ISSN 0105-8517

EARLY EXPERIENCE FROM
A MULTI-PROCESSOR PROJECT

by

Peter Mgller-Nielsen
Jergen Staunstrup

DAIMI PB-142
January 1982

Computer Science Department
AARHUS UNIVERSITY
Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 55
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Chapter 1:

This is an overview of the Multi-Maren multi-processor. Mul-
ti-Maren is built to perform experiments with programs for
machines with many independent processors. Although it is pos-
sible to construct a multi-processor with many independent
processors having a very large theoretical processing powerr it
may be a problem to construct simple and reliable programs which
can utilize such a multi-processor. Multi-Maren is intended as a
laboratory for experimenting with multi-programs that are simple
and reliabler but execute much faster on a multi-processor than
they would on a single processor. In chapter two an example of
such a multi-program is presented.

Since the emphasis is on program development, as little ef-
fort as possible has gone into hardware development. Even if
the available hardware is not optimal in all respectsr we have
avoided designing new hardwarer since although specially desig-
ned hardware might fit our needs better in some respectc: it
would probably not be better overall. So the machine is DLuilt
out of standard boards whichrs besides the processing unit con-
tain RAM and EPROM stores and a number of interfaces for exter-
nal communication. The architecture of the machine is described
in chapter three.

We wanted to be able to program the machine in a high level
language. As was the case with the hardwarer existing Ilanguages
were not optimals but using an existing language seemed better
than designing a new language. We found that the best compromise
was Concurrent Pascal. Further justification for our choice can
be found in [Sée and Ségaard 1981]. The Concurrent Pascal .-
plementation on Multi-Maren is described in further detail in
chapter four.

Chapter five «contains a short history of the development of
the project to illustrate when and in what context the most im-
portant decisions were made.
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Chapter 2:

Some measurements of the speedup of a multi-program.

A multi-program for adaptive quadraturer described by Rice
[Rice 1976] has been implemented in Concurrent Pascal: and ex-—
ecuted on a multi-processor machine. Execution times were
measured for a varying number of active processorss and nearly
linear speedup was observed.

Section 1: Background.

Multi-Maren is part of a laboratory which was established
during the period from April 1980 to August 1981. A purpose of
the laboratoryr, and Multi-Maren in particular, is to enable
measurements to be taken of the performance of multi-programs
executed on a machine with several independent processors. Mul-
ti-Maren consists of nine identical processors: each with local
store. All of the processors have access to a common stor: by
means of a singles shared bus. The architecture of Multi-Maren
is described in detail in chapter 3.

Multi-programs to be executed on Multi-Maren are programmed
in Concurrent Pascal. The implementation does not contain tools
for measurements beyond the standard routine "realtimer" (see
[Brinch Hansen 19771, p. 261).

The experiment reported heres is one of the first extensive
series of measurements using the Multi-Maren multi-processor.
Therefores the experiment has several objectives: - firstr to
study the behavior of an algorithmr which belongs to a very
general <class of algorithms; - secondr to check the reliability
of the measuring toolr by selecting an algorithmrs which can be
(and has been) modelled and investigated in detail; - third, to
gain experience with the language as it is defined in [Brinch
Hansen 1977] and the needs for more elaborate measuring tools to
be included in the implementation.

The algorithm which was selected for our study is based on an
algorithm for adaptive quadrature published by Rice [Rice 19761.

Section 2 contains a short description of the algorithms
viewed as a particular member of a very broad class of al-
gorithms. Section 3 describes the quantities which were
measureds and the structure of the actual Concurrent Pascal
program. In section 4 the measured values are presented and
discussed. A number of concluding remarks are collected in sec-
tion 5.



Section 2: The algorithm.

A large number of algorithms are based on the principle of
"Divide-and-Congquer". The essence of this principle is the fol-
lowing:

A problem is solved either directly (if the problem is
considered to be simple) or by dividing it into two (or
more) problems of the same kind as the original one.

This principle is particularly favorabler provided:

The cost ("overhead") of subdividing a problem is small
compared to the cost of solving the subproblems.

The cost of calculating the solution of the original
problem from the solutions of the subproblems: is small.

The principle is particularly suitable as a basis for construc-
ting a multi-program which can be speeded up by simply in-
creasing the number of processors; - 1i.e. without any extra
programming effort. It is even more advantageous if the cal-
culation of the solution from the solutions to subproblems is
merely a simple accumulation of the solutions to the sub-
problems, independent of the sequence in which they be«come
available.

Multi-programs derived from the "Divide-and-Conquer" prin-
ciple can be given the basic structure shown in fig. 1.
The multi-program consists of a number of identical and indepen-
dent processes: called "slaves". Each slave 1is allocated 2
processor for itself. A slave executes the following sequential
program:

cycle
Take a problem from the "problem-heap";
if The problem is simple then
begin
Solve the problem;
Send the solution to the "result-accumulator™
end
else
begin
Split the problem into subproblems;
dTransfer each subproblem to the "problem-heap"
en
end;

The calculations are started by inserting the initial problem
into the "problem-heap". When the "problem-heap" is emptyr and
all slaves are idle (i.e. waiting for a problem to solve): the
initial problem is solved and the solution can be obtained from
the "result-accumulator".

This paper reports on the speedup observed for a particular
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Figs 1 Basic structure of the algorithm.

member of this class of algorithms, when the number of slaves is
varied from 1 to 8.

