TOPICS IN PROGRAMME SPECIFICATION AND DESIGN:

SPECIFICATION AND DESIGN
OF
DISTRIBUTED SYSTEMS

I.H. SORENSEN
WOLFSON COLLEGE

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
IN THE UNIVERSITY OF OXFORD. SEPTEMBER 1981.

TOPICS IN PROGRAMME SPECIFICATION AND DESIGN :
SPECIFICATION AND DESIGN OF
DISTRIBUTED SYSTEMS

Ib Holm Sorensen
Wolfson College

A thesis submitted for the degree of Doctor of Philosophy in the University of Oxford.

September 1981.

ABSTRACT.

This thesis presents a method for specifying. analysing and refining the designs
of distributed systems. Distributed systems are systems which consist of several
autonomous process components,

The characteristics of the specification method employed in this thesis can be
summarised as follows - 1) The structure of a system’s specification indicates
the structure of the system’s realisation. 2) A design is specifled entirely in terms
of the permissible activity across the interfaces between process components (.e,
the communications): such a specification gives the rules for the behaviour of each
process component and posipones decisions about its internal structure., 3)
permissible activity is described in terms of predicates on the history of past
communications.

This specificaticn method will be shown to allow important questions about the
behaviour of a distributed system to be posed early in the deslgn process; in

particular designs will be analysed with respect to termination and absence of
deadlocks,

The specification method can be employed to describe systems In different degrees
of detail, and it is demonstrated that a specification can evolve to a stage close
to realisation using a stepwise refinement method which ensures that the Important
properties are maintained.

Table of Contents.

1. INTRODUCTION

T

2. THE
2%

2.2.

2.3.

2.4,

3. NON
3.1,
3.2.

3.3. FORMALISATION OF NON DETERMNISTIC SYSTEMS

THE OUTLINE OF THIS THESIS

SPECIFICATION LANGUAGE

THE SET THEORETICAL BASIS

2.1.1. Sets and Operations on Sets

2.1.2. Relations and Operations on Relations
2.1.3. Functlons

THE SCHEMA NOTATION

2.2.1. Examples of the Use of Schemas
2.2.2. Schema Renaming

2.2.3. Generic Schemas

EXTENSIBILITY

2.3.1. Operations on Relatlons and Functions
2.3.2. Operations on Sequences

Notational Conventions

DETERMINISTIC SYSTEMS

FORMALISATION OF NON DETERMNISTIC BEHAVIOUR

A BOUNDED BUFFER

3.3.1. Deadlock and the Invariant Conditlon
3.3.2. Termination and the Variant Function

4. SPECIFICATION OF DISTRIBUTED SYSTEMS

4.1,
4.2,

4.3.
4.4

4.5. ANALYSIS OF THE BEHAVIOUR OF DISTRIBUTED SYSTEMS

MOTIVATION FOR DISTRIBUTION

THE INDEPENDENT MODULE

4.2.1. The Classical Independent Module
4.2.2. The Process Moduie

4.2.3. The Readiness Principie

DISTRIBUTED SPECIFICATIONS AND DISTRIBUTED REALISATIONS

ENVIRONMENTS FOR SYSTEMS
4.4.1. A Requesting Environment
4.4.2. A Selfcommitting Environment
4,43, An Interactive Environment

5. EXAMPLES OF SPECIFICATIONS

5.1,
5.2,

5.3. CRITICAL SECTIONS AND MUTUAL EXCLUSION
5.4

A BONUDED BUFFER
MISCELLANEQUS SYSTEMS
5.2.1. Butfers

5.2.2. Queues

PREVENTION OF DEADLOCK

o S & oW

21
22
29
35
37
39

45
45
46

45
48
50
55
55
55
56
57

61
61
65
65
66
68
72

5.5, A COMMUNICATION NETWORK 78

5.5.1. A Discussion of the Design of a Station 78

5.5.2. A Speclfication of a Network 84

5.5.3. An Analysis of the Network 85

6. DECOMPOSITION 89

6.1. INTRODUCTORY EXAMPLE a0

6.2, VALID DECOMPOSITION az

6.3. LIMITATIONS OF THE METHOD 96

6.3.1. Piped Systems 96

6.3.2. Unordered Pipes a7

6.3.3. A Resource Monitor a9

7. CONCLUSION 101

7.1. RELATED WORK 102

7.2. FUTURE RESEARCH 103

LIS

T OF REFERENCES 105

Acknowledgement.

I 'am indebted to my colieagues at the University of Aarhus, Denmark, in particular
Peter Kornerup and Michael Spler for supporting my application for the grant which
enabled me to join the software engineering research team at Oxford University.

I am also grateful to Professor Tony Hoare for accepting me as a D.Phil. student
in his department.

I would like to thank the staff at the Programming Research Group. Oxford University
for their valuable guidance in research and general assistance during the
preparation of this thesis. Thanks are especially given to Jean Raymond Abrial.
Tim Clement. Bernard Sufrin and Cliff Jones.

It should be mentioned that the work presented In this thesis is a consequence
of Jean Raymond Abrial's ploneering research in the area of formal speclfiations.

His insight and suggestions have inspired many of the ideas presented in this
thesis.

Special thanks are due to Hilary Darragh for enriching my English language and

to Tim Clement and Steve Schuman for their constructive criticisms while editing
my thesis.

ib Holm Sorensen

1. INTRODUCTION.

The tools and methods used In the creation of computerised systems are being
intensively studied by many researchers with the aim of improving our capability
tor constructing 'good’ computer systems.

The quality of such systems depends to a large extent on the methods used for
documention during the development process.

The documentation of a system has three functions: firstly, It identifies the needs
which the system Is intended to fulfil; secondly. It specifies the declsions taken
by the designers of the system as to how those needs are to be fuifilled; and
thirdly, it gives a detailed description of how the design decisions are realised.
The documentation of the needs must be precise in order for it to serve as a
pasis for a contract between the customer and the supplier. The documentation
of the design and the realisation must be precise in order to test and verify whether
a suggesied implementation fulfills that contract. Furthermore, since the needs wiii
change over time it Is important that all parts of the documentation (including the
programs which document the realisation) are easy 10 modify.

These concerns have inspired the development of numerous methcdoiogles for the
creation of software. Current techniques use /nformal languages or diagrams as
description tools for documenting the requirements, the design decisions and the
structure of the reallsation. The disadvantage of such techniques lies in the
ambiguity inherent in the notational framework. Among other things. this ambiguity
makes it impossible to formally test a design against a requirement specification.
or a realisation against the deslgn decisions (program verification). Theoretical or
formal tools which do not have these drawbacks have been proposed, but system
developers are reluctant to use such formal methods because they are claimed
to be inadequate for the documentation of real systems - a claim which is
understandable since their usefulness has yet to be demonstrated on large
commerclal products.

8ut, it is incontestable that formal methods are necessary, since only the use of
unambiguous formal descriptions enables us to verify whether decisions taken in
the development process are consistent with the original specification of the needs.
Formal methods for developing systems which consist of moduies running in
isolation and having well-defined starting and stopping points are fairly well
understood [Jones,14]. These methods. In which modules can be described as
mathematical functions, cannot. however, be employed in the development of
systems which consist of several interacting autonomous process-components (i.e
distributed systems). The ‘function’ computed by a subcomponent in such a system
can at any point in time be interrupted and influenced by non-deterministically
occurring stimuli from the environment or from other concurrently executing
process-components. The component itself may interfere with computations within
other components depending on some non local Information.

The complexity of such systems necessitates the development of alternative formal
methods. The aim of this thesis is to contribute to this development by providing
tools for specifying. analysing and refining the designs of distributed systems.

1.1. THE OUTLINE OF THIS THESIS.

CHAPTER 2 gives an informal presentation of the language used in this thesis.
The language is an extension of a conventional set theoretical notation. The
extensions are simple syntactical conventions and shorthands, which are introduced
in order to Improve the writebility and readability of specifications. The language
has been developed independently of the special area - specification of distributed
systems - to which it is being applied in this thesis. The main aim in the
development of this new language has been to provide a uniform notation and
& formal framework for reasoning and proving properties about computer systems.
The ianguage (in its current form) has been shown to meet this aim (e.g.
[Sufrin.21D. It is not within the scope of this thesis to give a formal definition
for tne syntax and semantics of the notation in question. Hence, chapter 2 gives
only an informal overview of the language. and is Inciuded mainly to ease the
understanding of the specifications in the remaining parts of the thesis.

Specificauons of a system include a description of an abstract state-space and
a gescription of the transformations of that state, The state is constrained by axioms.
These constraints proscribe those ‘abstract’ tranformations which would violate the
axioms, and allow (by definition) those which would not. In other words. an
operational model in which the transformations may or may not occur whenever
sutficient pre-conditions are met can be derived from the description of the abstract
state and the constraints. The approach. for specifying distributed systems,
presented in this thesis allows for systems behaviour to be investigated using such
an operational mocel for describing non-deterministic systems. A formal framework
for discussing non-deterministic behaviour is developed in CHAPTER 3. Although
the work presented in that chapter is original, it is not entirely novel as it embodies
@ recasting of familiar concepts (e.g. well-founded relations [Abrial,1] and
correctness ot non-deterministic constructs [Dijkstra,7]). The theory of
non-deterministic systems developed In chapter 3 is generally applicable to the
analysis of systems whose behaviour can be characterised by a relation.

CHAPTER 4 introduces a new approach for describing distributed systems. Such
systems are described in terms of constraints on the communications which may
occur across a set of interfaces (i.e. connections). The constraints are imposed
Dy axioms involving the past history of communications along one or more of the
connections. A communication history along a single connection is modelled as
a4 seguence. The specification of a distributed system provides enough information
for a non-deterministic model of the its behavior to be defined and analysed (using
the framework developed in chapter 3). Furthermore, the inside of each
process-component (an object between a set of interfaces) can be constructed
rom the the axioms which constrain the activities along its own external interfaces.

l i i tems.
in CHAPTER 5 the specification method is applied to a number of small sg{rs "
Questions which are normally of concern when designing distributed systems (mu

se
exclusion. starvatlon, deadlock etc.) are discussed in connection with the

examples.
The specification method can be used to describe distribm‘ed systems at L;l;:fbel;en_!
levels of abstraction. in a very abstract form only a few xn.terfaces .a.r;ev o
and in the least abstract form all interfaces from the reallsanon.are wmme.mOd fo;
it can support a stepwise development method. Cfraprer 6 gw?sfna ke e
comparing (the behaviour of) different levels of description, thus giving

for refining specifications.

CHAPTER 7 presents some conclusions and proposes topics for further study.

2. THE SPECIFICATION LANGUAGE.

One of the purposes of the documentation of a system (lL.e. the specification) is
to give a description of one’'s understanding of a glven problem and a description
of the set of rules which must be obeyed by any system which is claimed to be
a solution to that problem. For a specification to play a useful role in the
development of systems, statements in the specification must be expressed in a
form which is independent of any subsequent realisation, i.e. the statements should
only involve abstract concepts. Furthermore. to be of any use at all. the statements
must be unambiguous, so that all readers of the specification (inciuding the author}
reach exactly the same understanding of the problem.

These points give rise to the requirement for a language or notation in which
abstract concepts can be unambiguously expressed. Since the main concern of
mathematics is the precise formuiation of abstract concepts. it seems appropriate
to look to this discipline for a formal notational framework.

The tormal language described here is based on Set Theory. This theory has the
advantage of being the branch of mathematics which is the most intuitiveiy
accessible, while being sufficiently powerful; this is important if specifications are
to be used (and read) by other than highly skilled mathematicians. Section 2.1
gives an informal overveiw of our Set theoretical notation.

Experience shows. however. that this notation Is most unwieldy as a language for
specifying practical systems, because of the complexity that comes from the large
number of concepts involved. In order to manage this kind of complexity we use
abstract structures (called SCHEMAS), which permit the encapsulation (or grouping)
of several concepts into a single named structure. These structures can be viewed
as pieces of text. Using the names of structures. instead of the structures
themselves in statements about a system simplifies the formal text and increac.s
readability without any loss of detall whatsoever, as the abstracted detail can be
recovered by replacing the names with the structures they denote. in order to
ennance the applicability of such schemas their definitions may be parameterised
s0 that the same schema may be instantiated in different contexts. The Schema
notation is introduced in section 2.2.

An important characteristic of the approach to system specification presented in
this paper is the notion of Extensibifity. The theoretical framework provided by
elementary Set Theory can be extended with user-defined theories (i.e. new axioms
which may introduce new constants or new operations). Success in formalising a
system is often dependent on finding a sufficiently powerful formal framework
(theory) for expressing the statements and rules about that system. Using an
inappropriate theory will often lead to a confused and unreadable description; the
‘right” theory will provide the insight necessary and a sufficiently powerful notational
framework for a description to be clear and readable. Hence a specification exercise
will normally involve two distinct tasks. The first is to find the ‘right’ theory, the
second Is to apply that theory to the given problem. In section 2.3, examples of
extensions to the elementary Set Theory will be given.

