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A PROGRAMMING LANGUAGE FOR THE INDUCTIVE SETS, AND APPLICATIONS

David Harel1'2 Dexter Kozen2’3
The Weizmann Institute Aarhus University
Rehovot, Israel Aarhus, Denmark

Abstract

We introduce a programming language IND that generalizes alternating
Turing machines to arbitrary first-order structures. jie show that IND
programs (respectively, everywhere-halting IND programs, loop-free IND
programs) accept precisely the inductively definable (respectively,
hyperelementary, elementary) relations. We give several examples'showing
how the language provides a robust and computational approach to the
theory of first-order inductive definability. We then show: (1) on all
acceptable structures (in the sense of Moschovakis [Mo]), r.e. Dynamic
Logic is more expressive than finite-test Dynamic Logic. This refines

a separation result of Meyer and Parikh [MP]; (2) IND provides a natural
query language for the set of fixpoint queries over a relational data-

base, answering a question of Chandra and Harel [CH2].

1. Introduction

In this paper we introduce a programming language IND. In its most basic

form, the language consists of only 3 types of statements:

£1: y+3 (or y+v)
22: accept (or reject)
23: if R(x) then goto 24

where R(xX) is an atomic first-order formula.

An IND program P can run in any first-order structure of the same
similarity type. The input is an initial assignment to variables
§=x1,...,xn, where x contains (at least) all the free variables of the
program, and execution starts at the first statement. Statements of the
form Q1 assign an arbitrary element of the domain existentially (uni-
versally) to variable y, just as in alternating Turing machines [CKS].
A statement of the form Rz causes immediate acceptance or rejection,
and 23 is an ordinary conditional branch. The definition of acceptance

of the input x is the same as in alternating Turing machines [CKS] in-
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3) On leave from IBM Thomas J. ¥Watson Research Center, Yorktown Heights,
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2
volving an inductively-defined labeling of the computation tree with
either 0 (reject), 1 (accept), or L (undefined); see Section 3.

In Section 5 we show:

(1) IND programs accept precisely the relations definable

by elementary (first-order) induction.

(2) IND programs which halt on all inputs (i.e., either
accept or reject) accept precisely the hyperelementary

(or inductive, co-inductive) relations.

(3) Loop-free IND programs accept precisely the elementary-

(first-order definable) relations.

In countable acceptable structures (see [Mol) such as the natural

numbers N, (1) and (2) become
(1) IND programs accept precisely the ﬂ] relations.
(2) IND programs which halt on all inputs accept precisely

the A} relations.

IND provides a computational intuition for the theory of induc-
tive definability [Mo] which seems to be missing from the literature.
For example, our proof of (2) involves showing that if both a relation
and its complement are accepted by IND programs P1 and P2, then the two
programs can be simulated by a third program that always halts, P3. P3
simulates steps of PT and P2 alternately, halting whenever one or the
other halts, just as in the usual Turing machine proof that an r.e.,
co-r.e. set is recursive. Many other elementary results, such as the
Stage Comparison Theorem, Closure Theorem, and Separation Theorem [Mo],
have machine-based proofs using IND that recall analogous proofs in
recursion theory that use Turing machines. The availability of such a
tool is especially important now that concepts central to inductive de-
finability theory have resurfaced in computer science in recent work on
program logics [MP, T], and program verification in the presence of
fairness or unbounded nondeterminism [AP, LPS, GFMR].

In Section 6 we use IND to characterize the expressive power of
Dynamic Logic. Meyer and Parikh [MP] have shown that Dynamic Logic with
unrestricted recursively enumerable programs (DLre) is strictly more
expressive that many limited versions, such as DL with finite tests
(DLft). The result is proved by transferring the problem to the problem
of distinguishing w” and w2 in fragments of infinitary logic, and does
not provide any insight into the inherent computational power of DL.

