56 £8 &L — 90 ‘euoydaya)

MHVWNIA — D snysey 0008 Na — epebayunpy AN

ALISHIAINN SNHUYY

— H _] luswedsq aouaing Jandwo

£168-S0L0 NSSI

zg6L Aine
Lyl-9d INIVd

dnisunelg uabugpr
pue
uss)lg 9|0

Aq

ONIHOHVIS 100H HOS
SINHLIHODTV LNIHHNINOD

CONCURRENT ALGORITHMS FOR ROOT SEARCHING

June 1982

Ole Eriksen and Jgrgen Staunstrup
Computer Science Department
Aarhus University
Ny Munkegade
DK-8000 Aarhus C

Abstract

Concurrent algorithms for finding the root of a real continous
function are analyzed. A lower bound on the running time is given,
this lower bound is obtained by a synchronous algorithm. A new
asynchronous algorithm is discussed in detail and its running

time is analyzed. Finally, the results from running the asynchronous

algorithm on a multiprocessor are shown.

INTRODUCTION

Let H be a real continuous function defined on the closed
interval [a,b] and assume that H(a) *H(b)40, i.e. that H has

at least one root in [a,b]. In this paper we describe algorithms
for finding a root of H under the additional assumption that

evaluating H is computationally very slow.

We consider the class of partitioning algorithms, which are

iterative algorithms where each iteration reduces the current
interval containing the root. Let x<[a, b] ; based on the

function value,H(xX), it can be decided which of the intervals

[a, x] or [x,] that contains the root, this interval becomes the

the new current interval.

The well known bisection algorithm, where x is the middle of
[a,b], is an example of a partitioning algorithm. We restrict
ourselves to partitioning algorithms because they are simple
and guarantee convergence without other assumptions on the

function than continuity.

Let TH be the time it takes to evaluate H. When TH dominates

other quantities the running time, BT’ for the bisection
algorithm is:

b-a
eps

BTsw TH . log2

where eps is the absolute accuracy with which the root is
obtained. This running time can be reduced by letting n processes
evaluate H at different points XqrXgreee X concurrently:

X, X b

n

| | | 1 !] |
I T T T 1 T 1

When a process, P,/ finishes its evaluation of H(xi), it can

be decided which of the intervals [a,xi] or [xi,b] contains a

root. This information must be communicated to the other processes.
Based on its own results and those received from others, a process
now selects a new point, x, in the interval and computes H(x).

The running time of the algorithm depends on how the points
XqrXype.. X are placed in the interval. Intuitively, the n

points should be spread out as evenly as possible, to reduce the
worst case running time. Although this is very easy to achieve

initially by dividing the interval into n+1 intervals of length
b-a
N+’
few iterations. In fact the remaining part of this paper is con-

it is difficult to maintain such an even spreading after a

cerned with how to keep the points evenly spread.

2. A LOWER BOUND ON THE RUNNING TIME

In this section we assume that the time it takes to evaluate H,
Ty is constant. Under this assumption we give a lower bound

on the time it takes to locate a root using n or fewer
processes. First, note that the number of function evaluations
needed to locate the root with any partitioning algorithm may
vary with the location of the root. Consider an algorithm
which always partitions the current interval into two, in

proportion 1:2.

1/3 2/3

Locating roots close to "a" is of course much faster than
locating roots close to "b". When comparing algorithms we there-'
fore compare the maximum time needed to locate the root

when this varies between a and b. The best algorithm is the

one with the minimal maximum, the minmax criteria.

Consider the following algorithm:
ha:= H(a); hb:= H(b);

repeat " ha*hb <= 0 "

cobegin
X1:= a + 1/(n+1) s (b-a); yq := H(x,);/
Xp:= a + 2/(n+1)x(b-a); y,:= H(x,):/
x 2= a + n/(n+l) x(b-a); y,:= H(x);

coend;

if
haxy, €0 - b := x5 hb:=yi
y1*y2 EH oo e X1; b := Xz; ha:= v1: hb:= yo; /
Yi*Yi,.q S 0 = a = X;i b := Xi4q 7 has= yj; hb:= yje1; /

