ISSN 0105-8517

Mathematical Foundation of

A SEMANTICS DIRECTED COMPILER GENERATOR

by

Henning Christiansen
and
Neil D. Jones

DAIMI PB-148
July 1982

Computer Science Department I h i 'l [T
AARHUS UNIVERSITY —_—
Ny Munkegade — DK 8000 Aarhus C — DENMARK]'r

Telephone: 06 — 12 83 55

HH!
——

PR —)4 P

AY

Mathematical Foundation of

A SEMANTICS DIRECTED COMPILER GENERATOR

- technical details and

correctness proof

Henning Christiansen Neil D. Jones

Computer Science Department Computer Science Department

Aarhus University University of Copenhagen

Ny Munkegade Sigurdsgade 41

8000 Aarhus C, Denmark 2200 Copenhagen N, Denmark
ABSTRACT

This paper describes technical details which were not included in
the paper "Control Flow Treatment in a Simple Semantics-Directed
Compiler Generator", [ChJ82], due to lack of space. The present

paper cannot be read separately.

We describe our method in full detail, including the iterate-opera-
tor in the S-algebra. Furthermore we give complete formal descrip-
tions of the semantic algebra S and its models (Section 1), the

compiler generation function 4% and the compile time interpretation

g P E € -~ P . s -

1. Control Flow Semantics

This section describes the signature of the semantic algebra S

(identical to the one given in [ChJ82]) and the model algebra

MI is extended to handle the iterate-construction.

Semantic Algebra S

The signature of S is given in table 1, for an explanation is
referred to [ChJ82].

Types:

Sorts:

Operators:

Table 1. Signature of §

A = {a} U {integer, boolean, string, ...} parameter types

ans

iteratel, = a

answers (values of entire source programs)
elementary actions, each with parameter type list Tle in A*
parameters, each with a target type Tp€ A

actions

execute(a) perform an action sequence

skip empty action
a,ia, sequencing - do a then a,
e elementary action without parameters

e(pln.,pn) elementary action with parameters.

Requirement: Tle = Tpl e TR,

, L =a 1in a
n n —

1 = e 0

Models of S

The semantics of S is atraditional continuation model parameterized

by a language dependent interpretation, as described in [ChJ82].

Given an interpretation I = (State, start, finish, o), we can define
an extension, o, of giving meaning to all terms of S. The set of
such meanings can be made into an algebra MI of the same signature
as S by defining operations corresponding to the operations of S.
The model of [ChJ82] has been extended with a domain of semantic
environments, Menv, to hold meanings of labels introduced by the

iterate-construct.

Note: we will write o instead of a.

Table 2. Model Algebra M

I
Carriers:

Sort ans: I¥ A z
Sort a : Menv - CT
Sort e D1x...an—*CT if e has parameter domains D1"“'Dn
Sort p : Cont =» D if tp = atomic type D
Sort p : CT if 1p = a

where Cont = State - % continuations

CT = Cont - Cont continuation transformers
Menv = S-labels - Cont semantic environments

Let menv be the empty environment.

Nneratimnea-

2. Compiler Generation

The Compile Time Algebra C

C is actually identical to S. However, the iterate operator is
not needed, and a fixed interpretation J will be used which spe-
cifies the compile-time state and the elementary actions needed

to generate target code.

In order to handle iterate-labels, the interpretation, J, of C

is equipped with a compile time environment mapping semantic la-
bels into corresponding target program labels. The scope rules
for semantic labels are realized by utilizing a stack of environ-

ments, one for each nested iterate-construction.

Compared with the descriptions in [ChJ82], C has been extended
with a number of elementary actions to.control these environments,
so we give an informal description of C and its interpretation be-

fore we give a complete formal definition.

The compile time state is relatively simple since only control

flow is handled. Its components are:

- a partially generated program 7 = [0: stro... K strk],

- a parameter stack,

- a stack for stream origins,

- a stack of compile time environments giving for each label
occurrence in the semantic algebra a corresponding target

program label.

oldstream

pushstream

push (atom)

addcoden(ins)

goback, goback-1

newen(L1,...,

oldenv

nextstream

L
n

)

re-establish the old origin previously

in use

push the stream origin currently in use

on the parameter stack

push an atomic parameter on the parameter

stack
add instruction ins(p1,...,pn) to the
current stream where Pyr+..,p, are para-

meters popped from the parameter stack

end the current stream with an instruction
"goto 1" to transfer control back to the
Stream previously in use; the difference
between the two is very subtle and is not

described here

allocate n new streams and bind them to
Lis...,L_in the compile time environment
1 n

stack
pop a segment from the compile time envi-
ronment stack, thus reestablishing previous

bindings

advance to the next L. stream when genera-—

The compiler generation homorphism a“

e, 577
Table 3 contains a compiler generation homomorphism d° in A .

