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Abstract

The order-N Farey fractions, where N is the largest
integer satisfying N £ V(p-T1T)/2, can be mapped onto
a proper subset of the integers {0,1,..-,p=1} in a
one-to-one and onto fashion. However, no completely
satisfactory algorithm for affecting the inverse map-
ping (the mapping of the integers back onto the or-
der-N Farey fractions) appears in the literature. See
Krishnamurthy, Rao and Subramanian [1975] and Gregory

[1981] where this mapping is employed.

A new algorithm for the inverse mapping problem is
described which is based on the Euclidean Algorithm.
This algorithm solves the inverse mapping problem for
both integers and the Hensel codes of Krishnamurthy
et. al.



1. Introduction

In a recent paper [2] a method is proposed for error-free compu-
tation using rational operands. It involves a one-to-one mapping
of the reduced order-N Farey fractions

a

(1.1) FN={B: gcd(a,b) =1, 0£a<N, and 0<Ib|SN}

into the set of integers

1.2 I = {0,1,°+,p-1
( ) % { p-1}

where N is the largest integer satisfying the inequality

(1.3) N ¢ /BT

Recall that (Ip,-k,-), where addition and multiplication are modu-
lo p, is a finite field, if p is a prime, and a finite commuta-

tive ring, if p is a composite. The basic idea is to map the ope-
rands from F. into Ip, carry out the computation (free of rounding

errors) in (Ip,-r,-), and then map the results back into By

Lf fp & Ip denotes the set of images of the elements of Far then

the mapping FN - Ep is both one-to-one and onto, and thus it has

an inverse mapping Ip - FN. The procedure described in [2] for

cArrving ot +thic intwrarce marminea 90 1mnecad+dafambmrcr 4 Llaa mmame e



2. Mapping Rational Numbers Onto Integers

Let |-|p : L= Ip be the mapping of the integers I onto

their least non-negative residues modulo p. If we define, for
ged(b,p) = 1,

(2.1) l%' = |ab

where the integer p~t is the multiplicative inverse of b modu-
lo p, then l-lp : Q o~ Ip maps those rational numbers % € Q
for which ged(b,p) = 1, onto integers in Ip

For k # 0, let Q.k denote the set of rational numbers mapped

onto k€ Ip. The set QO (the rational numbers mapped onto zero)
consists of those numbers %, with gcd(b,p) = 1, for which a is
an integral (including zero) multiple of p. We call the disjoint
subsets QO, Ql,--
they contain the ordinary residue classes (of integers) as proper

L QP—l generalized residue classes, since

subsets.

If x =2 and y = S, where b ! and a7} exist, then Ix| = |v|
= v 3’ e ; e X o ™ y B

if and only if

(2.2) ad = bc (modp).

Thus, two distinct rational numbers x and y belong to the same

generalized residue class Q. if and only if (2.2) is satisfied.



tiplication. Since Ip is a homomorphic image of é, arithmetic

operations in (Q, +,+) correspond to arithmetic operations in

(Ipr 'l"r')-

3. The Inverse Mapping

The mapping I-Ip : Q - Ip is onto but it is not one-to-one,
since each integer k € Ip is the image of the infinite set Qk'
Hence, the mapping has no inverse. With N given by (1.3) it is
easy to show that distinct order-N Farey fractions belong to
distinct sets Qk and, since the number of order-N Farey frac-
tions is less than p, not every generalized residue class con-

tains an element of FN.

If we select the set of images of the elements of FN,

R

(3u2)} fel :+: F_ =1

is both one-to-one and onto and so an inverse mapping Ip - FN

exists. It is this inverse mapping which we wish to consider.




4. A New Look at the Forward Mapping

Suppose we select four integers a, b, ¢, and d, and any se-

gquence of integers {qO,ql,qz,-f-} and generate the sequence

of integer pairs {(ai,bi)} by the recursion

(4.1) - £=2 £ &4 i=0,1,2,fff

a b ab
(4.2) -2 -2 =[ }

Then the following is true.

