_|_ll S SSEBTL-90 ML NVI3H/INIVA “HAHL
_r [3 * jarwued - D snysey 0008 - 2pebenunyy AN
. IONIT3A4Y ASIDOTVLIVA ,

: .I—I. W _ _ i 13)sisAjun snyley - INISU] YSIEWIIRY

786l ey
ovL-9d INIVa

uszoy| *9 I8IxaQ

SN1NOTVI-" TVNOILISOdOYd FHL NO SL1NS3IH

Kozen: Results on the propositional p-calculus

£168-501L0 NSSI

PB-146

RESULTS ON THE PROPOSITIONAL u-CALCULUS

Dexter Kozen1
Aarhus University
Aarhus, Denmark

Abstract

We define a propositional version of the p-calculus, and give an
exponential-time decision procedure, small model property, and complete
deductive system. We also show that it is strictly more expressive than
PDL. Finally, we give an algebraic semantics and prove a representation
theorem.

1. Introduction

The propositional p-calculus refers to a class of programming logics

consisting of propositional model logic with a u (least fixpoint)
operator. The u-calculus originated with Scott and deBakker [SdB] and
was developed further by Hitchcock and Park [HP], Park [Pal, deBakker
and deRoever [dBR], deRoever [dR], and others. The system we consider
here is very similar to one appearing in [dB, chp.8]. Our results how-
ever are more inspired by the work of Pratt [Pr], who considers a ver-
sion Pu. He shows that Pu encodes PDL, and extends his exponential-time
decision procedure for PDL to Pu. He leaves open the problem of strict
containment of PDL and does not give a deductive system. The usual
proof rules do not readily apply to Pu due to its formulation as a least
root calculus rather than a least fixpoint calculus; this was done in
order to capture the reverse operator of PDL. Also, Pratt imposes a
rather strong version of syntactic continuity on Py which we would like
to weaken, since it renders illegal by fiat such useful formulas as
uQ.[alQ (this is the negation of the infinite-looping operator Aa of
Streett [S]). The restriction allows Pratt's filtration-based decision
procedure to extend to Py, whereas no filtration-based decision proce-
dure can work in the presence of uQ.[alQ, since the operator [alQ is not
continuous.

Here we propose weakening the syntactic continuity requirement and
returning to the original least-fixpoint formulation to get a system LU.

We lose the ability to encode the reverse operator, however we can show

(1) Ly encodes PDL with tests and looping. (A) but without reverse;

1) On leave from IBM Thomas J. Watson Research Center, Yorktown Heights,
New York 10598, USA.

2

thus by a result of Streett, Lu is strictly more expressive
than PDL.

(2) We give an exponential-time decision procedure. This improves
Streett's upper bound for PDL with A.

(3) We give a deductive svstem for Lu, including the
fixed point induction rule of Park [Pal, and prove complete-
ness.

(4) We describe briefly an algebraic semantics and prove a repre-
sentation theorem.

Familiarity with the u-calculus and PDL is assumed; see [dB,dR,FL].

2. Syntax and Semantics

Ly has primitive propositions P,Q,... and programs a,b,..., and formulas

P, XvY, 11X, <a>X, and uQ.X, the last allowed only if certain syntactic

restrictions are met. We at least require syntactic monotonicity: each

occurrence of Q in X is under an even number of negations. We will in-
dicate this by writing such formulas uQ.pQ. Boolean operators A,>,=,0,1
are defined as usual; [a]lX = 'a>7X and vQ.pQ = WQ.1pT7Q. Vv is the grea-

test fixpoint operator. ¢ represents either u or v. In practice we will

distinguish between variables (those Q bound by some 0Q) and other pri-
mitive propositions, although formally there is no distinction. We will
often think of v,A,[],P(=7P) as primitive, eliminating occurrences of
1 by deMorgan's laws. A formula in such form is called positive.
In section 5 we will also impose the following syntactic restric-
tion, which i1s somewhat weaker than Pratt's restriction:
(2.17) If oR.gR and 0S.rS are subformulas of uQ.pQ (possibly HQ.pQ
itself) each containing an occurrence of Q, then no two
occurrences of variables R and S are conjunctively related.

(Two formulas are conjunctively related in a positive for-

mula X if A is at the root of the smallest subformula of X

containing them). This is explained in section 5.

