the use of the language.

In [Kyng, 82], it is investigated how to specify and verify a
small distributed system in Epsilon. It is demonstrated that equa-
tional-statements are well-suited for the specification of partiel
correctness by means of invariants. We intend to continue this
work by considering the use of temporal logics for the direct spe-
cification of total correctness and by further developing the

top-down specification and verification method of that paper.

Furthermore we are going to use Epsilon in a realistic system de-

velopment process. Experience with Delta already indicate that the
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use of such a language can be a valuable help [Handlykken & Ny-
gaard, 80]. We want to investigate the potentials of Epsilon when
a relatively large number of people with different backgrounds are
communicating in a system development process. Especially we want
to experiment with the use of Epsilon extended with Equation nets,

(cf. section 1.4).

The remaining chapters of this paper are organised as follows:
Chapter 2 treats the object structure of Epsilon systems and the
specification of attributes. Chapter 3 describes the specifica-
tion of actions. The two chapters contain an informal description

of their subjects and a discussion of some possible extensions.

Chapter 4 defines the syntax and static semantics of Epsilon.
Chapter 5 introduces our semantic model, and chapter 6 defines

the semantics of Epsilon.






Chapter 2

SPECIFICATION OF ATTRIBUTES

2.1 Hierarchical systems of objects

2.2 Attribute declarations

2.3 Scope rules

2.4 Dynamic object generation and de-

struction (extension)

2.5 Templates (extension)

21

25

28

31

32

19






21

2.1 HIERARCHICAL SYSTEMS OF OBJECTS

An Epsilon system consists of a hierarchy of objects. One of these

objects, the system object corresponds to the delimitation of the

system and contains all other objects as parts. The description of
the system object textually encloses the description of the other

objects. Each object is characterised by a selected set of attri-

butes, such as variables, types, procedures and objects, and by a

sequence of actions, which may involve the object itself and other

objects. Consider the following description, fig. 2.1, where a
number of objects are named and the hierarchy described. No other

kinds of attributes and no actions are described.

TELEPHONE COMMUNICATION:
(system

USER (1.. no of wusers): object

PHONE (1.. no of phones): object

NETWORK :

(object

EXCHANGE (1.. no of exchanges): object

LINE (1.. no of 1lines): object

object)

system)

Figure 2.1

In this example the system object encloses three different kinds
of objects: PHONEs, USERs and a NETWORK. This last object is it-
self the encloser of two kinds of objects: EXCHANGEs and LINEs.
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The system object is the direct encloser of PHONEs, USERs and

NETWORK, while it is the second level encloser of EXCHANGEs and

LINEs. Each object has at most one encloser, at each level. In
general any object may enclose other objects (have them as attri-
butes), and thus an Epsilon system is a nested structure of ob-

jects.

We may depict the object hierarchy of fig. 2.1 as shown below,

where each object is represented by a box. A pile of boxes indi-
cate a family of objects, i.e. a set of objects originating from
the same object-declaration and thus having identical attribute-

and action-parts.

TELEPHONE COMMUNICATION

NETWORK

USER PHONE X — LINE
CHANGE

Figure 2.2

When an object INT is the attribute of another object ENC it is
INT as a whole, which is an attribute of ENC. In particular this
means that the individual attributes of INT are not attributes

of ENC.

We have in fig. 2.1 used:

NAME: object

for object-declarations, where we do not want to describe the inter—
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nal structure (attributes and actions) at this stage, i.e. as

an abbreviation of the declaration:

NAME: (object object).

Similar abbreviations will be used for the other kinds of attri-
butes: constants, variables, types, functions, procedures and
tasks.

We note that the following conventions have been used in fig. 2.1:

The formal elements are:

+ declared names, written in upper case letters,
e.g. "PHONE".

keywords, written in underlined, lower case
letters, e.g. "system".

+ special symbols, e.g. ":".

The informal elements are:

undeclared entities, written in lower case letters,

e.g. the integer constant "no of phones".

In general informal elements are described by lower case letters,
and such elements may be attributes as well as actions, as illus-
trated by fig. 2.3 below. The dashed line separates the descrip-

tions of attributes and actions.
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USER (1.. no of users):
(object
the USER has physical access to

a number of PHONEs

the USER knows how to use a
PHONE

— e e e ————————— i — o —— o ——— T — o — {3 ot S o, i . s o . s

most of the time the USER is
not using a PHONE

when an accessible PHONE rings the

USER may answer the call

when the USER wants to, he may

make a call

object)

Figure 2.3
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2.2 ATTRIBUTE DECLARATIONS

In Epsilon attributes are described by declarations. In section

2.1 we encountered the object-declaration. In fig. 2.1 the main

purpose of the object-declarations was to introduce formal names
such as USER(I) and PHONE(I), by which we can reference and dis-
tinguish the different objects. Furthermore the encloser rela-
tion was defined. In fig. 2.3 the object-declaration was used to

give an informal description of the USER objects.

The ability of an object to execute a specific action pattern con-
taining continuous, non-instantaneous actions may be described by

a task-declaration in that object. In fig. 2.4 the main purpose of

the task-declarations is to introduce formal names by which we can

call the two action patterns.

USER (1.. no of users):
(object

the USER has physical access to a
number of PHONEs

ANSWER THE CALL: task

MAKE A CALL TO (name of USER): task

most of the time the USER is not
using a PHONE

when an accessible PHONE rings, the
USER may ANSWER THE CALL

when the USER wants to, he may
MAKE A CALL TO (name of USER)

object)

Figure 2.4

Now we elaborate the descriptions of the tasks ANSWER THE CALL and
MAKE A CALL TO. We do so by introducing the action patterns LIFT,
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DIAL and REPLACE. In all three cases we choose to regard the cor-
responding action as instantaneous and non-interruptable. Such

action patterns are described by procedure-declarations. The DIAL

procedure is considered to be local to the task MAKE A CALL TO,
whereas the other two are not, since they are used in both tasks.
The procedure-calls are enclosed in square, starred brackets. This

distinguishes them from task-calls.

USER (1.. no of users):
(object

the USER has physical access to
a number of PHONESs

LIFT: procedure
REPLACE: procedure

ANSWER THE CALL:

(task
get to the ringing PHONE
[* LIFT #]

carry through the conversation
[* REPLACE #]
task)

MAKE A CALL TO (NAME: 1.. no of users):
(task
DIAL (NO: 1.. no of phones): procedure

find an accessible PHONE to
make a call from

[* LIFT %
[* DIAL (number of NAME) %]
carry through the conversation
¥ REPLACE #*]

task)

description of the action-part

object)

Figure 2.5
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In fig. 2.5 we have included additional formal and informal ele-
ments. For each parameter we have specified a formal name and an

informal type. In the procedure-call:

DIAL (number of NAME)

"number of" may be considered as an undeclared function converting
a username to a phone number. It can be declared by the following

function-declaration:

NUMBER OF (NAME: USER NAME): function return PHONE NO

where USER NAME and PHONE NO are declared by the following Evie-

declarations:

USER NAME: type 1.. no of users
PHONE NO: type 1.. no. of phones

The type-names are written in upper case letters to indicate that they
are declared, while the two integer constants "no of users" and

"no of phones" still are written in lower case letters to indicate that
they are informal, undeclared language elements. In this paper we
use the types known from PASCAL (integer, real, array, enumeration,
etc.), but with a slightly changed syntax. The two integer constants,
"no of users" and "no of phones", can be formally defined by the

following data-declarations:

NO OF USERS, NO OF PHONES: const INTEGER

Data-attributes are either constants or variables. In the latter
case the keyword "var" is optional. All data-attributes are initia-

lized, but in the case above the initial values are unspecified.

We have now encountered six different kinds of declarations and

they introduce six different kinds of attributes: objects, tasks,
procedures, functions, types and data. Each kind of declaration is
allowed to contain declarations of its own kind and of all succeeding
kinds (referring to the list above). As an example procedures are
allowed to contain procedures, functions, types and data, but not

objects or tasks.
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2.3 SCOPE RULES

The scope rules of declared names are based on the static struc-

ture of Epsilon descriptions: Each attribute is directly observable

(and can be denoted by its name) in the entire syntactic entity in
which it is declared, except for those inner syntactic entities
which declare an attribute with the same name (redeclaration). When
an object D is directly obervable, each attribute A in D is

indirectly observable and can be denoted by the notation "D.A"

known from Simula. Indirect observability is used for three differ-

ent purposes:

a) To observe attributes in objects, which are not enclosers,
but in the object hierarchy can be reached by ascending
(outwards) through the enclosers to some level and then
descend (inwards) exactly one step. Such objects are called
lateral objects, and their attributes are not directly ob-
servable. As an example consider the object hierarchy of
figure 2.2. The attributes of a PHONE are indirectly observ-

able from the LINEs, but not vice versa.

b) To observe attributes, which cannot be directly observed,

because they are hidden by a redeclaration.

c) To emphasize that a directly observable attribute belongs
to a certain object. This will always be done when we use

procedures or functions declared in other objects.

Above we have, for all parts of an Epsilon description, defined the

set of attributes, which are observable, directly or indirectly. It

is, however, not all observable attributes, which can be used to
describe the different kinds of actions and attributes, and thus we
now define the set of useable attributes as a subset of the observ-
able. To do this we distinguish between internal attributes belonging
to the considered object and external attributes belonging to other

objects.
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All internal attributes are useable whenever they are observable.
For external attributes, there are the following restrictions:
External tasks are never useable. External types are only useable

when they are directly observable. External procedures are only

useable in the match-clauses of external event-statements, which

are to be executed jointly with the procedures own object (c.f.
section 3.5). External data and functions are only useable in the
predicate of equational-statements (c.f. section 3.2), in the when-
clauses of external event-statements, which are to be executed
jointly with the attributes own object, and in initialisation-clauses
of data-declarations (where they have to be directly observable).

In all three cases the type of data and the parameter types and re-

turn type of functions have to be useable.

As an illustration of the rules for observability and useability of
functions, types and data we consider fig. 2.6, which describes some
attributes of a TELEPHONE COMMUNICATION system. The object hierarchy

is as described in fig. 2.2.

The types declared in the system object are useable by all objects
in the system. One of these are used in each PHONE object "NO:
PHONE NO" and one of them in each USER object "NAME: USER NAME".
The function RINGING of PHONE (I) is useable by the USERs and the
other PHONEs by means of "PHONE(I). RINGING". The STATUS variable
of PHONE(I) is observable, but not useable since the type of this
variable is internal to PHONE(I) and thus non-useable for the other

objects.
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TELEPHONE COMMUNICATION:

(system
NO OF USERS, NO OF PHONES: const INTEGER
USER NAME: type 1.. NO OF USERS

PHONE NO: type 1.. NO OF PHONES

USER (NAME: USER NAME): object

PHONE (NO: PHONE NO) :

(object
RECEIVER: (DOWN, UP) init DOWN
RINGING: function return BOOLEAN

object)

NETWORK :
(object

EXCHANGE (1.. no of exchanges): object

LINE (1.. no of lines): object

object)

system)

Figure 2.6
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2.4 DYNAMIC OBJECT GENERATION AND DESTRUCTION (EXTENSION)

In the present version of Epsilon the object hierarchy is static

in the sense that all objects of a system exist during the entire
period which the system description covers. In a later version of
the language we will include the possibility of dynamic creation
and dynamic destruction of objects, to describe that objects pass-
es the system boundary. Dynamic generation of objects is well-
known from Simula and is also included in Delta. In [Jensen, Kyng

& Madsen, 79al]l we discuss dynamic generation and dynamic destruc-
tion of objects and proposes to include both explicitly in system
description languages. When we include dynamic object generation

an "object pattern" declaration is needed. Following Simula we name
this a class-declaration, c.f. the next section. Class-declarations
must be allowed to include parameter-clauses, and it must be possib-

le to declare references as known from Simula and Delta.

We do not want to specify an upper limit on the number of objects
of a certain class. In condition/event nets this presents a problem,
and in [Jensen, Kyng & Madsen, 79al] we use infinite nets (but only
finite markings). In coloured Petri nets the situation is easily
handled by allowing the component of the token colour, which re-

presents object identity, to have an infinite range.
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2.5 TEMPLATES (EXTENSION)

In a later version of Epsilon we will introduce templates, based
on the prefix concept of Simula. Then object—-declarations will
have the following form, where the class CLA is a template for

the object OA being declared:

Form A: OA: object
(CLA
declarations

action-part
CLA)

The object OA gets all the properties of CLA together with the
properties descibed by itself: The attributes of OA is the attri-
butes of CLA combined by disjoint union with the attributes de-
clared by OA
bined with the actions described by OA itself. In section 3.9

we shall explain how to describe the merging of the two action-

itself. The actions of OA is the actions of CLA com-

parts.

For the general form of object-declarations, shown above, we shall

allow three different shorthands:
Form B: The declaration

0 (object

B*
declarations
action-part

object)

is a shorthand for the following object-declaration, where
CLASS is a language-defined class having those properties,

which are shared by all objects:

OB: object

(CLASS
declarations
action-part

CLASS)
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Form C: The declaration

OC: object CLA

is used to declare an object O which have exactly the

c’
properties of class CLA, i.e. as a shorthand for the

following object-declaration:

OC: object (CLA CLA)

Form D: The declaration

OD: object
is used to declare an object OD for which we do not want
to describe attributes or acticns at this stage, i.e. as

a shorthand for the object-declaration:

OD: object (CLASS CLASS)
Object-declarations of form B and D are used in the rest of this
paper, while A and C are not (due to the absence of templates

and class-declarations).