Yn*hbé 0 - a:=x ; ha:=y
end;

until (b-a)

IA
0

g
w

The cobegin Sjﬂ’szﬁ’...ﬂ’sn coend means concurrent execution of

the statements ST'SZ""'Sn‘ Hence in the above algorithm the

function is evaluated concurrently on all n points X.,X.,...,X .
TE=T " n

When calculating the number of function evaluations made by an
algorithm, the concurrently executed function evaluations are
counted as one evaluation of H. It is not worthwhile to elaborate
all details of the abstract machine model underlying this
assumption. But we envisage a model with a number of processors
each with a local store which can be accessed without disturbing
the computation of other processors. Furthermore the processors
can somehow communicate e.g. through a common store. In such a
model, it is obvious that the running time of the above
algorithm is:

T ~ log (b-a/eps)*TH

n n+1
Furthermore, when the evaluation time for H is constant
lognp+1(b-a/eps)e Ty is a lower bound (in the minmax sense) on the
running time for any partitioning algorithm using n or fewer
processes. To see this, first observe that the above shown algorithm
is optimal among all synchronous algorithms. A synchronous algorithm
is one where all n processes complete one iterafion before any of
them go on to the next iteration as it is the case with the above
algorithm. Another synchronous algorithm could differ from the

above by not letting the processes work on equidistantly placed
points or by preventing some processes from using all the information
obtained by the other processes. Both of these alternatives would
clearly give a longer worst case running time. If the above shown
algorithm is not optimal, there must be a faster algorithm where the
n processes are not completely synchronized in each step. The

execution of one such algorithm is illustrated below:

I

1 | !
!
process 1 | p——oI>l— T =
' !] f I
1 I 1 | {
process 2 |j——-—.{||__.__;:;.___.._4];__.4 e 4
I
i | !
1 1 LA) i
!] | { I
' I I ! 1
!] !] 1
| 1 ! [I
process k |p———] — i
] | ! 1 !
TH TH

A partial evaluation of H does not yield any information which

can be utilized by other processes. Therefore delaying an iteration,
as illustrated by process 1 above, cannot lead to a better worst
case running time. Hence given an algorithm without synchronization
as the one above it can always be transformed into a synchronous
algorithm having the same or a better worst case running time. This
Jjustifies the claim made above that 1ogn+1(b—a/eps)~ Ty is a lower

bound on the running time for any partitioning algorithm.

When Ty is not constant, neither the above algorithm nor the
lower bound are useful, since the complete synchronization of
all processes is inefficient. Processes which finish their
evaluation quickly are forced to wait for the remaining. In

the next section we will therefore describe a class of asynchronous

partitioning algorithms. The distinction between synchronous

and asynchronous algorithms were first made by Kung|j976].

3. ASYNCHRONOUS PARTITIONING ALGORITHMS

In this section we consider asynchronous partitioning algorithms.
Similarly to the synchronous algorithms all processes evaluate

H on different points of the interval concurrently. But in contrast
to the synchronous algorithm, when a process has finished its
evaluation it does not wait for all other processes to finish their
evaluation. Based on its evaluation and those evaluations from
other processes which have been completed it makes a partitioning
of the interval and proceeds with a new evaluation. The main
difficulty is coordinating the partitionings caused by different
processes in such a way that they all contribute to the common
goal of decreasing the size of the interval. This coordination can

be done through a datastructure representing the current interval

which is shared by all processes.

interval
data-
structure

The datastructure 1is updated by indivisible operations to ensure
its consistency. This is achieved by programming the interval

as a monitor [Brinch Hansen 75]:

TYPE INTERVAL = MONITOR;
TYPE POINT = REAL;
INTER = RECORD
A, B: POINT;
HA: REAL
END;

VAR CURRENT: INTER;

FUNCTION LENGTH(T: INTER): POINT;
BEGIN LENGTH:= T.B - T,A END;

PROCEDURE ENTRY REPORT(VAR X: REAL; HX: REAL);
VAR TEMP: INTER;