In Section 6 we show that on any acceptable structure, DLre is more

expressive than DL_ . Specifically, we show that in an acceptable struc-
B £t Y y



ture, DLre and DLft define exactly the IND complexity classes T(uﬁg)and
T(w), respectively, where me is the first non-recursive ordinal. In
any structure, 7(w)={relations definable by first-order logic}, and on
recursive acceptable structures (such as N}, T(M$% = A}. The classes
T(w) and T(wa) can be separated on any acceptable structure by a
simple diagonalization argument.

It should be emphasized that the expressiveness results of [MP] are
schematic, in the sense that they consider L1§L2 if there is an inter-
pretation of L1 in L2 which holds uniformly over all structures, whereas

we will write L1§L2 if for each structure there is an interpretation of

LT in L2. The former gives stronger positive expressibility results, and
the latter gives stronger negative expressibility results (such as
DLft#DLre). Our positive expressibility results (such as DLreET(uﬁK))
are not to be interpreted schematically.

In Section 7 we show the connection between inductive definability
and the fixpoint queries of [AU, CH] for relational data bases. Coupled
with a recent result of Immerman [I], this easy Observation shows that
IND defines exactly the class of fixpoint queries FP, thus answering a

question of Chandra and Harel [CH].

2. Programming examples

The language IND in its above form is very simple, and this makes formal
semantics and formal proofs easier. However, the language is also quite
robust, in the sense that more powerful programming constructs can be
added without changing expressive power. For example, an unconditional
jump can be obtained by using the test Y=y in the conditional. Certain

more complicated conditional forms, such as

AE R(x) then goto 21 else goto 22
if R(x) then accept else reject
if 7R(X) v S(x) then goto 2

are obtained by manipulation of control flow. The assignment statement

y<t is obtained by

y+1 or X+3
if y#t then reject if x#t then reject
y+d

1f y#x then reject

where x is a new variable,if y occurs in t.
There is a loop-free program to compute any first-order formula.
For example, an element x of a Boolean algebra is atomless if it satis-

fies the formula



Vysx  (v#0 D Jzsy  (0#z A z#y))
The set of such elements is accepted by the program

and

if m~ysx v y=0 then accept

z+3
if 2z2y v 0=z v z=y then reject
accept.

It is clear, however, that IND programs can accept sets that are not

first-order definable. For example, 21 below accepts all pairs (x,y)
in the reflexive transitive closure of R, and £2 accepts y iff R is well-
founded below y:

21: if x=y then accept 22: X<V
Z+3 if ~R(x,y) then accept
if aR(x,2) then reject N
X+2z goto 22

The statement 25 VQG which accepts if either the program starting

at 25 or that starting at 26 accepts is encoded by

y+3

if y=z then goto 25 else goto 26

where y is a new variable and z is any other variable. The statement
QSA 26 is defined similarly, using V instead of 3. One can also encode
the statement ’25 which accepts (rejects) iff the computation starting
at 25 rejects (accepts). This is done by taking the whole program P and

constructing its dual P by interchanging V/3 and accept/reject statements.

The program P then accepts (rejects) exactly when program P rejects
(accepts), starting at any point.

The statement 1% is then given by goto L. where %, is the state-
ment corresponding to R5 in the dual program. Of course, the statement
ﬁ25 in the dual program is replaced by goto 25.
These constructs allow us to encode the statement

if ¢©(x) then goto ET else goto 22,

where ¢(x) is any first-order formula, or for that matter any relation

computed by a program that always halts:

(m1 A 21) v (-am1 A 22)

where my is the first statement of a program computing ¢ (X).
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One of our main results is that there is an IND program that accepts
any relation definable by first-order induction. For example, the sub-

group H of G generated by a,b is the least subset of G such that

xXEH > x=a VvV x=b V Jy€H dz&€H x=y-z V Xzy_1

Membership in H is computed by the program

21: if x=a v x=b then accept

y<d
if x=y_1 then goto 23
z+3

if x#y-z then reject

Rz A 23
22: Xtz

goto 21
R3: X<y

goto L

1

To give an example involving an unbounded alternation of quanti-
fiers, consider a two-person game like chess or go. The set of board
positions from which a given player has a forced win is defined induc-

tively from the legal-move and (immediate) win predicates by

force(x) <> win(x) v 3y(legal-move(x,y) A rwin(y)