Classes can be used as templates to define objects, but also
to define new classes, and in this way we can describe tree-struc-

tured hierarchies of templates. Each template inherits all the

propérties of the classes in its template sequence, i.e. the
templates which lie between the root and the template in question.
An object declared by form A is said to be an instance of its

direct template CLA, but also to be an instance of each template

in the template sequence of CLA. As shown in [Dahl, Dijkstra &
Hoare, 72] templates are a strong and convenient tool for the
structuring of large system descriptions. They allow a combina-

tion of top-down and bottom-up development.

Above we have considered templates for objects and classes. Anal-
ogously it is possible to introduce templates for all the other kinds
of attributes and for blocks, event-blocks and evaluations (c.f. section
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3.6). We then introduce, for each kind of entity, a main form A
and three abbreviations B, C and D (corresponding to the four
forms of object-declarations shown above). The notation, intro-
duced for attribute-declarations in sections 2.1 - 2.2 and for
blocks, event-blocks and evaluations in section 3.6, is howeveronly a
subset of these forms, since we in the main sections of -the paper do
not consider templates and abstract data types. The following
table, fig. 2.7, gives an overview of the use of templates. For

each kind of entity the table gives:

+ the kind of template used

the name of the default template, i.e. the template having

those properties, which are shared by all entities of the

kind in guestion

the forms of definitions used throughout the main sections

of this paper

Kind of Kind of Default Forms used
entity template template in this paper
class class CLASS NONE
object class CLASS B, D

task task TASK B, D

block task TASK By D
procedure procedure PROCEDURE By D
event-block procedure PROCEDURE B, D
function function FUNCTION B, D
evaluation function FUNCTION B, D

type type TYPE Cy D

data type TYPE c, D

Figure 2.7

Objects, blocks, event-blocks, evaluations and data use classes, tasks, proce-
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As an example of class- and object-templates consider the following
description, where an object OBJ, with template CLA, declares two
and CLA,, an object OBJ1, and a family of objects OBJ

classes CLA1

OBJ: object
(CLA
CLA1: (class
class)
CLA2: class
(CLA1
CLA1)
OBJ1: object CLA1
OBJz(finite set): object
(C?A2
CLA2)

CLA)

The object hierarchy of fig. 2.8 is as shown in fig. 2.9, where we

have omitted CLASS from all template sequences

Figure 2.8

2:



OBJ
B I
OBJ1 |
___________ OBJ2
CLA
1
CLA2
CLA.I |
CLA

Figure 2.9
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3.1 CONTINUOUS AND INSTANTANEOUS MODE

The dynamic properties of an Epsilon system can be described

by means of its possible behaviours. Each behaviour alternates

between continuous mode and instantaneous mode. It can be

viewed as a relation between model-time and the corresponding

system states.

In continuous mode the state transformation is implicitly

described by means of an equation system, which is unceasingly

solved as model-time increases continuously over a closed

interval. In instantaneous mode the state transformation is

explicitly described by means of algorithms and model-time is

constant. A more detailed description of the two modes is given

in the following sections and in section 6.8.

Each object in the system may have an implicitly defined data-
attribute TIME, which represents model-time for that object.
The TIME variables are only useable by their own object, and
they can only be read, not updated by the object. Instead they

are implicitly updated, by the transition rules of the semantic

model, when the system is in continuous mode. For systems with
a classical time concept all TIME variables are continuously

increased in a synchronous way; i.e. they all have equal values

in any system state. Systems with non-classical time concepts
can be described in Epsilon, either by avoiding use of the TIME
variables, or by defining non-standard rules for the way the TIME

variables are updated.

The basic actions of continuous mode and instantaneous mode are

described by equational-statements and by event-statements

respectively. Groups, interruptions, loops and branches are

described by blocks, tasks, control-sections and select-sections.
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3.2 EQUATIONAL-STATEMENTS

An equational-statement may have the following form:
(* VirVoreea sV | predicate ¥

The curved parentheses indicate that an equational-action

is described. The list VirVoreea vV, consists of those variables
which may be changed by the action. They must all be internal to
the object executing the action. The predicate defines a function
from states into truth-values. It may contain external data-

attributes. The predicate together with the wvariable-list is

referred to as the equation describing the action.

An equational-statement is normally executed over a non-
instantaneous period of model-time, represented by the TIME
variable taking all values in a closed interval [t1,t2], where
t1<t2. During that period the evolving system states are im-
plicitly described by the predicate, which is kept unceasingly
satisfied by changing the variables from the list as TIME is

continuously increased.

Normally a number of objects concurrently execute an equational-
action each. Then the conjunction of their predicates constitutes

the effective predicate, while the union of their variable-lists

constitutes the set of changeable variables. The effective pre-

dicate is kept satisfied unceasingly by assignments to the change-
able variables. This can also be viewed as the continuing solving
of an'equation system, where the changeable variables are the
unknowns, while the effective predicate is the set of egquations

to be solved. If, at some value of TIME, more than one solution
exists, one of them is chosen non-deterministically. If no

solution exists the description is erroneous.
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This kind of state transformation is called continuous mode.

In the semantic model execution of an equational-action is
represented by a place, which holds a token. During continuous-
mode no tokens are moved, but the colour attached to tokens

may change, representing the updating of TIME and of the

changeable variables.

As an example of an equational-statement consider the following,

which describes the changing position of a falling object:
(* pOS | POS = POS - 3xGx (TIME-TIME)Z %

POS is a variable of the object and describes its position.

POS is listed to the left of the vertical bar indicating that
POS is changed during the execution in such a way that the
predicate to the right of the bar is kept unceasingly satisfied.

G is a constant of the system object describing the strength of

the gravitation.

In the predicate of equational-statements a variable-name with
a horizontal bar denotes the value, which the variable had when

execution of the equational-statement began. Barred variables

may also be used in the predicate of event-statements (cf. sec-
tion 3.4). There they denote the value, which the variable

had when the immediately preceding equational-action began.

Next consider a system containing a TRAIN and some PASSENGERS:
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TRANSPORTATION:
(system

TRAIN:
(ocbject
POS,VEL: REAL

object)

PASSENGER(1..no of passengers):
(object
POS,VEL: REAL

object)

system)

Figure 3.1

The action of the TRAIN is described by the following equational-

statement:
TIME

 POS | POS = POS + [VEL at ¥
J
TIME

A PASSENGER walking in the TRAIN may be described by the
following equational-statement, where VEL means a PASSENGER's

"relative" velocity, and POS is his "absolute" position:

TIME
* POS | POS = POS + J VEL dt + (TRAIN.POS-TRAIN.POS) ¥
TIME

The first equational-statement above is executed by the TRAIN,

while each PASSENGER concurrently executes a version of the
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second eqguational-statement. All predicates of the equational-
statements are included in the effective predicate, which
determines the values of the changeable variables TRAIN.POS
and PASSENGER(1) .POS,...,PASSENGER(no of passengers) .POS, as

a function of TIME.

In continuous mode the wvariables of an okject can only be
changed by equational-statements executed by the object itself.
This means that in continuous mode the variables of an object
cannot be changed, unless they are mentioned in the wvariable-
list of the equational-statement currently being executed by the
object. If the variable list of an equational-statement is
omitted no variables of the object executing the statement are
changed during that period of continuous mode. If the predicate
is omitted execution of the statement imposes no restriction on
the system state. This corresponds to the predicate, which is
always satisfied. Thus the equational-action described by

" (= A" has no effect on the system state. It is called the

neutral equational-action.
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3.3 INTERNAL EVENT-STATEMENTS

An event-statement may have the following form:
[* when predicate do partial-events *]

The square brackets indicate that an event-action is described.
The predicate defines a function from states into truth-values.

Partial-events is a sequence of assignments, procedure-calls,
event-blocks, alternative-, and repetitive-constructs which describes

a sequential algorithm. The event-statement can only be executed

if the predicate is satisfied. The total sequence of partial-
events defines a single state transformation, which is executed

as an indivisible and instantaneous action (i.e. without changing

TIME) .

The event-statement described above is internal in the sense

that it describes an event-action, which is executed by a single
object. Internal event-statements are only allowed to use
attributes, which are internal to the object executing the
statement. In section 3.5- we consider event-statements, which
are external in the sense that they, together with external
event-statements of other objects, describe a single event-

action, which is executed jointly by all the involved objects.

Normally a number of event—actions are executed concurrently.
However, concurrent event—-actions are executed by disjoint sets
of objects, and thus the above rules guarantee independency
between them, in the sense that disjoint sets of data-attributes

are used. This kind of state transformation is part of

instantaneocus mode. In the semantic model execution of an event-

action is represented by a transition firing. Concurrent event-

actions form one step in the firing sequence.

As an example of an internal event-statement consider the

following, which describes the elastic collision between the
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falling object from section 3.2 and the ground:
[* when POS = 0 do VEL := -VEL *]

To describe this collision as an instantaneous action is of
course an abstraction. In reality the falling object interacts
with the ground for some period of time during which they
slightly deform each other. For a number of purposes, however,
it is convenient to consider this complicated interaction as

an instantaneous, indivisible action, where the total effect is

to negate the velocity of the falling object.

If the predicate is omitted in an internal event-statement, the
statement can always be executed. If the partial-events are
omitted no state transformation is performed. Thus the event-
action described by "[* *I" can always be executed. It has no
effect on the system state and is called the neutral event-action.

3.4 STATEMENT SEQUENCES

Each object executes a strictly alternating sequence of

equational-actions and event-actions. Execution of an equational-
action normally continues over a period of model-time, and this
period ends when the subsequent event-action becomes executable.
An event-action is instantaneous and immediately followed by

the subsequent equational-action.

As a very simple example, consider the following sequence of two
statements, which also shows that equational-statements and

event-statements can be informally described by means of lower
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case text strings which describe the changeable variables, pre-

dicates and partial-events.

(* talking on a phone ¥

[* when conversation is over
do replace regeiver ¥

Execution of the equational-statement is ended when the event-
statement becomes executable, i.e. when the predicate of the

event-statement becomes satisfied.

Assuming that there has been paid for a certain PERIOD of time

we may write:

(* talking on a phone %)

[* when TIME - TIME = PERIOD
do replace receiver =]

The barred variable refers to the value of TIME when execution
of the preceding equational-statement began, and thus the pre-
dicate becomes true when the conversation has been going on

for a PERIOD of time.

As another example consider the following sequence of statements,
which describes the melting and subsequent hardening of an alloy:

increase (TIME-TIME, TEMP, ENERGYSUPPLY ¥
MELTED do ENERGYSUPPLY := 0 %
decrease (TIME-TIME, TEMP) %

I

* TEMP | TEMP
[* when  TEMP
(* TEMP | TEMP

The first equational-statement describes how the temperature
variable TEMP increases as an undeclared function of elapsed

time, initial temperature and ENERGYSUPPLY. When TEMP reaches
MELTED, which is a temperature slightly higher than the melting
point, the event-statement becomes executable and the ENERGYSUPPLY
is cut off. Next the second eéquational-statement is executed. It
describes how TEMP decreases as an undeclared function of elapsed

time and the temperature when the congealment began.
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For this to be a reasonable description, the two undeclared
functions, increase and decrease, must have a number of proper-
ties, e.g. continuity. Especially the value of TEMP, at the
moment of TIME when ENERGYSUPPLY is cut off, must equal MELTED.
This is guaranteed if the function decrease fulfills the follow-

ing: VY t20: decrease(0,t) =t.

This accordance between an event-action and the succeeding equa-
tional-action is something which we demand all descriptions to
fulfill:

+ an event-action must guarantee that the predicate
of the succeeding equational-action 1is initially

true; furthermore

+ an event-action must not destroy the predicates of

concurrent equational-actions.

For most descriptions it is trivial to convince oneself that

the above restrictions are fulfilled. We believe that this is
the case for all descriptions considered in this paper. In some
cases it is, however, necessary with a proof to be certain that
a description fulfills the restrictions. This problem is treated

in [Kyng, 82].

Another approach to the guestion of accordance between actions
is to impose a number of "syntactic" restrictions on the use of
variables. However, before imposing such restrictions on all
descriptions we want to gain more experience by using the Epsi-

lon language in different areas.

If sequencing and control structure of an cbject demand two
equational-statements to be executed immediately after each
other, the two corresponding equational-actions are intervened
by a neutral event-action. Analogously, if two event-statements
immediately follow each other their execution is intervened by

a neutral equational-action. This convention, where neutral
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event- and equational-actions are implicitly inserted, guarantees

that all objects strictly alternate between event- and equational-

actions.

Next consider the situation where the alloy is transferred to some
forms before congealment. This can be described in a number of
different ways, obtained by substituting the event-statement

from the description above by one of the following four statement

sequences:

MELTED do ENERGYSUPPLY := 0

(a) [* when TEMP :
~— TRANSFER ALLOY TQ FORMS #

(b) [* when TEMP = MELTED do ENERGYSUPPLY := 0 ¥
[* TRANSFER ALLCY TO FORMS *]

(c) [* when TEMP = MELTED do ENERGYSUPPLY := 0 #
(* transferring alloy to forms %
[* when forms full #

(d) [ when TEMP = MELTED do ENERGYSUPPLY := 0 *

¢ transferring alloy to forms until full #

In the first two cases TRANSFER ALLQOY TO FORMS is a procedure

(and thus part of an event-statement to be executed instantaneously).
In case (a) the procedure is executed together with the cut off

of ENERGYSUPPLY. In case (b) the procedure is executed as an
individual event-action following the cut off of ENERGYSUPPLY.
Between the two event-actions a neutral equational-action is
executed. The execution of this nutral equational-action 1is

ended immediately, since the event-statement describing the

succeeding event-action has no predicate and thus can be executed

immediately. This means that the two event-statements in case (b)
are executed in sequence, but at the same moment of model-time

(i.e. the same value of TIME).