As mentioned abover the particular algorithm selected for
this studyr is a version of adaptive gquadrature. Quadrature al-
gorithms are members of the class mentioned above for the fol-
lowing reason:

Suppose that Q(arb) is an approximation to the integral of f
on the interval from a to bs and B(asb) is a bound on the error
of this approximationr so that:

b
l [f - Q(arb)‘ < Blarb)
aQ
ThﬁB the solution ( i.e. @(arb) and B(arb) ) to the problem

can be o?%ained from the solutions to the two subproblems

and by simply adding the solutions of the sub-

proﬁiems- since?
l S - ( Qfarc) + Qlcrb) )( < Blarc) + Blcrb)
(+ 5

We must now decide:

What is meant by "a simple problem".

How Q and B are calculated for a problem.



How a problem is divided, if it is not simple.

1

Suppose that the initial problem is to calculate jf to
the accuracy Eps(0:1), i.e. to find corresponding values ~Q(0,1)
and B(0s1) : so that B(0,1) < Eps(0,1) . A more detailed
program for a slave could then be the following:

cycle )
Take a problem (specified by the triple:
[arbsEps(arb)]) from the "problem-heap";
Calculate @Q(arb) and Bl(arb);
if B(arb) £ Eps(arb) then
The problem is classified as "simple"s
and Q(arb) and Blarb) are sent to the
"result-accumulator”™
else
begin
Values cr Epsfarc) and Eps{crb) are chosen
so that Eps{arc) + Eps(csb) = Epsf{arb);
Send the problems l[arcrEps(arc)] and
[crbrEps(crb)] to the "problem-heap™
end
end;

The initial problem is [0s,1/Eps(0/1)] . When the "probiem-heap"
is empty and all the slaves are idler the accumulated values of
Q@ and B form a sclution to the initial problem since:

] —_—
Sf -ZQ(a:b) , < ZB(arb) < Zﬂps(a:b) = Eps(0/s1)

(]

The program described in [Rice 1976] can be viewed as a frr-
ther refinement and improvement of the skeleton program above.

In this studyr the class of functions f that can be handledr
is restricted to monotonic functions with monotonic first
derivatives. This restriction simplifies the calculation of B
considerably. The reader is refered to [Rice 19761 for more
details on this and other aspects of the actual algorithm.

Section 3: The multi-program.

The complete Concurrent Pascal program: which is executed on
Multi-Marens is a merge of the following three independent and
very different program modules:

1: The algorithm.
This module implements the algorithm under investigation.



2: The measurement strategy.

This module implements the decisions about what quantities
to measure during a single execution of the algorithm, and
when to collect them.

3: The measurement tactics.

This module makes it possible to perform several indepen-
dent executions of the basic algorithm (and related data
collections) in a single execution of the complete program.
The values of the parameters for the individual executions
of the algorithm (e.g. the accuracy required for the
quadrature) are also controlled by this program moduler and
all input and output is done here. In shortr - this module
contains the overall control of the progression of the
measurements during a single program execution.

The program module for the algorithm can be derived directly
from fig. 1 . The "problem-heap"”™ and the ‘"result-accumulator™
are variables of type monitorr and the operations on the heap
and the accumulator are easily mapped into corresponding entry
routines. The set of slaves corresponds to an array of
variables of a single process type with the two monitors as for-
mal parameters.

The second module measures the following quantities:

T
The total execution time for a given initial problem: i.e.
the elapsed time from when the initial problem is put into
the ‘"problem-heap"” until the solution (to the requirea
precision) is available in the T"result-accumulator®. This
time period will be referred to as the "solution period®.

#

Tﬁe number of problems taken from the "problem-heap" and
successfully completed during the solution period. #e way
be interpreted as the total amount of work done by the set
of slaves.

Ny ¢ ?

The average number of active slaves. A slave is inactives
when it is in the state "delayed" in the monitor "problem-
heap", because the heap is temporarily empty. The average
is taken over the solution period.

The choice to measure Tr # and N, was based on a series of
pilot~experiments not reported here.

The third module controls the execution of the complete
program as follows:
The numbers, N, of slaves is chosen between 1 and 8. A sequence
of 5 initial problems: with required accuracy Eps= j,-i i=1..5 s
are solved. For each of these 5 independent problems T: #¢ and
N, are measured.

This module is a separate processrs which is in the state



"delayed" during the solution periods. The complete program has
the structure shown in fig. 2.

Result
accumulator

Problem heap

Solution to the /
initial problem 7
ZETETRST e e

,7 Initial problem
;
-

1/0

Control process Slave Slavs - Slave
1 2 N

Fig, 2 Structure of the complete program,

How to construct the complete program as a merge of three in-
dependent program modules is a problem which is well-known from
discrete event simulation. The modules are concerned with very
different matters using different concepts. It would be advea.—
tageous if they could be written and maintained as three
separate program texts:s possibly written in three different
languages. Unfortunatelyr this is not possible in the present
case = it 1is especially difficult to confine the third module
(the measurement tactics) using Concurrent Pascal language con-
structs.

The insertion of extra statements into the algorithm for the
purpose of measuring some properties of the algorithm, influen-
ces the execution times of the algorithm in two ways:

An increase 1in the execution times ( e.g. the execution
time for one cycle in a slave ).

A change in the fraction of the execution time which a
slave spends in a monitor (e.g. exchanging problems with
the "problem-heap") relative to the time spent outside
monitors.



The first effect is of no importance for this study, since
only speedup is considered.

The second effect will, in general, influence the speedup.
The reasons why this influence does not appear in the present
measurements, are discussed in section 4.

Note that the performance of this multi-program does not
depend on the fairness of the implementation of monitors (see
chapter 4)r since all slaves are identical processes and the
slaves never use "busy waiting" when they request a problem from
the "problem-heap".