BEGIN
TEMP:= CURRENT;
WITH TEMP DO
IF HX#%HA <= 0.0
THEN B:= X
ELSE BEGIN
A:= ¥X; HA:= HX

END;
IF LENGTH(TEMP) < LENGTH(CURRENT)
THEN CURRENT:= TEMP;

END;

PROCEDURE ENTRY RECEIVE(VAR X: POINT);
BEGIN

Xt= ... "SOME POINT IN [A, BIn
END;

BEGIN
CURRENT:= o.ot;
END;

The body of the evaluation processes are as follows:

cycle

receive (x) ;
y := H(x);
report(y,x) ;
end
Below is shown a small fragment of the history of a computation

with three processes, X, is the point in which process" i"evaluates H:

H(a)<0 H(b) >0
I -4 I i —
a X, Xy %5 b) report H(x,)>0
| } + } I
a X X X b
5 3 1 report H(x,)<0
! 4 +———|
a X3 %4 x2b) report H(x1)>0
A f-
a x; X4 b x, report H(x,)>0
———
a X, Xg x2b

Note, that for short periods one or more processes are left
"working" outside the current interval. This only lasts until

they have finished their current evaluation and call "receive".

In the interval monitor it is not specified which point in the
interval a process gets by calling "receive". This allocation
of interval points to processes has a strong influence on the
running time of the algorithm and it is discussed in detail in

the next section.

3.1 Equidistant Algorithm

In section 2 we showed that in the optimal synchronous algorithm,
the processes always worked on equidistantly placed points. It
seems obvious to choose the same allocation in the asynchronous

algorithm. Then the procedure "receive" becomes:

procedure entry receive {(var x: point);

begin
x := a + (me/(n+1))x(b-a);

end;

where me is a function returning the number of the calling

process, and n is the number of processes.

Unfortunately, this very simple strategy gives a very poor per-
formance. The reason is that the processes tend to cluster.

Consider the following history where n=3.

H(a) <0 H(b) >0
f { 1 i -
a %1 X2 %3 b) report H(x1)<0
- = == I 1 —4 —]
/ Ry Ay g B ‘) report H(x3)>0
- = e = } | e i o] I
a X %2 Xé 2) report H(x2)<0
FeEsEsansms + — 4 } fr: i e s s e
(1]] T
xi a X3 b
*2

The example shows how two processes may end up working in the

same point. Since this happens frequently the equidistant allo-
cation leads to many redundant function evaluations. The following
diagram shows Enthe running time of the equidistant algorithm

for wvarious n.

10

40 =+

30T

20 4 I[II

10 <

L 3
L.
e
<
L 3
N

For a fixed n, E varies with the location of the root, the
bars in the above diagram show the minimum and maximum of En

when the root varies in [a,bl].

In the next section we show another way of allocating the

points in the interval which leads to a better worst case

running time and to a smaller variation. Both of these

improvements are essential in practical applications.

3.2 Invariant ratio algorithm

In this section we present a new asynchronous partitioning
algorithm which avoids clustering of processes. The objective
of this is to reduce the worst case running time and to make the

11

variation in the running time as small as possible. To simplify
the presentation we assume that the interval [a,b] is [0,1]

throughout this section.

Consider a snapshot of the interval:

! I I i (k<=n)

To reduce the worst case running time the next call of "receive"
should return a point within the largest of the sub-intervals
[a,x1], [x1,x2],...,[xk,b], but searching through the intervals
to find the largest is time consuming. By allocating the n

processes as follows:

0 o un_1 32 o 1
- I | i | | where 0<a<1
*n *n-1 ¥2 0 0%
we obtain
1) that it is simple to locate the largest of the subintervals,

since it is either [0,a"] or o115,

2) that the processes do not cluster.

Consider a situation where the process evaluating H at Xj
reports that there is a root in [O,xj]. The interval is then

reduced to [O,Xj].

Hence the length of the interval is reduced to a”?. This means

that in the new interval there are processes working at the

points al, Gzl,...,an_jl, where 1=aJ is the length of the new

12

interval. Hence these processes are automatically allocated
correctly, with an invariant ratio, namely as a,az,,,.,an_J,

The other j processes are of course allocated to the points

an_1+1,...,un_1,un. Exactly in the same ratio as initially.