A standard model is a tuple M = (SM,pM,ﬂM) where SM is a set of

states, pM: ata < SMxSM, and HM: P'+PM o= SM. Each formula defines both

a set in SM and an operator on subsets of SM. If X=X(Q) has free vari-

ables all among § = Q1""'Qk’ then X defines a k-ary set operator

XM: (SM)k+ SM as follows:

PM(E) = pM , P a primitive proposition,
Q?(ﬁ) = A, , Q; a variable,

xwy@ =M@ v YME,

wME = M- xME,

<a>x" (&) = 1s13t € XM @) (s,t) € a3,

uQ.pQM(ﬁ) ﬂ{BIpM(B,i) & Bl

uQ.pQMcan also be defined equivalently as

10.pa (&) o oM

= U,p 0 (A),
where
pxM (7) = x"(7)
1Mz o oMt xM(w) 7)
o xM &) = Uger PP (B) , 1 a limit ordinal.

The equivalence of these two definitions is the Knaster-Tarski theorem.
XM(Q) can also be interpreted as a subset of M by taking
M

B = ZUGY, sia0l) s
We write s|=X and say s satisfies X if SEXM. The infinitary formulas
p%*X can be represented physically, modulo the representation of ordi-
nals, by associating the ordinal o with the root of pX, along with a
two-way pointer to each occurrence of X. There is no ambiguity:sprovided
X is free for Q in pQ. We will use these formulas and this represen-

tation in the algorithm.

3. Expressiveness Results

Ly subsumes PDL (without reverse), as shown by Pratt [Pr]. For example,
the PDL formula <a*>X is given by uQ.Xv<a>Q. However, unlike PDL, there
are monotone operators that are not continuous: [alQ is one. If PQ is
continuous in Q in the model M, then uQ.pQM = prM, but in any model,
uQ.lalQ = {s| there are no infinite a-paths out of s}. (This is T4da in
the notation of Streett [S]). For example, in
UJ+10 but the top

state s satisfies uQ.[alQ - pmo. The quéstion

the model pictured, uQ.[alQ = p

\.
7

Vol i J 4) raised by Pratt about the strict expressiveness
: b i f of Pu over PDL is still open, but the following
i i : result of Street shows that Lu is strictly more

expressive, and in a way which shows why fil-

tration techniques fail for Lu:

Proposition (Streett [S]). uQ.[alQ is not equivalent to any PDL
formula.
Proof Suppose UQ.[a]lQ = X € PDL. Consider the model pictured

above. Then sl=uQ.[alQ and sl= X. However, in any finite filtrate over a
set containing X, the equivalence class [s] of s still satisfies X, but
cannot satisfy pQ.[a)Q since there is an infinite a-path out of it. o
The above proof assumes uQ.[a]0=X in all models and derives a con-
tradiction. However we can show that Ly is strictly more expressive than
PDL in the stronger sense that there is a model M and a formula X of Lu

such that no PDL formula Y is equivalent to X on M.

Proposition In the model

e o ...

the formula pQ.[al<a>Q defines the even states, whereas all PDL formulas,
even with test and reverse, define only finite and cofinite sets. =
The proof is omitted. Intuitively, PDL cannot simulate an unbounded

alternation of [a] and <a>.

4., A Deductive System

The deductive system is equational, as in [KP]. All formulas in a deduc-
tion are of the form X=Y or X2Y, the latter abbreviating XvY = Y. The
logical axioms and rules are those for equational logic, including sub-
stitution of equals for equals, provided the syntactic restrictions on

u formulas are not violated. The nonlogical axioms and rules are:

(4.1) axioms for Boolean algebra

(4.2) <a>X v €a>Y = <a> (Xvy)

(4.3) <a>X A [alY £ <a> (XAY)

(4.4) <a>0 = 0

(4.5) p(uQ.pQ) £ uQ.pQ

(4.6) pXiX, X free for Q in po
pQ.pQ=X

(4.1)-4.4) are axioms of propositional modal logic. (4.5) and (4.6) say
that uQ.pQ is the =-least object X such that pX:sX. (4.6) is the fix-
point induction rule of Park [Pa].

The following are some basic theorems and derived rules of this

system. We refer the reader to [dB,dR] for omitted proofs.