A Vz (legal-move(y,z) - force(z)))
and is accepted by the program

21: if win(x) then accept

y<+3

if alegal-move(x,y) v win(y) then reject

X<V
if 7legal-move(y,x) then accept
goto 11

IND programs can run for more than a finite amount of time and still

halt. An example of a program that runs in N for time w+1 is
y*v

91: if y=0 then accept
y<y-1
goto £1

In N, the running times of IND programs are exactly the recursive
ordinals. In fact, we can take the set of computation trees of IND pro-

grams as a set of notations for recursive ordinals.



3. Semantics of acceptance

The semantics of acceptance is formally almost identical to that of al-
ternating Turing machines [CKS]. Intuitively, it consists of two stages:

(1) generation of the computation tree downwards from the root, and (2)

evaluation of the acceptance function upwards from the leaves to the

root. Associated with each node of the computation tree is a unique

configuration (%,v) where % is the label of one of the statements in the

program and v is a valuation of program variables over the domain of
computation A. If a node of the computation tree is labeled ¢, then its
immediate descendants are labeled with all elements of N(c), the next

configurations of ¢, which are defined by cases, depending on the state-

ment stmt(c) labeled by c's first component :

{(2',vly+al) | a€A} if stmt(L,v) is y«3 or y<V
@ if stmt(4,v) is accept or reject
N(2,v)= ( {(m,v)} if stmt(&,v) is if R(xX) then goto m and
A,v F R(x)
{ (%' ;w1 } if stmt(&,v) is if R(x) then goto m and

A,v E 1R(X)

where £ denotes the next statement after % in the program (or the first
statement, if £ was the last). The root of the tree is the start confi-
guration. The acceptance function e* can be regarded as a labeling of
nodes of the computation tree with either 0 (reject), 1 (accept), or 1
(undefined) , but formally its domain is the set C of configurations. It
is defined as the supremum of a chain of approximating labelings &%, In=
tuitively, ea(c):1 (respectively, 0) if c has been determined to be an
accept (respectively, reject) configuration by time a; e%(c)=L if neither
has been determined by time a. At time 0, nothing is determined, thus
eo(c)=L for all c. At time 1, the leaves of the tree, corresponding to
accept and reject statements, are labeled 1 and 0, respectively, and
everything else is labeled 1. If stmt (c) =y«3 and e%*(d)=1 for some deN (c) ,
then e&+1(d)=1. If stmt(c)=y+«V and all deN(c) are eventually labeled 1,
then ¢ becomes labeled 1 upon completion of the labeling of N(c). Note
that, because of unbounded nondeterminism, it may take more than a finite
amount of time for a configuration to become labeled 0 or 14

Formally, let C be the set of configurations, let Ord be the class
of ordinals, and let *¢Ord with a<* for all a€Ord. Define the sequence
e®:c+{0,1,1} inductively by ea=LJB<uT(eB), where 1 is the S-monotone

map defined by



[ if stmtle) = acvoept
¢ if stmt(c) = reject
T(e) (c) = < d\'&{N(c) e(d) if stmt(c) = y<3
A e(d) if stmt(c) = y<v
deN(c)
e (d) if stmt(c) = if R then goto m and N(¢)={d}.

o

The meet /\ and join V’ are with respect to the ordering 0<1<1, and
should not be confused with the approximation ordering € with join ||,
defined by 150, 151 and extended pointwise to labelings. e* is the t&-

least fixpoint of T.