In the last two cases transferring alloy to forms is an (informally
described) equational-action. In case (c) the action is described
by an equational-statement, whose execution continues until the
predicate of the succeeding event-statement becomes satisfied.

Assuming that there is enough alloy, the predicate becomes satis-
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fied after some finite, non-zero period of model-time. The effect
of the event-action is to end the equational-action at that moment
of model-time. The event-action itself has no effect on the system
state, since the event-statement contains no partial-events. Case
(d) is equivalent to case (c¢), except that we have introduced a
shorthand notation, which allows us to describe an equational-
action and an event-action by a single statement. This kind of
notation can also be used, when one of the actions is to be described
formally or when the event-action precedes the equational-action.
The need for such shorthands, and their precise definition, is
determined by the kind of the system, which we describe. In the

description of some systems it might be a help to use:
[* when predicate do a,b := exp, ,exp, ¥

to combine an assignment with the maintenance of the obtained

egquations, i.e. as a shorthand for:

[* when predicate do a,b := exp, ,exp, *]

* a,b | a = eXPp.4 b = exp, H

In other kinds of systems we might use other shorthands.

Now we return to the two modes of behaviour: continuous and in-

stantaneous. In continuous mode all objects execute equational-

actions and model-time increases continuously. In this mode there
is a one to one correspondence between system states and model-
time. When one or more objects are ready to execute an event-action

the system switches to instantaneous mode. In this mode an object

may execute a sequence of event- and equational-actions. Model-

time is not increased, and there is a many to one correspondence
between system states and model-time. The instantaneous mode con-
tinues as long as at least one object is to execute an event-action.
When all objects executes equational-actions and no object is to
execute an event-action, the system switches to continuous mode and
model-time increases again. The details of continuous and instantane-

ous mode are more formally defined in section 6.8.
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3.5 EXTERNAL EVENT-STATEMENTS

In section 3.3 we considered internal event-statements,

where only internal attributes of the object can be used. In

this section we consider external event-statements, which are
allowed to use external attributes too. An external event-
statement is matched with external event-statements in one or more
otherobjects and these event-statements together describe a single
event-action, which is executed jointly by all the involved
objects. In an external event-statement an object may read attri-
butes from all of the involved objects, but is is only allowed

to update its own variables.
An external event-statement may have the following form:

[* match OBJ,.PROC,(....)
when predicate
do PROC,(....) #

The match-clause specifies that the event-statement must be

executed jointly with the procedure PROC1, declared and executed
by object OBJ1. In general an external event-statement may be
synchronized with any number of different objects. Then the match-
clause contains a list of object/procedure specifications. The

when-clause and the do-clause play similar roles as for internal

event-statements, except that the when-clause can use data and
functions belonging to any of the involved objects. The do-clause

can only use internal attributes.

If an event-statement in its match-clause specifies an object
and a procedure, the statement must be matched with an event-
statement, which is in the specified object and which has the
specified procedure in its do-clause. If an event-statement in its

match-clause specifies an object, but no procedure the statement

must be matched with an event-statement, which is in the specified
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total match between the specifications in the match/do-clauses of

matching event-statements.

involved, this total match has to be fulfilled for each pair

If more than two event-statements are

of statements, where the match-clause of one specifies the other

object and vice versa. The match of two event-statements may be

indirect,

in the sense that both are matched with a third event-

statement as shown in fig. 3.2, where all three event-statements

are to be executed jointly:

OBJ:

{object
A: (object
PROCA(....}: procedure
[* match B.PROC,(....) do PROC, (....) *
object)
B: (object
PROCB( ) : procedure
[* match A.PROC,(....) and C do PROC, (....) %
object)
C: (object
[* match B.PROCB(....) *]
object)
object)

Figure 3.2
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As indicated above, input-parameters may be specified in match-
clauses as well as in do-clauses. When parameters of an external
procedure are specified in a match-clause, the corresponding para-
meter types must be useable. Output-parameters can only be speci-

fied in do-clauses.

To sum up, the three possible clauses in an external event-state-

ment have the following purposes:

- the match-clauses specify the event-statements to be

synchronized with. This match is static in the sense

that it does not depend on the present system state.

- the when-clauses specify the conditions under which

the joint event-action can be executed. The predicates
of all involved event-statements must be fulfilled.
This test is dynamic in the sense that it depends on the

present system state.

the do-clauses specify the joint event-action to be

executed. The joint state transformation is obtained
by composition of the state transformations of the

individual event-statements.

In section 3.9 we show how procedure templates may be used to
relax the demand of total match in a safe way. That allows us to
model e.g. "entries" as found in the "rendezvous" concept of ADA,

[Ichbiahetal, 80], in a simple way.

As an example of matching external event-statements, consider the
following description of parts of PHONEs and USERs in a
TELEPHONE COMMUNICATION system, fig. 3.3:



TELEPHONE COMMUNICATION:
(system

PHONE (NO: PHONE NO) :
(object
RINGING: function return BOOLEAN

[* match USER.HEAR(NO) #

object)

USER (NAME: USER NAME) :
(object
ACCESSIBLE: SUBSET (PHONE NO)
NO: PHONE NO
ANSWER THE CALL: task
MAKE A CALL TO(U: USER NAME) : task

HEAR(N : PHONE NO):
(procedure NO := N procedure)

[* match PHONE (ACCESSIBLE)
when 'PHONE (ACCESSIBLE) . RINGING
do HEAR #

ANSWER THE CALL

cbject )

system)

Figure 3.3
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Each PHONE has a boolean function RINGING and an external
event-statement: [* match USER.HEAR(NO) *]. This statement

must be executed jointly with a USER executing its HEAR procedure
and the actual-parameter is the NO of the PHONE.

Each USER has a variable ACCESSIBLE describing the subset of
PHONEs, which he at present can use. Moreover he has an external
event—-statement describing how to HEAR a RINGING PHONE. The
match-clause and when-clause demand joint execution with a
RINGING PHONE in the ACCESSIBLE subset. The HEAR procedure in the
do-clause assigns the NO of the matching PHONE to the IO
variable in the USER. When a USER has HEARd a RINGING PHONE he
goes on by ANSWERing THE CALL.

For convenience we have in the match-clause of the USERs, included
some state dependent information: the value of ACCESSIBLE. It is
easy to move this information to the when-clause, and semantically

the external event-statement in question is identical to

[* match PHONE
when PHONE.NO € ACCESSIBLE,
PHONE . RINGING
do HEAR *].

3.6 BLOCKS AND ACTION PATTERNS

In the first five sections of this chapter we have seen how to de-
scribe equational-statements and event-statements. These two
kinds of statements constitute the atoms from which more complex
statements can be built. In this section we shall discuss how to

group sequences of statements and declarations into suitable

units by means of blocks and tasks. We shall also discuss how to

group sequences of partial-events and declarations by means of event-

blocks, procedures, evaluations and functions. The ideas behind the six
structuring concepts in this section are well-known in most pro-

gramming languages, and thus we shall only give a brief descrip-

tion.
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Block-statements

The block-statement serves two different purposes: It may intro-
duce a set of new attributes with a scope which is limited to
the block, and thus help to modularise the description. More-

over it groups a sequence of statements to a single statement,

which then can be used to built more complex statements. A block-

statement may have the following form:

(block
declarations
action-part

block)

Task-statements

A task-statement specifies the call of a task. The task concept
of Epsilon is similar to the procedure concept in most programm-

ing languages. In Epsilon tasks are used to group statements,

while procedures and functions are used to group partial-events.

A task-declaration may have the following form:

task-name (formal-parameters):
(task

declarations

action-part
task)

while a task-statement (task call) may have the form:
task-name (actual-parameters)

Task—-declarations are not allowed to contain object-declarations.
Tasks are similar to blocks, except that they define a pattern
of actions, which are not immediately executed when declared,

but only when explicitly called by the object which contain the
task-declaration. In addition a task-declaration may define a
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set of formal-parameters, which in each call is associated with

a set of actual-parameters, and this enables the actions executed

at two different calls of the same task to be slightly different.

Input parameters are call by value while output parameters are

call by result (see [Gordon,79]). The choice between these para-

meter mechanisms is in the task-declaration indicated by the key-

words "in" and "out". Call by wvalue is default. In this paper
we shall use ADA-notation, [Ichbiah et al, 80] for formal- and
actual-parameters. A user of Epsilon is free to choose any suit-

able parameter notation.

Execution of a task-statement consists of three parts, of which

the first and third may be empty:

(a) If the task has input parameters execution of the

task-statement starts with an event-action which up-
dates the corresponding formal-parameters with the

values specified by the actual-parameters.

(b) Execution of the statements contained in the task-

declaration.

(c) If the task has output paramters execution of the

task-statement ends with an event-action which updates
the corresponding actual-parameters with the values

specified by the formal-parameters.

Event-blocks

An event-block is similar to a block-statement, except that it
is executed as part of a single event-action and thus its action-

part is only allowed to contain partial-events. An event-block

may have the following form:

{event-block

declarations
partial-events

event-block)
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Event-blocks are not allowed to contain object- or task-declara-

tions.

Procedure-calls

A procedure is similar to a task, except that it is executed as
part of a single event-action, and thus its action-part is only

allowed to contain partial-events. A procedure-declaration may

have the following form:

proc-name (formal-parameters):
(procedure
declarations
partial-events

procedure)
while a procedure-call may have the form:

proc-name (actual-parameters)

Procedure-declarations are not allowed to contain object- or
task-declarations. A procedure-call can occur either in an in-
ternal event-statement or in an external event-statement execu-
ted jointly with a set of other external event-statements. In
the last case the actual-parameters may be specified jointly by
the object which call the procedure and the objects matching
the call, in the sense that some parameters are specified by one
object and some by other objects. An object can only specify a

parameter if the corresponding type is useable.

Evaluations

An evaluation produces a value. Evaluations are executed as parts
of expressions or predicates, and thus their action-part is only

allowed to contain partial-events. An evaluation may have the

following form:
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(evaluation

declarations
partial-events

evaluation) return type-name

Evaluations are not allowed to contain object-, task- or proce-
dure-declarations. The return-clause specifies the type of the
value produced. Execution of the partial-events must end with a
return-construct which specifies the value to be returned. An

evaluation has no side-effects, i.e. it can only update variables

declared in the evaluation itself.

Function=-calls

A function-call produces and returns a value. Functions are executed
as parts of expressions or predicates, and thus their action-

part is only allowed to contain partial-events. A function-dec-

laration may have the following form:

func-name (formal-parameters):
(function
declarations
partial-events

function) return type-name

while a function-call may have the form:
func-name (actual-parameters)

Function-declarations are not allowed to contain object-, task-
or procedure-declarations. The return-clause specifies the type
of the value to be returned by the function. Execution of the

partial-events must end with a return-construct which specifies
the value to be returned. A function can only use internal data-

attributes and it has no side-effects, i.e. it can only update

variables which are declared in the function itself and it cannot

have output parameters.
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External functions are only useable in the predicates of

external event-statements, which are to be executed jointly with

the object containing the function, and in the predicates of equa-

tional-statements. In both cases the parameter types and the

return type have to be useable. A function may simultanously be
called by several objects, in the when-clauses of a joint event-
action or in the predicates of a set of concurrent equational-

actions. This causes no problems due to the absence of side-ef-

fects.

3.7 CONTROL-SECTIONS

So far we have only considered simple sequences of equational-
and event-statements. Often this is not sufficient, and thus,
we show in this and the following section how to handle inter-
ruptions, loops and branches by means of control- and select-

sections.

Control- and select-sections may be used to superwise the state-
ment-list of an object, task or block. Then the statement-list

is called a supervised-section. A control-section can interrupt

any of the equational-actions in the supervised-section. A se-
lect-section can only interrupt the last equational-action in

the supervised-section, and thus it determines what to do when
execution of the supervised-section finishes by itself. In this
section we describe control-sections, while select-sections are

described in the following section.

A control-section may have the form shown in the lower rectangle
of the fig. 3.4. It consists of the keyword "control" followed
by a non-empty set of guarded-statement-lists. Each of these

contains an arrow, an event-statement called a guard, a state-
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ment-list, and a continuation description (one of the keywords:

"continue", "leave" and "restart").

(block
declarations

control

—_ event—statement1 statement—liSt1 continuation1

08
LY

— event—statementn statement—listn continuationn

block)

Figure 3.4

Execution of the block starts with the actions described by the
supervised-section. During the execution of one of the equatio-
nal-actions of the supervised-section, some of the guards in

the control-section may become executable. If the guard is an

internal event-statement, this simply means that the predicate
becomes satisfied. For an external event-statement it must more-
over be possible to match the event-statement with some set of
external event-statements from other objects, in such a way that
each involved object is ready to execute its event-statement,

which implies that each has a satisfied predicate.
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If some of the guards become executable, the ongoing equational-
action is stopped and one of the guards together with its follow-
ing statement-list is executed. Next, depending upon the continu-
ation description, execution may either continue the block (at
the stopped equational-action in the supervised-section), leave
the block (in favour of the next statement) or restart the block
(at the first statement in the supervised-section). When an equa-
tional-statement is restarted or continued, its barred variables
are updated to the present values of the corresponding variables.

An empty continuation description is for control-sections equi-

valent to a continue.