Proposition 4.7. The following are provable:

(1) (change of bound variable) uQ.pQ = UP.pP,
provided neither Q nor P occurs in pR.
(ii) (monotonicity) X2¥ , X,Y free for Q in pQ
pX<pY

(iii) vQ.X = X, © not free in X
(iv) p(0Q.pQ) = 0Q.pQ

(v) pQ = gQ
0Q.pQ = 0Q.qQ

(vi) p(uQ.XApQ) = X, Q not free in X, X free for Q

HQ.pQ = X
(vii) p(XAuQ.pQ) = X, X free for Q

HQ.pQ = X

Proof (vi).

(a) p(uQ.XaApQ) £ X (assumption)
(b) X A p(uQ.XapQ) € X (a), (4.1)
(c) p(X A uQ.XApQ) £ X (a), (4.1), (ii)
(d) p(X A uQ. (XAp(XAQ)) = X ' i) , (44} , (v}
(e) p(X A uQ. (XAp(XAQ)) £ X A p(X A 0Q. (XAp (XAQ))) {d) . A1)
(£) pP(X A pQ. (XAp(XAQ))) £ uQ. (XAp (XAQ)) (e),(4.5)
(g) P(X A uQ. (XAp(X Q) £ X A uQ. (XAp (XAQ)) (d) , (£)
(h) HQ.pQ = X A pQ. (XAp (XAQ)) (g),(4.6)
(1) uw.pQ = X (h),(4.1). O

4.7(vi) says that if X A uQ.pQ is consistent, then X A p(uQ.]1XApQ) is;
intuitively, the iteration pao has to capture a state of X for the first

time.

5. Main Results

In this section we show completeness of the axioms and give an exponen-
tial time decision procedure and small model property. These results
are based on a common construction which can be described as a tableau

or semantic tree method. Similar methods have been used in program lo-

gics by Pratt [Pr1l and Emerson and Clarke [EC].

Let W be a positive formula of Lu. Assume by 4.7(i) that no vari-
able is bound twice and no primitive proposition occurs both bound and
free. The closure cl(W) is the smallest set containing W and closed un-
der subformula and the rule 0Q.pQ € cl(W) = p(0Q.pQ) € cl(W). cl(W) is
no larger than [W|, because each element is e(X) for some subformula X

of W, where e(X) is obtained from X by repeatedly replacing the vari-

6

ables Q by the unique subformula ¢Q.pQ of W. The order of replacement
does not matter, the process must halt since the only new variables in-
troduced with 0Q.pQ are guantified in a subformula of W containing
0Q.pQ properly. We distinguish two kinds of o-subformulas of e(X)€cl (W) :

those that have been regenerated and those that have not. The former

are those that replaced a variable in the above construction of e (X).
To construct a tableau T for W, start with the root rTlabeled

8, = {W}, and apply the following extension rules:
! a-rule : if XAY € ¢_ then add node t labeled ¢ _ = @sU{X,Y} and

unlabeled edge s-—t.

v-rule : if Xvy € @S then add nodes t,u with
8, = @sU{X}, B = @SU{Y}, and unlabeled edges s>u, g+t.

g-rule : if 0Q.pQ € ¢, add t with ¢, = ¢ _U{p(cQ.pQ)} and
unlabeled edge s->t.

< =-rule: for each <a>X € @S, add node t with
g, = {X}U{Yl[a]YEQS} and edge s>t labeled a.

The a-, v—, o-rules are applied until @S does not grow, then the < -rule

is applied. This must occur eventually since each @S < cl(W). Thus there

W

are at most 2 distinct labels. Call s a strong node if either no

rule applies to s or the < - rule was applied; a weak node otherwise.

The weak interval of s consists of s and all weak ancestors on the path

back up to, but not including, the next strong node. A regeneration of

a o-formula is an application of the o-rule to it. For every occur-
rence of asubformula X of a formula in @S, its trace is the sequence
of occurrences of X stemming from that occurrence of X in @S. For
example, if Z is an occurrence of a subformula of X in XAY € @S, and
the a-rule is applied to XAY, the corresponding occurrence of Z in X
in the successor of s is on the same trace. A trace can be duplicated
at applications of the o-rule, since there can be several occurrences
of the same formula stemming from one occurrence. If the same formula
from two different sources appears in @s, then one copy is discarded
and the traces of corresponding subformulas merged.