™

2.1. THE SET THEORETICAL BASIS.

This section Is an overview of the basic notation of the proposed language. No
attempt is made to define the semantics of the constructs formally: this and
succeeding subsections are intended only to provide enough information about the

language to permit discussion about specifications written therein.

2.1.1. Sets and Operations on Sets.

The following expression denotes a particular subset of a set X, nameiy the set
of elements for which PRED holds,

{ x:X | PRED(x) } DEF (2.1)

where PRED(x) stands for a predicate in which x appears free. This is a rewriting
of the classical form,

{xlxeXAPRED(x)}
The set above is non-empty if and and only if
(Fx : X | PRED(x))

The explicit construction of a. finite set is denoted as usual by enumerating its
elements. as in

[a; b, ¢, 4}

The following expressions denote, respectively, the set of all subsets of the set
X and the set of all finite subsets of the set X

P(X), F(X)

The empty set is denoted by
{1

The number of elements in a finite set X is
card(X)

We shall use the standard set operations of union, intersection and difference as
well as the inclusion and membership operators. They are denoted as usual by

u n - = "4 E € £

Furthermore

u n

il be used as prefix operators to denote the distributed union and intersecl!on
e i 17
respectively. The use of these operators take a special form. eg. ‘tet EXP(1)
for pall i In an index set I, denote a subset of X, then the foilowing

u{ EXP(i) 1 i : I}
is a rewriting of
U{ 8 : P(X) | (3 i : I)(s =EXP(i)) }

The introduction (or the type declaration) of a variable x, which can only be bound
to values from the set X, is written,

X : X
(see the examples above)
A particular element with the value EXP from
{ x:X | PRED(x) }
can be written
(4 x:X | PRED(x)) (x = EXP) DEF (2.2)
provided. of course, that PRED(EXP) holds.
The designation of an arbitrary element from the same set is written
(e x : X | PRED(x))

provided that

{ x : X | PRED(x) } # {1}
Construction of a subset of the Cartesian Product
X x ¥
is written

.3)
{ x:X; y:Y | PRED(x,y) } DEF (2.3)

instead of

{(x,y) | (x,y) € XxY¥ A PRED(x,y) }

2.1.2. Relations and Operations on Relations.
The set of all binary relations from a set X to a set Y is denoted by

X & Y
which simply is a shorthand for

P(X xY)
A finite reiation can be constructed explicitly as follows.

I AN Xy T Hy: v X >y,

which maps X, to y, and ¥, etc.

Given a binary relation R from X to Y. then the /mage of a subset SX of X through
R ie.

{y Y11 (3 x: 8%) (x,y) € R}
is denoted by
R(SX)
The inverse of a binary reiation R from X to Y is denoted by
k-1
Given a relation R : X <> Y we have
R e ¥ «s x
and
dom(R) = R™1(Y)
ran(R) = R(X)

which denote the domain and the range of the relation R.

When expressing the relationship- between two elements we use the weli-known
form

which is syntactically equivalent to
Yy € R({x})

The compbsl‘rion of two binary relations

which is a relation from X to Z for which

(V x:X; 2:2)
X (R2 o R1) z <= (3 y:Y)(x R' Y. AY R2 Zz)

2.1.3. Functions.

The set of partial functions from X to Y is a subset of the set of ail relations
between X and Y. and is denoted by

X+ X

- X.= i,
{ r:XeY | (V y:Y¥ | yeran(r)) r(r ~({y}))={y} }

The construction of a partial function ‘£ from X to ¥, which maps an .eiemer
in X to an element of ¥ given by the expression EXP(x). might be writien,

f = (x x : X | PRED(x)) (EXP(x)) DEF (2.4)
Provided that
(V x:X | PRED(x)) (EXP(x) € ¥)
we have
dom(f) = { x:X | PRED(x) }
Given two predicates PRE and POST then we may construct a function n of type
h : {xX:X|PRE(x)} - Y

as foliows

10
h = (A x:X | PRE(x))
((y:Y | POST(x,y)) (y = EXP(x))) DEF (2.5)
We have
dom(h) {x:X] PRE(x)}

c
ran(h) c {y:¥l| (3 x:X|POST(x,y)) }
The domain of h can determined to be

dom(h) = {x:X| PRE(x)} n
(x:X | (3 Y:YIPOST(x,y)) y=EXP(x) }

The set of total functions from X to Y is a subset of all partial functions over
these sets, and is denoted by

I - X
X =Y ={ f:X+»Y | dom(f) = X }
Consider the definition of h above; i
(¥ x:X|PRE(x)) POST(x,EXP(x))
then h is a total function i.e.
h € {x:X|PRE(x)}) — Y
hence the ‘transformations’ dencted by
Yy = EXP(x)
can be considered as a realisation of the specification
Noee = (M x:X | PRE(x)) ((& y:Y)(POST(x,y)))

(cf. [Jones,14]

Given £ : X — Y, then the singie element in the image of a single element
through a function is written as usual,

f(x)
where

f(x) = (1 y : Y)(y € £({x}))

We can define a function which maps a nen-empty set into an abitrary element
of that set as follows

T : P(X) » X;
T=(x8:P(X) | 8# {)) ((x:X)(x € 8))

11

2.2. THE SCHEMA NOTATION.

The previous section provided a uniform notation for the implicit construction of
sets, elements, relations and functions (see DEF(2.1-5))

The syntactic schema
a: A; b: B . . . z: Z | predicate(a,b,..,2z)
abpears In the characterisation of sets and of the domain and range of functions.

This schema is also used in the quantified expressions of the Predicate Calcuius.
e.g. the expressions (appearing in section 2.1.1. and 2.1.3)

(3 x:X | PRED(X))
(Vv x:X | PRED(x)) (EXP(x) € Y)

are rewritings of
(2 x) (x € X A PRED(x)),
and
(V x) ((x € X A PRED(x)) = (EXP(x) € ¥))
The notation introduced in this thesis allows the definitlon and naming of such
syntactic schemas.
2.2.1. Example of the Usage of Schemas.
Let the Natural Numbers be denoted by
N
We can give the name TWONUM to the schema
n:N ; m:N | n2m
either by writing
TWONUM = [n:N; m:N | n 2 m]

or by using a vertical presentation,

TWONUM
n : N;
m: N
nzm

g2

The part above the horizontal line within the box |

the part beiow as the axiom or the /nvariant.

s referred to as the signature,

The schema TWONUM can be used as a textual macro in

1 The implicit construction of a set,
twonum = { TWONUM}

twonum = {n:N; m:N I n 2 mj}

2

=

The implicit construction of a function,

subtract {TWONUM)} — N
subtract = (i TWONUM) (n-m)

3 The construction of elements,
pair = (u TWONUM) (n=3; m=2)
NB. the definition is ‘valid, since 3 22
4) In quantified expressions,

(3 TWONUM) (n = m+10)
(V TWONUM) (n + 1 > m)

5) The definition of new schemas,

INTERVAL

by extending existing schemas

TWONUM ;
set : P(N)

(Vi : 8) (m € i Ai<n)

which is a shorthand for

INTERVAL___
n,m : N;
set : P(N)
S,
n 2 m;
(Vi: s (m< iaicgn

6)

13

Definition of new schemas by combining existing schemas.
Let

LIMSET

set : P(N);

card(set) < 256

then we might define

SET2

TWONUM; LIMSET

n = card(set);
card({ j : set | 3 = 0 })

3
]

Note that the combination of two schemas may introduce ‘dupiicated’
declarations in the signature of the resulting schema. Such a schema is
identical to a schema in which one of the declarions Is removed, e.g. the
schema

[INTERVAL; LIMSET]

in which the name set ‘occurs’ twice is

[INTERVAL; card(set) < 256]

In Theorems. as illustrated beiow.

The signature part of a schema may be empty. hence we can define,

SUM_and_AVG

n=x+y ;
m= (x + y)/2

NB '/' is integer division, i.e.

/ : Nx N—> N
(V i,3,r : N) (r=i/j e 0 < i - m*j < J)

Given the schema.

T——T 'T!

14

X : N; y: Nl

NB. N1 denotes the non-zerc natural numbers

we can define a function which gives the sum and the average of two numbers
in the following way.

sumavg = () PARAM) (4 TWONUM) (SUM_and_AVG)

which defines a total function if we can prove the following theorem.
xeN; yeNLl; n = x+y; m = (x+y)/2
I_

neN; meN; n2m

which leads to the last important use of the schema notation. The theorem
above can be written as follows,

PARAM; SUM_and_AVG | TWONUM

2.2.2. Schema Renaming.

The bound variables of a schema (i.e. the variables which appear Iin the signature
part of a schema) may be systematically renamed, e.g.

TWONUM'

denotes the text

n' : N;m' :N|n'32m
and
TWONUM
ex
denotes
n : - i
& N:m, Nlnoka“

The schema notation aliows individual renaming of one or several variables of the
signature, e.g.

TWONUM([k/n]

denotes

15

k:N;m: Nl kz»nmnm
it is important to understand. however. that
(TWONUM} = {TWONUM'} = {TWONUM“} = {TWONUM[k/n]}

i.e. systematic renaming of bound variables of a schema does not affect the set
which corresponds to that schema, cf.

(Ax) (x+2) = (Ay)(¥+2)

Additionally, the schema notation allows for renaming of the free variables in a
schema, i.e. given

A_NUM = [n:N | n { Limit]

then
A_NUM1 = A_NUM[L1l/Limit]

denotes a new schema. Note that, if L1 # Limit then
{A_NUM} # {A_NUM1}

The main use of schema renaming is in the definition of state transformations,
where. informally speaking. the same state variables appear twice.

Example:
let us define a simple state as follows,

STATE

counter : N

A decrement function.
decr : {STATE} -» {STATE}
can be defined using the renaming facility
decr = (A STATE) (u STATE') (counter'=counter-1)

NB
dom(decr) = {STATE | counter > 0 }

16

2.2.3. Generic Schemas.

Informal statements or definitions, such as those in section 1 of this paper, often
take a generic form. Consider the following definition which is generic with respect
to X and Y

"let X and Y be sets. The partial injections from X to Y are exactly the partial
functions from X to Y whose inverses are also partial functions.”

In the schema notation this concept is formalised. e.g. the above statement will
have the form

par_inj X ¥
f X+ Y
™l e ¥ v X

A schema may have several instances. €.g. the set of partial injections over the
natural numbers is

{ par_inj[N,N] }
and the set of partial injections from N to the Cartesian Product over N is,

{ par_inj[N,NxN] }

2.3. Extensibility.

The importance of the possibility to extend the formal framework in which one wants
to present a specification has already been emphasised In the introduction.

The notation provided for extending a theory allows for the introduction of new
objects, which are either constructively or axiomatically defined, and for the
introduction of new operations on these objects. Such extensions can be grouped
and the groups are given names, which enable the writers of a specification to
reference theories developed elsewhere.

2.3.1. Operations on Relations and Functions.
The elementary Set Theory which was presented in section 2.1.1 can be extended

to included a set of useful operations on relations. Let us first introduce the identity
function (relation) over a subset of any set, i.e

R .

X

REL-OP

id : P(X) — (X «> X)

(Vs : P(X))
id(s) = { (x,x) | xe 5}

This definition is generic in X, hence, we have several Ins»!ances of the identity
function. The use of different instances of a definition Is illustrated in The next
extention which is generic with respect to S and T. This extension defines two
domaln restriction operators and a codomain restriction operator.

ST

REL-OP1
op(F) : (8T) x P(5) - S<>T ;
op({d) : (8e>T) x P(T) —» SesT ;
op(\) : (8¢>T) x P(S8) — ST

(V £:5<T; s:P(S); L:P(T))

(r P s =10 id[S](8) A
t = id[T](t) o r A
s

e
N =r P (8-38)))

As for the identity function we have several instances of the domain-resiriction
operators, e.g.

! [N,N] € (Ne>N) x P(N) — NesN
M[N,P(N)] € (N—=>P(N)) x P(N) — N<>P(N)

The ‘parameter-list’ of the instantiation of an operator is often omitted. since its
‘type’ can be determined from the context in which the operator appears. e.g.

let £. g, S be declared as follows

f,g : N+ N ;
S : P(N)

LEeet .S
means

g=f I'[N,N] S
The nth iterate of a relation

R: 8 « 5

can Informally can be written as

T

18

R" =RoRo . . epg
;—n_times_—"

The following extensions define the iteration operators,

REL-OP2 £

op(*) : (Xe>X) x N — (X X)
op(") i (Xe3X) — (XeoX)

r

(V r:XesX; n:N1)
(r~0 = id(x) A
™'n = r~(n-1) e r)
(V r:XeX) " = ofr" | n : N

NB. the infix operator +~ is impiied (as usual) by writing the second operand as
a superscript to the first operand.