Section 4: Measured values and analysis.

This section presents the measured values for the guadrature

problem:
10
]9.1282546,0-—3 ]/x + 0.001 4dx
(-]

Table 1 shows the measured values for T and #¢ when N (the num-
ber of slaves) varies from 1 to 8: and Eps (the required ac-
curacy) varies from ,-1 to ,-5. In the tables #¢ shows some
variations for fixed Eps and varying N. For a fixed Eps: the set
of subproblems is the same for all N, and only the sequence in
which the solutions arrive at the "result-accumulator" can varyrs
when N varies. This variation of the sequencer coupled with
rounding errors in the accumulation of @ and Br influences the
exact number of solutions that must be accumulated before the
required accuracy can be guaranteed.

In fig. 3 the values of T from table 1 are shown in the form
of the speedup defined as:

§ = T, /Ty r where N is the number of slaves.

The dotted line corresponds to a speedups which is linear in N.

The deviation from a linear speedup can be understood by ob-
servings that not all slaves are active throughout the solution
periodr i.e. Ngy< N. Therefore r a speedup which is linear in N,
rather than N should be expected. Fig. 4 shows the measured
values for N, as a function of N for Eps = ;-4 and j,-5.
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Fig, 4 Average number of active slaves ( measured values )

as a function of N,
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The measured values of EA can be predicted by the following
model:

Assume that the only loss in activity of the slaves is due to
a lack of problems during the first part of the solution period.
When the initial problem is inserted into the problem heap one
slave becomes active. After one execution of the cycle in the
active slaver two slaves become activer then four slavesr and so
on until all slaves are active. The model assumes that all
slaves remain active until the end of the solution period. For
N=8, Na(t) is modelled as shown in fig. 5. The unit of the ab-
scissa is the execution time k, for one cycle of a slave. The
model assumes that the variation of ky from problem to problem
is relatively small. This assumption can be verified by inspec-—
tion of the algorithm in [Rice 1976]. Note that t;, in fig. 5
depends only on N and t; on N and # . The values of N predic-—
ted by this model for Eps =4 -4 and ;-5 agree with the measured
values on fig. 4 within 1%.

———

T T s
1T Tz Tty ) f tZSK\ t
Start of End of

solution period. solution period.

Fig. 5 The number of active slaves as a function of time,

Using the definition above for kyr the following relation is
expected to hold:
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Ty = (kg #p )/

where ky-#; is the amount of work to be done and N, is the num-
ber of slaves actually working.

Inserting the measured values (corresponding to Eps= ),-4 and
Jo—5) into the right-hand-side of the expression:

kN_(TN'NA)/#{-
it can be verified that k, is a constant (within 2%) ¢ when N
varies from 1 to 8.

The execution time for one cycle in a slave (other than for
queueing at a monitor gate) is almost a constant from problem to
problem. Hencer ky 1is expected to be independent of N until a
shared resource (i.e. a monitor - either the T"problem-heap" or
the r"result-accumulator”) is saturated. Additional measurements
have indicated that saturation for this complete program will
happen at around N = 10.

Similar measurements have been performed with other in-
tegrands and integration intervals. They all agree with the
behavior described above.

Section 5: Concluding remarks.

This section contains two separate remarks: one about the
prediction of execution timesr and one about the importance of
global adaptivity ( i.e. the use of a singler common problem
heap ) in the algorithm.

The relation: Ty = ( ky-#¢ ) / Ny can be used to predict Ty
for different values of Eps aﬁd N in the following way:

Measure Ty and # for a suitable value of N and Eps: cal-
culate Ny from the model ( in section 4 ), and calculate ky by
means of the relation above. For given values of N and Eps: #¢
is calculated using the relation:

constant [Rice 19761.

IR

E ( # f
S -
P 't

ﬁk is then calculated from the models and finally T, can be cal-
culated.

In order to study the importance of global adaptivity of the
algorithm: the following multi-program for adaptive gquadrature
was written:

Given N slavesr an initial problem and a required accuracyr
Eps. Divide the interval of integration into N intervals
(azsby )r i =1reaerN of equal size. Give each slave one of the
problems described by an interval ( a;sb; ) and a required ac-
curacy of Eps / N. Each slave solves its own problem com-
pletelyr and they share no common problem heap. When all slaves
have solved their problemr the original problem is solved by ac-
cumulating the N solutions. The execution time T for the
origional problem (with interval: ( arb ) and accuracy: Eps) is
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i 4 () i
the maximum of the execution times T 'r 1 = 1lr...sN for the N
problems with interval: ( airb; ) and accuracy: Eps / N.

The execution times for this program have been measured and
compared with the execution times reported in section 4. Table 2
shows the comparison. The importance of the global adaptivity
can be seen by comparing the execution times for the two
programs. Note al§o the large (and increasing) wvalue of
max{ T) / min( T*) .

L L
N 1 2 4 8
max T(L]
(1) 1.00 4.04 B.65 14.03
min T .
<
Local
adaptivity.
T = max T(i) 654.49 492,99 420.35 325.88
i
Speedup 1.00 1.33 1.56 2.01
T_ 654.48 327.77 166.08 87.93 Global
adaptivity,
( ses section 4 )
Speedup 1.00 2.00 3.94 7.44
Table 2 Comparisons between multi-programs using

local~ and global adaptivity,
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Chapter 3:

The Multi-Maren machine architecture.

This chapter describes the Multi-Maren hardware. The machine
is built out of standard components: but a wide range of adjust-
ments and combinations are possibles and the machine has been
shaped to our needs by selecting from the available options.