LEMMA 1 If ad = bc (modp), then, for i=0,1,+--,
a,b;, , =a,_ b, (modp).
PROOF a,b, , —a,_,b, = (@, ,-qya; )by 4 - a;_, (b,
= lag pby g may by p) + a0
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Algorithm 1 (Extended Euclidean Algorithm)

For any four integers a, b, ¢, and d, where a and ¢ are non-

negative, let
a b ab

a b c d

For i=0,1,+++, n, while a;_y # 0, determine q; as the quotient

and a; as the non-negative remainder in the division of a,

by a;_q- Then h
q; T 3.2 T 9335

Likewise, define
bl - bi—2 - qlbl—l

Terminate when a = 0. At this point a 4 = gcd(a,c). u]

This algorithm can be used to carry out the mapping

described in (2.1). We sometimes call Igl the least non-nega-
tive residue of % modulo p. For this application we need an-

other lemma.



PROOF Since ad = pd and bc = 0, it follows that ad = bc (modp).
By Lemma 1

a.d = boc (mod p)

and, since

if and only if

us = vr (mod p),
the result follows. ui
THEOREM 1 Given any rational number g and an integer p such

that gcd(s,p) = 1, the Euclidean Algorithm seeded with the matrix

will terminate (for some n such that g, = 0). At this point

|£] - |bn-1,'
P



EXAMPLE 1 If we want to find

53
! 625

we use the seed matrix
625 0
13 10
1

in Algorithm 1. Observe that p = 625 implies N = 17, and so 7

o

|

w

is an order-N Farey fraction. Observe, also that p = 625 is
not a prime. However, gcd (13, 625) = 1 and so Theorem 1 applies.

We record the computation in the table

i q; a, bl
-2 = 625 0
-1 - 13 10

0 48 1 =480

1 13 0 6250

from which we conclude that

—

3|
|~— = |-480]
13 605 625



5. A New Algorithm for the Inverse Mapping

Observation 2 Lemmas 1 and 2 taken together (as in Theorem 1)

state that with the seed

and any sequence {qo,ql,qz,---}, we can generate an infinite

sequence of integer pairs
{(aorbo): (al'bl)'-'”}

such that, for i=0,1,+--,

b

_i
a,

Hiw

L

P

Hence, it is possible to generate an infinity of members of the
same generalized residue class Qk’ 0 £k<p, by choosing (r,s) =
(k,1). Thus, we can "invert" the mapping (3.2) by selecting

among the elements of Qk the (unique) order-N Farey fraction.

1)
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. 1
Notice that 13

3. q; a, bi
-2 - 625 0
=1 = 145 1

0 4 45 -4

1 3 10 i

2 4 5 =56

3 2 0 125

is recovered. Notice also that 145 and 625 are

not relatively prime and that

as described in Algorithm 1.

To see that the recovery of

let

a = 5 = ged (625, 145)

n-1

—
W

in Example 2 is not accidental,



10

a
B §~2 B .
(5.2) q, = [é J and b, b, _, q; b, 4 L =041 8w sl

(9]
]
Q
|
Q
Q

It is well known [3] that the sequence

. (Bol, 2] Ly
|°q

" ey’

is the complete sequence of continued fraction convergents of

E. It is also easy to see that, for i=0,1,-++,n,

(5.4) a, = kb, - pc,.

These continued fraction convergents are the so-called "best

rational approximations", for which the following theorem holds.

THEOREM 2 Every fraction g that satisfies the inequality
-5l <
a==| < ——
s 2S2

is a continued fraction convergent of o.

PROOF See, for example, [3] page 153. o
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A
where kEpr and

OKrsN
0<Isl £N,
then there exists an i such that

(r,s) = (a b)),

where {(aj,bj)}, j=0,1,-++-,n 1is the sequence of integer pairs
generated by the Extended Euclidean Algorithm seeded with the

matrix
P 0
k 1
PROOF If we extend the seed matrix as in (5.1) and define the
sequence {ci}, i=0,1,+++,n, as in (5.2), then (5.3) is the com-
plete sequence of convergents of % whenever k # 0.
From our hypothesis
A
‘£| = |kl_=ke€I
S p p

Therefore,
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This allows us to write

‘E__t = 'ks-—EtI
P s ps
- IL
ps
< A, 1Isl-N
52 2N2+1
2
< 1 . N
52 2N2+1
<-——12
2s
Therefore, using Theorem 2, we deduce that either g or EE is a

convergent of %.