In the foilowing we add the function overriding operator to the theory of functions.

FUNC-OP A

°P(8) i ((5T) x (S+T)) — (§-T)

{(Vg, £ : S+»T)(g8 f = (g\dom(f)) u f)

NB. functions are sets to which the Set operations can be applied.

2.3.2. Operations on Sequences.

A theory which is often used in the specification of systems Is the theory of

sequences. In the following we will formalise sequences and some operations on
them.

Let us first formalise the well known 2-dots, as in

3..m

op(..) : N x N — P(N)

(Vn,mp : N)(p e n..m < n<p A ps<m)

Sequences are then tormalised as a subset of the partial functions, e.g. a sequence
of length 4 over a set

19

{a, b, ¢, d‘, f, g}
might be defined as.
{(l,a), (2,¢), (3,b), (4,a)}
This sequence will be denoted by
acba?>
The empty sequence Is denoted by
<
Sequences are ‘formally’ added to our theory by the following generic extension.

X

SEQ

seg,seql : P(N -+ X)

(V s:seq)
(dom(s) € F(N) A
dom(s) = 1..card(dom(s)))

seql = segq - (<>}

In the following we add some operators to our ‘current theory’

SEQ-OP1 2
: seg[X] — N;
next ¢ seq[X] — (Xe3X);
first,last : seql[X] — X;
ending,

beginning : seql[X] — seq[X]

(V s:seq)
(#(s) = card(s) A
next(s) = s © succ es~1)
(V s:8eql)
(first(s) = 8(1) A
last(s) = 8(#(s8)) A

ending(s) = 8 e (succ\{0)}) A
beginning(s)= st (1..#%#(8)-1))

The function succ is the successor function over the Natural Numbers.

20

The concatenation operator for sequences is defined by.

SEQ-OP2 X

op(*) : seq[X] x seg[X] — seqg[X]

(Vs,8':8eq) 8 * 8' = s U (s' e predﬂ“ﬂ)

The function pred is the predecessor function over the Natural Numbers.

2.4. NOTATIONAL CONVENTIONS.

The schema notation permits the grouping of concepts into named structures. The
names are used in the construction of sets, functions etc.. We also allow for the
naming of theory-extensions (as in SEQ and SEQ_OPL from section 2.3.2) simpty
in order to be able to reference specific theories eisewhere in the document. The
names are also suggestive , i.e. SEQ. SEQ_OP1 and SEQ_OP2 make up the current
theary of SEQuences. Even with such a naming facility the cross-referencing in
a large document dike a thesis) becomes unmanageable. therefore this thesis
makes use of an indexing system, in which all important sections of formal text
have been indexed. Schemas and Extensions are categorised as definitions, hence
we use DEF as a qualifier for them (see DEF(3.2)). Theorems. Lemmas and
Figures are also isolated from the informal text using ‘boxes’: their index-numbers
ErE prefixed with the qualifiers THEOREM, LEMMA and FIGURE respectively.
rheorems are when convenient given the name of the theory to which they belong.
see LOOP:DEF(3.2) and the theorems LOOP: THEOREM(3.3-6).

21

3. NON-DETERMINISTIC SYSTEMS.

The purpose of this chapter is to investigate the properties of non-deterministic
behaviour. The results will be used to justify the introduction of a particular
approach to the specification of distributed systems.

The descriptions of most systems do not include compiete descriptions of controi
mechanisms. This means that we cannot fully predict the behaviour of the system
by looking at its description - the behaviour of our system is non-deterministic.
The top-down development process which takes a system through design stages
to a realisation, invclves, among other things, adding further decisions about actual
behaviour to the description. hence the non-determinism present at the top level
might well be resolved at some lower level where a more detailed description of
the behaviour is given.

We can therefore expect, even when developing sequential deterministic programs,
to be faced with the problem of proving properties of designs which invoive
non-deterministic behaviour. Systems which are eventually implemented as strictly
sequential programs may at a ceriain stage in the design process best be described
using non-deterministic constructs [Dijkstra.8]l. The reasons for this are twofold -
1) the designer should not impose In advance any decisions about the system
which may have an adverse effect on future refinements and reallsations - 2) the
properties of a design are often independent of decisions about actual dynamic
behaviour, hence a description of these decisions is pure 'noise’ and should be
left out,

Furthermaore, there is a very important class of systems which cannot be realised
using sequential control constructs because their actual behaviour is contrc..cd
by or synchronized with external events (i.e. events activated by the environment)
which occur non-deterministically. For example. we expect the control-fiow of the
program for an air—traffic control system to be influenced by the unpredictabie
event of an aeroplane entering into the airspace monitored by the system: we expect
a terminal muitiplexer to acknowledge a key-stroke; we expect the activity of a
batch operating system to be interrupted upon entry of a new deck of cards.

System behaviour may also include internal events that occur non-deterministically.
i.e. may or may not occur whenever the preconditions which determine their
possible occurrence are satisfied, as for a communication between componenis
in an multi-process system. Common to the realisations of these systems is the
fact that they are composed of several highly independent processing components,
whose progress between points of synchronization is wunknown (distributed
concurrent systems). Such systems cannot be realised using purely sequential
control mechanisms, since any decision that attemps to prescribe the order of
occurrence for 'inter-process’ events In advance (in either the design or
Implementation) could easily cause unnecessary delays at run-time. and even
infinite delays (i.e. deadlocks).

22

In the first section of this chapter a simple model for non-deterministic behaviour
will be introduced. Definitions of a set of functions. which will be wused to
characterise non-deterministic behaviour. will be given. This model and these
definitions are applied to a very simple example in the section which follows. The
last section will summarise the properties of non-deterministic behaviour to be
considered, and give a method for proving those properties.

3.1. FORMALISATION OF NON-DETERMINISTIC BEHAVIOUR.

Non-deterministic behaviour may be pictured as a state diagram (a directed graph)
in which the nodes represent the states of the system and the outgoing edges
represent the events. A node with two or maore outgoing edges represents a state
of the system where sufficient conditions for the occurrence of more than one
event are satisfied. Nodes with no autgoing edges represent states where no further
progress can be made - these states are referred to as Terminal-states.

Even for small systems this pictorial method for describing non-deterministic
behaviour becomes unmanageable. and can therefore only be used to illustrate
special dynamic properties - never complete systems. A more suitable method of
description is needed.

The events (the state-transitions) will be described as partial functions. Whenever
the system which is being described is in a state belonging to the domain of
one of these partial functions, the corresponding event may occur, thus transforming
the system. Consequently in such a model the total behaviour is represented by
& relation (usually referred to as the Step - relation) and the Terminal - states
are states which do not belong to the domain of this relation.

We can define a schema for describing such a model -

ND 8 DEF (3.1)
Events t F(S - 8);
Step 18 e S;
Terminal : P(S)

Step = U(Events);
Terminal = 5 - dom(Step)

Note that only systems with a finite number of events are considered: most of
the results in this chapter do however apply to the more general but unrealistic
case where

Events : P(S + 38)

For any given state s |, Step({s}) is the set of states which can be reached
from 8 in one step. ie if s Is in the domain of two events

23

(evl, ev2)
then
Step({s}) = {evl(s), ev2(s)}
The relation
Step"
will, applied to state s . describe the states which can be reached after n steps.

The domain of the relation,

Step" { Terminal

Is the set of states in S in which the system may be started and possibly terminate
after n steps. This intuition justifies the following definition:

s DEF (3.2)

LOOP

loop : (S <> S) — (8 <> 5)

(Vr : 8 ¢ 8))
(loop(r) = u{ " | (5 - dom(xr)) I n : N })

The operator loop can be used to establish partiai correctness. (A system is
partially correct if It produces the desired result or fails to terminate).

If the system is started (from s) within the domain of loop for a relation Step
then the system may terminate, and furthermore if it terminates the resulting siuwe

is within loop(Step) ({s}). This may be expressed as foliows:

1,00P s THEOREM (3.3)
R S «— 5;
s : 8;
s € dom(loop(R)) =
(3n:N)(3s8" :8) ((s R"s") A s'gdom(R)) ;

(¥vn: N; 8' : 8)
((s R" 8" A s'fdom(R)) = s'eloop(R)({s}))

The theorem below is a reformulation of the definition of loop . a re-formutation
which follows directly from the definition of the transitive closure (R) for

relations and the distributivity of { over u.

24

i = THEOREM (3.4)
R : 85« 8 +

loop(R) = R" I (S - dom(r))

A system started in a Terminal-state will remain in that state; in other words
states belonging to the compiement of the domain of a relation are in the domain
of the loop of the same relation. This is a consequence of -

T - THEOREM (3.5)
R : 5« 58 |

loop(R) = id(3 - dom(R)) u (loop(R) ® R)

A rule of iteration for non-deterministic systems may be formulated as fotiows:

LOoP s THEOREM (3.6)
R 1 8« §;
INV : P(S)
R(INV) © INV | loop(R)(INV) = INV - dom(R)

proof

(1) R(INV) c INV (hypothesis)

(2) R" (INV) ¢ INV (by. induction, as follows)
(a) RY(INV) ¢ INV (the basis of the induction)
(b) R"(INV) c INV (induction hypothesis)

(¢) R(R"(INV)) ¢ R(INV) (b)

(d) R™'(INV) c INv (e),(1)
(3) ((R" {(S-dom(R)) (INV)) c INV ((2) and def)
(4) ((R" i(S-dom(R)) (INV)) € (8 - dom(R)) (def)
(5) (loop(R) (INV)) c (INV n (5-dom(R)) (3,4, TH3.4)
(6) id(5-dem(R)) c loop(R) (TH3.5)
(7) 1d(S-dom(R)) (INV) c loop(R) (INV) (6)
(8) (INV - dom(R)) c (loop(R) (INV)) (7)
(9) (loop(R) (INV)) = (INV - dom(R)) (5).(8)

Intuition -

Given a state 8, Suppose INV_CON is an invariant condition for a system which
behaves according to a relation Step and suppose we can describe § -
dom(Step) as { 8 ITERM_CON }. The invariant condition holds after any number
of Iterations (occurrences of events) provided it was satisfied upon Initialization,
hence this condition alsg holds when (IF!) the system terminates; furthermore
we know that no more progress is possible i.e. the condition

INV_CON A TERM_CON

holds, le. the system terminates in a state beionging to

25

{5 | INV_CON} - dom(Step)

The following graphs (FIGURE 3.7) illustrate the behaviour of a simple system.

We observe the following : .
1} A system having the transition-relation Step will never terminate if it is

started outside the domain of loop(Step).

2) A system started within that domain may terminate, but termination Is not

guaranteed.

FIGURE (3.7)

Loop and Termination

o
RV
'O, o
9] T %
a) Step) Step' c) loop(Step)

To be abie to distinguish between properties such as pessible termination and

guaranteed termination we introduce -

E S DEF (3.8)
CYCL

Span : (8«8) — P(8 -5);

Cycle : (S «» 8) — (8 «>8)

(Vr : S« 8)
(Span(r) = {f:83 —+» 5 | dom(f) = dom(r) A £ € r } A
Cycle(r)= loop(r) ! n{dom(loop(sp)) | sp:Span(r)})

NB. the set of spanning functions for a relation r is non-empty .as

g =(xx:5 1] x ¢edom(r))(r(x(({x})))
g € Span(r)

A spanning-function, sp . for a relation R

sp € Span(R)

characterises a particular deterministic behaviour obtained by making dems:o.ns in
advance about the ‘future’ non-deterministic behaviour. In other words a particular
spanning-function together with a starting state describes a run-time trace.

The set of spanning-functions for a system contains functions whlch. describe
‘worst-case’ behaviour, e.g. infinite loops. Hence if we start a system in a s.late
from which an infinite loop can be reached then there exists a spanning-function,

26

say s8p. such that the particular starting state is outside the domain of loop(sp).
On the other hand if a system is started within the domains of the loops of
all spanning-functions, then termination is guaranteed. (as an example., see
FIGURE(3.27) and FIGURE(3.28) which illustrate a relation and two of the
spanning-functions for that relation). Using these definitions we can give a more
precise characterization of non-deterministic behaviour.

A rewriting glves -

CYCLE 5
F (Vvr:8<5)
Cycle(r) = u{ loop(sp) | sp : Span(r) } I
n{ dom(loop(sp)) | sp : Span(r) }

THEOREM (3.9)

The next theorem characterises the deterministic behaviour of a system if it is
started in a terminal-state (outside the domain of the step— relation).