Section 1: Overview.

Multi-Maren consists of nine identical processors connected
to a common store by a shared bus as shown on fig. 1.

COMMON
STORE
SHARED BUS |
PROCESSOR PROCESSOR PROCESSOR
NO. 1 NO. 2 NO. q
Fig. 1 The Multi-Maren architecture,

The processors are Intel iSBC 86/12A boards each of which
contains a 16 bit microprocessor ( Intel 8086 ), a local store
and some I/0 interfaces. The shared bus is an Intel Multibus
equipped with a specially constructed arbiter ( see section 3 ).
The common store is an Intel iSBC 032 memory board. Each of
these is described in further detail below.

Section 2: The processor.

The processors are Intel iSBC 86/12A boards [Intel 1978cl.
These boards can be adapted to a specific application by a num-
ber of wire wraps and switches. This section describes how the
boards have been adapted to our use.

The following parts of the board are currently used: The 8086
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microprocessorr the RAM storer the EPROM storer the timers and
the serial 1/0 port.

The Intel 8086 is a 16-bit microprocessorr this means that
operands typically are 16 bit quantities. It iss howeverr pos-
sible to address 8 bit quantities (bytes). The total address
space is 1 Mbyte. The Intel 8086 is described in further detail
in [Intel 19791.

Ihe RAM store.

The RAM store on a board can be accessed by the microproces-
sor on that boardr or by any other processor in the system via
the Multibus. All accesses to the RAM store are made through a
so-called "dual port" which is under the control of either the
microprocessor on the same board or the Multibus, see fig. 2.
Since the RAM store is placed on the same board as the processor
it is called the local store (Section 4 describes a store which
is common to all processors).

SHARED BUS
iSBC
8086 86 /124!
DUAL
PORT
RAM
Fig. 2 The dual port RAM,

There are 32 K bytes of RAM store on each processor board.
These are accessed locally by the (hexadecimal) addresses: 00000
- 07FFF. Howeverr when accessed from the Multibus the addresses
of all the RAM stores are different. This makes it possible to
distinguish between the stores on all the boards. The (hex-
adecimal) addresses of the local stores are:

10000 - 17FFF store on board 1
20000 - 27FFF store on board 2
90000 - 97FFF store on board 9

So all RAM store is accessible by all processors. Note that the
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addresses of a RAM store are different when accessed on-board
and off-board.

The EPROM store.

Each board has 8 K bytes of EPROM store. This store is onlg
accessible by the on-board processor. It is accessible throug

the addresses: FE000 - FFFFF. When the power is turned on or
when the system is reset each processor starts executing the in-
struction placed in address FFFF0 of the EPROM store. A program
(called the "debugger") is placed at this address. This program
initializes the board and makes it possible to bootstrap other
programs (see chapter 4: section 5).

The timers.

Each of the boards has two 16 bit counters which can be used
as timers by the microprocessor on the same board. The two coun-
ters are called "TMRO" and "TMR1". TMRO is decremented with a
frequency of 1.23 Mhz i.e. every 0.8 microsecond. TMR1 is
decremented every time TMRO gets to 0. The values of TMRO and
TMR1 can be changed and read by I/0 instructions. Below is shown
a PL/M-86 library package to manipulate the two timers.

timer:

do;

declare tmr$control literally '046H" »
tmr0 literally '040H"' »
tmrl literally '0d2H' +
tmr0$mode literally ‘034H',
tmrlSmode literally '074H'
tmr0$count literally '12288',
tmrlS$count literally '30000"
tmr0S$latch literally '000H',
tmrl$latch literally '040H";

declare s wordr

b(2) byte at (@s );
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init$tmr:
procedure public;

output ( tmrScontrol ) = tmr0S$mode;
output ( tmr$control ) = tmrlSmode;

output ( tmrl )
output ( tmrl )

n

low ( tmrlScount )};
high ( tmrlScount );

output ( tmr0 )
output ( tmr0 )

low ( tmrOScount );
high ( tmrOScount );

call time( 1000 );

end initStmr;

read$tmr0:
procedure integer public;

output{ tmr$control ) = tmr0S$latch;
b( 0) input ( tmr0 );

b( 1) input( tmr0 );

return tmrO0Scount - signed( s );

end readStmr0;

readS$tmrl:
procedure integer public;
output ( tmrScontrol ) = tmrlS$latch;
b( 0 ) = input( tmrl );
b( 1) = input( tmrl );
return tmrl$count - signed( s );
end readS$tmrl;

end timer;

Input/Qutput.

Each board has a serial I/O port. This port can be used by
the microprocessor on the board through its I/0 instructions.

Below is shown a PL/M-86 library package to manipulate the I/0
port.



io86:

do;
declare

Co:

procedure( c ) public;
¢ byte;

declare

do while ( input( statport ) and txready )

end;

statport
crtemd
crtmode
dataport
pitport
pitc2m3
pitctr2
reset
txready
rxready
topch

literally
literally
literally
literally
literally
literally
literally
literally
literally
literally
literally

output ( dataport ) = c¢;

end co;

ci:

procedure byte public:

do while ( input( statport ) and rxready )

end;
return

end ci;

'0daH" s
'037H" »
'04eH’' s
'04sH"' »
'0g6H"' +
'Ob6H" »
'0d4H" +
'040H" »

'0lH' »

'02H' ,
'07£fH";

input( dataport ) and topch;

0;

0;

19
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init$io:

procedure( baud ) public;
declare baud word;

declare brm words
delay byte;

baud = baud / 100;
brm = 768 / baud;

/* Initialization sequence; from Intel: iSBC957 */

output ( statport ) = 0; delay = 0;
output ( statport ) = 0; delay = 0;
output ( statport ) = 0; delay = 0;

output ( statport ) = reset; delay = 0;

output ( statport ) = crtmode;
output ( pitport ) = pitc2m3;
output { statport ) crtemd;

low( brm );
high( brm );

output ( pitctr2 )
output ( pitctr2 )

call time( 1000 ); /* wait 100 msec. */
end init$io;

end io86;

Section 3: The arbiter.