The situation is more complicated when the root is reported to

be in the interval [xj,1].

If we could find an o such that:

this situation would be equally simple. The only change would be to

reverse the direction of the interval

0 1-a 1—02 Pt 1

L 21 1 | 1

T I T] 1
o ot o

Unfortunately the set of equations I: does not have a solution
for n>2. For n=2 the above sketched algorithm is the same as

the golden section algorithm proposed by Kung [Kung 1976].

When reducing the interval to [xj,1] we propose the following

allocation of the remaining processes to the points

-
r

> e -

g j+1 FeeepX

-
Jl-h

where

153

! = 1—&(1—x1)

J 2

xj+1 = 1-q (1—x1)

% ! = 1—an_j+1(1—x)
n 1

This may of course be slightly different from the perfect
allocation at a,uz,...,an but our experiments show that it is
sufficiently close to give a very stable algorithm. Furthermore,
this algorithm is very simple to program. The interval is
represented by the endpoints "a" and "b", an orientation and the
value of the last point "e" allocated in the direction given by
the orientation:

a b

| |]
I T 1

The next process calling "receive" will be allocated to the

point a+a(e-a). A reduction of the interval to [a,xk] will

neither change e nor the orientation. But a reduction of the in-
terval to [xk,b] requires a reversal of the orientation and setting
e equal to the rightmost point currently allocated:

This algorithm aims at distributing the points in [a, b] as

o, a2, ... al are distributed irlﬁh 1]. We claim that the minimal
worst case running time is obtained when o is chosen such that

o= 1-a™, i.e. the length of the two end intervals is the same.
This claim is justified by the experimental results presented

in the next section. All further details are given by the

program shown below.

14
TYPE INTERVAL = MONITOR;

TYPE POINT = REAL;

DIRECTION = (LEFT, RIGHT);
INTER = RECORD

A, B:POINT;

HA :REAL;
DIR: DIRECTION;
E:POINT
END;

VAR CURRENT: INTER;
ALFA: REAL;

PROCEDURE UPDATELEFT(VAR T:INTER);
BEGIN

WITH T DO
BEG IN
IF DIR = RIGHT
THEN E:= B - ALFA¥(B-A);
DIR:= LEFT;
END
END;

PROCEDURE UPDATERIGHT(VAR T:INTER);
BEGIN
WITH T DO
BEGIN
IF DIR = LEFT
THEN E:= A+ALFA#*(B-4);
DIR:= RIGHT;
END
END;

FUNCTION LENGTH(T:INTER):POINT;
BEGIN LENGTH:= T.B - T.A END;

PROCEDURE ENTRY REPORT(VAR X:REAL; HX:REAL; VAR FINISH:BOOLEAN) ;
VAR TEMP:INTER;

BEG IN
TEMP:= CURRENT;
WITH TEMP DO
IF HX#*HA <= 0.0

THEN BEGIN
UPDATELEFT(TEMP);
Beom X
END
ELSE BEGIN

UPDATERIGHT(TEMP);
A:= X; HA:= HX
END;
IF LENGTH(TEMP) < LENGTH(CURRENT)
THEN CURRENT:= TEMP;
FINISH:= (LENGTH(CURRENT) <= EPS)
END;

15
PROCEDURE ENTRY RECEIVE(VAR X:POINT);

BEGIN
WITH CURRENT DO
BEGIN
IF DIR=LEFT
THEN E:= A+ALFA¥#(E-A4)
ELSE E:= B-ALFA#(B-E);
X:= E;
END
END;

In an earlier version of the algorithm the two procedures "report"
and "receive" were combined into one. This means that reporting

a result and receiving a new point to work at is done indivisibly.

report receive

Process 1 \ f

report receive

Process 2 Q ﬂ

report receive

Process n \ #

Such a coupling of report and receive may happen in an asyn-
chronous algorithm e.g. when the evaluation of H is very long
or when it fluctuates. There is no logical reason to enforce
that the two procedures are coupled, that is why they were sepa-
rated in the program shown above. By separating them we may get

report receive
Process 1 \

report receive

Process 2 \

Process n

When the time it takes to evaluate H is constant the execution
approximates that of the synchronous algorithm. This happens when
all processes report before any of them receive a new point to
work at. On the other hand there are also executions where report

and receive from one process always follow each other immediately:

16

report receive report receive
Process 1 Y ﬂ Y
report receive report receive

Process 2

‘report receive
Process n

This represents a worst case of the algorithm where the choice

of a has a strong influence on the running time.