Let be a term in S and DA%a its image in C. Then Dd%a when inter-

preted by J will transform compile-time state (ﬂ1,...) into
(ﬂz,...) where T, equals ™4 augmented by instructions to perform
a.
Table 3. Compile Generation Definition d¢
a% [execute(a)]l = execute (@[[all; addcode (finish))
da® [skip 1 = skip
s . e
dc I ajia, I = d ﬂaTH, d"la,l
d” [el = addcode (e)
ac 1 elpyrecer p) I = dcﬂp1ﬂ :---;dcﬂpnﬂ;addcoden(e)
o ; B R , :
d” [iterate Ly=a;..., L, = a, in a4l . |
= newenv(L1,..é,Ln); d"la,1;
newstream; d [[a1B; goback-1;
o
nextstream; d Eazﬂ; goback-1;
nextstream; chanH; goback-1;
oldstream; oldenv
a® [go L1 = addgo (L)
d” [con] = con
a® [[apar(a) 1 = newstream; d°[all; goback;
pushstream; oldstream

Table 4. Compile Time Interpretation

J = (State, start, finish,a) where
State = Program x P* x Stream-origin* x Cenv*
P = Stream-origin + Atomic-domains (parameter domain)

Cenv = S-labels - Stream-origin

Notation: upd(m,1,i) T, with instruction i added to the

end of its 1'th stream.

open(m,n) = 7, with n new empty streams follow-
ing its last stream
<> empty stack and empty program
start: - state, initial state
start = (open(<>,1), <>, <0>, <>)
finish: Cont = State - Program, fimal continiiation
finish(wm,p*,1*,cenv*) = 7

o, defining meanings of elementary compile time actions is

defined as follows:

caddcode (1) c(m,p*,1.1%,cenv¥*)

= c(upd(m,1,1i),p*,1-1*%,cenv?*)

onewstream c(m,p*,1*,cenv¥*)
= c(open(m,1),p*, (k+1) -1*,cenv¥)

where 7 = [0: strO... k: strk]

aoldstream c(m,p*,1-1%*,cenv¥*)

= c(m,p*,1%,cenv*)

Table 4. Compile Time Interpretation, contd.

agoback-1 c(m,p*,k-1-1%,cenv*)
= c(upd(m,k,goto(1,i)),p*,k-1-1%,cenv*)
where i = length of the 1'th stream of 7

anewenv(L1,...,Ln) c(m,p*,1*,cenv*)

= c(open(m,n),p*,1*,cenv-cenv*)
[L1-»(k+1,0),...,Ln—*(k+n,O)]
[O0: streamo;...;k: streamk]

where cenv

Q.

aoldenv c(m,p*,1*,cenv.cenv¥)

= ¢c(m,p*,1*,cenv*)

onextstream c(m,p*,1.-1%,cenv¥*)

= c(m,p*, (1+1) - 1*,cenv¥*)

aaddgo (L) c(m,p*,1-1*%*,cenv¥*)
= c(upd(m,1,goto(find(L,cenv*))),p*,1-1%,cenv*)

cenvL if L € domain (cenv)
where find(L,cenv.cenv*) = {

find (cenv*) otherwise

3. Target Language Semantics

In [ChJ82] the semantics of the target language T is only de-

scribed informally.

ing to
execute(find (x); test;load(2), load(3); load(4); plus))

is: 0: find(x):; test((1,0), (2,0)); finish
1: load(2); goto(0,2)

2: load(3); load(4); plus; goto(0,2)

Given an interpretation I = (State, start, finish, a) it is a
straightforward matter to define a target program semantic func-
tion

rung;: T » X% » %
This semantics maps instruction streams to continuation transform-
ers and uses a runtime environment P to map each label (1, disp)

¢ a continuation pl(l,disp).

Such a semantics is unsatisfactory for direct implementation due
to the presence of functional objects (the continuations) in the
runtime state's data structures. This can be overcome by a simple
strategy - namely to replace continuations by labels. This strate-
gy works if we can assume that the only operations allowed on
continuations are to copy them from parameters, to copy them to
and from data structures and to apply them to new states, i.e.
they may not be created. This implies that all runtime continua-
tions are the meanings of label parameters, so the same effects
are achieved by copying labels instead and implementing the appli-

cations of a continuation by a "computed goto".

In [Chr81] it is shown how the semantics described here can be

transformed into another more concrete and operational.

Given an interpretation I = (State, start, finish, o) we say that

run; is the target language semantics induced by I. A formal de-

finition of rung is given in table 5. We use start to set up the
initial state. The output from the program is "taken out" of the
state by the final continuation finish. Note that in equation
(I6) of table 5 the symbol "finish" is used to denote both the

instruction finish (cf. table 3) and the final continuation given

by a. The semantics is written as a traditional denotational

semantics, e.g. [Sto77].