CYCLE 5
F(Vr :8 <« 8)
Cycle(r) = 1id(5 - dom(r)) v
((loop(r) e r) P n{dom(loop(sp))isp : Span(r)})

THEOREM (3.10)

proof
use DEF(3.8) and THEOREM(3.5) to rewrite loop(r).

The rule of jteration for non-deterministic systems can now be strengthened-

CYCLE 5 THEOREM (3.11)
r : S <> 8
INV : P(S)
r(INV) ¢ INV | Cycle(z)(INV) = (INV - dom(zr))

Furthermore. as mentioned earlier, the domain of Cycle gives the set of states
for a system from which it is guaranteed to terminate; this is illustrated by the
graphs in FIGURE(3.12) which is a continuation of the description of the smali
system from FIGURE(3.7) -

Cycle and Termination FIGURE (3.12)

o o o
o I 1 o
o o
O O o
a) Step b) loop(Step) c) Cycle(Step)

27

The following Termination theorem expresses that there is. for each state within
the domain of the Cycle of a finite branching relation (R), i.e. a relation for
which-

(3 n:N) (Vx: dom(R)) (card(R(x)) < n)

an upper limit to the number of transitions which can be performed before a
terminal-state is reached. A proof of the theorem can be given using the Rank
function. which will be defined in DEF(3.14).

TERMINATION S THEOREM (3.13)
Events : F(8 - 8);

] I

s € dom(Cycle(UEvents)) F

(3 Max : N)

(V n:N; s':5) ((s (UEvents)" 8') = (n < Max))

The Rank function defines the maximum distance to a terminal state - le. the
maximum distance to the leaves of the relation in question. The definition of Rank
Is justified by definition DEF (3.15), which defines the distance-set . and
THEOREM(3.16) in which it'is proved that all distance-sets of finite branching
relations are finite sets. Hence. a distance-set has a maximum.

RANK S DEF (3.14)

Rank : F(S+ 8) — (8 4+ N)

(V events: F(S-+5))
(Vs : S| s € dom(Cycle(vevents)))
Rank(events)(s) = max(distance-set(uevents,s))

For a relation R , the distance-set is defined only for elements which are
in the domain of Cycle(R) -

DISTANCES S DEF (3.15)

distance-set : (8 «» 3) x § = P(N)

(VR : S «> S; s : S| s ¢ dom(Cycle(R)))
distance-set(R,s) =
{d: N1 (3 sp: Span(R)) (d=distance(sp,s))}
where
distance(sp,s) = min{ n:N | sp"(s) ¢ dom(sp)}
which exists, since sp is functional and
8 € dom(loop (sp))

28 29

The set of spanning functions for a relation may be infinite. however - as the 3.2. A BOUNDED BUFFER.
next theorem states — for a finite branching relation R the distance-sets for

an element within dom(Cycle(R)) are finite. Hence the definition given for Rank To illustrate the use of the definitions given in the previous section we examine

is valid.
5 THEOREM (3.16)
Events: F(S -» 8§);
s g
s € dom(Cycle(uEvents)) -

distance-set (UEvents,s) e F(N)

let us define -
INF = { 8 : 8 | distance-set(rel,s) ¢ F(N) }
rel = UEvents
proof : by contradiction. the assumption is
(1) s € INF
(2) (Vv x:8)(x £ dom(rel) = distance-set(rel,x) = {0})
from which we get via contrapositive
(3) (V x:8) ((x € INF) = x ¢ dom(rel))
at least one of the finite number of states reachable irom a state in INF
must have an infinite distance-set, ie -
(4) (V x:8)(x € INF = (3 Y:8)(x rel y A y € INF))
from (3) we get
(5) (V x:8)
(x € INF = (3 Y:5)(x rel y A yeINF a yedom(rel)))
This allows us to define a function. as foliows -
L= (h x: INF)(n vy : 8)(Yy € INF A x rel y.)
which gives -
rel At € 345 At € INF — INF
The function
sp = 7(Span(rel) 6 t
is a spanning function for rel (6), and as
s € dom(t)
we get (as t € INF — INF)
s £ dom(loop(sp))
therefore
{(7) (3 £ : Span(rel)) (s £ dom(loop (f))
which gives (THEOREM(3.9))
(8) s ¢ dom(Cycle(rel)
which contradicts the hypothesis.

(6) t

In

an abstract design for a small system with the following properties :
1) The system consumes jnput from the environment.

2) Al input consumed will eventuaily appear as ouwtput. Furthermore. the order
in which the elements appear in the output stream is identical to the order
in which they were consumed.

3 Only a limited number of elements can be 'within’ the system at any given
time.

4) Necessary conditions for an Input-event to occur are -
a) the event will not cause the limit to be exceeded.
b) the environment is willing to participate in such an event, i.e. there are
elements to consume.

5> A necessary condition for an output-event to occur is that there are stiil
eiements, previously consumed. left ‘within’ the system.

This informal speciflcaﬂon' will be the basis for the abstract design presented in
this section. In 'succeeding chapters formal specification techniques wiil be
developed. but to justify these technigues we need first to examine the generai
properties of non-deterministic systems. It should be emphasized that the foilowing
description is not considered to be a formal specification. It is a design we propose,
and we will use the tools from the previous section to investigate how this particular
design relates to the informal specification given.

Given the environment -
in_env : seql[X] ; Bound : N1

then an abstract state of the system may be described as follows :

BB X DEF (3.17)

unseen, buf, out : seq[X]

#buf < Bound:;
in_env = out * buf * unseen

where unseen describes the un-consumed input, out the produced output and
buf the elements 'within' the system.

As operations on this state we propose two non-deterministically occurring events.
The necessary condition for an input to occur is described in PRE_INPUT, the
state tranformations are described in INPUT .

30

PRE_INPUT X DEF (3.18a)
BB ; unseen # (>; #buf < Bound

INPUT X DEF (3.18b)
buf' = buf * (first(unseen))
unseen' = ending(unseen);
out' = out

Similarly for output we have

PRE_OUTPUT LS DEF (3.19a)
BB ; buf # <¢)

QUTPUT X DEF (3.19b)
out' = out * < first(buf) >
buf ' = ending(buf);
unseen' = unseen

31
Bounded buffer Behaviour FIGURE (3.20)
(3,0,0)
(2,1,0)
(1,2,0) ::)b (2:,0,1)
\\‘0 (1,1,1)
Q (0,2,1)0’/// (1,0,2)
0 \\\ (0,1,2)
\\‘ \\\‘o (0,0,3)
a) loop(U Events) b) v Events

If we restrict ourselves to considering a particuiar environment, e.g. where
#(in_env) = 3 A Bound = 2

then a reasonably complete picture of the dynamic behaviour of the system can
be given (FIGURE (3.20)). We define the states and the events as follows-

bb = { BB };
events = { (A PRE_INPUT) (g BB')(INPUT),
(X PRE_OUTPUT) (& BB') (QUTPUT) }

or using the definition (3.1

(& ND[{BB)}])
(Event = { (x PRE_INPUT) (u BB')(INPUT),
(A PRE_OUTPUT) (1 BB') (OUTPUT) }
In the diagram the states are represented by tripies -

(#(unseen), #(buf), #(out))

adjacent to the nodes of the behaviour-graph

We now observe the following :

1) Independent of the starting state. it is possibie to reach a terminal state in
a finite number of steps, i.e.

(Vb : (BB}) (¥Tn:N) (3 b' : (BB})
(b 5tep” b' A b'e ({BB)} - dom(Step)))
where
Step = U Events
In other words the behaviour can be described as a total relation -

dom(loop(Step)) = {BB}

2) Independent of starting state it is guaranteed that a terminal state will be
reached (the graph is loop-free), i.e.
(V sp : Span(Step)) (dom(loop(sp)) = {BB})
or
dom(Cycle(Step)) = (BB}

3

=

I the system Is started in a state where the buffer (buf) is empty and
no output has been produced. then the system will terminate in a state where
the output is the original input (in_env) =~ this is formulated as follows.
Given -
Effect = Cycle(UEvents)
then -
Effect({BB | out,buf = <>; unseen = in_env 1) c

{ BB | buf,unseen = ()>; out = in_env }

The informal discussion above illusirates how the tools provided can be used to
express properties about the design of non-deterministic systems.

The correctness of our design is expressed in the two following theorems-—

1) The invariant theorem.
(the axioms of BB are invariant under the events)

BUF_INV THEOREM (3.21)
- (input U output) ({ BB }) ¢ { BB } ;
where
input = (A PRE_INPUT) (x BB')(INPUT);

output (» PRE_OUTPUT) (x BB') (OUTPUT)

which Is a direct consequence of LEMMA(3.22-23)

Buf_Sys_Invariant LEMMA (3.22a)
BB;
unseen # <> A #(buf) ¢ Bound;
buf'= buf * ¢ first(unseen) »;
unseen'= end(unseen); out'=out
F BB'

We may use the descriptions introduced to restate LEMMA (3.22a) more compactiy.

Buf_Sys_Invariant LEMMA (3.22b)
PRE_INPUT; INPUT BB’

Buf_Sys_Invariant LEMMA (3.23)
PRE_QUTPUT; OUTPUT } BB'

33
2) The total correctness theorem
Total correctness THEOREM (3.24)
Step : { BB} <« { BB}
Step = (» PRE_INPUT) (g BB')(INPUT) U

(A PRE_OUTPUT) (u# BB') (OQUTPUT)
t_
(Cycle(Step)) ({BB | out,buf=(>; unseen=in_env }) c
{BB | unseen,buf = <>; out = in_env }

proof
Note, the following proof is conditional as the proof of (1) Is assumed.
The omitted part of the proof will be given in section 3.3.2.
let us define
Effect = Cycle(Step);

Initial = { BB | out,buf = <>, unseen = in_env }

Final = { BB | unseen,buf = {(>; out = in_env }
(1) dom(Effect) = {BB}
(2) Initial ¢ dom(Cycle(Step)) (1)
(3) Step({BB}) < {BB} (TH 3.21)
(4) Effect(Initial) < {BB} - dom(Step) (TH 3.11)

(5) Effect(Initial) c

{BB | (unseen={(> v #buf=Bound) A buf=<{>}
(6) Effect(Initial) ¢

{BB | unseen={> A buf={(> } u

{BB | #buf=Bound A buf=¢{> }

(7) {BB | #buf=Bound A buf=<> } = () (BoundeN1)
(8) Effect(Initial) c
{BB | (unseen= (> A buf=<{») } (6),(7),(BB)

using the invariant we get
(9) Effect(Initial) € Final

Consider a slightly modified version of the bounded buffer with a PUTBACK facility.
The putback-event is described as foilows :

PRE_PUTBACK X DEF (3.25a)
BB ; #(buf) = Bound

PUTBACK X DEF (3.25b)
unseen' = (last(buf)) * unseen ;
buf' = beginning(buf);

out' = out

The dynamic behaviour of the system described as follows -

——P_

34

BUF_with_PUTBACK 4 DEF (3.26)
in_env : seq[X]
Bound : N1
Step : {BB} <> (BB}

2 i #(in_env) = 3;
(A PRE_INPUT) (u BB')(INPUT) u
(x PRE_OUTPUT) (4 BB')(OUTPUT) u
(A PRE_PUTPACK) (u BB') (PUTBACK)

is illustrated in -

Bounded Buffer with putback

FIGURE (3.27)

SRNN
N i

s

L

This system is not guaranteed to terminate as an infinite sequence of ‘input -
putback’ events may occur, FIGURE(3.28) illustrates two of the
spanning-functions and the partial function Cycle(Step).

Putback-Buffer behaviour

e

ay

N
e

FIGURE (3.28)

(o]
(=]

o
©

\,< 4 0

o]

a) Two Spanning Functions. b)Cycle(sStep)

35

The dynamic behaviour of the system may be characterized formally:

X THEOREM (3.29)
BUF_with_PUTBACK;

f1 P f2 : {BB} -» {BB};

f, = Cycle(Step);

f, = Loop(Step) +

dom(f2) = {BB};

dom(f,) = {BB | #(buf * unseen) < Bound]

which reads - independent of the starting state the system may possibly terminate:
termination cannot be guaranteed.unless the number of elements yet to be produced
is less than the bound.

3.3 FORMALISATION OF NON-DETERMINISTIC SYSTEMS.

The definitions and theorems in section 3.1 gave a formal characterization of
non-deterministic behaviour.

The important theorems comprise- 1) {THEQREM(3.13): Termination] which
describes the proper starting states for a system. i.e. the states from which
terminal-states will be reached - 2) [THEOREM(3.11): CYCLE] which is used
to further characterize the states in which a particular non-deterministic system
(NDS) terminates.