If several guards (all supervising the ongoing equational-action)
becomes executable, they are said to be in conflict. Conflicts
are resolved by non-deterministic choice and thus the order of
the guarded-statement-lists is immaterial. It should be noted
that event-actions are treated as instantaneous and indivisible;
thus it is only the equational-actions of a supervised-section,
which may be stopped. The supervised-sections will in this chap-
ter be assumed always to end with an equational-action. This
guarantees that there is an equational-action to be executed un-
til one of the guards becomes executable. We return to this ques-

tion in chapter 6, which defines the formal semantics.

As an example of a control-section we reconsider our telephone
USERs once more. In fig. 2.4 a USER is most of the time not using
a PHONE. The state of not using a PHONE may be changed either
because the USER wants to make a call or because an accessible
PHONE rings. These two kinds of possible interruptions are more

formally described in fig. 3.5 by means of a control-section.
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USER (NAME: USER NAME) :
(object
ACCESSIBLE: SUBSET (PHONE NO)
NO: PHONE NO
SOME ONE: USER NAME
ANSWER THE CALL, MAKE A CALL TO (U: USER NAME): task
LIFT, REPLACE: procedure

HEAR (N: PHONE NO) :
(procedure NO :=N procedure)

——————————————————————— T ————— T} —— s iy i ———————————

T ———— T — T ———— 1 — o —— 1} ot o o o o o o o o o S s

control

— [* match PHONE (ACCESSIBLE)
when PHONE (ACCESSIBLE) .RINGING
do HEAR *]

ANSWER THE CALL

— [* when wanting to phone SOME ONE *]
MAKE A CALL TO (SOME ONE)

object)

Figure 3«5

The equational-statement in the supervised-section is executed un-
til one of the two guards becomes executable. Then the guard and
the following task-statement are executed, and the USER continues
execution of the equational-statement, which was stopped by the
guard.

Next we elaborate in fig. 3.6 the description of how to ANSWER
THE CALL. A USER begins to execute ANSWER THE CALL when he HEARs
a PHONE RINGING. He walks towards the RINGING PHONE changing his

POSition as he walks. This equational-action is controlled by two
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guards. Either the USER reaches the PHONE while it is still RING-
ING; then he LIFTs the receiver, leaves the block and starts
talking. Or he is too late, in which case he leaves the task and

continues not using a PHONE (as described in fig. 3.5).

ANSWER THE CALL:
(task
(block
(* POS | walking towards PHONE (NO) )
control
— [ match PHONE (NO) .BEGIN CONN
when POS = PHONE (NO) . POS,
PHONE (NO) .RINGING
do LIFT =]
leave
— [* match PHONE (NO)
when NOT (PHONE (NO) .RINGING)
do HEAR #
leave ANSWER THE CALL
block)
(* talking on PHONE(NO) %
task)

Figure 3.6
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Normally a continuation description refers to the nearest block,
task or object. As an example, the continuation description of

the first guard in fig. 3.6 demands execution to leave the block.
A continuation description may, however, also contain a continua-
tion-name referring to an enclosing block, an enclosing task, or
the entire object. If a continuation-name is present, the continu-
ation description must be contained in the corresponding block,
task or object. It is then the supervised-section of this which is
continued, left or restarted. As an example, the continuation de-
scription of the second guard in fig. 3.6 demands execution to
leave the task ANSWER THE CALL. Next we modify in fig. 3.7 the
description of the PHONEs in a way that corresponds to the

description of USERs in fig. 3.5.

The STATUS of a PHONE may change from INACtive (with the RECEIVER
DOWN) to the situation where the RECEIVER is UP and you hear a
CONTinuous tone. Next to the situation, where a PHONE NO has been
dialled and you hear NO TONE, until either you get a tone with
SHORT intervals (indicating that the called PHONE already is en-

gaged) or a tone with LONG intervals (indicating that the bell is
RINGing at the called PHONE). In the latter situation the RECEIVER
may be taken UP at the called PHONE and the two PHONEs are CONNec-
ted, until the calling PHONE returns to INACtive thereby making the
called PHONE DISConnected.

Initially the PHONE is INACtive with the RECEIVER DOWN, as de-
scribed by the equational-statement. This action is controlled by
three guards. The first guard allows a USER to HEAR whether a

PHONE is RINGing; it matches the second guard in ANSWER THE CALL

of fig. 3.6 and the PHONE continues being INACtive with the RECEIVER
DOWN. In fact it also matches the first guard of fig. 3.5, but an
event-action corresponding to this match will never be executed,
since the predicate of the latter guard is unsatisfied. The second
guard is intended to match a calling PHONE, which identify itself
via the actual-parameter of BEGIN RING. Notice that we have simpli-
fied the object hierarchy from chapter 2 and now assume that PHONEs
communicate directly and not via a NETWORK. Finally the third guard
matches a USER, who LIFTs the RECEIVER as part of the task MAKE A
CALL TO.



PHONE (NO: PHONE NO) :

(object _

STATUS: (INAC, CONT, NO TONE, SHORT,
LONG, RING, CONN, DISC)
init INAC

RINGING: (function return STATUS = RING
function) return RBOOLEAN

RECEIVER: (DOWN, UP) init DOWN

CONNEXION: PHONE NO

BEGIN INAC: (procedure STATUS := INAC

RECEIVER := DOWN procedure)

BEGIN RING(N: PHONE NO):
(procedure STATUS := RING
CONNEXION := N procedure)

BEGIN CONN: (procedure STATUS := CONN
RECEIVER := UP procedure)

BEGIN CONT, BEGIN NO TONE, BEGIN LONG,
BEGIN SHORT, BEGIN DISC: procedure

RECEIVE A CALL, CALLING: task

(* STATUS = INAC, RECEIVER = DOWN %
control
— [* match USER.HEAR(NO) %]

-» [* match PHONE.BEGIN LONG
do BEGIN RING #]

RECEIVE A CALL

— [ match USER.LIFT
do BEGIN CONT #]

CALLING
object)

Figure 3.7

67
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RECEIVE A CALL:
(task
(* STATUS =
control

—> [* match

RING, RECEIVER = DOWN %)

USER.LIFT and
PHONE (CONNEXION) .BEGIN CONN

BEGIN CONN *]

PHONE (CONNEXION) .BEGIN INAC
BEGIN INAC %]

Figure 3.8
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Next we elaborate in fig. 3.8 the description of the task
RECEIVE A CALL of the PHONEs:

When RECEIVE A CALL starts execution the PHONE is RINGing with

the RECEIVER DOWN, as described by the equational-statement.

This action is controlled by three guards. The first guard allows
a USER to HEAR whether a PHONE is RINGing; it matches the first
guard in fig. 3.5 and the PHONE continues RINGing. In fact it also
matches the second guard in fig. 3.6, but an event-action corre-
sponding to this match will never be exXecuted, since the predicate
of the latter guard is unsatisfied. The second guard allows a USER
to LIFT the RECEIVER. This guard matches the first guard in fig.
3.6 and a guard in the CONNEXION (calling PHONE). The third guard
matches the CONNEXION becoming INACtive with the RECEIVER DOWN.

As the last example of control-sections we improve our descrip-
tion of the PHONEs. A PHONE may, in all possible states be inspec-
ted by a USER to find out whether it is RINGing. This means that
all equational-statements in the PHONEs must be controlled by a
guard like the first in fig. 3.7 and the first in fig. 3.8. These
identical guards are in fig. 3.9 below combined to a single guard,

which then controls all other statements of the PHONEs.



PHONE (NO: PHONE NO) :

(object
STATUS: (INAC,...,DISC) init INAC

CALLING: task

RECEIVE A CALL:
(task
(* STATUS = RING, RECEIVER = DOWN %

control

— [ match USER.LIFT and
' PHONE (CONNEXION) .BEGIN CONN
do BEGIN CONN #

— [* match PHONE (CONNEXION).BEGIN INAC

do BEGIN INAC #]
leave
task)
(block

(* STATUS = INAC, RECEIVER = DOWN %)

control
—» [* match PHONE.BEGIN LONG
do BEGIN RING #]

RECEIVE A CALL

— [* match USER.LIFT

do BEGIN CONT #]
CALLING
block)
control

— [* match USER.HEAR(NO) #]
object)

Figure 3.9
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3.8 SELECT-SECTIONS

A select-section may have the form shown in the lower rectangle
of fig. 3.10. It consists of the keyword "select" followed by a

non-empty set of guarded-statement-lists, which have the same

form as for control-sections.

(block

declarations

supervised-section
select

— event—statement1 statement—list1 continuation1

— event-statementn statement—listn continuationn
block)

Figure 3.10

Execution of the block starts with the actions described by the
supervised-section. In contrast to control-sections, the guards
of a select-section can only stop execution of the last equatio-
nal-action in the supervised-section, and thus the select-sec-
tion determines what to do, when execution of the supervised-
section finishes by itself. As for control-sections we assume in
this chapter that the supervised-section ends with an equational-
action. This guarantees that there is an equational-action to be

executed until one of the guards becomes executable.

Equational-actions can only be continued, after they were stopped

by a control-section: Thus a select-section is not allowed to con-
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tinue its own supervised-section. But other supervised-sections
may be continued, if the select-section is contained in their

control-section. An empty continuation description is for select-

sections eguivalent to a leave.

When the supervised-section consists of a single equational-action,
there is no difference between control and select. (In this case

the continuations restart and continue are equivalent). It is thus
possible to rewrite a number of the examples in the preceding sec-
tion using select-sections. However, with more elaborate supervised-
sections containing several equational-statements there is a pro-

found difference between control and select.

As an example of a select-section we describe in fig. 3.11 the
daycycle of a PERSON. This may be considered as an elaboration of

the equational-statement "not using a PHONE",.

A PERSON gets out of bed, takes a shower, eats breakfast and then
is ready to do other things. Now a selection is made: If the current
day is a workday the first guard in the select-section is executed
and the PERSON starts working. If it is a day off the second guard
is executed together with its statement-list. In both cases the
PERSON finally leaves the block; then he goes to bed and starts
sleeping. The sleep is ended when one of the guards in the lower

select-section becomes executable.
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PERSON:
{object
(block
¢ getting out of bed #*]
& taking a shower #*]
¢ eating breakfast #]
(* ready to do other things %)
select
— [* when workday #*] (* working #....leave
¥ modagmnl's o T e T e TV .
— B when day off #]....leave
block) -

(* going to hed 4]

& sleeping =)

select

— [* when refreshed #] restart

5RO POCOB PV IURLOENI LY PO OIDOOBOSEIRNSER00EIDEN VOO RV AFOENRE B e P00 0 o

— [ match alarmclock ringing *].... restart

-------

object)

Figure 3.11

A block, task or object may have both a control-section and a select-
section. As an example consider fig. 3.12, where we have combined

the descriptions of fig. 3.5 and fig. 3.11 to sketch the daycycle

of a PERSON, who among other things can use PHONEs.
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PERSON (NAME: PERSON NAME) :
(object
DAYCYCLE: task

control

— [* match PHONE (ACCESSIBLE)
when PHONE (ACCESSIBLE) .RINGING
do HEAR #]

ANSWER THE CALL

- [* when wanting to phone SOME ONE #]
MAKE A CALL TO (SOME ONE)

Figure 3.12

DAYCYCLE is a task containing the actions described in the upper
part of fig. 3.11. Its execution is supervised by a control-sec-
tion and by a select-section. The control-section may stop any
of the equational-actions in DAYCYCLE, while the select-section

may stop only the last equational-action, i.e. sleeping.

It is easy to verify that all "normal" control structures, such
as if-statements and while-statements, can be realized, in a

simple way, by means of control- and select-sections.
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3.9 TEMPLATES (EXTENSION)

In this section we return to the subject of templates i.e. the
use and extension of patterns. First we show how action-parts
are combined when templates are involved. Then we consider temp-
lates for blocks and event-blocks. We illustrate how templates
can be used to relax, in a safe way, the demand for a total
match between match/do-clauses of: external event-statements.

Finally we show how to describe "entries" as found in ADA.

Combination of action-parts

In section 2.5 we described how to combine the attribute-parts

by means of disjoint union. Here we describe how to combine the

action-parts.. We shall describe the rules by means of classes

and objects, but thev work for the other kinds of attributes as

well.

Let OBJ be an object with template CLA. In Simula execution of
OBJ normally starts with the actions of CLA followed by those
described in OBJ itself. This can be changed by the keyword
"inner" which in CLA specify a call of the actions described in

OBJ itself:
CLA OBJ: object
(class (CLa
/
_// 1 |
CLASS inner 2
class) CLA)
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The default case, where all actions in CLA are executed before
the actions described in OBJ itself, corresponds to an implicit

"inner" placed at the end of each action-part:

CLA: OBJ: object
(class (CLA L
CLASS 1 // 2
- '
class) CLA)

An "inner" always refers to the nearest enclosing declaration.
When this is a class—- or task-declaration an "inner" is allowed
where a statement is. (This is also the case in Delta, but not

in Simula). When the nearest enclosing declaration is a procedure-
or function-declaration an "inner" is allowed where a partial-

event is.

Templates for blocks and event-blocks

Tasks and procedures can be used as templates to describe abstract
control structures. In fig. 3.13 we declare a task CLOCK, which
can evoke a time-out for a block having it as template. During

the execution of such a block COUNT is increased whenever a
"special event" occurs and the block is left when COUNT reaches
the value specified by the actual-parameter. We have in fig. 3.13
omitted the keyword "block" in front of (CLOCK .... CLOCK). This
may always be done when we have a block or an event-block speci-

fied by form A (cf. section 2.5).