The syntactic condition (2.1) implies that no element of cl (W)
contains two conjunctively related occurrences of the same u-formula.
This is proved by induction on the generation of cl(W). Let uQ.pQ be an
occurrence of a u-formula in T. Follow its trace until it is exposed and

regenerated. There is now one copy of uQ.pQ in p(uQ.pQ) for each Q in pQ.

Follow the trace of each one of these; by the syntactic requirement
(2.1), they must split apart and go down different branches of the tree
before one is regenerated. In fact, any two occurrences of HO.pQ in dif-
ferent formulas of @S must have disjoint traces back up to their first
regenerations.

We now give an alternating Turing machine algorithm to refute W
by constructing the tableau and rejecting if certain conditions are met.
The algorithm starts with one process at the root rr with input

®rT = {W}. It then constructs the tableau by applying the v-, A-, and

o-rules in a regular fashion; at the application of v-rules, it makes an
existential branch, spawning two processes, each of which takes one of
the successors. At the application of < -rules it makes a universal
branch, spawning a process for each successor. If a process at a strong
node s finds both P,ﬁE@S, itrejects. If not, and if no rules apply

(for example if &g contains only formulas P and [a]X) then it accepts.
N Besides this action, each occurrence of a u-formula in @s has a
priority (position in a priority queue) and a count. The u-formula goes
onto the back of the queue when it is first regenerated, and its count
is set to 0. Whenever it is regenerated, its count is incremented and
all counts of formulas of lower priority are reset to 0. When two occur-
rences X,X' of a formula appear in @S, they must be merged. This is done

as follows: Let uQ1.p1Q1,...,uQn.ann be the regenerated u-formulas of

X in order of deéreasingiﬁeﬁght &f e_1(uQi-piQi) in W. Note that the
e_T(uQi.piQi) are linearly ordered by the subformula relation. Also note
that all occurrences of uQi.piQi have the same count, and that they will
have gone down two different branches of the tree by the time they be-
come exposed again; thus there is only need to represent each uQi.piQi
once in the priority gqueue. Thus each uQi.piQi appears once on the queue
and in the order uQ1.p1Q1,...,uQn.ann, since UQ1.p1Q1 must have been
regenerated first. Let uQ.l.p1 a,...,an.anﬁ be the corresponding
occurrences in X'. To merge, keep the sequence of lexicographically
higher priority (say uQ1.p1Q1,...) and delete the other one. Think
of the sequence UQ1.p ?%"" as merging into pQT.p1Q1,... If any

'

count ever exceeds 2| the process rejects. We claim

3
(5.1) there can be no trace of uQ.pQ with more than [W[2'2IWI

regenerations before rejecting.

An element of the queue can only change priority, by merging with

something of lexicographically higher priority or something being

8
deleted in front of it, at most |W|2 times, the maximum length of
the queue. Every time its count is set back, either it was because
something of higher priority was regenerated, or its priority
changed, thus either its lexicographic priority increased or
something with a higher prlorlty had its count increased. Thus some

IW' steps. The condition (2.1)

counter must run out after |W|
was used to insure that new copies of a p-formula come into the

back of the queue; this is exactly what fails in the general case.

The set @ can be represented by a set of pebbles on subterms of
W, a pebble on X denoting e(X)E@ . We also need to maintain the priority
Wl Thus the
algorithm uses alternating O(IWI3) space, which, despite the possibility

queue with IWI counters, each holding an integer value =2

of infinite computations, can be simulated in deterministic exponential
time [CKS].

Theorem 5.2. The following are equivalent:

(1) W is consistent ;

(ii) the algorithm does not reject ;

' R E
(iii) W has a finite tree-like model of depth d = IWI2 ZIWI
and 2d states.
Proof. (i)-(ii) Suppose W is consistent. In the tableau T, replace

each occurrence uQ.pQ in @S by a formula uQ.RApQ inductively down the
tree, to get @é . R is a conjunction of k formulas, where k is the count
of uQ.pQ at s. If k=0, R=1; otherwise, let t be the most recent time

0
in pQ.pQ's history that its counterwas 0, and let to,t1...,t be all

k-1
the nodes along its trace up to s at which uQ.pQ was regenerated; let
R - 0 1@", where ¢[' is obtained from @% by deleting all R's from the

lower prlorlty u=-formulas.

We construct a set C of nodes containing rr such that

(a) if seC and s is an v-node, then some successor of g is in C;
(b) for all other nodes s€C, all successors of s are in C;
(c) every @é, SEC, 1is consistent.