We say ¢ becomes properly labeled at time o if o is the least ordi-

aal such that ea(c)#l » and write o(c)=a. If no such o exists, we write

ol(c)=*. Thus e*(c)=eo(c)(c). The running time of P on input x is defined

to be o(c), where ¢ is the start confiquration (21,§). We denote this

by TIME(P,x). The program P is said to accept x if e*(c)=1 and reject X

if e*(c)=0, where c is the start configuration of P on §; in either case
TIME(P,x)<* and P is said to halt on X. If TIME(PX)=*, then e*(c)=L and

P does not halt on x. Call a program P f-time bounded if TIME(P,X)<B for

all inputs x accepted by P (P need not halt on other inputs) . Define the

complexity class

(o) = \J{relations accepted by B-time bounded IND programs}.
B<ao

4, The shuffle construction

If A and A are both r.e, then A can be proved recursive by constructing

a Turing machine T3 which simulates steps of T1 and T2 alternately, where
T1 accepts A and T2 accepts A. In this section we give a similar con-
struction for IND programs.

Suppose P and Q are programs with disjoint sets of variables x and
§, respectively, and statement labels 21,...,Ep and mT,...,mq, respec-
tively. By adding dummy statements, we can assume without loss of gene-
rality that p and g are relatively prime. Now we shuffle the statements
of P and Q to get the program PQ with 2pg statements labeled by all pairs

of the form (Ri,mj) and (Ri,mj), 1€isp, 1=jsg, arranged in the order

_P
The underline tells which statement of P or Q is the next to be simulated.

(El'm1)'(22'fl)'(fé'm2)'(23'T£)""'(Q 'mi)'(£1'Ti}""'(EB'mq)'(21'22}'

The statement of PQ lakeled by (Qi,mj) is the same as the statement of

P labeled by Ri’ unless it is a conditional jump

Qi: if R(x) then goto ﬁk
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in which case we take

1

(2.,mj): B R(x) then goto (ﬁk,Tl).

A symmetric remark holds for statements labeled (Ri,Ti). Thus PQ simu-
lates steps of P and Q alternately. Since the variables of P and Q are
disjoint, these simulations do not interfere with each other. The formal
statement of this property involves the relationship between the succes-

sor configuration maps N and NP,N . Observe that there is a natural

PQ Q iz
one-to-one correspondence between the configurations CPQ of PQ and pairs

(c,d) € CPxCQ u CQxCP:

({erin_l) ,a,b)i—-——’- ( (mjrb) r (Rl’a) ) ®

The order of the components in (c,d) € CPx U cC xCP tells which of

C

Q Q

P,Q is next to be simulated. Hence we will identify elements of CPQ with
the corresponding elements of CPxCQ U CQXCP. Then by construction of PQ,

NPQ(c,d) = {(d,c') | c'"€N(c)}

where N(c)=NP(c} if c€CP, NQ(C) if cECQ.
The following theorem says that the label assigned by e* to a par-
ticular configuration (c,d)ECPXCQ of PQ is either the one assigned to c
by P or the one assigned to d by Q, depending on which is labeled sooner.
Moreover (c¢,d) is labeled in PQ within at most double the time it takes

to label either ¢ or 4 in P or Q, respectively.

Theorem 1 Let (c,d)ECPxCQ U CQXCP.
: B e*(c) if o(c) £ o(d)
(1) =Rl d] = {e*(d) if o(c) > o(d)}
(ii) o(c,d) = min(2-o0(c), 2-o(d)+1).
Proof Let e: CPXCQ U CQXCP - {0,1,1} be the map
Ie*(c) if o(c) £ o(4d)
el(c,d) =

le*(d) if o(c) > o(d).

It is easily shown by cases that e is a fixpoint of T, therefore e*ce.
That e is no more defined than e* follows from (ii) , which can now be
proved by transfinite induction on min(2-o(c), 2-0(d)+1). Curiously, the
proof of (ii) depends on the fact that e*Se; this is because for state-
ments y<3 and y+V, the time that the configuration becomes labeled de-

pends on what the label is. a]



If the variables of P and Q are not disjoint, define the shuffle
PQ as follows: rename the variables of P to get a program P' having no
variables in common with Q. Let X1""’Xk be the variables common to P
and Q and let Vqres-r¥y be their replacements in P'. Define PQ to be the
program which assigns Y Xy 1=isk, then runs P'Q.