T

OBJ:

(ebject

CLOCK (MAX:
(task

COUNT: INTEGER init O

— [* when special event

when COUNT > MAX #]

INTEGER) :

COUNT := COUNT + 1 %]

(CLOCK (N)

CLOCK)

object)

Figure 3.13
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In fig. 3.14 we declare a class containing a compound data struc-
ture and a procedure which SEARCH through the data structure one
element at a time. We also declare an object, where SEARCH is used

to compute the sum of the elements in the data structure.

CLA:
(class

DS: compound data structure with elements
of type INTEGER

SEARCH:

(procedure
NEXT: INTEGER

while more elements in DS

repeat NEXT := next element in DS
inner
end
procedure)
class)
OBJ: object
(CLA

SUM: INTEGER

[* SUM := 0
(SEARCH SUM := SUM + NEXT SEARCH) *]

CLA)

Figure 3.14




Template match

According to the rules given in section 3.5, there must be a total
match between the match/do-clauses of external event-statements.
In this subsection we illustrate how procedure templates may be

used to achieve a more flexible and yet secure communication be-

tween objects.

In fig.

nal event-statements. We only have a match for the two pairs of

event-statements, which are indicated by the two upper unbroken

lines.

3.15 we consider two objects A and B with a number of exter-

A: B:
(object (object
P: procedure Q: procedure
PP: procedure P
[* match B.Q *] — —.[* match A do Q %]
Ha el e 7 Hated £ do
- J P - //
\\/
-~ b .
[* match B do P #=_ - /r* match A. P #]
i L
: 2 :
[* match B do PP *]‘9,/ object)
object)

Figure 3.15
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We now replace the rule of total match with the rule of template
match, which states that a match-clause specifying a procedure P,
matches exactly those do-clauses which have a procedure or event-

block with P as template. Template match retains security, in the

sense that a large number of undesired matches still are excluded.
In the example above template match excludes all the pairs connec-
ted by dashed lines. Only the pair indicated by the lower unbroken
line is added by changing the match rule.

Having introduced the rule of template match we can allow the do-
clause of external event-statements to have exactly the same form
as for internal event-statements (i.e. be a sequence of partial-

events)., The do-clause is then either:

a single procedure-call

a single event-block

someother non-empty sequence of partial-events, which we

shall consider a shorthand for the event-block containing
the sequence of partial-events (and having PROCEDURE as
template)

or the do-clause is omitted.

The match-clause then contains, for each matching object A, either:

a procedure-call: A.PROCA

+ no procedure-call: A

The possible matches between match/do-clauses of the forms above

are, in fig. 3.16, indicated by unbroken lines.
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A: B:

(object (object
P: procedure
PP: procedure P Q: procedure
X,¥s var

[* match B.Q do PP *]\ [x match A.PdoQ#

[ match B.Q ]——/' * match A.PROCEDURE do Q #
do (PP X =Y PP) #—T |

o

[* match B.QdoX =Y *]/

\

[ match B.Q *] —{* match AdoQ #
object) object)

Figure 3.16

We shall also allow template match for the object specifications
in match-clauses. Then a match-clause may specify a class CLA,
and this means that the event-statement must be matched with an
object having CLA as template.
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ADA-entries

To illustrate the flexibility added by the template match, we
show how to model "entries" as found in the "rendezvous" concept
of ADA. Fig. 3.17 shows an ADA program, which is taken from
[Ichbiah et al, 80] p. 9.2. It describes a task with a PROTECTED
ARRAY. The array can only be accessed via the entries READ and
WRITE, and the entry mechanism guarantees mutual exclusion of

all accesses to the array.

task PROTECTED-ARRAY is
—-= 1INDEX and ELEM are global types
entry READ (N iﬂ INDEX; V - out ELEM) ;
entry WRITE (N :EE INDEX; E : in ELEM);

end;

task body PROTECTED_ARRAY is

TABLE : array (INDEX) of ELEM = (INDEX = 0);
begin
loop
select

accept READ (N : in INDEX; V : out ELEM) do
V = TABLE(N) ;
end READ:

accept WRITE(N : in INDEX; E : in ELEM) do
TABLE (N) := E:
end WRITE
end select;

end loop;
end PROTECTED_ARRAY;

Figure 3.17
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A corresponding Epsilon description looks as shown in fig. 3.18.

PROTECTED ARRAY:

(object
READ: (N : in INDEX; V : out ELEM): PROCEDURE

WRITE: (N : in INDEX; E : in ELEM): PROCEDURE

(block
TABLE: ARRAY (INDEX, ELEM) init O

— [ match CLASS do (READ V := TABLE(N) READ) #]

nnnnnn L R L R R R I A A SR TR A

— [ match CLASS do (WRITE TABLE(N) :=E WRITE) #

object)

Figure 3.18

The ADA designers argue that it may be inconvenient to be forced

to know the communication partner (e.g. for program libraries).
However, often we intend procedures to be involved only in synchro-
nization with certain other objects. It is then appropriate to be
able to state this restriction explicitly in the program. In the
present case we allow, as the ADA program, READ and WRITE to be
involved in synchronization with any object. If we want to restrict
access to the array, we substitute "CLASS" by the appropriate

class- and/or object-names.
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4.1 EXTENDED BNF

This chapter contains a commented syntax of Epsilon: The context
free part is defined formally, whereas the context sensitive
part (static semantics) is only informally described. In addi-
tion some explanatory text concerning the semantics is included.
The Epsilon constructs described as extensions in section Tud ;
2.4, 2.5 and 3.9 are neither included in the formal syntax of

this chapter nor in the formal semantics in chapter 6.

The syntax of Epsilon is defined using an extended BNF. Non-ter-—
minals are sequences of letters, possibly containing a hyphen (-).
Terminals are keywords (underlined sequences of letters) or spe-
cial symbols such as " (", "—ﬁ", ":=", etc. The symbol = has

the usual BNF-meaning. The righthand side of a production may
include regular expressions: the bar || separates alternatives,

the brackets {..... } denote that the corresponding clause is optio-
nal, i.e. may appear zero or one times, {*....*} denote repeti-
tion zero or more times, while {+....+} denote repetition one or
more times. The BNF-symbols (including the special brackets) do
not appear in terminals and thus we need not surround terminals

by quotes.

Subscripts on non-terminals indicate the number of the syntax
rule in which the corresponding non-terminal is defined. Non-
terminals without subscripts (on the righthand side of a produc-
tion) are not formally defined in this paper. The use of sepera-
tors in lists is not described in the formal syntax; comma is

used to separate names, expressions and predicates.
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4.2 SYNTAX OF DECLARATIONS

(1) system-description :=
name:

(system

{* declarationz*}

}

{ action-part

system)

9

This describes the system object. It is allowed to contain

all kinds of attributes (declarations).

(2) declaration :=

object-declaration3
task—declaration4
procedure—declaration5
function—declaration6

type—declaration7

= = = == =

data—declaration8

This introduces six different kinds of declarations. Each
declaration is allowed to contain declarations of its own
kind and of all succeeding kinds (refering to the list
above). As an example procedures are allowed to contain
procedures, functions, types and data, but not objects or
tasks. Each declaration defines one or more names, and when
we in some of the following syntax rules use the non-termi-
nal "object-name" this indicates a name already declared as
an object. Analogously for the other kinds of declared names.
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(3) object-declaration :=
name { ( {name:} type-name. { (actual-parameters)} ) }:
(object
1* declaration, *}
{ action—part9 }

object)

This describes either a singular object or a family of
objects with identical attribute- and action-parts. If the
type is omitted a single object is declared. If present the
type must specify a finite set of values and the cardinality
of this set determines the number of objects declared. If
present the second name defines a constant data-attribute
initialised to that value in the finite set which corres-
ponds to the object. This means that inside an object-dec-
laration beginning with "OBJ(ID:....):" the expression
"OBJ(ID)" refers to the object itself. Object-declarations

are allowed to contain all kinds of attributes.

(4) task-declaration ::=

name { (formal-parameters) }:

(task
{* declaration2 *}
{ action-party }

task)

This describes an action pattern, which may contain equatio-
nal-statements and thus be non-instantaneous. The task-decla-

ration is not allowed to contain object-declarations.

(5) procedure-declaration ::=
name {(formal-parameters)}:

(Erocedure

{* declaration

*}
*}

2

{* partial-event,,

procedure)
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(6)

(7)

This describes an instantaneous action pattern. It is to
be executed as part of a single event-action and thus its

action-part is only allowed to contain partial-events. The

procedure can only use internal data-attributes. The proce-
dure-declaration is not allowed to contain object- or task-

declarations.

function-declaration :=
name {(formal-parameters) }:
(function
{* declaration, *}
{* partial-event,, *}

function) return type—name7

This describes an instantaneous action pattern and thus its

action-part is only allowed to contain partial-events. It

produces a value of the type specified by type-name. The
function can only use internal data-attributes and it has

no side-effects, i.e. it may only update variables which are

local to itself and it may not have output parameters. Exe-
cution of the function must terminate with a partial-event
of the form "return expression" and this determines the
value to be returned. The function declaration is not allow-

ed to contain object-, task- or procedure-declarations.

type-declaration ::=

name: type type-name7 { (actual-parameters) }

This describes a data type. In this paper we use the types
known from PASCAL. The standard types such as INTEGER, REAL,
ARRAY, ENUMERATION, etc., are assuted to be implicitly de-

clared in the system object.
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data-declaration ::=
name: {var [ const} type-name. { (actual-parameters) }

{init initialisation}

This describes a data-attribute which can take the values

defined by the type. Data-attributes are either variables

or constants. Default is wvariable. All data-attributes are
assumed to have an initial value when generated and the

init-clause may be used to specify this initial value.
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4.3 SYNTAX OF STATEMENTS

(9) action-part :=
{*x statement1o *}
{ control—section17 }

{ select—section18 }

The control-section may interrupt any equational-action in
the statement-list. The select-section can only interrupt
the last equational-action in the statement-list, and thus
it determines what to do when execution of the statement-

list finishes by itself.

(10) statement =
equational—statement11
0 event-statement, ,
[ task-statement, g
0 block-—statement16

There are four different kinds of statements.

(11) equational-statement =

(* equation12 *)

This describes an equational-action.

(12) equation ===
{* data-nameg *} {|} {predicate}

All data-attributes in the list must be internal variables,

while the data-attributes in the predicate may be any of those
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which are useable according to the scope rules in chapter 2.

Predicates have no side-effects. We do not specify a syntax

of predicates, but allow any formal or informal description
which maps useable data-attributes into truth-values. If
either the variable-list or the predicate is omitted the

vertical bar can be omitted too.

(13) event-statement :=
e {when predicate} {do} {* partial-event,, *} #]
0 ¥k match object—proc.] 4 {when predicate} {do procedure—callz4} *]

The first form describes an internal event-action and all
data-attributes in predicate and partial-events must be
internal to the object containing the statement. If either
the when-clause or the partial-events is omitted the key-
word "do" may be omitted too. The second form describes part
of an external event-action and all data-attributes in predi-
cate must belong to the object itself or one of the matching

objects.

(14) object-proc :=
object—name3 { (expression)}

L - procedure-name { (actual-parameters) } }

i {(} object-proec,, or object-proc,, {)}

14
0 {(} object—proc14 and object-proc,, )3

The first form specifies either a unique object to be matched
with, or a subset of a family from which any object can be
chosen for matching. If present the expression must yield a
value from (or a subset of) the finite set in the definition
of object-name. In the last two forms parenthesis are used to
avoid ambiguity. If present the procedure-name must correspond

to the name in the do-clause of the matching object.

(15) task-statement ::=

task-name, { (actual-parameters) }

Tasks can only be called by the object in which they are de-

clared. In this paper we do not define a syntax of parameters,
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but allow any suitable notation.

(16) block-statement ::=
{name :}
(block
{* declaration2 *}
{ action-part, }
block)

The block is not allowed to contain object-declarations.

(17) control-section :=

control
{+ guarded—statement—list19+}

(18) select-section =
select
{+ guarded-statement—list19 +}

(19) guarded-statement-list ::=
;

—_ e‘vent—statement13 {* statement10*} {continuation20

If no continuation is specified, continue is default for

control-sections, while leave is default for select-sections.

(20) continuation ::=

restart {continuation—name21}

}
}

[ leave {continuation—name21

[ continue {continuation-—namez1



(21)

4.4
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continuation—-name :=
object—name3
0 task-name,
] block-name, .
The continuation must be contained in the object, task or
block, specified by the continuation-name. If no continua-
tion-name is specified the continuation refers to the
nearest enclosing block, task or object. It is only possible

to continue a block, task or object from its control-section.

SYNTAX OF PARTIAL-EVENTS

(22)

(23)

partial-event =
a551gnment23

procedure—call24

alternative-construct25

repetitive—construct26

event—block27

return-construct

(=== R m R~ I~ I === |

28

assignment ::=

{+ data-nameg +} := {+ expression +}

All data-attributes in the assignment must be internal.
Those on the lefthand side must be variables and their
number and types must match the number and types of the
expression-list. The individual assignments are executed
from left to right and expressions do not have side-ef-
fects. We shall not specify a syntax for expressions, but
allow any formal or informal description, which map in-

ternal data-attributes into a value of the correct type.
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(24)

(25)

(26)

(27)

(28)

procedure-call ::=

procedure—name5 { (actual-parameters) }

Procedures can only be called (executed) by the object in
which they are declared.

alternative-construct :=

if predicate then {+ partial-event22+}

{ else {+ partial-event,, +} } end

repetitive-construct :-=

while predicate repeat {+ partial-event22 +} end

event-block =

(event-block

* declaration2 *}
¢ partial-event,, #}
event-block)

The event-block is not allowed to contain object- or

task-declarations.

return-construct =

return expression

This can only be used in the partial-events of an evalua-
tion or a function-declaration. It describes the value to
be returned. The expression must have the type specified
in the return-clause of the evaluation-or function-decla-

ration.
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(29) function-call ::=

function—name6 { (actual-parameters) }

Functions have no side-effects. They can only be called

in expressions and predicates.