It should be mentioned that termination properties are considered to be an
important concept when designing systems consisting of several independent
processing components. Distributed programs which are intended to co-operate in
solving a specific problem, such as finding a root for a particular function. are
expected to terminate.

Sf,rstems which ideally should run continuously - such as Operating Systems,
Distributed Data Base Systems or Network Communication Systems - should be
designed to terminate only if the system has been stopped intentionally (operator
stop) or if a failure occurs within a vital component of the system, and furthermore.
only when all current activity unaffected by the possible failure is properly
terminated.

This approach requires that systems for which we prove termination are assumed
to operate in a finite environment, i.e. the number of incoming requests (cards.
0S-commands, failure-messages) is bounded.

The termination properties which are built into the design of these kinds of systems
will, in the implementation. be provided by ciose-down procedures.

36

We use the following classical concepts to _fnrmeily discuss termination properties
for non-deterministic systems :

Final - states: states in which a system is intended to terminate.
Deadlock - states: terminal states, which are not foreseen Final states.
Initial - states: the states from which the system may be started.

The important categories of non-deterministic systems can be described as follows

N The unrestricted system. which may deadlock or encounter an infinite ioop.

NDS b DEF (3.30)
Events T F(X - X);
Terminal : P(X);
Initiay,
Final,
Deadlock : P(X)
Terminal = X - dom(U Events);
Deadlock = Terminal - Final

2) The halting NDS (include freedom from loops).

HALTING_NDS X DEF (3.31)

NDS[X]

Initial ¢ dom(Cycle(U Events))

intuition - THEOREM(3.13): Termination

3) The totaily correct system. A system is considered to be totally correct if
it can be proved to terminate (loop-free) and that ali possible Terminal

states, reachable from the Initial states, are acceptable Final states
(deadlock-free).

WELL_HALTING_NDS X DEF (3.32)
HALTING_NDS [X]

L_ (Cycle(v Events))(Initial) ¢ Final

4) The very ‘robust’ system which behaves ‘correctly’ independent of the
starting state, the system may compute the wrong result if it is started

outside the Initial state. but it will never encounter an infinite foop or
deadlock.

37

NON_BREAKABLE_NDS X DEF (3.33)
NDS

dom(Cycle(U Events)) = X;
Terminal ¢ Final

These properties are indeed sufficient 10 guarantee total correctness as we

have :
X THEOREM(3.34)
NON_BREAKABLE_NDS - WELL_HALTING_NDS

let Step = U Events
proof
(1) dom(Cycle(Step)) = X (NON_BREAKAELE)
(2) Initial c dom(Cycle(Step)) _ (1)
(3) X - dom(Step) ¢ Final (NON_BREAKABLE)
(4) ran(Cycle(Step)) € X - dom(Step) (TH (3.11)?
(5) (Cycle(Step))(Initial) € Final (3),(4)
(6) WELL_HALTING_NDS : (2)0(5)

3.3.1 Deadlock and the Invériant Condition.

Using the new definitions the statement of correctness [THEOREM(3.24): Bufsys]
for the design of the small Buffer System in section 3.2 may now be reformulated
(NB. THEOREM(3.35) is stronger than THEOREM(3.24)).

BUFSYS X THEOREM(3.35)
in_env : seq[X] ;
Bound : N1

NDS[(BB[X]} 1:
Events = { (x PRE_INPUT) (g BB') (INPUT),

(» PRE_OUTPUT) (¢ BB') (OUTPUT) }
Initial = { BB | out=¢(>; buf=<{>; unseen=in_env }
Final = { BB | buf=<{>; unseen=<>; out=in_env |}
I_
NON_BREAKABLE_NDS[{BB}]

The proof of THEOREM(3.24) illustrates the importance of the Invariant theorem
in proving WELL_HALTING properties.

If the small buffer system I8 started outside Initial-states ¢ e.g. with a
non-empty buffer) then the Final-states are still the only Terminal-states.

however the function computed by the system is no longer the intended identity

for sequences. This property. which is the NON_BEREAKABLE property. is directly
related to the invariants, which constrain the states.

If the abstract state (DEF(3.17) - BB) had been -

BB2 X DEF (3.36)
unseen,buf,out : seq[X]

#(buf) € Bound

i.e. without the important invariant
in_env = out * buf * unseen

which says that activities performed by the system preserve the ordering of the
data within the data-stream and do not introduce extraneous elements. then the
corresponding NDS[{BB}] (constructed as in THEOREM(3.35) Bufsys) couid
have been proved to be a WELL_HALTING_NDS by the invariant theorem and
observing that the invariant holds in the initial state.

However, such a system does naot have the NON_BREAKBALE_NDS property, as
a Final state cannot be reached if the system is started in a state where

in_env # out * buf * unseen

In general we should always construct NON_BREAKABLE_NDS designs, If a design
can be proved to have the WELL_HALTING property only, then there may exist
states - satisfying the invariant - from which the system may deadlock or loop
indefinitely. This is indeed undesirable. Later modifications to the system. (e.g.
addition of operations which can be proved to keep the invariant, but may take
the system 10 new states not previously reachable from Initial) may affect the
behaviour of remaining ‘'unmodified’ parts of the system - and can cause deadlocks.

A ‘breakable-nds’ design shows that there are properties of the system which the
designer has not observed or considered.

There are several techniques for removing deadlock-possibilities.

Given -
Final : P({(S})
Step : {8} «» (8}
where

{8} - dom(Step) ¢ Final

then there is a possibility for deadlock. This possibility must be detected and
removed by deciding whether to -

P

39

1) accept the deadlock. i.e. extend the Final - states. '

2) provide a deadiock detection solution, i.e. extend the relation Step by adding
one or more new events.

3) remove the deadlock possibility by limiting the abstract space. ie. add
invariants.

as both -
{s)} - dom(Step U new-function) ¢ {8} - dom(Step)

and
{SInew-invariant) - dom(Step) € (8) - dom(Step)

the changed design of the system may well be provable to be NON_BREAKABLE.
3.3.2. Termination and the Varlant Function.

The properties of a HALTING_NDS only guarantee termination provided the starting
state was within the predefined Initial-states. As mentioned earlier we should
strive to design NON_BREAKABLE_NDS . ie systems which always terminate.

There Is an important group of system components where a ‘repeat’ mechanism
is required; e.g. a communication system shouid inciude facilities for
re-transmission of messages which, due to unreliable communication-lines, have
peen lost; and a disc—handler should provide a re—try mechanism which will be
used after the occurrence of a disc-read check-sum error.

However this ‘repeat’ facllity shouid not prevent the designer from constructing
totally correct and non-breakable systems.

Consider the ’‘behaviours’ illustrated in FIGURE(3.37).

a) A partially correct system. which ‘only’ fails to terminate WHEN u.e
unexpected happens (loops infinitely).

b) The ‘repeat’ mechanism from system a) Is replaced by a weli=known
mechanism, in which only a limited number of re-tries is performed before
the system is stopped within the new, extended Final - state. This
mechanism will behave identically for transient errors, but persistent errors
will be detected. Note. this modification is done using a simiiar techniques
as those applied in order to prevent deadlock (see previous page). This
time in order to satisfy a termination-axiom-

dom(Cycle(a-relation)) = all-states

Repeat Mechanisms

FIGURE(3.37)

repeat re-tries

s Yyt
Q/‘éﬂp

@ FINAL error~detected

The loop-free property of a NON_BREAKABLE_NDS, requires a proof of-

dom(Cycle(Step)) = X
where Step : X «» X

i.e. that the relation Cycle(Step)
is a total relation.

The following theorem gives a proofi method for finite branching refations-

VARIANT X

NDS f—

dom(Cycle(Step)) = X =

(3 v X—=N)(V x,x":X) (x Step x' = v(x') ¢ v(x))
where

Step = U Events

THEOREM(3.38)

proof

a) It Cycle(Step) is total then a variant function exisis :
(1) dom(Rank) = X
(2) (V x,x":X|x Step x')(Rank(x')(Rank(x))

i.e. RANK is a variant function.

(DEF (3.14))
(DEF (3.15))

b) It a variant function for the relation exists then this variant function is indeed

a variant function for ali spanning-functions for Step ., i.e
(1) (v sp:Span(Step)) (v x:dom(sp)) (visp(x)) < v(x))
(2) (V x:X)(V sp:Span(Step))(xedom(loop(sp)) (next LEMMA)
(3) dom(Cycle(Step)) = X (TH (3.9))

The well-known theorem on the importance of the variant function for iterations
of partial functions -

M

VARIANT X LEMMA (3.39)

f X - X

v: X —> N

(¥ x : dom(f)) (v(f(x)) < v(x))

l_

(V x : XK)(3 n:N)(3 y:X) (y = £%x) Ay ¢ dom(f))
proof

gX

(2) y,

(3) vy,

(1) for an arbitrary x

(V x

= (A n:N | £"(x) € N)(v(f"(x)))
because (0,v(x)) € g, we can define :
m = min(ran g.)

n, = min g '({m})

hence. we can define

= £M(x)

under the assumption that

¥, € dom(f)

we get (as v is a decreasing function)
gl(nx+l) ¢ min(ran g,)

which is a contradiction. therefare

£ dom(f))
hence according to (1). (2) and (3) we get

: X we define the foliowing partial function:

X)(3 n:N)(3 y:X) (y = £%(x) Ay ¢ dom(f)

)

Taking the proof-method for proving freedom from loops into account, we can now
reformulate our definition of NON_BREAKABLE NDS -

NON_BREAKABLE_NDS

X
Events : F(X -» X)
Initial,Final : P(X)
var X - N

(X - dom(U Events)) € Final
(v f Events) (Vv x dom(f))

(Var(f(x)) < var(x))

DEF (3.40)

Example:

The statement of correctness for the small Buffer System (section 3.2) may now

be formulated-

42
Buf_Sys X THEOREM (3.41)
in_env : seqg[X]
Bound : Nl
Events : F({BB) - {BB})
Initial,
Final : P((BB})
Var : {BB} — N

Events = { (A PRE_INPUT) (u BB') (INPUT),
(X PRE_OUTPUT) (¢ BB') (OUTPUT) }

Initial = { BB | out,buf = <> }

Final = { BB | unseen,buf = () }

Var = (M BB) (2 * #(unseen) + #(buf))
‘_

NON_BREAKABLE_NDS|[{BB}]

Note! the proof of the total correctness of the Bufier System (which was conditionai
in THEOREM(3.24)) may now be completed by proving that the given variant
function is indeed a variant function for all participating events.

We must prove-

Buf_Sys_Variant X LEMMA (3.42)
PRE_INPUT; INPUT b
(2*#(unseen')) + #(buf') < (2*#(unseen)) + #(buf);

Buf_Sys_Variant X LEMMA (3.43)
PRE_OQUTPUT; OUTPUT |
(2*#(unseen')) + #(buf') < (2*#(unseen)) + #(buf);

LEMMA(3.22) and LEMMA(3.23) guarantee that
Events € F((BB} -+ {EB))

We can prove the deadlock-free property -
(X - dom(U Events)) ¢ Final

as in THEOREM(3.24) or by proving -

Buf_sys_termination X LEMMA (3.44)
in_env : seq[X];
Bound : N1;
BB;
(unseen=<{) v # (buf)=Bound) A buf=(>;
'._

(unseen=(> A buf=<{) A out=in_env)

43

which expresses that the Buffer System terminates within the acceptable final states

only.

The method illustrated here for proving non-deterministic designs correct can be
summarised as follows:

1)) State the NON_BREAKABLE properties as in THEOREM(3.41).
2) Prove the invariant Lemmas, (see LEMMA(3.22-23)).

] Prove the Variant Lemmas. (LEMMA(3.42-43)).

4 Prove the Deadlock-Lemma., (LEMMA(3.44))

Even for smail systems it may be difficult to find a Variant Function. The reason
may be that the /nvariants which constrain the state-space are insufficient, whence
we are faced with another difficult task - to find proper Invariants.

However. it is easy to prove or disprove that a particular function is a Variant
Function for a given set of partial funclions.

45

4. SPECIFICATIONS OF DISTRIBUTED SYSTEMS.

The remaining parts of this thesis present a new approach for specifying
DISTRIBUTED SYSTEMS.

Distributed systems are systems which are composed of several concurrentiy
operating processing components. As mentioned in chapter 3 these systems fali
into the category of non-deterministic systems. The formal framework which we
developed in the previous chapter will be applied to the analysis of distributed
systems. and we will see (in section 4.4) how the difficulties in proving termination
(i,e. finding a variant function) are reduced owing to the method used for
specification of the behaviour of such systems.

4.1.MOTIVATION FOR DISTRIBUTION.