In this section we have presented a partitioning algorithm called
the invariant ratio algorithm, the major assets of this algorithm

are

- it is very simple to program
- choosing the invariant ratio so that o = 1-qa

minimizes the worst case running time.

In the next section we present the running times of the algorithm
obtained on a multiprocessor. These support the

claims made above, furthermore they show that the running time

is very close to the lower bound given in section 2.

3.3 Experimental results

The invariant ratio algorithm has been analyzed on an experimental
multiprocessor, Multi-Maren [Mgller-Nielsen and Staunstrup 82].
Below the results of these experiments are summarized. The

experiments support the claims made in the previous section:

1) the minimal worst case running time using n-processors
is obtained by choosing a so that o = 1-a
2] when using this a, the invariant ratio algorithm performs

significantly better than the asynchronous equidistant

algorithm.

17

3) when using this o the running time of the invariant
ratio algorithm is very close to the lower bound derived

in section 2.

To verify claim 1) the running time needed by the invariant ratio
algorithm was measured for different values of o. The following

two diagrams show the variation in the running time for

various a's, the variation stems from placing the root in different
points of the interval. The bars show the minimal and maximal

running time.

T n =4
30 £
ol] 111 |
10 4
!
t —t — + + >
.64 .68 .70 .74 .76 +80 o
. 7245
AT n =28
30 ¢
07 [I1 21 1 [
10 +
1 L [l 1 1 1 LN
T T T T T T e
.74 « 18.80 .83 .84 .85 = §

18

Both diagrams show that the worst case running time, average running
time and variation in running time is minimal around

a=0.72, u=0.81 respectively. The results shown above were obtained
with a version of the algorithm where respond and receive are
combined tofocus on the worst case as explained in section 2.

When the two procedures are separated, the average is improved

considerably but the worst case is not, as shown in the next

diagram:
AT
30 = n = 8
20 ’
* I 1111]
10 4
1 Tt ; >
<7 .78.80 | .83 .84 .85 4
p .8117
b
n =28
30 <
°r 111111]
10 1
t +—+ { ; : >
74 .78 .80 | .83 .84 .85 -

19

When the two procedures receive and report are separated, the
average number of function evaluations needed by the invariant
ratio algorithm approximates the lower bound derived in sec-
tion 2. The experimental results support this claim; the diagram

below shows the average number of function evaluations needed by
the invariant ratio algorithm together with the lower bound

curve from section 2.

: T
A
50 ¢+
X
40 L - experimental results
X lower bound
30 T X
e
20 1 P =
>
S
10 4
- ’ i t t t J >
2 3 4 5 6 7 8 n

By separating the procedures "report" and "receive" so that they
are not executed indivisibly the average number of function
evaluations is lowered, but the worst case is of course not since
there are still execution histories where they appear pairwise.
So the net effect of separating them is to give a faster exe-

cution in most cases without increasing the worst case.

21

Decentralized algorithm

In the previous section we considered a class of algorithms
where the datastructure representing the interval was shared by
all processes. Such a program structure has an inherent bottle-
neck, since the processes will delay each other when they use

the shared datastructure.

Let the time to evaluate the function H be TH and the time one
T* then it

is obvious that the maximum number of processes which can be

process reserves the monitor in each iteration be T
utilized is
k=
N T, /TI

and there will probably be an overhead even for smaller values of

n. For large values of T, this is not going to be a significant

problem as the numbers ig the previous section indicate, but for
moderate values of TH where TH and n*TI are of the same magnitude,
it would be nice to find a decentralized algorithm i.e. one without
a global shared datastructure. One may, for example, consider an

algorithm where the processes are pairwise connected.