(30) evaluation ::=

(evaluation

{* declaration2 *
{* partial—event22 *}
evaluation) return type-name

7

Evaluations have no side-effects. They can only occur in
expressions and predicates. The execution of an evaluation
must terminate with a partial-event of the form "return
expression". An evaluation is not allowed to contain object-,

task- or procedure-declarations.






Chapter 5

SEMANTIC MODEL: EQUATION NETS

5.1 A new semantic approach

5.2 Denotational semantics

5.3 High-level Petri nets

5.4 Combination of subnets

5.5 Combination of external transitions

101

104

105

107

99






101

5.1 A NEW SEMANTIC APPROACH

In chapter 6 we define a formal semantics for the Epsilon
language. Analogously to the use of formal syntax, formal
semantics enhances our possibilities to give a complete and

unambiguous language definition. This supports consistent use

of the language, i.e. lanquage dissemination. Moreover the
use of formal syntax and formal semantics promotes language

design, in the sense that the required formality discloses

inconsistencies and indicates where related concepts can be

unified.

Another major reason for the use of formal semantics is the

ability to perform rigorous analysis of the created descrip-

tions. This is only possible if the language has a foundation

in terms of a formal model or theory.

We shall define the semantics of the Epsilon language by means
of a syntax-directed translation from Epsilon descriptions into
Equation nets, which are high-level Petri nets with equations
attached to the places. Our semantic approach draws on three

different sources:

- denotational semantics, [Gordon, 79], which are used

to describe declarations, expressions, predicates and

partial-events.

— high-level Petri nets, [Jensen, 82], which are used

to describe control-flow at the statement-level, inclu-

ding synchronization between objects.

- equation-systems, which are used to describe the effect

of equational-actions only. (In the definition of algo-
rithmic programming languages like Simula, Pascal and

ADA equation-systems are not nescessary).
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Denotational semantics has proved to be an excellent tool for
the specification of nearly all kinds of declarations and
commands in sequential languages. Even complicated manipula-
tions of store and environment are described in a natural way.
The description of sequential control structures is handled
by continuations, which have a very nice underlying mathema-
tical theory, but yields rather abstract descriptions, which
are difficult to use for non-experts. The discription of con-

current processes is very complicated.

High-level Petri nets, on the other hand, has proved its value
in the specification of sequential and especially concurrent
processes. Communication and synchronization are described in

a natural way. It is, however, difficult to handle complex

data structures and the description of even simple commands,
such as assignments, get only little support from the net struc-
ture itself. Also the description of scope rules is very com-

plicated.

As indicated above denotational semantics and high-level Petri
nets are complementary semantic tools, in the sense that the
qualities of one, to a very large degree, coincide with the
weaknesses of the other. We propose to combine the two models
into a single approach, where denotational semantics is used
to build up environments and to describe store manipulations,
while Petri nets are used to describe sequencing and communi-
cation. A semantics of a language is, in our appreoach, given
along the lines used in denotational semantics, i.e. by defin-

ing a set of:

= syntactic domains (such as declarations and partial-events).
- syntactic clauses (the syntax in chapter 4).

- semantic domains (such as stores, environments and

Equation nets).

- semantic functions (defining a syntax-directed mapping

from syntactic domains into semantic domains).
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The main difference between our approach and normal denotational
semantics is the inclusion of Equation nets as a semantic domain.
This enables us to benefit from the use of nets in describing
flow of control, and we avoid the use of continuations. Nets

can be bound into environments and the semantic functions of
programs and commands map into nets. The inscriptions of the
nets (on places, transitions and arcs) are obtained by means of
other semantic functions. The marking of a net contains a token
for each sequential process, i.e. for each object. The position
of the token acts as a program counter indicating the current
action, while the colour attached to the token represents the

current store and environment of the object.

Our approach is intended mainly to contribute to the specifica-
tion of concurrent languages, although it can be used for sequen-
tial languages too. The approach has also been presented in
[Hansen & Madsen, 82] where it was used to define the semantics
of two small languages representing the key-issues of Pascal

and Concurrent Pascal, respectively.

It should be remarked, that this is still one of the very first
attempts to use the new approach. It must be evaluated remembe-
ring the long time, and the many efforts, used to get denotational
semantics to its current state of art. If our approach turns out
to be valuable, much work remains to be done. On the practical
side notation and auxiliary functions have to be improved, while
on the theoretical side the well-definedness of the recursive
functions into a net domain have to be established. Some analysis

methods are proposed in [Kyng, 82].

Our semantic model has been developed gradually. In [Jensen,
Kyng & Madsen, 79a] we define the control-flow of Delta (with
minor restrictions) by means of a semantic model, called Extended

Petri nets. This model is built on condition/event-nets, but

transitions are allowed to test the marking/unmarking of places

without changing it.
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In [Jensen, Kyng & Madsen, 79b] we define a preliminary version

of Epsilon by means of a semantic model, called Concurrent sys-

tems. Following the ideas of [Mazurkiewicz, 77] and [Keller, 76]
the nets are augmented by a separate, global data part and each
transition has attached an expression, which can test and modi-
fy the data variables. To model equational-actions we also attach
an expression to each place. This expression describes an equa-
tion-system, i.e. a list of changeable variables and a predicate

to be kept unceasingly satisfied while the place is marked.

In the present paper we define Epsilon by means of Equation nets,

which are high-level Petri nets with equations attached to the
places. We have replaced the separate, global data part of Con-
current systems by colours (attached to the individual tokens)
each representing the attributes (environment and store) of an
object. Furthermore we use notation from denotational semantics

to make our semantics more precise and more complete.

5.2 DENOTATIONAL SEMANTICS

In denotational semantics the meaning of a lanquage is defined
by means of functions connecting syntactic domains (such as
declarations, expressions and statements) with semantic domains
(such as stores, environments and locations). Denotational se-
mantics has a solid mathematical basis in the theory of Scott-
domains, which involve partial ordered sets and fixpoint-equa-
tions. We shall not describe denotational semantics, but refer
the reader to [Tennent, 76], [Stoy, 77] and [Gordon, 79].

Each Epsilon object has its own environment and its own store.
Jumps and control-structures (at the statement level) are handled
by loops and branches in the constructed Equation nets, and this
allows us to avoid the use of continuations, which is one of the
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more difficult concepts of denotational semantics. In this paper
we will, as far as possible, use the notation and definitions
from [Gordon, 79] which we shall assume the reader to be familiar
with. In particular we shall use the *-operator to compose seman-—
tic functions. The composition f * g is equivalent to go £,

except that

a) Errors are propagated: Suppose

s D, = [D2+{error}] and g: D, = [D3+{error}].
Then the composition

£*g: D, » [Dy+{error}]

is defined by

f*xg =Ad1.(qu = error) -» error, g(fd1)

b) g may be curried: Suppose

£ D, = [[D2xD3]+{error}] and g: D, » Dy - [D4+{error}]
Then the composition

£*g: D, > [D4+{error}]

is defined by

f*xg = 7.\c11.(fd,I = error) = error, (fd1 :(dz,dB)) ﬁg;d2d3

5.3 HIGH-LEVEL PETRI NETS

The practical use of Petri nets, to describe concurrent systems,
has shown a demand for more powerful net types, to describe com-
plex systems in a manageable way. In place/transition-nets it is

often necessary to have several identical subnets, because a
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folding into a single subnet would destroy the possibility to
distinguish between different processes. The development of
high-level Petri nets is in this respect a significant improve-
ment. Now information can be attached to each token as a

token-colour and each transition can fire in several ways re-

presented by different firing-colours. The relation between a

firing-colour and the involved token-colours is defined by

expressions attached to the arcs. Restrictions on the possible

firing-colours are defined by predicates attached to the tran-

sitions. It is now possible to distinguish between different
processes, even though their subnets have been folded into a
single subnet. It shall be stressed that the "colour" attached
to a token or a firing can be a complex information unit, such
as the entire state of a process or the contents of a buffer
area. New colours can be created by transition firings and
there may be an infinite number of them. We shall not define
high-level Petri nets, but refer the reader to [Genrich & Lau-
tenbach, 81] and [Jensen, 81a, 81b, 82]. In this paper we shall,
as far as possible use the notation from [Genrich & Lautenbach,
81] and [Jensen, 82], and we shall assume the reader to be fami-

liar with at least one of these papers.

When we translate an Epsilon description into an Equation net,
(which is a high-level Petri net with equations attached to
places), we first translate each object-declaration into a
finite state machine, i.e. a net where all transitions have
exactly one input arc and one output arc (with weight one).
Each object, specified by the declaration, is represented by

a token. The position of the token acts as a program counter
indicating the current action, while the colour of the token
indicates the contents of the current environment and the current
store. Initially the token is situated at the first equational-
action to be executed and its colour represents the initial
environment and store. It should be noted that a family of
objects is represented by a single finite state machine con-

taining a token for each of the objects.
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5.4 COMBINATION OF SUBNETS

The translation from object-declarations into finite state
machines is syntax-directed in the sense that we construct
the subnet of an object, task, action-part, or statement by
combining the subnets of its constituent parts. Thus we

need to define a notation for subnets and for subnet compo-

sition.

We shall use the notation

to indicate a subnet A with a non-empty set of entry-nodes
(having a dangling input arc) and a possible empty set of

exit-nodes (having a dangling output arc).

Example 1

= {p,}

= {pz,tz}
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When a subnet consists of a single place or a single transition
(being both entry and exit) we shall normally omit the surround-
ing dashed line. Next we describe four different operations to
connect and modify subnets. None of the operations change the
equations, predicates and expressions attached to places, tran-
sitions and arcs, and thus we can describe the operations in
terms of the net structure only (assuming equations, predicates

and expressions simply to be copied).

When we draw a directed arc from one subnet S1 to another sub-
net 82 this indicates normal sequencing, in the sense that the
exit-nodes of ST are connected to the entry-nodes of 82' In
doing this we may need to insert extra nodes (representing neu-
tral actions) and we may need to split transitions. The opera-

tion is formalised in the following three steps:

1) The arc between the two subnets is replaced by a set
of arcs connecting each exit-node of the source S1 with

each entry-node of the target 82.

2) If an arc connects two places (transitions) a transition

(place) is inserted between them.

3) If a transition as a result of step 1 and 2, has x input-
places and y output-places it is split into x xy identi-
cal transitions, each of them connecting one input place

with one output place.
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Example 2

In the following, very simple example, step. no. 2 and 3 do
not change the net:




Example 3

In the following, slightly more complicated example, a new
place Ps is added, while t2 is split into té and t;:




Example 4

When we construct a subnet (of an object , task, dation-part
or statement) from several constituent subnets (connected by
directed arcs) we finish each of the three steps for all

arcs, before we proceed to the next step.




112

The notation

denotes an operation, which connects a copy of the subnet B
to each place in the subnet A,

Example 5
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The notation

denotes an operation, which modifies a subnet A to a new subnet

AO in such a way that all exit-nodes are places.

If all exit-nodes of A already are places nothing is done:

AO = A. If one or more exit-nodes are transitions, a new place
with a dangling output arc is added. The new place becomes an
exit-node and all former exit-nodes being transitions are con-

nected to it (and are no longer exit-nodes).

Example 6




Analogously the notation
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denotes an operation, which modifies a subnet A to a new subnet

AO in such a way that all entry-nodes of al are places.

Example 7

The order in which individual applications of the four subnet-
Operations are resolved is without importance, except that appli-
cations of the last two kinds of subnet-operations always are

resolved prior to applications of the first two kinds:




5.5 COMBINATION OF EXTERNAL TRANSITIONS

The transitions of each finite state machine are divided into
two disjoint groups: some of them are internal, in the sense
that they represent internal event-statements. They are al-
ready in their final form. Others represent external event-
statements. They are external, in the sense that they have

to be combined with transitions representing matching event-
statements. This means that the resulting Equation net, rep-
resenting a full Epsilon description, consists of a set of
superposed finite state machines, i.e. a net where each tran-
sition has exactly as many input arcs as it has output arcs
(each with weight one). In such a net the number of tokens is
constant, and in our case it equals the number of objects in

the system.

In our semantics, external transitions are drawn in the follow-

ing way:

The label A describes the transitions with which t can be com-
bined. We use barred and unbarred capitals, such as A and A,

to denote matching labels. The two dangling arcs are dashed to
indicate that they are not part of the finite state machine to
which t belongs; and they are not taken into account, when com-
bining subnets to build the finite state machine corresponding

to an object-declaration, as described in the preceding section.
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Example 8

In the following example we consider two different objects,

each having a finite state machine with two external transi-

tions.




Example 9

If an external transition matches several other transitions

it is dublicated as the transition t1 below:

117
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Example 10

An external transition may simultanously be combined with

more than one transition:




Example 11

An external transition may be combined with a transition in

its own finite state machine. This can only happen when the

finite state machine describes a family.

There is, however, one exception from the finite state machine
property described above. Each block- and task-statement has a
special place, used to save the old environment during execu-
tion. It is only when ignoring these environment places that
Epsilon descriptions translate into superposed finite state
machines. It is easy to recognize the environment places since
they have Env as the set of token-colours. All other places in

the Equation nets have Env x Store as the set of token-colours.