We start by setting C = {rT}; W is consistent by assumption. If @é is

consistent and the v-rule is applied at s to XvY, then one of the suc-
cessors ¢, ®! must be consistent by (4.1) since ¢! is @.U{X} with per-
haps some formulas deleted due to merging; no counts change. Thus one

of t,u can be added to C. Similafly, at applications of the A-, ¢ -, and.
v=rule, C can be extended with all successors (there is no duplication

of traces in the v-rule, due to 2.1), since if @S is consistent then all

its successors are, by (4.1)-(4.4) and 4.7(iv). At applications of the
u-rule to uQ.RapQ, we need to show that if pQ.RApQ € @é and @é is con-
sistent, then p(uQ-(RA7®g/\pQD A 2l is consistent, where ¢! is obtained
from @é by deleting the R's in all lower priority subterms, whose counts
were reset to 0. But ¢!<¢!' by monotonicity, thus if uQa(RapQ) A L is
consistent, then uQ. (RApQ) a @g is, and thus p(UQ.(RA1®gf\pQH A @g is

by 4.7(vi). Thus the set C exists. Moreover, C does not contain any

node rejected because of P,ﬁE@S, since all nodes of C are consistent;
and any nodes rejected because a counter ran out must have an occurrence
of uQ.pQ regenerated at two ancestors s an t with ®S=®t, the priority of
uQ.pQ unchanged and its count nonzero on the path from s down to t. Then
UQ.RAPQE®£ and R contains 1@; , thus ®£§1®g : and ¢£§®€ é@Q, since
®t=®s, and all p-formulas with lower priority have R=1 in both @E and
@g » and all higher priority p-formulas were not changed between s and

t (otherwise uQ.pQ's count would have been reset). Thus @é is inconsi-
stent and cannot be in C, and neither can any descendant.

- Thus the algorithm cannot reject, because the computation tree is
isomorphic to the tableau, and the set C forms a barrier to the compu-
tation of 0's back up the tree, so 0 cannot be assigned to the root.

(ii)»(iii) TIf the algorithm does not reject, prune all nodes in
the tableau corresponding to nodes in the computation tree labeled 0;
the set so obtained satisfies (a) and (b) above, and contains the root.

3
, Wl

: : : 2 :
Moreover no trace in T regenerates pQ.pQ more than IW|™- times,

by (5.1).

Let @é be @S with all u-formulas uQ.pQ replaced by pd?c

0, where

3 .

d = IW[2-2|W] » and ¢ is the maximum number of times uQ.pQ is regene-
rated on any path out of s. Define the model T = (ST,pT,nT) where
ST = {strong nodes in C}, DT: an+aT = {(s,t)Is»u in T on some edge labeled
a, and u is in the weak interval of t};and nT: pop! = {SIPGQS}. Let
xl = {sESTIXE®é}. We show by induction on formula structure that
(5.3) pX)te p(xh),

where Xl = X#,. ,Xé.

Then rr I= W follows by specializing X to the null sequence and p=W. The
basis is given by

P(}_‘I)L pl = pT
= i L L o &T

= il L T,slL
Qi(X) X[=9, X7,

I
el
n

the first two by definition of nT. The induction cases A and v are

10

straightforward; for <a>, if s € <a>p(§)L then (s,t)GaT for some

kB p(i)L by definition of the tableau; Then t € pT(iL) by induction
hypothesis, so s € <aT>pT(§L) = <a>pT(§t). If & € [a]p(i)L then all
(s,t)EaT have t € priL), so s € [a]pT(iL). Occurrences of nQ.pQ were
replaced by pnO; for this case,

P oX)" U p(me(I_{),i)L

U o (et ,xh

m<n
T m.T,=L. =L
ey P (p 0 (X7),X")

= om0’ (xh

N

U

n

The first step is by the u-rule in the generation of the tableau, and
the other steps are by induction hypothesis. Finally,

v0.p0(X)F € p(va.pa(®),)t

pT(vQ.pQ(i)L,iL)

n

by induction hypothesis; since VQ.pQT{iL) is the greatest fixpoint,
vo.po(®) b < vo.pa’ (&h).

A small model is obtained from T by observing that the tree T is regu-
lar, because the tableau rules were applied in a regular fashion, thus
there are at most d distinct subtrees up to isomorphism, and hence d
distinct theories, since the theory of a node depends only on its sub-
tree (this is false in the presence of the reverse operator). Thus a
finite model can be formed by creating loops.