Table 5. Target Language Semantics

The target language semantics, rung, induced by an interpreta-

tion I = (State, start, finish, o) is defined as follows:

Semantic Domains

State given by o

Cont = State =» X

cr = Cont - Cont

Tenv = T-label - Cont

T-label = Stream-origin x Displacement

Syntactic Domains

Program 2= Stream-origin : Stream

Table 5. Target Language Semantics, contd.

Notation

To simplify notation we define:
[program]] = [0: stream;, 1: stream,,...; r: stream_] #)
ng = [length of streami]—1, 129505 0a
(lo,...,lm) = ((0,0),(0,1),...,(O,n0)
(11'0):(1;1)!---!(1:1'11)
(rro)r(rr1)l---r(r:nr}
where m = n0+xﬁ +...-+nr-+r
Eprogram-ﬁjﬂ denotes the j'th ,j=0,...,m,

[program] as indicated above.

instruction in

Cdummy is a continuation that is never applied

Semantic Functions

rung; : Program -» X* - X
R : Program -» Tenv

I : [Ins + Stream] - Tenv - CT

Semantic Equations

(P1) rung [program] x* = R program] (0,0) (start x*)
(R1) TRl program]] = tenv where

(tenv, cO,...,cm) = f£ix A(tenv,co,...,cm).

”:lo")cor---rlm")cm]r

I program+ 0] tenv c1,IIHprogram4f1ﬂtenv Corennys
IO program+ m-1] tenv cr I [program + m] tenv c

O[1l: stream]l = O[[stream I

-

)

dummy

(I1)

- re -

4. Proof of Correctness of Compiler Generation

To show that the compiler generator is correct, we have to verify
conditions I and II of Theorem 1 in [ChJ82]. Condition I was
proved in [ChJ82] and this section will concentrate on condition
IT. Condition II states that compiler generation homomorphism a°c
describes a correct compiler for terms of the semantic algebra S
of sort ans, or in other words that the meanings of a term of
sort ans and the corresponding target program are identical. We

express this formally in a theorem.

Theorem Let I be any interpretation of S and ans any term of the

answer sort. Then
modelI(ans) = runI(modelJ(Ddcans))

In the rest of this section let ans = execute (aﬂ) for some action
a,and t = modelJ(Ddcans) be the corresponding target program. The
target semantic environment in which t is executed is denoted p,
and is defined as p = RIt]l, cf. table 5.

We prove the theorem by induction over the structure of a s using
the fact that each subterm of a. is mapped into a contigous se-

quence of instructions in one of t's streams.

In the proof we need to relate subterms of a to corresponding com-
piler state information and pieces of target code. Due to the fact

that an action (say plus) may occur several times in a_ we cannot

We now describe three occurrence-indexed objects used in the
proof. First we give an informal description, then a formal de-
finition. The definitions is not used directly in the proof,
but only indirectly through a few simple properties stated after

the definitions.

entryocC is the label of the first instruction of
the t code for a°cc

exit?cC is the label of the first instruction after
the t code for a®Cc

cenv®C® each a®“C is compiled with a unique stack of

compile time environments cenv* which we "merge"

: : occ
into one environment cenv F

cc occ

S o} « o OO
Formal definitions of entry , exit ; and cenv

Lemma 1 For any action-sorted term a of S there is function
fa: StateJ - StateJ such that for any ContJ,c, and StateJ, S:

modelJ(Ddc a) menv, ¢ s = c{fas)

0
Further, if s = (7,p*,1%,cenv*) then fa(s) = (m',p*,1%,cenv¥),

where each stream of 7 is a prefix of the corresponding stream

of m. Notation: menv is the empty semantic environment (since

d® does not apply iterate), the subscript J is used for objects
defined by the compile time interpretation J.

For each occurrence in a_ we let the state stateoccEZStateJ be

the (clearly unique) state entered just before processing ki

This can easily be defined precisely following a®. For example

stateO = startJ

if a°cc = agia, then
stateocc'1 = state®c¢ and
state®C:? = fa.(stateocc'1)

1

and so forth. Details are straichtforward and so are omitted.