We have now described some concepts from denotational semantics
and high-level Petri nets. The third constituent of our semantic

model, equation-systems, will be treated in section 6.8.
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6.1 DOMAINS AND SEMANTIC FUNCTIONS

In this section we define the syntactic domains,

domains and the functionality of the semantic functions.

Primitive syntactic domains

Ide

The domain of identifiers

Compound syntactic domains

Exp
Dec
Pev
Sta
Acp
Sys

The
The
The
The
The
The

domain of expressions

domain of declarations

domain
domain
domain

domain

of
of
of
of

partial-events
statements
action-parts
system—-descriptions

Primitive semantic domains

Loc
Bv
Bool
Net

Compound semantic domains

The
The
The
The

domain
domain
domain

domain

of
of
of
of

locations
basis wvalues
booleans

Equation nets

Rv

Dv
Env
Store
Obj
Task
Proc

Fun

Bv + Bool

R-values

Obj+Task+Proc+Fun+Loc+Rv+Env denotable values

Ide - [Dv+{unbound}] environments
Loc =» [Rv+{unused}] stores

Net objects

Exp* » Ide* -» Net tasks

Rv* » Store » [Rv*xStore] procedures
Rv* -» Store » [RvxStorel functions

the semantic

123
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H O o O 1 oK O



124

SEMANTIC FUNCTIONS

(2]

Exp - Env = Store - [DvxStore]
Exp - Env - Store - [RvxStore]
ExXp =» Env -» Store - Bool

Dec* - Env - Store - [EnvxStorel]
Pev* - Env - Store - Store

Sta* - Env - Net

Acp -+ Env - Net

< > n g 9 H A M

Sys = Net

To be strictly correct, all semantic functions and all auxiliary
functions must have {error} or {error-net} added to their output
domain (c.f. the definition of "*" in section 5.2). If a token-
colour contains an "error-store" or "error-environment", the
token can not be used in transition firings. If a net contains

"error-net" as a subnet, its dynamic behaviour is undefined (c.f.

section 6.8).

6.2 SEMANTIC CLAUSES FOR EXPRESSIONS AND PREDICATES

Syntax and semantics for expressions and predicates (boolean ex-
pressions) are not described in this paper. This allows the user
to apply any suitable language-constructs for these syntactic
categories, e.g. the constructs of a programming language to be
used for implementation of the described system. In Epsilon,
expressions are always evaluated as part of a single event-action,
and thus their semantics are defined only by means of denotational
semantics, without the use of nets. From the literature of deno-

tational semantics it is wellknown how this can be done.

The semantics of expressions is defined by means of three semantic
functions (of which we shall assume the first to be provided by

the user):
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Ez Exp - Env - Store - [DvxStore]
R: Exp - Env - Store - [RvxStore]
T: Exp - Env - Store - Bool

Even though expressions have no side-effects, it turns out to
be convenient, for the semantic clauses, to include the resul-
ting unaltered store in the result of E and R. E evaluates the
expression without dereferencing (c.f. [Gordon, 79] pp. 74 -75).
This means that the resulting value may be any element in Dv.

The two other functions are defined by

E[E] rs * deref * Rv?
R[E]rs * Bool? * A bs.b

R[El rs
T[Elrs

where the auxiliary functions

cont : Loc = Store - [RvxStore]
deref : Dv - Store - [DvxStore]
Rv? : Dv - Store - [RvxStore]
Bool? : Dvm. - Store - [BoolxStore]

are defined by

contls = (s1l1#unused) » (sl,s), error
derefds = 1islocd - contds, (d,s)
Rv? d s = isRvd - (d,s), error
Bool?ds = isBoold - (d,s), error

where we for an arbitrary domain A, for all b € Bool and all
aj;ra, € A, use the following notation (c.f. [Gordon, 79] pp.
41 - 42).

a1 if b = true

b - (a1,a2) = a2 if b = false

B error if b = error
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In the remaining semantic clauses we shall, without further
definition, use a number of domain-testing functions analogous

to Rv? and Bool?

6.3 SEMANTIC CLAUSES FOR PARTIAL-EVENTS

P: Pev* - FEnv - Store - Store

Partial-events define a sequential and deterministic store-
transformation to be executed as part of a single event-action.
Their semantics is defined by means of denotational semantics,

without the use of nets.

Sequence of partial-events

P[Pl rs * P[P*]r

S

Plpp*] rs
P[ 1rs

(23) Assignment

P[ID =E]lrs
P[ID ID* =EE*] rs

E[ID]frs * Loc? * A1l.R[E]lr * updatel
P[ID:=E]rs * P[ID* =E*] r

where the auxiliary function
update : Loc - Rv > Store - Store
is defined by
update les = sle/l]
The notation sl[e/l] represents the store, which is identical to
s, except that the value e has been bound to location 1. We shall

use the same kind of notation for environments (c.f. [Gordon, 79]
p. 43 and pp. 64 - 65).
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(24) Procedure-call

Procedures are described by the semantic domain
Proc = Rv* - Store - [Rv*xStore]

where the first Rv* represents the input parameter values,
while the second Rv* represents the output parameter values.
In this paper we give the semantics for procedures which have
exactly one input parameter followed by exactly one output
parameter. The generalization to zero or more than one input/
output parameters is cumbersome in notation, but straightfor-
ward in idea (c.f. [Gordon, 791, pp. 98 - 99)

P[Ip(E,I)r‘s
= R[E]lrs * Je.E[Ilr * Loc? * A1.

E[Ip]r * Proc? * Ap.pe * updatel

(25) Alternative-construct

P[if E then P; else PJ endlrs

= T[E]lrs - P[P:%‘]rs, P[lers

P[if E then P* end]l rs

= T[Elrs » PlPt]rs, s

(26) Repetitive-construct

Plwhile E repeat Pt endlrs

= T[Elrs -» P[Ptlrs * Plwhile E repeat P* end]l r, s

This is a recursive definition.
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(27) Event-block

Pl (evbl D* P* evbl)] rs
= D[D*] rs * P[p*]
We will not describe the semantics of functions and evaluations,

since they are executed as part of expressions. Moreover they

resemble procedures and event-blocks.

6.4 SEMANTIC CLAUSES FOR DECLARATIONS

D: Dec* - Env - Store ~» [EnvxStore]

The output environment contains those bindings which are due to
Dec* together with those already contained in the input environ-
ment. We define D by means of two auxiliary functions: D' deals
with data-declarations (which may update store) while D" deals

with all other kinds of declarations (which may be mutually re-

cursive).

D': Dec* - Env - Store = [EnvxStore]

P": Dec* = Env - Env

P'[DD*] rs = D'[Dl]rs * ©D'[D*]
D"[DD*].r = D"[D] r * OD"[D*]

P'[Dlrs =D7'[ J]rs = (r,s) when D is not a data-declaration
D"[D] r = D"[ 1lr = r when D is a data-declaration
P[D*]rs = D'[D*¥]rs * Ar's'. (r",s')

whererec r" = D"[D*] r'[r"]
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(8) Data-declaration

D'[ID: var I_ init Elrs

T
= R[Elrs * ref * Als'. (r[l/ID],s')

where the auxiliary functions

new: Store - [LocxStorel
ref: Rv - Store - [LocxStore]

are defined by

news = (31l: s1=unused) -» (l,s), error

refes =news * Als. (1, updatel e s)

; . ‘g
D [ID. const IT init Elr s

= R[El]rs * les. (r[e/ID],s)

In this paper we give the semantics for data-declarations which
define a simple variable or constant. The definition of compound
data-structures, such as arrays, records and files, can be found
in [Gordon, 79] pp. 118 = 128. We shall not define the semantics of
type-declarations. Type-checking is discussed in [Gordon, 79]

pp. 142 - 146.

(5) Procedure-declaration

We give the semantics for procedures which have exactly one input
parameter followed by exactly one output parameter. Such a proce-

dure is represented by an element of the semantic domain

Rv - Store - [RvxStorel

Proc11

(c.f. the semantics of procedure-call in section 6.3).
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P"[I (I : in, I, : out) : (proc D* P* proc)lr = rip/I.]

whererec p = Aes. refes * )\lI, new ¥ )&10.

D[D*]r[p,lI,lO/Ip,II,IO] * P[p*] * cont l0

(4) Task-declaration

We give the semantics for tasks which have exactly one input
parameter followed by exactly one output parameter. Such a

task is represented by an element of the semantic domain
Task11 = Exp - Ide - Net

P"[(L,(Iy ¢ in, I, : out) : (task D* A task)]r = rlt/In]

whererec £t = AEI . n where n =

(X' ;a")

v

RIE]lr's' * ref * AlI .new * )1
D[D*]r[tpllrlO/ITfIIrIo]

—_—

S~
™~
e ™
Env ¢ A[AT (D" [D*]r[t/I,] * restrict) ,
>
-—
rs")

(r', E[Ilxr's" * TLoc? * A1.

R[Iolr" * update 1)
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The auxiliary function

restrict: Env - Env
is defined by

restrictr = XI . isTask(rI) - rI, unbound
It should be noted that evaluation of the action-part, in order
to insert the correct Equation nets for its task-statements,
uses that part of the environment, which corresponds to task-
declarations. This part of the environment is static, in the

sense that it can be determined at "compile-time" and does not

involve dynamic aspects, such as recursion-level.

(3) Object-declaration

We first define the semantics of singular objects

D"[I,: (obj D* A obj)l r= rin/I;]

0 :

whererec n =

~

(X[A](D"[D*]r * restrict))
N 0 /
5 g

Initially the entry place of the net has a single token with the
= - *
colour c (rI,sI) P[D ]ro[n/IO] Sq
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The default environment r, and the default store Sy may contain
elements which correspond to predefined attributes, e.g. the
TIME variables described in section 1.3. It is assumed that the
set of locations in Sy is disjoint to the sets of locations used

for previous objects in the system.

Next we define the semantics for a family of objects. Let IT

be the name of an enumeration-type or subrange-type with elements
{kT’kZ"'°’kn}' The semantics of a family of objects declared by
IO(ID : Ip) : (obj D* A obj) is defined by the Equation net above,
except that the initial marking has a token for each object, i.e.
for each element in type IT' The token-colour corresponding to
object Io(kj), where 1 £ j £ n, is defined by

c., = D[ID : const ENUMERATION (k1 'kz'“ " ,kn) init kj] r_s

J i i

The objects in the family are assumed to have disjoint sets of

locations.

6.5 SEMANTIC CLAUSES FOR STATEMENTS

S: Sstat - Env -» Net

The environment contains only tasks and it is used for task-

statements only. (c.f. the semantics of action-part).

Sequence of statements
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(11+12) Equational-statement

S[(=* In* | E *x)]xr =

Env x Store (ID*ET[E])

The dynamic behaviour described by the place-equation is defined
in section 6.8. It should be noted that the arcs adjacent to the
place have no arc-expressions, and this property guarantees that
we never get an arc with two arc-expressions. If I_* or E is

D
missing the corresponding part of the place-equation is omitted.

(13a) Internal event-statement

S[[* when E do P* *]]r =

(r',s")

T[EIr's'

(' PlP*]lz's")

A missing predicate corresponds, by default, to the always satis-
fied predicate TRUE:

S[[* P* x]1r = S[[* when TRUE do P* &]]r

(13b+14) External event-statement

We give the semantics for external event-statements matching a
single object. Generalization is cumbersome in notation, but

straightforward in idea.
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We first define the semantics of external event-statements with-

out procedure parameters

S[[* match I Ié' when E do Ip' %]] ¥ =

0

Ve
r
(r',s'") s (x",s")
7
5
T[E] r* s* L. ." "
[E] r* s a [IO' 5 ,IP ]
2
Ay
\
(r',P[Ip']r's') \
\
» b
where r* = r'[r"/Io]
and s* = g' +g"
where
js']_ if 1 is a location of s'
(s'+s")1 = 1
s"1 if 1 is a location of s"

It should be remembered that s' and s" have disjoint sets of
locations (c.f. the semantics of object-declaration). If E is

missing the transition inscription is omitted. If Ip' is missing
n

P
sing the corresponcing component of the transion-label becomes

the lower arc-expression becomes (r',s'). If Ip' o & is mis-

"NONE".

E is allowed to use attributes from I0 and the semantic function

E (from which T is defined) is assumed to handle such external

attributes by the semantic clause

E[lT. . ID]J:S = E[Io]r's *  Env? * E[ID]

0
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The transition-label [IO,Ip',Ip"] specifies match-information
to be used when the transition is combined with a transition
in the net representing object IO' The rules determining
whether two transition-labels make a match or not, are in de-
tail described in section 3.5 and 3.9, and they will not be

repeated in the present chapter.

For technical convenience we assume all object-names in the
system to be unique (i.e. without repetitions and disjoint from
the other attribute-names). This allows us to use the object-
name, when we want to refer to the Equation net representing an
object (c.f. the first component of the transition-label above) .
If object-names are not already unique, this can be achieved by
replacing each object-name with the ordered list of object-names

corresponding to the enclosers (c.f. section 2.1).

Next we define the semantics of external event-statements with
procedure parameters. Input parameters for the procedures may be
specified by any of the matching objects (to avoid ambiguity each
parameter must be specified by exactly one object). This means
that the arc-expression P[Ip']r” s' in the net above must be
replaced by the right-hand side of the semantic clause for proce-
dure-calls (c.f. section 6.3) with R being evaluated in

(r*,s*) while the rest is evaluated in (r'ps! )

We illustrate this by giving the semantics in the case where Ip'
and Ip" both have exactly one input parameter (to be specified by
the other object), followed by exactly one output parameter.