Corollary 1 Let P, Q be two programs with a common set x of input

variables. Then PQ accepts (rejects) x iff either

(i) TIME(P,x) < TIME(Q,x) and P accepts (rejects) X; or
(ii) TIME(P,x) > TIME(Q,x) and Q accepts (rejects) =x. o

5. Main results

Theorem 2 (1) IND programs accept precisely the relations definable
by first-order induction;

(ii) IND programs which halt on all inputs accept precisely the hyper-
elementary (or inductive, coinductive) relations;

(iii) loop-free IND programs accept precisely the first-order definable

relations.

Proof (i) Every IND program accepts only inductively definable

relations, because the definition of the acceptance function e* is a
classical first-order inductive definition over the domain of computation
(see [Mo]). Conversely, every inductively definable relation is given by
a first-order formula ¢(S,x) with free variables X=x,,...,X_, an n-ar

1 n Y
predicate symbol S occurring only positively in ¢, and some constants
5=a1,...,am, m<n. The fixpoint defined by ¢ is Ehe least S* such that
S*=p(S*,x). The inductive relation defined by ¢,a is the (n-m) -ary rela-

X ). A program to accept all (x

1 *
tion S (a1,...,am,xm+1,... n

m+1""’xn)

satisfying S*(a1,... .,xn) first assigns a; to Xy 1£ism, and

rd_ X i
then enters a loop 1ab$leg+;1 which determines whether S*(x). Within the
loop it decomposes ¢(S,x), using y+«V and y<3 to eliminate quantifiers,

21A22, 21v22, 121 to eliminate logical connectives, and conditionals for
atomic formulas; this leaves only occurrences of S(y), which are handled
by assigning y to x followed by an unconditional jump back to £1.
(ii) Any program P accepting S which halts on all inputs has a dual P

which also halts on all inputs, and accepts the complement of S. Thus

by (i), S is both inductive and coinductive. Conversely, suppose the set
S is both inductive and coinductive. By (i), there are programs P and Q

accepting S and S, respectively. Modify P and Q so that they never re-
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ject, by replacing all statements %: reject with 2£: goto 2. By Corollary
1, the shuffle PQ accepts S and rejects §.

(iii) It has already been argued in Section 2 that every first-order de-
finable relation is computed by a loop-free program. The converse is ob-
tained by observing that every loop-free program is equivalent to one

with only forward jumps; a formula is now easy to construct. o

Observe from the proof of Theorem 2(i) that there is a strong con-
nection between the running times of IND programs and the ordinals at

which inductive definitions close (see [Mo]). The closure ordinal KA of

a structure A is defined in [Mo] as the supremum of closure ordinals of
all possible inductive definitions. By the proof of Theorem 2(i) we see
that (for infinite structures) this is just the supremum of running times
of IND programs in A. The following theorem relates these concepts to

the complexity classes T(a) defined in Section 3.

Theorem 3

(1) T (w)
A

{first-order definable relations}

{hyperelementary relations}

)

(ii) T(x

Remark Part (ii) is exactly the closure theorem of Moschovakis [Mo,

Bx S0)u

Proof (i) Clearly, any loop-free program can run for only finitely
many steps, independent of the input. Conversely, any c-time bounded
program, c<w, can be made to halt on all inputs by shuffling it with a
“clock", i.e. a program that on all inputs runs for c+1 steps, then re-

jects. The resulting program now has a finite, uniform time bound d, in-
dependent of the input. But any such program is equivalent to a loop-free
program obtained by unwinding the loops d+1 times. The result follows

from Theorem 2 (iii).