Since (5.3) is the sequence of convergents of %, it follows
that

o 1] ... |°n|}

1' |b lf Ilbnl

is the sequence of convergents of %. Hence, there exists an i,

where 0 £ i £n, such that

ik
= o and [Isl = |b,|.
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Hence,
a,
R
b, s’
i
and so
(r,s) = (ai,bi) '

since both r and a, are positive.

COROLLARY 1 Let k be any integer such that 0 <k £p-1, and

let {&H!bi)} i=0,1,+-+,n be the sequence generated by the
Extended Euclidean Algorithm, seeded with:

Then kEIIp if and only if

(5.5) 3i, -1<i<n such that bl €Fy
i
in which case:
ay
gcd(bi,p) = 1 and 7;;— = k.
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where the signs of r and s may be chosen such that r > 0. Then

(5.5) follows from Theorem 3.

To prove the other part, notice from (5.4) that gcd(bi,p) must

be a divisor of ai but from (5.5), gcd(ai,bi)= 1 Hence
gcd(bi,p) = 1, and by Lemma 2
a.
R
i P

A
hus keI .
t P

Observation For practical purposes it may be worth noticing

from the proof of Corollary 1 that (5.5) may be substituted
by:

(5.6) 3i, =18 ismn such that IaiI:EN, FbiI:EN and gcd(bi,p) =1.

Hence with p prime it is not necessary to check gcd(bi,p) as
Ibiléri<p. For p composite it is necessary to check either

gcd(ai,bi) or ch(bi,p), where the latter may be the simplest,

as in the case of the Hensel codes discussed in the next section.

6. The Conversion of Hensel Codes to Rational Numbers

o



To get the unique Hensel code for %EEFN, where, as in [2], N

is the largest integer satisfying

=2
A

two steps are involved. First, we compute

where the multiplicative inverse of b modulo m exists if and
only if gecd(b,p) = 1. Second, we convert the integer

=i
fab " |
the order of the digits.

€ Im to its radix-p representation and then reverse

15

EXAMPLE 3 Let p =5 and r = 4, so that m = 625 and N = 17.
To get the Hensel code for % - % we use the method of Section 4
to obtain
'%' = 2009.
625
Then, since
209ten - 1314five'

the Hensel code 1is
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First, the digits of the Hensel code are reversed, and the value
of the resulting radix-p integer is computed. From this point on

the procedure is the same.

EXAMPLE 4 Suppose we are given the Hensel code
H(5,4,F) = .4131

and we want to find %. We reverse the order of the digits and

obtain

1314five = 209ten

We now use the algorithm of Section 5 and record the computation

in the following table

* 93 Bg B
-2 - 625 0
=1 - 2009 1

0 2 207 -2

1 1 2 3

2 103 1 -311

3 2 0 625
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Errata and additions to
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by

Peter Kornerup
and

R. T. Gregory



Page 1 line 4 from below: Delete "Extended"

Page 5 reformulate LEMMA 2 as follows:

LEMMA 2 If, in (4.2), we choose a=p, b=0, and 0<c<p
such that gecd(c,p) =1, then, for i=0,1,+++, n-1

b.
..
a,

i

p P
and alternatively, if gcd(d,p) =1,

a

i
b.
i

P

Page 11 1line 1, and line 5 from below:
A
" I n

Change "Ip" into

Page 12 line 5 from below, add: "and Is| = Ib,I."
(Observation to explain the implication on top of page 13)

Page 13 1line 9 should read:

"maps the order-N Farey fractions into the

Page 15 1line 4 from below: change "Section 4" into "Section 5"

To clarify Theorem 3 add the following corollary and observation:



in which case:

a.
ged(b,,p) = 1 and '1% = ¥
P
PROOF Recall that the fractions in FN are irreducible by defini-

tion, and notice that the corollary is trivially true for k =0,
with n=-1.

A A
If 0%kE€ Ip then by definition of Ip there exists an order-N

Farey fraction %% such that:

ged(s,p) = 1 and |JL| = k

S
P

where the signs of r and s may be chosen such that r > 0. Then

(5.5) follows from Theorem 3.

To prove the other part, notice from (5.4) that gcd(bi,p) must

be a divisor of a.i but from (5.5), gcd(ai,bi) =1. Hence

gcd(bi,p) = 1, and by Lemma 2
a,
i _ k _
b, ‘,1‘p"k’
P

A
thus k€ 1_. o
p