The arbiter grants exclusive access to the Multibus. This
provides the processors with indivisible operations for
manipulating the common store.

Each processor has two control linesrs BPRQ and BPRNr which
are used to gain access to the Multibus. The signal BPRQ (bus
request) from a processor indicates that it wants to use the bus
and BPRN (bus priority) to a processor indicates that the
processor may go ahead and use the bus. Hence all processors use
the following algorithm when referring to the common store:
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BPRQ := true;
while not BPRN do;

" use bus / common store "
BPRQ := false;

The arbiter is connected to processor no. i through two wires
carrying the two signals BPRQI[i] and BPRNI[il. The arbiter ex-
ecutes the following algorithm:

cycle
repeat
i :=imodn+1
until BPRQIil;
BPRNI[i]l := true;
while BPRQI[i] do;
BPRN[i] := false
end

Each iteration of the inside repeat loop takes 100 nsec. No
processor uses the bus for more than a single instructionr so we

get:
minimal waiting time for bus: 100 nsec.
maximal waiting time for bus:
nobody else requests the bus: 900 nsec.
all nine processors request the bus: 7 microsec.

Section 4: The common store.

The common store is an Intel iSBC 032 memory board. It con-
tains 32 K bytes and it can only be accessed from the Multibus.
The (hexadecimal) addresses of the common store are: B0O00O -
B7FFF.

4 Section 5: The chassis.

The processorr common store and arbiter boards are mounted in
an Intel iCS 80 chassis as shown on the photograph below.
The chassis is mounted together with power supplies: connectors
for 1/0 and cooling systemr in a rack as shown on the front page
photograph.

The chassis has twelve slots. Each slot can hold one board.
These slots are mounted on a backplaner which contains the data

p—
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Edge connectar
for 1/0

Processaor no, 4

Processor no. 9

Common store

RESET buttan INTR button

The chassis
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and control lines making up the Multibus.
All twelve slotgs are equivalent except with regard to the ar-
biter and the power supplies:

There are two pbower supplies:s one feeds slots 1 to 6 ang
the other feeds slots 7 to 12. The power lines of the Mul-
tibus are disconnected between slots 6 and 7. A power sup-
Ply can feed at most five processor boards.

Additional wiring is Mounted on the backplane in order
to provide the signals BPRQ[1:9] ang BPRNI[1:9] (see section
3). Thisg wiring assumes that the arbiter occupies slot 12,
and that the Processors occupy slots 2 to 10.

1/0 lines.

The serial 1/0 pPort on each board is leg via an edge connec-
tor to a standard RS232 connection on the left of the rack.

INTR and RESET huttons.

The two manually operated controls INTR and RESET work as
follows:

When INTR is depressed all Processors recieve a non-maskable
interrupt (NMI).

When RESET ig depressed all Processors are reinitialized (see
chapter 4, section 5).
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Chapter 4:

Section 1: Introduction.

The machine isg used for implementation and analysis of
algorithms utilizing concurrency. It ig therefore necessary to
have a high level language with multi—programming constructs
available on the machine.

None of the existing languages were ideal for this purpose.
but we foung that Concurrent Pascal was the best compromise,
primarily because of the high quality of itg implementation.

It was important to finish the implementation ag quickly as
possibler so0 we could get on with the pProgramming experiments,
The absolute speed of the machine was only of secondary
importance; if necessary the implementation could be optimized
later,

The central decision in the present Concurrent Pigcal
implementation Was to allocate one brocessor to each Process.
This leads to an extremely simple implementation which has
several advantages: (listed in order of priority)

sy Analyzing a program running on a complex implementation
can be very "hard, because it ig difficult to distinguish the
Properties of the implementation from those of the program.

2. It can be very hard to convince oneself of the correctness
of a complex implementation. Testing is extremely difficult whean
Processors run concurrently,

3. A simple implementation can be completed rather quickly.

be explained by the decision to allocate one Processor for each

As described ip chapter 3, 311 Processors share a common
Storer which can only be accessed through the shared bus, the
Multibus. This bus can easily become a bottleneck if all
Processors are using it frequently. An effort wasg therefore made
to reduce the usge of the Multibus as much as possible,

Sectiogn 2: Program Structure.

A Concurrent Pascal Program consists of 4 number of
definitions (constants ang types) and an initial process where



all processes and shared data structures
initialized.

The following is a typical structure of a
program:

const
C = o4
type
ml = monitor
end;
cl = class
end;
P2 = process
end;
P3 = process

end;

m2 = monitor
end;
P9 = process

end;

"initial process"
var
Vi eae}
begin
init v( );

end.
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are declared and

Concurrent Pascal

The store references of one Processor executing a Concurrent

Pascal process can be divided into the

categories:
a) references to coder

b) references to local data,
c) references to common data.

The local data (i.e. process and routine va

one process only. The common data (i.e.
variables) are used by more than one process.

following three

riables) are used by

global monitor

The exact distribution of Store references into these three
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categories may varyr but [Jones 19801 and [Ougaard 19781 have
reported the following distribution:

a) references to code > 50 %«
b) references to local data < 40 %
¢) references to common data < 10 %.