(ii) (2) Let P be a program that halts on all inputs. Let P1 be P modi-
fied so as never to reject, as in the proof of Theorem 2(ii), and let P2
be P modified so as never to reject, where P is the dual of P. Then P1P2
accepts all inputs and Vx, TIME(P,x)éTIME(PTP2,x). Let P3 be the program
which chooses the input universally by executing y+y for all input var-
iables, then executes P P,. Then TIME(P3,§) is a constant B independent
of the input, and VX TIME(P,Xx) <B<«™.
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A. If we can construct an a-clock,

(c) Let P be f-time bounded, B<«k
B<a, then it can be shuffled with P to give a program accepting the same
set as P, but always halting. The result then follows from Theorem 2(ii).
Since B(KA, there exists a program Q which runs for time o>B on some in-
put x. Let Q, assign x to all input variables, then run Q. Q, halts on
all inputs in time exactly a+c and either accepts all inputs or rejects

all inputs, so either Q1 or 51 gives an appropriate clock. o

6. An application to Dynamic Logic

The programming language IND originally arose in our attempt to clarify
a result of Meyer & Parikh [MP] on the relative expressibility of four var-
iants of first-order Dynamic Logic (DL), namely DLreg' Dch' DLft' and

DLre’ Programs of DLre are all r.e. sets of sequences of assignments
x:=t and tests ¢(x)?, called segs, where t is a term and ¢ a formula of

" Dch, and DL by allowing, respectively, only

DL_ . One obtains DL
re reg ft
regular expressions or flowchart programs (so that the set of segs is
regular), recursion schemes (so that the set of segs is context free),
or r.e. sets of segs, but each with at most finitely many distinct tests.
Meyer & Parikh prove that DLreg is strictly less expressive than

DLre (in symbols, DLreg<DLre) by the following sequence:

(*) DL_ g S DL,p £ DL £ L < Ly, = DL__

@ ® © T@ 1@
where ff1w is infinitary first-order logic with r.e. disjunctions, and
Lba is the same language restricted to bounded guantifier alternation.
The bulk of the proof is devoted to (@ , which uses an Ehrenfeucht-Frassé
argument to show that Lba cannot distinguish between the ordinals w® and
ww-Z, while ﬁizm can define any recursive ordinal up to isomorphism.

In this part of their paper, all resemblance to Dynamic Logic has
been lost. This was taken as evidence in support of the stand that there
is really nothing dynamic about Dynamic Logic, and one should do all
one's work in infinitary logic [MTl.wWe disagree, and in fact find the
main result of [MP] a bit misleading, for the simple reason that ﬁ§1wELba
in virtually every structure arising in computer science (for example,
the natural numbers, N, any recursively defined data type, or any struc-
ture whose elements are all named by closed terms). This is because every
f§1w formula is equivalent to a quantifier-free formula, by replacing
dx @(x) with \% w(t), where the join is over the set of closed terms.
One's intuition is still that DLreg<DL ; even restricted to such struc-

re
tures. Our results of this section show that DLft<DLre on any acceptable

structure [Mo] (or arithmetic universe [H]). These structures contain a
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first-order definable copy of the natural numbers and first-order predi-

cates for coding and decoding seguences of elements into single elements.

This allows assigning codes or G&del numbers to programs and formulas so
that they can be decoded and manipulated by other programs and formulas.
The proof reveals the computational power of the various versions of DL

in terms of the complexity classes T(a).

Theorem 4 On any acceptable structure,
(i) DLreg = Dch = DLft = 1 (w)
;o . oK
() DLre = T(m1j
§ 3 @
(iii) T(m15 -T(w) #@

CK . ; ;
where w1 is the first nonrecursive ordinal.

For example, on N, whose closure ordinal is w%% DLre = A} and
DLft = {first-order definable relations}. This follows from Theorems o

4 and Kleene's Theorem (A: = hyperelementary on N).

Proof (i), (ii), (2) This direction does not need the assumption of
acceptability. The case (i) follows from Theorem 3(i) and the fact that
DL contains first-order logic. Similarly, on any structure A, T(d?()<DLr
since if P is any IND program and o any recursive ordinal, there is a

DL _~-formula ¢ such that
re o

1

A|=$a(c) iff e%(c)
for any configuration ¢, defined recursively by

©w. < false

0
®u+1(c)~ﬁ>stmt{c) = accept
v stmt(c) = y<«3 A FJEN(c) mu(d)
v stmt(c) = y«V A VdAEN(c) wu{d)
v stmt(c) = if ... then ... A 3IdeEN(c) ma(d)

0, <{ma? | a<A}> true, A a limit ordinal.