S[[* match I, .Ip“(E"ff ) do Ig («/I') *]1]r =

(',

R[+e+]r*s* * Xes. E[I']lr's' \
* Loc? *# X1. E[I ']r" * Proc? N\
p
* Ap.pe * updatel \Q
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where the argument of R is to be provided from the match-informa-
tion, when the transition is combined with a transition in the
net representing object IO'

(15) Task-statement

S[IT(E,I)]r = isTask(rIT) -~ rITpEI, error-net
where error-net = ERROR

+

(16) Block-statement

S[(block D* A block)] r =

(r', s")

Env A[A] (D"[D*] r * restrict) /)

.
-

{r|' S")

The name of a block has only semantic relevance when used as a

continuation-name (c.f. the semantics of action-part).
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6.6 SEMANTIC CLAUSES FOR ACTION-PARTS

A: Acp - Env - Net
The environment contains only tasks and it is used for task-
statements only (c.f. the semantics of task-declaration, ob-

ject-declaration and block-statement).

(9 +17-21) Action-part

We first define the semantics of action-parts, which do not
contain continuation-names. Then the guarded-statement-lists
can be divided into five groups (according to whether they ap-
pear in a control- or select-section, and according to whether
they have restart, leave or continue as continuation). We give
the semantics of an action-part, which has exactly one guarded-
statement-1list in each of the five groups. Generalization to
other combinations of guarded-statement-lists is straightfor-

ward.

A[S* control - S*_ restart -» S*. leave - S* continue

CR————~ CL —— CC
select - S*_ restart - Sngeave}r =

SR

IS

) R ol
( \ \ //

Sistlr ) (SISt lrx
N\ ~ A —

\
7
~ - \\t/’, ™ e
e =
/) 3 l

) \
(SIsgRl = )\ SIsglx )

+
S[SCR]r [
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It should be noted that the subnets representing the guarded-
statement-lists always have a single transition as entry-node.
If the statement-list S* is missing the upper leftmost subnet

consists of a single place only.

Next we define the semantics of action-parts containing conti-
nuation-names. When a continuation—-name IC is present, the out-
going arc of the corresponding guarded-statement-list has a

label of the form RESTART(IC), LEAVE(IC) or CONTINUE(IC), and

it is left dangling, without having a destination yet. Such
dangling arcs are directed to the correct node, when the action-
part of the continuation-name is constructed. If desired this

can be made more formal by providing A with an extra input domain
of type Ide, so that A knows the object-, task- or block-name

of the action-part being evaluated:

A: Acp - Ide - Env = Net

6.7 SEMANTIC CLAUSES FOR SYSTEM-DESCRIPTIONS

Y: Sys - Net

(1) System-description

V[Ig: (sys D* A sys)]

= D"[IS : (obj D* A obj)]rO * collect-nets * combine-nets

where the auxiliary functions collect-nets and combine-nets are
defined below. The default environment r, is described in the

semantics of object-declaration (c.f. section 6.4).

Collect-nets

collect-nets: Env - [IdexNetl®*

This function collects a list of named Equation mets, each repre-

senting an object or a family of objects.
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collect-nets r = X U ( U cecllect-nets r')
TYER

where X = {(I,n)|rI =n A isObjn}

and R contains all environments, which appear (as the environ-
ment-component) in token-colours (of the initial-marking) in a

net contained in X.

To be strictly formal .the definition above defines a function
into sets of named Equation nets and not into sequences; but a
set can always be transformed to a sequence by introducing some

ordering-relation.

Combine-nets

combine-nets: [IdexNet]* - Net

This function combines a sequence of named Equation nets into a
single net by combining (gluing together) transitions, which have
matching labels. If a transition matches several other transitions

it is duplicated (c.f. section 5.3).

6.8 DYNAMIC BEHAVIOUR OF EQUATION NETS

In the previous sections we have defined a syntax-directed trans-
lation from Epsilon descriptions into Equation nets. We will, how-
ever, for an Epsilon description not only be interested in the
corresponding net, but also in the dynamic behaviour of that net.
In this section we define the dynamic behaviour for the kind of
Equation nets used in our formal semantics. There are two different
kinds of Epsilon descriptions. First we define the behaviour of
those Equation nets, which involve model-time. Secondly, we define
the behaviour of those which do not. At the end of this section we
explain and motivate some of the important choices underlying our

definition of dynamic behaviour.
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Descriptions involving model-time

Each behaviour alternates between continuous and instantaneous
mode (c.f. section 3.1). The behaviour defines a function from

model-time into single markings (continuous mode) or into max-

imal firing sequences (instantaneous mode).

In instantaneous mode the model-time is constant and all changes

in the marking of the net is due to transition firings according
to the normal firing rules of high-level Petri nets. Each instan-
taneous mode corresponds to one moment of model-time and this
moment is by the behaviour mapped into a maximal firing sequence,
i.e. a firing sequence ending with a marking in which no transi-
tion can fire. This dead marking becomes the first marking of

the succeeding continuous mode.

In continuous mode no transition can fire, but model-time is

continuously increased over an interval. The positions of tokens
are constant (since no transition fires), but the colours of
tokens change as a function of model-time. Assume that we (disre-
garding environment places) have n tokens with colours
{(ri,si)l1§ i £n}, and assume that the corresponding places have
the place-equations {(Ii*IFi)|1§ i<n} where F,: Env - Store - Bool
(some of the tokens, representing objects in the same family, may
be at the same place and thus have identical place-equations).
Ii* are internal data-attributes, and thus their locations can be
determined from the local environments r, only. F, may however
involve external attributes and thus it must be given a compound
environment ri* and a compound store si* (analogous to the way we

handled external event-statements in section 6.5):

* = -
T ri[r1""'ri-1'ri+1""rn/IO1""'101—1’IOi+1""’I0n]

4+ e + g

0
*
1l

S,+8,+ ¢+ +8, . +5,.+s,
1 i- Si

2 ! i+1

where IOj is the object-name corresponding to environment rj. While
model-time increases, the equation system is kept satisfied by

changing the contents of the locations U{ri(Ii*)I1§ i< n} and
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thus {si!1§ i £n} in such a way that {F, ze* s;*I1£1isn} always
evaluate to true. In continuous mode there is a one-one corre-
spondence between model-time and markings. Each continuous mode
is minimal in the sense that its ends whenever a transition can
fire. This non-dead marking becomes the first marking of the

succeeding instantaneous mode.

Following the informal description of continuous and instantaneous
mode given above, we now present a more formal definition of
dynamic behaviour, for the kind of Equation nets used in our formal

semantics (section 6.1-6.7).

As usual we use

to denote that the marking m, by a single step of concurrent tran-
sitions X is transformed to the marking My according to the nor-

mal firing rules of high-level Petri nets.

We say that a marking m is dead iff it is dead with respect to

-, i.e. if no transition can fire in m. A firing sequence is a

i)1SiSn where 1 <n<w, such that for

each 1£i<n there exists a step Xi satisfying mi_Eé_? m

sequence of markings £ = (m

i+1°

A marking m is said to be consistent iff each place-equation

evaluates to true, for all tokens present at that place.

We say that two markings m, and m, are equivalent m, =m, iff for

each place5>.nH(p) is identical to mz(p) except for those compo-
nents of the token-colour(s), which represent the values of the
TIME variable and the changeable variables in the place-equation

of p.

Below we define the transformation of markings in such a way, that
all TIME variables are synchronously increased, i.e. in any
marking they all have equal values (c.f. section 1.3). We use

TIME(m) to denote this common value in marking m.
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For two markings m, and m, with TIME(m1) < TIME(mz) and a func-
tion f mapping the closed interval I = [TIME(m1), TIME(mz)] IR
into markings, we define

=

f(TIME(mi)) = m, for 1=1;2 &

m, ==>< Vt€ I[TIME(£(t)) =t A

f(t) 1is consistent a

f(t) =m, A

» t=#TIME(m2) = f(t) is dead]

We then use the notation
[my,my] = {£(t) | LEI}
(i

Let an Equation net with initial marking m, be given. A dynamic

0
behaviour (starting at t0='TIME(mO), having events at E =

{ti|1§ i <n} where 1<n<w, and ending at t is a function b

n+1)

mapping the closed interval I = [t,,t ] € R into firing

n+1
sequences, satisfying

< ve s o0 e <
a) to_t1<t2< <ti<ti+1< tn,t

b) Db(t) is a single marking for all t€ I~NE

f.
c) LAST(b(t,)) ~ FIRST(b(t;,,))

i+1

n+1

for all 1£i<n

and for i=0 iff t0¢-t1

n iff tn* tn

and for i +1

where fi maps the interval tti’ti+1] into markings and is

defined by
LAST(b(ti)) if t==ti
fi(t) = b(t) e by <<ty g

FIRST(b(ti+1)) it t==ti+1

A marking is reachable iff it is contained in a behaviour.
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Descriptions not involving model-time

The complexity of dynamic behaviour is mainly due to the combi-
nation of explicit discrete descriptions (event-statements)
with implicit descriptions based on the continuous increase of
model-time (equational-statements). This combination is appro-
priate for the description of some systems, but for other sys-
tems we can avoid the use of model-time. When this is the case,
the changes in continuous mode also take place as a number of
discrete steps and the definition of dynamic behaviour can be

simplified as shown below.

For two markings m, and m, in an Equation net without model-
time, we define

m, and m2 are consistent

1

m ~ m, = msm.l

2
m, is dead

Let an Equation net with initial marking My be given. When the

net do not involve model-time a dynamic behaviour is a sequence

of markings b = (mi)Oiién where 0 =n<e, such that for each

0=s1<n there exists a step m; > m, or a step mi ) m.+1.

i+1 i
A marking is reachable iff it is contained in a behaviour.

If all reachable markings are non-dead, ~* cannot be applied. Then
each behaviour consists of a single instantaneous mode, and it
is simply a firing sequence, defined by the normal firing rules

of high-level Petri nets.

An Equation net (with or without model-time) is consistent iff

each reachable marking is consistent. We shall demand all Epsilon

descriptions to yield consistent Egquation nets.

Explanation and motivation

The formal definitions of behaviour and consistency, given above,

are based on a number of choices, and we now finish this section
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by explaining and motivating the most important of them.

The semantics presented in this paper redefines the sequential

event concept in Delta [Holbazk-Hanssen, Handlykken & Nygaard,

75] by means of the concurrency concept in Petri nets. Delta

allows a nearly unlimited use of external variables in event-
actions, and when we first introduced concurrent event-actions
in Epsilon, we preserved this nearly unlimited use of external
variables [Jensen, Kyng & Madsen, 79b]. As one of the penalties
of this choice, the concurrency relation could not be determined

from the net structure alone.

In our present opinion this was not just a technical "net-prob-
lem", but an indication of irregular language concepts, allowing
too complicated relations between event-actions. The notion

of external event-actions, described in this paper, allows us

to retain the sufficient expressional power, and at the same

time drastically simplifies the ties between different event-
actions. Now, execution of event-actions are concurrent iff the
corresponding transitions are concurrent in the net structure, i.e.

according to the normal firing rules of high-level Petri nets.

We have also redefined the relation between event-actions and the
immediately succeeding equational-actions. Again the starting
point was a technical problem related to the net-model: In Delta
and the early version of Epsilon instantaneous mode achieved con-
sistent markings by a two-step transformation. First the old
marking was modified according to the transition firing (event-
actions) and then the obtained "pre-marking" was turned into a
consistent marking, by imposing the place-equations of marked

places (equational-actions).

When concurrency of event-actions was reduced to normal Petri

net concurrency of the corresponding transitions, this was a
strong argument in favour of reducing also the transformations

in instantaneous mode to be single steps, following the normal
firing rules of high-level Petri nets. If this is done, consisten-

cy of markings must be achieved, by demanding each transition to
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be defined in such a way, that it establishes the place-equations

of its output places, and does not destroy the place-equations
of places being concurrently marked. Equation nets with this proper-

ty are said to be smooth.

According to the old semantics, with two-step transformations in
instantaneous mode and non-smooth Epsilon-descriptions, some of
the changes due to the first step (event-actions) might be "can-
celled" by the second step (equational-actions). This was an un-
satisfactory situation, adding unnecessary complexity to

the system description.

Earlier we considered Epsilon descriptions yielding smooth Equa-
tion nets to be an important subclass of all Epsilon descriptions.
However, going through a large number of examples, we found that
nearly all of them were smooth, and those which were not could
easily be rewritten to be so, usually gaining clarity. For this
reason we now demand all Epsilon descriptions to be smooth, c.f.
the definition of consistency, and we reduce the transformations
in instantaneous mode to be defined only by the normal firing

rules of high-level Petri nets.

6.9 EVALUATION OF OUR SEMANTIC APPROACH

In this chapter we have defined a formal semantics covering most
aspects of Epsilon. We have used a new semantic approach built
on denotational semantics, high-level Petri nets and equation-
systems. The formal semantics has been a strong help during the

language design. It has improved our understanding and treatment

of non-determinism, concurrency, scope-rules, and the difference
between continuous and instantaneous mode. It has revealed a
number of inconsistences and helped us to simplify some of the
language constructs. Two examples of this are discussed in the
preceding section. Numerous other examples can be found in

[Jensen, Kyng & Madsen, 79a].
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The formal semantics allows us to present and discuss the differ-
ent language constructs in a more precise way, and thus it en-

hances lanquage dissemination. It allows us to perform rigorous

analysis of small system descriptions as shown in [Kyng, 82].
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