A specification of a distributed system must document the decisions taken with
respect to the distribution of data- and control-structures onto independent
processing units. The reasons for designing distributed systems may vary:

a) The decisions may be directly dictated by demands with respect to security
(e.g. certain data must only be available at a specific geographical location)
or reliability (e.g. the introduction of redundancy).

The decisions may aiso be made by the designer in order to satisfy efficiency
requirements (e.g. 1) In a computer network the response time for accessing
data is dependent on the ‘distance’ to the locatlon of the accessed data. and
2) the throughput of a system can be Increased by utilising a piped processor
arrangement.}

Maintenance and madification of running systems are other factors which may
affect decisions with regard to the physical distribution of control- and
data-structures.

Finally, a decision to provide a distributed system for solving a specific task
may simply be made because of the availability of ‘off the shelf’ hardware-
or software-units (e.g. special purpose microprocessors).

b.

=

[+

d

-

The approach presented here for documenting the distribution is based on the
classical idea [Parnas,20] of specifying a system in terms of descriptions of its
subcomponents and the relationship between those subcomponents. In our approach
each component of the description corresponds to a single component or a set
of components in the realisation.

46

4.2. THE INDEPENDENT MODULE.

When describing a subcomponent of a system it is essentlal to draw a distinction
betwen its externally observable behaviour and its internal composition. If we have
a complete description of a component’'s external connections and a description
of the behaviour along those connections there is nothing more of interest we
can learn by looking at the inside of the component. The main problem. however,
is to describe the external behaviour entirely in terms of those connections, i.e.
without any reference to the internal structure. For exampie, the specification of
external behaviour of the Buffer from section 3.2 does not qualify as it involves

an abstract structure (buf) which represents the inside of the described
component.

4.2.1. The Classical Independent Module.

The classical independent module can be described through an input output
relationship, i.e. in terms of its external behaviour only. A specification of a module
through an input-output relationship gives a complete description of the behaviour
of a realisation of such a module because we assume that any realisation follows
two principles:

1) there are only two kind of external connections - input and output — and these
connections are activated alternately.

2) any output value produced is exclusively derivabie from the module’s functional
definition and from the value of the most recent input presented, i.e. the module
is stateless.

4.22. The Process Module.

The modules under consideration here do not follow either of these simpie
principles. For the modules in question the ability to participate in a communication
along an external connection is not governed by a simple data-independent control
mechanism. and a value communicated along a connection is not determined solely
by the most recent values communicated along another set of connections. At any
point in time both the ability to communicate and the actual value communicated
along a particular connection can be dependent on information in the past history
of the behaviour along any set of external connections. The distinction between
the classical independent module and the modules we are interested in - hereafter
called Process Modules - can be compared to the distinction between combinatorial
logic circuits (e.g. AND—-gates) whose output depends anly on the most recent input,
and sequential logic circuits whose output depends on past input (the history of
the input activity). e.g. the output of a flip-flop is determined by the parity of
the number of input-signals previously transmitied to it.

47

NB. a reasonable realisation of a module whose behaviour is dependent on its
past behaviour memorises only a minimal set of facts about the past only - e.g.
the fiip-flop has a 1-bit memory which represents the parity of the number of input

signals.

The independent module’'s behaviour can be specified by giving:

1) The type of input and output parameters.

2) A functional definition of the output produced. i.e.
output = F(input)

The process module’s behaviour can be specified by giving:

1 The type of the objects which can be communicated along its external
connections. ‘

2) A set of axioms involving one or more of the past histories of the behaviour
along those external connections.

Example:

We w‘i)H give a specification of a process (P1l) with two external connections (in
and out) which for each element (x) communicated along the input connection
(in) will produce a single result (F(x)) along the output connection (out)
before any new input can be consumed.

Note the similarities with the assumptions made for a realisation of independent
memoryless modules. '

Given F : X — Y, we will define the behaviour of our process by, 1) modelling
the history of the communications along the input connection as a sequence over
elements of type X. 2) modelling the history of the communications along the output
connection as a sequence over eiements of type ¥ and 3) giving two axioms
involving these abstractions. We have-

54 X ¥ DEF (4.1)
in : seq[X];
out : seg[Y¥]

#in - #out < 1;
out € F o in

where the first axiom restricts the number of computations P1 can carry out
‘simultaneously’. In this example only one computation can be carried out at a
time. hence the Input connection will be blocked after a value has been passed
along the input connection and the corresponding result not yet produced along
the output connection. The second axiom states that all values produced by Pl
can be obtained by applying F to a previously received input element.

Assume that we have observed

a, b, ¢, and d

being communicated along the in connection in that order, then
in=<abecd>
The history of the communication along the out connection must then be

¢(F(a) F(b) F(c) >
ar
{ F(a) F(b) F(c) F(d)>

\

out = { F(a) F(b) F(c) ?»

further input must be rejected as the occurrence of an Input will invalidate the
first of the axioms. However P1 may produce F (d). as this event will not invalidate
any of the given axioms.

We shall in the following use a graphical notation to give an informal overview
of the interaction between the process-modules of a system.

The process P1 will be represented by
FIGURE 4.2

in l l out
| Pll

which may be interpreted either as a box representing process component which
realises module P1, or simply as an lllustration of the fact that P1 is a description
which involves axioms on in and out only.

4.2.3. The Readiness Principles.

A realisation of a process module must - just like a sequential realisation of a
classical independent module - follow certain principies. As a process module
contains information concerning the scheduling of the activities aiong its external
connections the principles take a different form from those for the independent
module.

The principles are:

1) At any point in time the realisation of a process-module must not participate
in a communication (i.e. extend a history) if the occurrence of this
communication would invalidate the axioms given (for the histories of the
activities along the external connections). We might say - ‘only communications
which are permitted to happen can happen’.

49

2) If an occurrence of a communication along a specific connection can take
place without invalidating the external invariants then the realisation of the
module must eventually. and without further activity along other connections,
be willing to particlpate in this particular communication. We might say - ‘an
event which is expected to occur can eventually take place.”

No attempts will be made in this thesis to formalise these principles. for example
by giving proof-rules for a specific realisation technique. We will concentrate on
discussing the correctness, or rather the consistency, of specifications. However
in order to illustrate how these principles can be used in statements about the
correctness of an Implementation we will give a simple realisation of module P1.

A realisation is outlined using the tasking facilities of the programming language
Ada.

Pl LS EXAMPLE (4.3)
task body Pl is
x' s X i ¥ 7
function F(x : in X) return Y is
begin
loop i
accept input(x : in X) do x':=x ; end. :
y':= F(x');
accept output(y : out Y) do y:=y' ; end;
end loop;
end;

-

This is a realisation of the process-module Pl because

1) before the occurrence of an input we can assert that
#in - #out = 0
hence an occurrence of an input will not invalidate the axioms of the
specification P1.

2) before the occurrence of an output we can assert that
- #in - #out = 1 ,
y' = F(last(in)) and
out = beginning(in)
hence the occurrence of the output will not invalidate the axioms of P1 as
the occurrence of output will update the history of communications along the
out connection as follows :

out := out * < F(last(in)) »

3) after the occurrence of an input we have
#in - #out = 1
hence we expect only an output to happen, which In fact the realisation will
éventually be willing to perform.

50 51
XY EXAMPLE (4.5)
4) after initiation of the task, as well as after the occurrence of an output, an task body. P2 is
input is expected to happen - which the realisation will eventually be willing i,0,6 : INTEGER := 0;
to participate In. gueue : array (0..1) of X;
function F(x : in X) return ¥ is ...;
1 and 2) ensure that the first of the principles is followed. while 3) and 4) ensure b:gin
ocop
that the second principle is followed.
P P select
when 86 (2 = accept input(x : in X) do
The example presented here as an Introduction to the approach of specifying queue(i) := x;
distributed systems could have been described simply by giving its functional end; i
specification, and by assuming that the module would be realised as a conventionai 8 := 6+41; i := (i+l) mod 2;
memoryless software module. However, as we shall see in the next section, a small or
maodification will give a specification of a module with a different dynamic behaviour when 6 # 0 = accept output(y : out YY) do
- a behaviour which cannot be described through a simple input output relationship. y. := F(queue(o));
end;
6 := 6-1; o := (o+l) mod 2;
4.3. DISTRIBUTED SPECIFICATIONS AND DISTRIBUTED REALISATIONS. end select;
end loop;
Consider the specification - end P2;
P2 XY DEF (4.4) R ¢ can decompose the computation of F - i.e. we have
' or if we P P :
in : seq[X]; out : seqg[Y] P F =Heoo
we might decide to provide the following distributed realisation -
6 €2 ; outc F o in 5 : i _
wiere X2 ¥ ‘ . EXAMPLE (4.6)

6 = #in - #out

task body. P2_1 is

SRR 7

function G(x : in X) returns Z is ...;
begin

which is a specification of a process which computes the function F. However in

contrast to the process P1 two computations can be carried out simultaneously. loop accept input(x : in X) do t:=x ; end;
A realisation of this module does not follow the principles given for the classical Z o= G(t);
independent module, e.g. whenever P2_2.internal_com(z);
end loop;
#in - #out = 0 end P2 1;

‘task body P2_2 is

ERERY - vt Y -
function H(z : in Z) return Y is ...;
begin

the process may participate in two consecutive Inputs.

A realisation could be -

loop accept internal com(z : in Z) do t:=z ; end;
¥l o= H(E);
accept output(y : out Y) do y:=y' ; end;
end loop;

> [lepP2 2.

-5) glves a sequential non-distributed realisation of DEF (4.4). The
érations (input and output) will always happen in sequence although
ler in which they happen is unpredictable (the run-time environment

52

determines the order). EXAMPLE(4.6) gives a non-sequential distributad
realisation of the same specification. The actual occurrence of input and output
cannot be related (in time) unless there are some (unknown) constraints which
synchronise the part of the environment which produces input with the part which
consumes output.

Consider the distributed realisation of P2 - In the development (construction) of
the task P2_1 it is of no importance how the ‘inside’ of P2_2 is constructed.
The only part of P2_2 which is of interest in developing P2_1 is the common
interface between these two processes. P2_1 can be viewed as a realisation of
the specification-

P1_1 X 2z DEF (4.7)
in : seq(X]}; com : seq[Z]

#in - #out € 1; comc G o in

and P2_2 can be viewed as a realisation of the specification-

P2_2 Y DEF (4.8)
com : seq[Z]; out : [Y]

#com - #out € 1; out c€c H o com

The following compound specification

P2-Dis XZyY DEF (4.9)
P2_1[X,2] ; P2_2[Z,Y)

which expands into

P2-Dis XZY DEF (4.10)
in : seqg[X]; com : seq[Z]; out : seqg[Y]

#in - #com < 1; comc G ® in;
#com - #out € 1; out € H ® com;

is a distributed specitication as the set of axioms of the description can be divided
into two groups, a group which involves the in and com connections only and
a group which involves the com and out connections only.

We can use our graphical notation to illustrate the distribution—-

53

FIGURE (4.11)

in 1 com [Jout
' 2

This lllustration has an obvious alternative interpretation: two processes
communicating along the connection com.

We may attempt to prove that the distributed realisation (EXAMPLE(4.6)) is a
valid implementation of Its non-distributed specification. - which means that we
must demonstrate that the realisation follows the readiness principles with respect
to its specification DEF (4.4). Such a proof will not be straightforward since the
correctness of, for example, the task P2_1 (i.e. a proof that it behaves correctly
along its connection in) depends on the correctness of the task P2_2. Furthermore
even if we assume the correctness of P2_2 a proof of P2_1 cannot be carried
out without referring to the internal behaviour of the realisation of P2_2. This is
indeed undesirable as 1) independent development of subcomponents is impossible
and 2) the future modification of the local mechanisms of any moduie may invalidate
global proofs or proofs for other modules.

Proofs should be localised, i.e. the tasks P2_1 and P2_2 (from EXAMPLE(4.6))
should be verified against the specifications DEF(4.7) and DEF(4.8)
respectively. However proving that the two tasks are ‘locally’ correct does not
guarantee that the tasks - when running in paratlel - realise the non-distributed
specification DEF (4.4).

Such a guarantee can be gained by proving that the distributed specification
DEF (4.9) Is a valld decomposition of the non-distributed specification DEF (4.4).
A decomposition is valid if, from the sole assumption that each process-component
follows the readiness principles with respect to its local specification. it can be
proved that the processes when co-operating will follow the readiness principles
with respect to the global specification. It is the designer’s responsiblility to provide
such a proof.

Decomposition (or distribution) of specifications will be treated in detail in section
6 of this thesls.