The crucial point of this definition is that it is effective, in the
sense that there is a recursive function r such that r('a')='wa', where
'a' and '¢' denote codes for recursive ordinals and DLre formulas. This
G<A}

fact is needed in the definition of ¢ to insure that the set {m&?
is r.e., so that @y will be a DLre formula. Now, if AET(Q?% , then A is

accepted by an IND program P which is a-time bounded for some recursive

ordinal ao; thus for any input EEAk,

el
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P accepts a <« ea(£1,5) = 1 « Aqu(21,5).

Then ma(£1,§) is a DLre formula defining A.

(1), (ii), () We describe first an IND program to decide the satisfia-
bility of DLre formulas in A, consisting of a main program SATIS(p,x)
and subroutine COMPUTE(q,x,y). SATIS('e','a') will determine if A,a |=¢
and COMPUTE('n','a','b') will determine if state a goes to state b under
program T, where 'a','b' are codes of sequences a,b of elements of A4,

and '¢' and '

m' are codes of a DLre formula ¢ and a DLre program T.
Initially, SATIS('¢','a') assigns a code for the list of free vari-
ables of ¢ (available from '¢') to a variable v, and assigns 'a' to w.
This models the assignment of the values a to the list of variables in
v, in the same order. It now proceeds by cases, depending on the form
of ¢. If ©=yac, it uses the program construct A defined in Section 2
to check both ¥y and ¢, and similarly for v,7. If @=3yy, it executes
z<3; then, if the DLre variable y is in the list v, it modifies the
corresponding value in the list w to the value of z; otherwise, it ap-
pends the name of y to the list v and thevalue of z to the list w. If

=Yy} it does the same, uvsing z+V instead of z<3. If p=<m>yY, since
A,a |= <w>y iff 3b a goes to b under 7 and A,b =y,

SATIS executes z+3 and interprets the result as a code 'b'. It then

calls SATIS('y','b') and COMPUTE ('n','a"','b') in parallel, using a.
Finally, if @=R(X) where R(X) is atomic, it picks out the current

values in the list w corresponding to DLre variables x and assigns them

to IND variables y, then executes

if R(y) then accept else reject.

COMPUTE('w','a','b') determines whether state a goes to state b
under DLre program mw. Recall that a program 7 consists of an r.e. set
of segs; each seq is a finite sequence SO;...;sk_1 for some k; and each
S, is either an assignment y:=t or a test ¢?. The code 'T7" gives a
Gédel number for the set of segs, and a goes to b under 7 iff a goes to
b under some seq of m. COMPUTE chooses a seqg existentially using i+<3,
and then tries to determine if the i'th seq of m, say seqi:so;...;sk_1,
takes a to b. It could do this by starting from ag=ar deterministically
applying 50’51""'Sk—1 in succession to get a sequence a1,...,ak of
intermediate states, and accepting if ak=b. However, for a later appli-
cation, it will be better to keep COMPUTE loop-free. Thus, the program
instead guesses a code for the entire sequence 50’51""’5k with a single

z<3, and then determines whether sj takes aj to a. 0£j<k, by executing

j*1’
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j«V¥; if j is not the code for a natural number < k then accept; check if
s. takes aj to aj+1.

ward. For s. of the form y?, the program checks whether 5j:5j+1,

For Sj of the form y:=t, the check is straightfor-
then
whether A,5j|=w by a recursive call to SATIS.