If all processes receive from their left neighbour and report
to their right neighbour, the processes and monitors are the
same as in the centralized algorithm, but in the decentralized
algorithm there are n instances of the monitor interval admini-

strator. It is obvious that this algorithm will find the root,

22

a process which narrows the interval, sends it to its right
neighbour which uses it and probably narrows it even further

before sending it to the right etc.

This is, however, not a very efficient algorithm, since a "good"
partitioning will take n iterations to propagate to all other
processes, hence the whole speed-up is lost in propagation

delays. By extending the fan-in and fan-out of all processes to two,

the propagation delay can be reduced to logzn iterations.

O.

.
\

O

But with a propagation delay of logyn the speed-up is lost. If
the n processes were working independently they would in logyn
steps reduce the interval by (1/2)1092n=1/n. So in logjyn steps
the processes can themselves reduce the interval by 1/n. To
eliminate the propagation delays there must be processes which
reduce the interval by more than 1/n in each iteration. The lower
bound given in section 2 shows that this is not possible. The

only hope would be to find an interconnection pattern

which established a path of constant length (independent of n)
between any two processes, but this is impossible if we only

allow limited fan-in and -out of all processes.

We therefore conclude that for the rootsearching problem, there

is no efficient decentralized algorithm.

23

Conclusion

One may see the algorithm presented in this paper as a repre-
sentative of a class of algorithms with one common characteristic:

worst case reduction. Consider a sequential algorithm with a

fluctuating running time:

T 4

location of
= the root

This is precisely the case with a sequential partitioning algo-
rithm where oa#3. By choosing different a's the peaks in the
running time change. This behaviour can be utilized in a concurrent
algorithm where different a's can be tried simultaneously by
different processes. By a careful choice of a's such as the one
described in this paper all peaks can be covered, thus effectively

reducing the worst case.

Although we have not yet tried this strategy on other problems,
it appears to be one of the useful heuristics for devising new

concurrent algorithms.

24

Appendix: Details about the experiments

In this appendix, we present some of the details of the program

used to obtain the experimental results presented in section 3.3.

Choice of H

Rather than using some complicated and time-consuming function,

we chose to use the identity function, H(x)=x, and then introduce

an artificial delay in each call of H

function H(x: real): real

var
i: integer;

begin
for i:=1 to H_delay do; Yartificial delay"
H:=x

end;

This has the advantage that it is very easy to adjust the length
of the delay. Two kinds of delays were used: fixed delay where
H delay was the same for all points in the interval and varying

delay where H delay is varied with x.

Variation of root

All experiments involved measuring the number of function
evaluations for various placements of the root in the interval
[a,b]. This variation has been obtained by keeping the root fixed
in 0 and then vary a from -1015 to 0 and b from 0 to 1015. This
strategy has the advantage that the root can always be obtained
with the same absolute accuracy regardless of its relative

placement'in the. interval.

Measuring the running time

When the root has been found not all processes may detect this
simultaneously, those that are in the middle of a function
evaluation will not find out until the next time they report to
the interval monitor. Hence there may be a span between the time
when the first process detects that the root has been found and

the time when the last process detects this:

Both of
long as
both in

section

25

start first 1last

these are reasonable to use as the running-time as
the same is used in all experiments. We have measured
all our experiments, but all the results reported in

3.3 are based on the last process reporting.

26

Acknowledgement

We want to thank Peter Mgller-Nielsen for many stimulating
discussions on the algorithms presented here and for his
comments on earlier versions of this report. He also suggested
that worst case reduction might be a generally applicable

heuristic for constructing concurrent algorithms.

References

[Brinch Hansen 75] : The programming language Concurrent
Pascal, IEEE Transactions on Software Engineering 1, 2
(June 1975), 199-207.

[Kung 76] : Synchronized and asynchronous parallel algorithms

for multiprocessors in "Algorithms and Complexity: New

Directions and Recent Results" (J.F. Traub, ed.), Academic
Press, New York, 1976.

[Mgller-Nielsen and Staunstrup 82] : Early experience from a
multiprocessor project, DAIMI PB-142, Computer Science

Department, Aarhus University, January 1982.