Obviously the correctness of the behaviour of a system which consists of interacting
processes relies on more than fust the proofs made with respect to decompasition
at the abstract level. We must have a guarantee that the processes of a realisation
are properly interfaced, i.e. co-operating processes must agree on a common
Communication protocol. Furthermore we must be certain that the interprocess
contral mechanisms provide an appropriate service. The communication protocol
selected by the implementor and the mechanisms for communication provided by
the underlying machinery must guarantee that, a a communication can only
take place between processes if all Involved processes are willing to participate,
and b) at least one of the ‘currently’ possible communications eventually takes

54

tem reflect the obvious assumption

place. These aspects of the correctness of a sys
referred to as the

a designer makes about future realisations: they will be
connectivity assumptions and will not be treated further in this thesis.

The techniques presented in this section provide the designer with a method for
describing dynamic behaviour at an abstract level. ie. it is possible for him 10
express WHAT (.e. which operations) will take place WHEN without determining
the HOW. Furthermore by distributing his specification (partitioning his design) he
can document his decisions about WHERE the operations will be performed. In
section 4.5 we will demaonstrate how such distributed specifications can be used

as a basis for the analysis of dynamic behaviour.

4.4, ENVIRONMENTS FOR SYSTEMS.

e environment in which a system is expected to operate
f the subcomponents of which the system consists.
The environment &s well as any subcomponent of a system must obey certain
well-documented rules. The behaviour of the environment for a system can be
described as a separate independent system. i.e. as a set of assertions involving
i the communications along the connections 1o the system for

A precise description of th
is as important as a8 description ©

the past histories 0
which it serves as an environment. The environment may consist of several

independent parts and they shouid. if this is the case, be described using a

distributed formuiation.

A description .of a system and an environment can be ‘joined’ together - thereby
giving a complete description of the activity along the connections between the

system and its environment.

d in section 3.3. we will investigate the behaviour of systems In finite
i.e. we assume that the part of the environment which initiates
per of requests. Such

As mentione
environments only.
new activities within the system only performs a finite num
an ’inputting’ gnvironment must cease to communicate after having participated
in a finite number of communications.
In the following we will give examples of environments, some of which will be used
as environments for the systems presented in chapter 5.

4.4.1. A Requesting Environment.

Consider an environment which issues commands along & single connection to
ent never commits itself to one particular command. but

a system. The environm
in any command which satisfies certain criteria.

will be capable of ‘participating’
The environment promises to issue a limited number of requests.

Glven a set of commands R

and a limit L N

—

55

then we can formalise such an environment as follows

REQUESTER R
requests : seqg[R]

DEF (4.11)

#requests < L

Example:
REQUESTER ma i
B certainy describe a human user of an interactive operating system wh
S — services - save-a-file, edit-a-file, send-a-message. etc. Th ;
nicate i - . . e user
B o ibT with the front-end of the command interpreter. which ensures that
gible commands are passed between the user and the operating syste
m,

Given 1ntelllglble cmds : P(R), then tr escr r = m
; -
e desc iption of the front-end oduie

FRONT END R
requests : seq[R]

DEF (4.13)

ran(requests) C intelligible_cmds

While the FRONT-END ensur
es that unintelligible command
. s are r
(REQUESTER) promises that his session is finite. i.e. wh ected. e wser
#requests = L L .
he will not issue any more requests.

4.42. A Selfcommitting Environment.

Consider a com n n m mm e
o to ponent of an environment which communicates a sequence of
data-elements or requests along a single connection. A m
| ti t i
: . . g ; any point in time thi
component commits itself to parficipate in one particular communication onk)
y'

Given
in_env : seq[E]

then the envir
onment which transmits
elements from ran(i
in_env) along a

connectio i i
e orde y app i q i
) 1n in tr r r they a ear in the sequence in_env, can be described

PRODUCER E

in : seq[E] DEF (4.14)

€ in_env

56 57

A PRODUCER environment may be used to describe:

’ FIGURE (4.16)
a) A card-reader connected to a batch operating system. '
b) A programme which 'sends’ a predefined sequence of (machine-) instructions rm
to a processor. —— Loave
it the system recelving requests from a PRODUCER environment cannoi‘recc.)gn.ise T
the element currently presented by this environment. then no further interaction L |
between the system and this particular environment can take place.

example:) .
a) If the sequence of cards in a card-reader does not conform to some agree

rules then the task of reading the cards can oniy be terminated abnormally.
containing unrecognisable op-codes will be aborted by the

4.5. AN ANALYSIS OF THE BEHAVIOUR OF DISTRIBUTED SYSTEMS.

The purpose of a description of a module Is twofold:

1) The description should provide the /mplementer or the designer with sufficient
information to construct the inside of the module. The way in which the
implementor selects a state and constructs an algorithm in order to realise
a specification was informally illustrated in section 4.3 (see the realisation
EXAMPLE(4.5) of the specification DEF (4.4)). The module. however. does
not have to be implemented as a sequential process (see EXAMPLE(4.6)).

The designer may propose a distributed realisation by decomposing his
specification,

b) A program
processor.

(NB, a REQUESTER environment is expected to 'try again’ if a particular request
_is rejected)

4.43. An Interactive Environment.
An enrv:‘ronment‘ maly interact with a system along severai_connec_ti‘ons, and the

environment’s activity along one connection may be Influenced by previous activity
aldng other connections.)

2

~

The description should allow the designer to analyse the moduie’s behaviour
in co-operation with other modules before taking any decisions with respect

to the internal structure of that module.
Example:

Consider an environment from which jobs (J) may enter into a system. The jobs
méy eventually feave the system. The obvious rule imposed by the ehwroﬁmeﬂi
is that only jobs outside the system can enter or re-enter.

The second of these objectives will be treated in this section.

in the following we will see how important characteristics of a modules behaviour
in co-operation with other modules can be derived solely from its specificatic..,
i.e. knowledge about its externally observable behaviour. The dynamic properties
of a module which are proved as a consequence of the decisions taken with respect

The following specification

INTERACT J DEF (4.15) to its external behaviour are inherited by any implementation of that module. ie.
enter, leave : seq[J] ' these properties do not have to be re-proved when the designer or implementar
settles on a particular realisation.
(Vv j:JOBS)

(card(enterd(j}) - card(leavei{j}) < 1)) The dynamic properties of a system which will be discussed are:

1) Termination Properties.

Can a system whose constituents are realisations of well-defined modules

be proved to terminate (solely by referring to the specification of the

describes an environment which guarantees that only jobs outside the system will

modules)?

enter. 2) Deadlock Properties.
Can we prove that such a system only terminates in a predefined acceptable
Assume we have a description SYS of a system with the external connections leave state?
and enter. The compound system consisting of this 8¥S and INTERACT can be
illustrated as: Chapter 3 comprehensively discussed these properties for sequential

non-deterministic systems. Distributed systems which consist of several independent
processing components cannot however be characterised as sequential systems.

___L

58

Operations within such a system may happen In parailel, simply because operations

are unrelated.

In order to discuss the dynamic properties of distributed éystems we base our
dynamic model on the OBSERVATIONS of the behaviour. Without any lost of

generality observations can be sequentialised; hence we can apply the formal

framework developed In chapter 3.

Example:
Consider a description of a system with 3 visible connections—

FIGURE (4.17)

The information which can be externally observed fo change is—

L. DEF (4.18)

CHAN
€1 CpeCy & seq[M]

where M denotes the messages communicated between the modules. and

¢, C, and &, denote the history of observations along the visible connectlons.
S|j is the speclification of a module which communicates along ¢, and ¢, We
tion is correct) that the communications along

have a guarantee (f the realisa
c; and ¢, will not invalidate 5 Hence If the system Is started in a state

then these will be satisfied in any state the system

satisfying S, 55, and Sy
therefore be described as-

can ever reach, The system’s observable states can

M DEF (4.19)

SYSTEM
CHAN [M]

5.7 Smi Sy

| be appended to &n

When a communication takes place, a single message wil
the visible

existing history, hence an occurrence of a communication along
connection ¢, can be described as-

f

59

M

DEF (4.20)

hist' : M - ({CHAN} — (CHAN})

(V m:M)
hist1(m)=
(X CHAN) (p CHAN')(c"=c“=(m>; [of

f = - P
2 =€ 7 C5'=c,)

Furthermore. if the system is started in a state satisfying the axioms of SYSTEM
then only c:‘omrnunlcanons keeping the axioms invariant will take place (according
to the readiness principles in section 4.3.2). Hence we can refine our description
of the communication along connection c¢ b f

y restrictin its i
co-domain as follows— ' ’ somainand

M

DEF (4.21)

obs, : M — ({SYSTEM)} -» {SYSTEM))

(¥ m:M) (obs (m) = (hist (m)!{SYSTEM}) | {SYSTEM})

Assuming that the number of messages is finite ie. -
MES : F(M)
then the total behaviour of SYSTEM can now be described as-

OBSERVATIONS M
DEF (4.22)

Events : F({SYSTEM) —» {SYSTEM))

Events = u[obsl(m) | m:MES} v
u{obsg(m) | m:MES} v
U{obsa(m) | m:MES)

¢ ;
:»:n e:r we have a description of a state (DEF(4.19)) and a description of the
sformations of that state (DEF(4.22)). By giving a description of the

acceptable final states we can dis
cuss the NON-BREAKAB i
. A ooty LE properties as stated

Let

Step : {SYSTEM} «» {SYSTEM}

Step = U Events
and

Final : P({SYSTEM});
Initial : F({8YSTEM})

1 termi i
nation is guaranteed if we can find a variant function, |

60

Var : {SYSTEM} — N
(V s,8':{SYSTEM})(s Step s8' = Var(s') ¢ Var(s))

and the system will be deadlock-free if

NB,
1}]

2)

3)

4)

{SYSTEM} - dom(Step) € Final

Both the Initial and the final state of the system are expressed in terms

of the history of the visible behaviour.
The initial state for most of these systems will
communication has taken place. i.e. all history components of the state are

empty sequences. For SYSTEM we have-

be a state where no

Initial = {SYSTEM | Cyr Cyr Cgv = <}
The proof of termination relles on the existence of a variant fu.nctlon; for
dynamic behaviour based entirely on the history of observations it is normally

straightforward to find a variant function.
E.g. for the system presented here we have-

inc_func = (A SYSTEM)(#c,k + #c, + #c;)

which obviously satisfies

(V s,5':{SYSTEM})
(s Step s' => inc_func(s') > inc_func(s)

hence the existence of a decreasing variant function relies on fhe existence
of an upper limit for the total number of communications ‘WhICh can take
place within the system. The existence of the upper limit will normally rely
on an assumption about the environment

A discussion of the deadlock properties of a system relies on the consistency
of the decisions taken with respect to the dynamic behaviour (i.e. the
predicates of the histories) and the definition of the final .state< The next
chapter will demonstrate how the consistency check is carried out

61

5. EXAMPLES OF SPECIFICATIONS.

The approach presented in the previous chapter is intended to be applicable to
real-life engineering problems In the area of distributed computing. It is not,
however, intended to be suitable for examining all aspects of big distributed
systems. The properties which will be documented and analysed are only those
which concern co-operation between independent process components, that s, the
approach will be used to give a precise formal description of the decisions made
with respect to the distribution of data- and controi-structures between the process
components on the one hand, and a precise formal description of the interaction
between these components on the other.

In this chapter the approach is iliustrated through a set of simple exampies. in
order to compare the new approach. where behaviour Is described through
predicates on the histories of observed communications, with the more traditionai
approach, where behaviour is described through a relation (or a set of partial
functions) over an abstract state, section 1 gives a new specification of the Bounded
Buffer (from section 3.2). The succeeding three sections will discuss miscellaneous
systems (buffers and queues) and concepts (mutuai exclusion, deadlock etc.) which
are of concern when designing distributed systems. The finai section will give a
specification of a communication network.

5.1. A BOUNDED BUFFER.

The informal description of the bounded buffer given in the beginning of section
3.2. was used 1o justify the design of a small system which was described in terms
of 1) an abstract state (BB:DEF(3.17)) representing the inside of a Boundod
Buffer through a buf component and 2) two state transformation functions
(DEF (3.18-19)). Using the new aporoach we can give a description which
replaces the informal specification in section 3.2.. We can formally describe a
bounded buffer without suggesting an internal state for the buffer and without
(misleadingly) assuming that only two indivisible operations make up the dynamics
of the system,

The Bounded Buffer system can be illustrated as follows—

FIGURE (5.1)
—
l O_env

SRS | SO out
I_invl

f BB

i.e. the system consists of three independent operating components. itwo of which
belong to the environment.