Holding '@w' fixed, SATIS('yw','a') accepts (the codes of) the set
defined by ¢. The theorem is now proved by analyzing the time complexity
of SATIS and COMPUTE on fixed ¢. All encoding and decoding operations
can be done without loops, since they are first-order definable. The
choice of seq, in COMPUTE can be done without a loop since 7 is r.e.
and thus first-order definable. We were careful to avoid loops in the
processing of a seq in COMPUTE. Thus each iteration of SATIS and COMPUTE
takes constant time before it recurs on a subformula; therefore there is

a constant c¢ such that
va TIME(SATIS('v','a')) £ c-h(y)

where h(w) is the height of o, defined by:

h (@) = 1, © atomic,

h (ovy) = h{pav) = max{h(v),h(y)} + 1,

h (¥xo) = h(2xp) = h(aw) = h(vw) + 1,

h(<m>p) = max{h(m), h(e)} + 1,

h(m) = sup{h(o)|] o a seg of w} + 1,

h (o) = supf{h(@)| @? a test of o}+ 1, ¢ a seq.

Thus it remains to show that

CK :
h(v) < w , @ in DL__,

h(p) < w , © in DLft'
The former follows from the fact that there is a recursive code 'y' for
each ¢ in DLre' and h is effective with respect to this code. The latter
follows from the fact that the suprema in the definition of h(w) and

h(o) are finite, since there are only finitely many tests.

(1iii) This is a straightforward diagonalization. Construct an IND pro-
gram P which, on input '9(x)', ¢(x) a first-order formula with one free

variable x, accepts iff -0 ('p'). P runs for time c-h(y)<w, so the set
CK
1

sets} for obvious reasons. o

it accepts is in T(w+l)eT(w ), and not in T(w)={first-order-definable
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7. IND as a Data Base Query Language

There has been much recent work in the theory of relational data bases.
In the relational model, a data base is a collection of finite tables
[C1] and can be viewed simply as a finite first-order structure
B=(D,R1,...,Rk). Queries are (partial) functions from data bases to re-
lations, and a guery language is a set of formal expressions defining
such functions; see [CH1].

In [C2] Codd introduced the languages of the relational algebra
and calculus, which are equivalent in expressive power. The latter is
essentially the first order language of similarity type (=, R1""'Rk)‘
In [AU] it was pointed out that many useful queries definable naturally
by least fixpoints of first-order formulas, such as the transitive clo-
sure of a binary relation, are not first-order-definable, and it was
suggested therein that the first-order language of [C2] be augmented
with an appropriate least fixpoint operator. In such a language the
transitive closure of R would be the least fixpoint S of S=RUReS, where
e is relational composition. A formal version of such an extension was
subsequently supplied in [CH2], where fixpoint operators were allowed
to alternate with any number of first-order constructs. A hierarchy of
heicght w2 of sets of queries is defined in [CH2], in which those queries
at level w-i are obtained by applying a least fixpoint operator to
queries at lower levels. The set of queries constituting the entire

hierarchy is termed FP, for fixpoint queries.
It is shown in [CH2] that FP is a very restricted subset of the set

of all computable queries [CH1]; in particular, all queries in FP are
polynomial-time computable. There is also a close correspondence with
the queries definable by Kowalski's logic programs; see [K, GM, CH3].
However, it was left as an open problem in [CH2] whether there is a na-
tural computational query language for defining the fixpoint queries.
At this point, one observes that the least fixpoint operator as
defined in [AU, CH2] corresponds exactly to an inductive definition as
defined in [Mo], so that a single fixpoint operator applied to a first-
order formula corresponds to a first-order inductive definition. Recent-
ly, however, Immerman [I] has shown that the hierarchy of fixpoint
queries in fact collapses down to level w. In other words, all queries
in FP are definable by a single application of a fixpoint operator to

a first-order formula. Hence, we obtain:

Lemma A relational function on finite structures is in FP iff it is
uniformly first-order inductively definable (i.e., there is a single
first-order inductive definition which, given the input structure, de-

fines the output relation).
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Theorem IND defines precisely the fixpoint queries on relational

data bases.

We might remark that the x+V statement of IND and the parallel
method of execution implied by its semantics reminds one of the "for all
tuples t in relation R" construct used in some real query language with
parallel execution semantics; see [AU, section 7]. It remains to be
seen whether a rigorous definition of the semantics of such a language,
together with the dual "for some tuple t in R", yields a language
equivalent to IND.
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