(iii)~> (1) This asserts the soundness of the deductive system and

is left to the reader. [a]

6. Algebraic Semantics and a Representation Theorem

One can give an algebraic semantics whose models are Boolean algebras
with operators <a>,u satisfying the axioms (4.1)-(4.6). This is the
approach taken in [Pr]. Over this semantics, completeness is obtained
easily by constructing a Lindenbaum algebra from formulas. In this case
the completeness theorem of Section 5 can be considered a proof of equi-
valence between the two semantics. Moreover, every algebraic model is

algebraically isomorphic to a nonstandard state model, by the Stone

construction (see [K1]); that is,

{ultrafilters}, 'PM = {ul|P€u},

{(u,v) |¥X XeEv+<a>X€u}
{(u,v) |I¥X [a]X€u+XEV}.

states
M

a

11

The construction insures that uQ.pQM is the least element of the alge-
bra closed under pM and that UapaoM c uQ.pQM, but equality does not

hold in general. Define an algebra to be u-complete if the £-supremum

M%pGOM exists and is equal to uQ.pQM. This property corresponds to
*-continuity in dynamic algebras [K3]. Then the set uQ..pQM - uapaoM is

~ nowhere dense in the nonstandard representation of the algebra construc-
ted above, thus in countable algebras, the union of all such sets is
meager and can be deleted without changing the algebra (see [K2]).

In this way we have shown

Theorem. Every countable u-complete algebra is isomorphic to

a standard model.

Moreover, all standard models are p-complete. Thus u—-completeness

characterizes the countable standard models up to isomorphism.

References

[HP] P. Hitchcock and D.M.R. Park, Induction Rules and Termination
Proofs, Proc. 14t ICALP, 1973, 225-251.

[KP] D. Kozen and R. Parikh, An Elementary Proof of the Completeness
of PDL, TCS 14 (1981), 113-118.

[K1] D. Kozen, A Representation Theorem for Models of *-free PDL,
Proc. 7th ICALP, Springer LNCS 85 (1980), 352-362.

[K2] D. Kozen, On the Duality of Dynamic Algebras and Kripke Models,
Proc. Workshop on Logdic of Proghams, Springer LNCS 125, 1-11.

[K3] D. Kozen, On Induction vs. *-continuity, Proc. Workshop on Logics
of Programs, Springer LNCS 131 (1982), 167-176.

[Pa] D.M.R. Park, Fixpoint Induction and proof of program semantics,
Mach. Int. 5, ed. Meltzer and Michie, Edinburgh Univ. Press,
1970, 59-78.

[Pr] V.R. Pratt, A Decidable u-calculus (Preliminary Report),
Proc. 22nd FOCS, Oct. 1981, 421-427.

[Pr1] V.R. Pratt, A near optimal method for reasoning about action,
JCSS 20 (1980), 231=254,

[SdB] D. Scott and J. deBakker, A Theory of Programs, unpublished,
IBM, Vienna, 1969. .

[S] R. Streett, Propositional Dynamic Logic of Looping and Converse,
Proc. 13th STOC, May 1981, 375-383.

[CKsS]

[4B]

[dBR]

[dR]

[EC]

[FL]

[HR]

12

A. Chandra, D. Kozen, L. Stockmeyer, Alternation, JACM,
Jan. 1981.

J. deBakker, Mathematical Theory o4 Program Correctness,
Prentice-Hall, 1980.

J. deBakker and W. deRoever, A Calculus for Recursive Program
Schemes, Proc. 1s% ICALP, 1973, 167-196.

W.P. deRoever, Recunsive Program Schemes: Semantics and Proof
Theory, Ph.D. Thesis, Free University, Amsterdam, 1974.

E.A. Emerson and E.M. Clarke, Design and Synthesis of Synchro-
nization Skeletons using Branching-Time Temporal Logic,

Proc. Workshop on Logics o4 Programs, Springer LNCS 131 (1982),
52~11

M. Fischer and R. Ladner, Propositional Dynamic Logic of
Regular Programs, JCSS 18:2 (79).

J. Halpern and J. Reif, The Propositional Dynamic Logic of
Deterministic, Well-Structured Programs, (extended abstract),
Proc., 22nd FOCS, Oct. 1981, 322-334,.