We have not yet made any measurements of this distribution on
the Multi-Maren machiner but it is our impression that category
c is significantly smaller.

Based on this observationr it was decided only to place
common data (i.e. global monitor variables) in the common
store. The distinction between local and global monitor
variables is explained by the following skeleton of a monitor:

type m =
monitor(s: ...);
var
gl: .ee; global monitor variables
g2: eee;

procedure entry e(p: e -

var
1 samp local routine variables
12: ses;
begin
Se; routine body
end; }
begin
Sg; monitor body
end;

A consequence of this decision 1is that all code for the
monitor body and routines is duplicated in each of the
processors. FEach has its own copy to avoid using the Multibus
for fetching instructions. The following picture shows how the
compiler distributes the code of a typical Concurrent Pascal
program:
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program text code code -+« code code
for for for for
proc. proc. proc. proc.
2 3 9 1
. ; - =
const [ ( {
€= ... :
type
ml = monitor
end;
cl = class
end; J J- 1
P2 = process
end; |
p3 = process
end;

m2 = monitor
end;
P9 = process

——t

end;

"process 1" [
"initial
process
var
Vi sus?
begin
init v( ),

end.’ )

In addition to the codes the local store of each processor
contains the global variables of the process and the parameters
and local variables of the routines (including monitor
routines).

Section 3: The interpreter.

Concurrent Pascal is implemented by means of an interpreter.
The interpreter executes C-code instructions as generated by the
compiler (see section 7). The C-code is described in more
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detail by Hartmann[1977] . It has been Necessary to modify a few
of the C-code instructions to make it possible to utilize the
full 20-bit address range of the hardware.

The interpreter hag been programmed in PL/M-86, and the data
type "real" ig handled by the standard real emulator [Inte]
1978al. 1In a future version we hope to replace this emulator by
the Intel 8087 numerical CO-processor. Each Processor has itg
own copy of the interpreter ang the real emulator. By
implementing Concurrent Pascal by an interpreter written in
PL/M-86:; the absolute speed of the machine has been reduced
significantly (at least by an order of magnitude). The advantage
on the other hanpg is the short time it took to do the
implementation (gee chapter 5).

Section 4: Synchronization,

There are two levels of Ssynchronization ip Concurrent Pascal.
The lowest level: calleqg short-term synchronization, ensures
that at most one Process at a time ig executing one of the entry
routines of 3 Particular monitor. This ig implementeq by a so-
called gate. The second level of synchronizationr called medium-—
term Synchronization, is used to express the logical
synchronization constraints of the brogram: e.g. that no more
elements can be Put into a buffer which is full. The Concu.rent
Pascal construct for expressing this isg called a queue.

The implementation of gates ang queues is based on the
assumption that the machine provides an indivisible exchange
operations :=:, yhicnh exchanges the contents of a variable
located in a local store with a variable contained in the common
store. an implementation of gates ig described below as a
Concurrent Pascal class, Entry to a monitor routine is done by
calling "entermon", ang exit from the monitor is done by calling
"exitmonr.

Short-terp Synchronization.
A correct solution must satisfy the following two
requirements:

1) at any time at most One process may have access to a
particular monitor ( ion) r

2) if no Process. is using a monitor, a4 request to access the
monitor must be granted (responsiveness).

Note, that requirement 2, responsiveness, ig weaker than the
fairness requirement made in the Concurrent Pascal report
[Brinch Hansen 19777 . This is discussed below.

Consider the following implementation, which satisfies 1 and
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type
gate-state = (open: closed):
gate =
class
var
g: gate-state; "allocated in common store™”

procedure entry entermon;

var
help: gate-state; "allocated in local store"”
begin
help:= closed;
repeat
g :=: help;
until help=open;
end;

procedure entry exitmon;
begin

g:= open;
end;

begin
g:= open;
end;

This implementation is inefficient because the busy waiting loop
in the routine entermon puts a heavy load on the shared bus.
Furthermorer this load will slow down all processors currently
using some monitor. Hencer the higher the demand is on a
monitorr the slower it gets executed; this is clearly not
acceptable.

The load on the shared bus can be decreased by prolonging the
cycle time of the busy waiting loop.

repeat

wait;

g :=: help;
until help=open;

Ideally the wait should not burden the shared bus and it should
last exactly until the gate becomes openr no longer and no
shorter. It iss howevers obvious that the correctness of the
solution 1is not affected by making the wait shorter than this
ideal. There are many ways of implementing the waits here we
discuss a family of implementations where the waiting ceases
when a gate change from closed to open. In this family the
operation "exitmon" becomes:
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procedure entry exitmon;
begin
g:= open;
indicate-state-change;
end;

We will now analyze what requirements a realization of "wait"®
and indicate-state-change” must fulfil. This analysis is not as
short and convincing as we would have 1liked it to ber but
currently we cannot do better. It turns out that essential
properties of the above algorithms is the order of the
statements and that one statement e.g. "wait" 1is completely
finished before the next "g :=: help" is initiated. What follows
is an explanation of why these two properties are essential.

Firstr note that mutual exclusion is satisfied by the first
algorithm of this sections the realization of "wait"™ and
"indicate-state-change™ cannot destroy this.

Secondlyr the order of the statements in both "exitmon®" and
"entermon" is important for responsiveness. The order of the
s?aiﬁments may not be altered by any realization (restriction
1.