Now suppose state®°C = (W,p*,l-l*,e1-e2-...-en), and
£ Occ(stateocc) = (W',p*,l-l*,e1'e2...'en). We can now define
a
occ _
cenv o = en[en_1]...[e2][e1]
entry = (1, length of stream 1 of w)
exit®c¢ = (1, length of stream 1 of w')
Properties of cenvocc, entryOcc and exit®cc
(CEOD) cenvO = the empty compile time environment
(CE1) if aocc _ aocc.T; aOcc.‘l .
ot _ occ.2 _ oge
cenv = cenv = cenv
(CE2) if a°®® = e(...,a%"%"*,...) then
OCCwd: _ occ
cenv = cenv
(CE3) if a%%C = iterate L, = aocc'1,...Ln » 329% 71 g 20900 gy
0Eae..i occ ocd . occ.n

cenv = cenv [L1—>entry : re-osL »entry 1520 e

1

(L2) if a%cc = e(...,aocc'l,...) then
n OOC L1 N 2lcle!
p exit = p exit
(L3) 4if a’cc = iterate L, = a1,...,Ln = a, in a, then
entryocc.O - entryocc
exitocc.O - exitOcC
) exit®9CCc -t = 0 exit®CcC i=0,...,n

The equations involving p are consequences of the fact that code

for action parameters and semantic label definitions is nested

to whatever follows the construct in which they occur. This

nesting is realized by the instructions goback and goback-1

(cf. table 3) which emits goto's to the desired destinations.

The remaining properties are simple consequences of the defini-

tions of entryOcc and exitocc.
N
(CO) p exit™ = flnlShJ
(c1) if a°%® = e then
(ae) (p exitocc) =P entryocc
(c2) 1if a®cc = e(...,aocc'l,...,constj,...) then
(ae)(...,uaocc'lcenvocc'l,...,const.,...)(D exitocc)
_ occ J
= p entry
(c3) if a®%® = go L then
o) entryOcc = p(cenvOcc L)

Follow from inspection of the target language semantics (table 5)

and table 3,

d

C

.

occ occ 88 _ 4 i

Uleina t+he definitiong of cenvy . ent v . anA avi+

For each step in the proof of Lemma 2 and the correctness theo-
rem we note (in curly brackets) which properties or equations
that are used. A, CE, L, and C properties are defined in this
section, I, P, and R refer to equations in the target language
semantics (table 5) and M to equations for the model algebra

M_ (table 2). When we use the induction hypothesis for some

.
occurrence we write this occurrence among the other properties.

Proof of Correctness Theorem, assuming Lemma 2

Let x* be any expression in £*, I = (State, start, finish, o)

any interpretation, then

modelI(ans) = ga’ menv finish (start x¥) {A0,M0}
= aao (cenvOCJp)(p exito)(start X*) {CEQ,CD}
= (p entryo)(start x*) {Lemma 2}
= rum. () x* {P1,R1}
Proof of Lemma 2
The induction goes as follows
a®cc = skip
triviall {M1,L0}
occ _ _odc.] oce. 2
a = a ; a
22%C toenv®C® o o) Ip exit®%%

oo < I
aaocc(cenvocc<3p)(p exitocc)
= ae(p exit®c®) {M3,L2}
= p entry°°° 11}
a®cc = e(p1,...,pn)
For simplicity we let 27 @ e(aocc'1,27)
aaocc(cenvocccap)(p exit%cC)
= oe (ocaocc'1 (cenvocc'1 0 o) (p exit®cC),27) {M4,M7,M8,CE2,L2}
= p entryocc fc2}
aOcc = jterate L1 = a1,...,Ln==an in ay
uaocc(cenVOCCCJp)(p exitocc)
= uaocc'oenv(p exitocc‘o) {L3,M5}
where env = (cenvoccczp)[L -»aaocc'1env(p exitocc),...]
If we can show env = cenvogc'0 0 0 we get the desired result
from {occ.0,L3}
cenvocc.OO 5
= (cenvocc[L1-aentryocc'1,...]o P {CE3}
= (cenvoccc>p)[L1—* uaocc'1(cenvocc'1cjp)(p exitQCC'T),...] {occ.1,...}
= (cenvoccc>p)[L1—>uaocc'1(cenvocc'otap)(p exit™%),...] {CBE3,L3}

We see that cenvocc'o o0 satisfv the econation definina eanvy

- 18 -

We have now proved Lemma 2 and hence the correctness theorem.

We conclude this section with an interesting corollary which

makes it possible to use alternate compiler generation homo-

morphisms a® and compile time algebra C without constructing a

new correctness proof.

L
Corollary A compiler generation homomorphism d® and compile

time algebra C' with interpretation J', that satisfies properties
(CEO) - (CE3), (LO) - (L3), and (CO) - (C3) will generate correct

compilers.

Proof

The properties of dc, C, and J used in the proof of

Lemma 2 are captured in the list described above.

REFERENCES

ChJ82

Chr81

Chr82

Christiansen, H. and Jones, N. Control Flow Treatment

in a Simple Semantics-Directed Compiler Generator, For-
mal Description of Programming Concepts II, IFIP IC-2
Working Conference, Proceedings, North-Holland Publishing
Company, Amsterdam (1982).

Christianisen, H. A New Approach to Compiler Generation,
Masters®*s thesis in computer science, Aarhus University
(1281) .

Christiansen, H. Users manual for CERES, Aarhus Univer-
sity, DAIMI MD- (1982).