Thirdlyr, if all indications of state changes are separated
enoughr so that all processors can finish their wait, test the
corresponding gate and return to their waiting stater befor: the
next indication of a state change appearsr there would rot be
any problems in realizing the algorithm. But two or more
indications may appear so close together (seen from the waiting
process) that they are indistinguishable. This may for example
happen when the waiting process is very very slow or if several
processors give indications almost simultaneously. Thus the
"wait" consists of at least two steps:

cycle

.

"ready to receive indicationn"
await-indication;
enable-indication;

"ready to receive indication"

end;

The second step M"enable-indication" may consist of sending
another signalr resetting variables or the like. This enahbhling
must be completely finished before the i statement
(testipng the gate) is initiated (restriction 2).

Currentlyr the "indicate-state-change™ and "wait" statements
are realized as follows: In the local store of each processor p
is allocated a boolean variable trylpl. When a state change from
closed to open occurs on any gate this boolean is set to true in
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wait:
repeat until trylpl; "await indicationn®
trylpl:= false; "enable indication"

indicate-state-change:

for i in processors do
trylil:= true;

The complete implementation is as follows:

var
g: gate-state; "allocated in common store"
try: arraylprocessors] of boolean;
"allocated in local stores"
procedure entry entermon(p: processors);
var
help: gate-state; "allocated in local sture"
begin
"assume trylpl is true"
help:= closed;
repeat
repeat until trylpl;
trylpl:= false;
g :=: help:
until help=open;
trylpl:= true;
end;

procedure entry exitmon;

var
i: processors;
begin
g:= open;

for i in processors do
trylil:= true;
end;

begin
g:= open;
for i in processors do
trylil:= true;
end;

This is exactly the synchronization algorithm used in
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the
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Concurrent Pascal kernel: except that the kernel is Programmed
in PL/M-86.

Medium-term synchronization.

A process may await a signal in a monitor by calling "delay"
on a variable of type "queue". This releases the exclusive
access to the monitor so that other processes can access the
monitor. When another process calls "continue" on the same
variable of type "queue"; this process is forced to leave the
monitor and the delayed process resumes its execution. The
C-code instructions "delay"™ and "continue" are implemented by
the following algorithm which will not be described in Ffurther
detail here:

queue =
class(g: gate); "g is the gate of the monitor
containing the queue-variable."
var
q: (nooner delayedr continued);

procedure entry delay(p: processors);
begin
"assume trylpl true"
if g = noone
then
begin
g:= delayed;
g.exitmon;
repeat
repeat until trylpl;
trylpl:= false;
until g=continued;
trylpl:= true;
g:= noone;
end
else exception;
end;
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procedure entry continue;
var
i: processors;
begin
if g=delayed
then
begin
g:= continued;
for i in processors do
trylil:= true;
end
else g.exitmon;
end;

function entry empty: boolean;
begin

empty:= (g=noone) ;
end;

begin
g:= noone;
end;

Fairness.

The short-term synchronization algorithm given above is not
fair. We are not «convinced that fairness is a reasonable
requirement for a multi-processor. This is clearly a viewpoinc
which can be criticizedr but

1) a fair synchronization algorithm would be more
complicated;

2) fairness is not necessary for our applications (e.g. the
program described in chapter 2);

3) programs where fairness is essential are probably ill
suited for Multi-Maren anyway. If fairness is essential
some processors are always waiting for access to a
monitor. This implies a bad utilization of one or more
processors and the algorithm should be revised.

We dor howeverr admit that our experience and intuition about
this issue 1is very limitedr so further experiments might force
us to change our view on fairness.

Section 5: Initialization.

This section describes how a Concurrent Pascal program is
loaded and started.

When the power is turned on or when the machine is resetr a
program (placed in the EPROM store) called the debugger is
started. The debugger is similar to the "iSBC 957" debugger
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supplied by IntellIntel 1978bl. Among other facilities, this
program can load and start the Concurrent Pascal loader. The
debugger and the Concurrent Pascal loader implement the
following two levels of virtual machines:

--------------------------- Concurrent Pascal loader

RESET load Concurrent
Pascal system

= ———— =~ debugger

When the Concurrent Pascal loader is runningr all processors
have received their copy of the Concurrent Pascal interpreter
and kernel. but they have not yet received the C-code (the
program to be executed). This is loaded and distributed by the
Concurrent Pascal loader. This adds a new virtual machine level:

e Httt e L Concurrent Pascal program
INTR load C-code

-------------------------- Concurrent Pascal loader
RESET load Concurrent

Pascal system

-------------------------- debugger

The Concurrent Pascal loader is a PL/M-86 program running on
processor number l. It receives the C-code from the Intellec
development system and distributes it to the relevant
processors. When the processors have received their part of the
C-coder they start executing its but only until they reach the
C-code instructions corresponding to the first begin in the
process body (the C-code instruction "initproc"J. At this
instruction they are stopped until explicitly started by an
"init-statement™ in the initial process:
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initial process process 2 s process 9
var - .
P2: ase . A
PI: sa . .
begin - "
init PO === > begin
init p2; -—==e- > begin
end.

The states of all the processors are described in a table
which has an entry for each process. An entry has one of the
following values:

not started: The interpreter has not Yet been started.
wait initproc: Waiting for init-statement.
running: Executing C-code instructions.
terminated: The processor has executed the last

"end" of its body.
delayed: Delayed in a queue.
€rLI0r XXXXX: An exception has occured:

XXXxx indicates which.

The contents of this table is displayed by processor 1 either
when the INTR button is depressed or when the initial process
terminates. Depressing INTR brings the system back on the loader
level where a new program may be loaded and started.

Immediatly after starting a Concurrent Pascal programr, the
contents of all the processors' local stores are as follows:
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debugger code

Concurrent Pascal
runtime stack

C-code

Interpreter and kernel
code and variables

debugger variables

The contents of the common store is as follows:

monitor variables

gates

interpreter and kernel
variables

Section 6: Input/Output.

There is only one Input/Output device available for each
bProcessor: a terminal. Each processor has its own Input/Output
port which is a standard RS 232 connection. Therefore, up to
nine terminals may be connected and used independently. Usually
only one terminal is connected (to processor 1)r this terminal
is actually an Intel "Intellecm development system.
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[ SHARED BUS ]

PROCESSOR | | PROCESSOR PROCESSOR
NO. 2 NO. 9

Development
system,

The normal 1/0 connection,

Section 7: The compiler.

The compiler runs on a PDP-10 system which is connected to
the 1Intellec development system. After compilation the C-code
must therefore be transmitted to the Intellec system.

The compiler is a modified version of the Concurrent Paucal
compiler described by Hartmann[1977]1. The modifications can be
divided into three categories:

1) rewriting the compiler into the Pascal dialect
used on the PDP-10,

2) introducing the code duplication described abover

3) correcting some errors.

Section 8: Additional material.

The details of how to use the various parts of the Multi-
Maren system are described in two user's guides. Below is given
a short summary of each.
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Concurrent Pascal at DAIMI. User's Guide.

This is the user's guide to those parts of the Concurrent
Pascal system which run on the PDP-10: the compilerr a PDP-10Q
C-code interpreter, and the disassembler. Furthermore: the
restrictions in Concurrent Pascal are listed.

Bunning Concurrent Pascal on the Multi-Maren System.

This is a description of how a Concurrent Pascal program is
transmitted to and executed on Multi-Maren.

Finally there are a number of internal reports describing
various auxiliary programs which are also used for other
purposes e.g. the PDP-10/Intellec transmission program and the
Multi-Maren debugger mentioned in section 5.
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A history of the praject.

In January 1980 a pilot study was initiated. A small number
of microprocessors were investigated with regard to:

- pricer

- capacity (primarily cycle time and storage)

- connection possibilities (e.g. common storer bus etc.):

- connection of peripherals,

- suitability for supporting a Pascal like language

(Concurrent Pascalr Modular or Platon).
under the limitation that all hardware had to be commercially
available. This pilot study and its results are described in
[Sde and Sdgaard 19811. The study provided us with a knowledge
of the available hardware and its capabilities.

During the spring of 1980 the purpose of the laboratory was
formulated more precisely: experiments with implementation and

is of algorithms wutilizing concurrency. Having this
purpose in mind the major design goals were laid down. This led
us to choose a hardware system with a common bus-structure and
to choose Concurrent Pascal as the programming language. These
decisions where made during the summer of 1980. At that point we
asked all relevant manufactures to demonstrate to us a system
with: i

- a 16-bit processor board connected to

- a 16-bit wide bus (which should not be affected by 1local

computations on the processor board) and

- some kind of connection to either a main frame host or a

cheap development system.

It turned out that the only manufacturer which was able to
fulfil these requirements was Intel. Since there were uo
important deficiencies with the Intel system: we chose the Intel
8086 as the cornerstone of the multiprocessor. On September 18
1980 the following equipment was delivered:

- two Intel iSBC 86/12A processor boardsrs
~ an Intel iCS 80 chassis with power supply:s
- an Intellec 230 development system.

During the fallsr work was started on the Concurrent Pascal
implementation and a communication channel between the Computer
Science Department's PDP-10 and the Intellec system was
established. This was done by writing a program which made the
Intellec appear as a terminal to the PDP-10. Using thiss files
could be transmitted from the development system to the PDP-10
file system (the speed was 2400 baud).

In December 1980 the basic control structures and arithmetic
operations of Concurrent Pascal were implementedr so that an
initial process without classess monitors and other processes
could be executed. Two months laters, all the modifications in
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the compiler and interpreter due to the distribution of object
code were completed. Then followed the implementation of the
synchronization primitives and the initialization of a pProgram
with several processes and monitors. Independently of this the
type real was implemented.

The entire implementation was finished around May 1, 1981. At
that point all language constructs (with the exceptions
mentioned in "Concurrent Pascal at DAIMI. User's Guide.") were
implemented, but still the system had only two processors.

The initial configuration of the system with only two
processors was sufficient to test the Concurrent Pascal
implementations but it was clearly not sufficient for the real
purpose of the project: "experiments with multiprogams". When we
became confident that the Concurrent Pascal implementation would
work we ordered seven more processors (iSBC Intel 86/12A boards)
and a 32K byte memory board. These were delivered in May and
June. This expansion required two hardware changes:

1) the bus arbitration was changed;

2) the power supply was changed. It actually became two power

supplies each feeding half of the boards.
These hardware changes were completed in June 1981. During the
late Spring and Summer: processor boards were gradually added to
the system. This reveal ed a few hardware problems
(malfunctioning CPU's and EPROM sockets) and some shortcomings
in the user interface. After correcting theser the entire s stem
became available to students and faculty in August 1981.

During the implementation period parts of the system were
used for preliminary experiments. In the Spring of 1981 the
first graduate course using the system was offered. This was an
introduction to the system and to PL/M-86. Each participant
wrote a multi-program in PL/M-86 and made sone speed
measurements on this program.

A similar course was offered in the Fall Semester of 1981,
but this time the multi-programs were written in Concurrent
Pascal.
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