62
We have-
1} The input environment Is described as——
I_env{X] = [in:seq[X] | #in < Max] DEF(5.2)
for some
Max € Nl
We assume that the inputting environment produces coniy a finite number of
elements.(we might have used REQUESTERDEF(4.11)).
2) The buffer-system is described as—
BB[X] = [in,out:seq{X] | outcin; #in-#out<B] DEF(5.3)
for some
B € Nl
which ensures that-
. a) The order in which the elements are being produced aiong out is
identical to the order in which they were consumed.
b) onity a limited number of elements can be within the buffer at any time.
3) The _pérl of the environment which consumes elements from the buifer can
be described as-
O_env[X] = [out:seq(X]] DEF(5.4)
i.e. an environment which accepts any element from X at any point in time.
4) The total system is described through the compound-

BB_SYS[X] = [I_env[X]; BB[X]; O_env[X]] DEF(5.3)
An acceptable final state for the system can be described as-
BB_Final[X] = [BB_SYS[X] | #in=Max; in=out] DEF(5.6)

i.e. a state where

a) all input submitted to the buffer from the environment is consumed by
 the buffer, .

b} all input consumed by the buffer has appeared as output from the buffer.

BB_SYS and BB_Final constitute a description of a buffer system where ali
information except the interface between the environment and the buffer is hidden.
I_env and O_env are components of BB_SYS and document the assumptions
made about the environment. BB describes the decisions taken with respect to
the component we are about to implement. BB_Final describes the acceptabie
termination-states of that system.

- __

il

63

The consequences of the decisions taken so far are:

D

23

The occurrence of a (visible) communication along the in connection can
be described as-

input[X] =
(A x @ X)
(X BB_SYS) (a4 BB_SYS')(in'=in*<{x)>; out'=out)
DEF(5.7)
NB. compare this definition with DEF(4.21).

A communication along the out connection can be described as—

output[X] =
(X x = X)
(X BB_SYS) (g BB_SYS")(in'=in; out'=out*{x))
‘ DEF(5.8)
The domains of these operations can be derived from the axioms of the BE
description.

Example:

The element x can be observed to be consumed by a system b_sys oniy
if

b_sys {BB_SYS}
and

b_sys € dom(input(x))
We have -

al An input can occur whenever we are in a state belonging to

U{ dom(input(x)) | x ¥} =
{BB_SYS | #in+l < Max ; (#in+l) - #out < B o=
{BB_SYS | #in < Max; #in-#out < B]

and
b) An output can occur whenever we are in a state belonging to

U{ dom(output(x)) | x : X } =
{BB_SY5 | (3 x X)(out * (x> ¢ in) } =
{BB_SYS | out # in }

The system terminates because we can present a decreasing variant function

Varm {BB_SYS} — N

Val:m = (X BB_SYS)(2*Max - #in - #out) DEF(5.9)

64

3) The system Is deadlock free.
The system will terminate in a state which can be described as-

Terminal =
{BB_SYS} - uU{ dom(input(x)) | x:X }

- u{ dom(output(x)) | x:X }
{BB_SYS} - (BB_SYS | in<{Max; #in-#out<B }

{BB_SYs | out=#in }
and the system is deadlock free If
Terminal ¢ Final

which is a direct consequence of the following theorem-

b THEOREM (5.10)
BB_SYS[X] :
(inzMax A out=in) v (#in-#out > B A out=in)
=

(#in=Max A in=out)

{ the proof relies on B beihg nofn-zero i

This completes the consistency-check for the decisions taken at the top level of
design for a bounded buffer. y

NB.

The systems we are concerned with wiii normally have an additional important
property - they are restartable. if input is temporarily blocked (no requests are
submitted to the system for some time) then the system will deadlock in a state
in which new Input must be accepted. Furthermore in such a state all received
input must have been output (i.e. all requests have been fulfilled). This property
can be formally stated. for BB_SYS, as

{BB_SYS} - dom(U{output(x)ix:X}) c
dom(u{input(x)|x:X}) n {BB_SYS|in=out}

For BB_SYS the restartable theorem is-
Restartable X THEOREM (5.11)

BB_SYS[X]
in = out => (#in-#out < B) A (in=out)

The approach for speclfying distributed systems, and for checking whether the
decisions taken are consistent can be summarised as follows:

65

1) First the designer should decide at which level of detail he wants to present
the system. The system is then partitioned by the choice of interfaces across
which we may have connections.

2) Each part of the system is then described In terms of invariant conditions
on the history of the communication along a chosen set of connections.

3 The acceptable flnal states for the system are described using predicates
on the histories of communications.

4) Termination is proved by presenting a variant function.
5) The consistency-check is done by either

a) proving a deadlock-free theorem, or

bY proving a restartable theorem.
5.2. MISCELLANEQUS SYSTEMS.
In order to lllustrate the use of the assertionai technique for describing behaviour
a coliection of specifications for some simple, well-known process-components is
given in the following sections.

5.2.1. Buffers.

We weaken in turn each of the assertions given for the bounded buffer described
In the previous chapter. and get-

a) An unbounded fito.
FIFO[X] = [in,out:seg[X] | outcin] DEF (5.12)

By placing this component in the environment proposed for the bounded buffer
of section 5.1. we get-

FIFO_SYS = [I_env; FIFO; O_env] DEF (5.13)
With the following definition of acceptabie final states—
FIFO_FINAL = [FIFO_SYS | #in=Max; in=out] DEF (5.14)
we can prove that the compound system FIFO_SYS will terminate and is

deadlock-free.
In terms of final resuits the two systems BB_SYS and FIFO_SYS are identical,

i.e.

{BB_FINAL} = {FIFO_FINAL}

66

However the two systems -are not identical as they have been specified to
have different dynamic behaviour. E.g. in a state where

#in - #out = B
(B is the bound for BB_SYS)

then a BB_SYS will reject input until an output has occurred, while the
FIFO_SYS can accept an input.
b) An Unordered Buffer.

Unordered_Buffer[X] =
[in,out:seq[X] | (Vx:X) card(outd {x})<card(ind{x})]
DEF (5.15)

An Unordered_Buffer behaves like an unbounded buffer along the in
connection. However while the output produced by the FIFO_SYS at any point
in time can be determined to be-

in(#out + 1)

the Unordered_Buffer component can produce any element % for which-
card(outd {x}) < card(ind{x})

¢) A Bounded Unordered Buffer—

Bounded_Unordered_Buffer(X] =
[Unordered_Buffer | #in - #out < B] DEF (5.16)
for some B : NI

This buffer behaves like a bounded buffer along the in connection, and like
an unordered buffer along the out connection.

5.2.2. Queues.

Jobs within an operating system are given unique identification codes in order for
the different parts of the system (schedulers for controling the sharing of resources)
to distinguish between those jobs. The histories of the arrival and the departure
to and from the queues of jobs (wait-queues. ready-queues, spooling-queues) within
an operating system can therefore be described as-

Id_seq[X] = { s:seq[X] | 8" ¢ X - N }

Hence for any connection or channel in such a system,
chan : id_seq[X]

the function defined as

rel_time : X -» N
rel time = chan™!

w .

gives the relative time of the occurrence of communications along chan.

The id_seq will in the following be used to describe the behaviour of various
| queues. Note that the following descriptions do not inciude a description of the
environment. thus a complete discussion of the behaviour of the component
presented cannot be given.

a) Unordered Queue.

QUEUE[J] =
[arrive,depart:id_seq[J] | ran(depart) ¢ ran(arrivej]
DEF (5.17)

which states the obvious property that only Jobs which have arrived in a gueue
can depart from it. Note that the time of departure is not reiated to the time
of arrival. A job within a QUEUE may have its departure delayed unreasonably
often, because as long as more than one job is within the queue it is
non-deterministic which job actually leaves the queue, hence if the rate of
input is high a Job can be passed over time after time. By adding a description
of priority mechanisms to the QUEUE specification we can impose a iairer
scheduling for departures.

b) Ordered Queues.

FIFO_QUEUE[J] =
[QUEUE[J] | depart c arrive 1 DEF (5.18)

In a correct implementation of a FIFO_QUEUE the Jobs wili depart Iin the
order of arrival. This scheduling mechanism may however have undesirabie
run—time characteristics. Unnecessary delays may occur if the proce. s
component which receives jobs along the departure connection is temporarily
unwilling to accept the next job, but could have serviced another queued job.

An alternative design would be-

¢) Limited-overtaking (or 'fair’) queue

FAIR_QUEUE J
QUEUE[J]

DEF (5.19)

l+#depart - min(arrival_times) < L

where
arrival times = dom(arrive J gqueued) ;
queued = ran(arrive) - ran(depart)

¢ for some limit L which is non-zero)

The FAIR_QUEUE describes a queue which ensures that no jobs can be
overtaken by more than L other jobs.

3 e

68 | 69
Examples:
Example: ' D Let us describe a small readers/writers system with three readers and one
let writer,
L = 3;
arrive = <{jl j2 j3 34 j5 j6&> | RW_system = { v Iy Ty W}
depart = <j2 j4 i3>
then The readers exclude the writer and the writer exciudes all readers. |.e.

l+#depart - min(arrival_times) = 1+3 - 1 = 3
RW : RW_system «» RW_system
RW‘(IIHW,IEHW, I, s+ W,
and the departure of a job other than the job J1 would invalidate the axioms W e I, Wes I, , W< 1, 1 DEF (5.21)
given. If j1 departs we gei- and
RW € {Mutex[RW-System]}
depart = <(j2 j4 j3 jL»
and 2} Let
l+#depart - min(arrivaltimes) = 1+4 - 5 = 0 Phil = { Pyr Pyr Pyr Pyr By)
and
PH : Phil <> Phil
PH = { p,cﬁ)pz, pz<—>p3, | g p‘«-a-ps,
PPy PgPyr Py¥Pyr PP, 1§ LEE" i

w

81
3¢}
i

5.3. CRITICAL SECTIONS AND MUTUAL EXCLUSION.
) which can be illustrated as-—
Consider the mutual exclusion problem. This is a problem of devising a scheduling
mechanism for concurrently operating jobs or processes which ensures that a job
does not.enter a critical section where it makes use of a shared resource if other
jobs. currently within their critical section, have used up the resource.

FIGURE (5.23)

Let us first formalise Mutual Exclusion.

Let P be a set of processes. The mutual exciusion can be described in terms p4., P3
of a relation over P, i.e.

Mutex 3 DEF (5.20)

then the relation PH is a Mutex relation, where each individuai exciudes
exclude : P <> P

neighbours.

id(P) n exclude = {};

A simple system which monitors a set of jobs which aiternately execute outside
exclude ™! = exclude

and inside a criticai section. can be characterised in terms of two componenis:

1 The non-critical section can be described as-
which states that-

a) nobody can exciude themselves (the Mutex relation Is irreflexive).

J
b) the exclusion is mutual (the Mutex relation is symmetric). ENV. DEF (5.24)

enter, leave : seq[J]

(V j:J)¢(card(enterd{j})—card(leaved{j}} £ 1A
card(enterd (j}) < MAX(3)

for some MAX € J — N, which ensures that all jobs only enter the critical
section a finite number of times.

70

2) Given a Mutex relation M, then a critical section can be described as-

cs J DEF (5.25)
enter,leave : seg[J]
e e -
M(inside) n inside = {};
(¥ j:J) (card(enterd(j}) > card(leaved{j})
where
inside =
{j:J1 card(enterd{j}) > card(leavei{j})}

71

FIGURE (5.28)

—
£t
l NON_CS
request leave
enter
l Q Lcs |

which constrains the behaviour along the enter connection so that no job
can get inside if another job to which it Is related through the mutual exclusion
relation, is currently inside. The obvious property that no jobs can ieave before
they enter is also inciuded in the description.

The final states of the system-
SYS = [ENV; CS] DEF (5.26)

are the states where all jobs have terminated and are outside the critical section.
ie.

F INAL : J DEF (5.27)
SYS

{(Vj:J)(card(enterd{j}) = MAX(3) A
card(leaved {j}) = MAX(j))

The system SY3 terminates and Is deadlock free.

NB. taking the relation PH in DEF(5.22) as the mutex relation we have a top
levei specification of the dining philosophers problem, and taking RW in DEF (5.21)
we have a description of a smail readers/writers system.

A property which Is normally discussed in connection with mutual exclusion (in
addition to deadlock properties) is the absence of starvation. Starvation may occur
when a process (or job) can be excluded from entering the critical section by
two or more other independent processes. The two processes can either
intentionally co-operate in excluding the process or accidently be scheduled in
such a way that one of the two processes will always be within the critical section.

How can we change our specification in such a way that we impose a scheduling
strategy that prevents starvation?

Consider the foitowing system-

where NON_CS makes up the environment for the system being designed and is
defined as- '

NON_CS[P] =2 ENV[P][request/enter] DEF (5.29)

and represents a collection of independent processes (in their non-criticai section)
which alternately request-to-enter and jeave the critical section.

Q represents a queue of processes which have requested permission to enter tne
critical section but are temporarily delayed in doing so. The Q can be described
as-

a) An unordered queue (see DEF(5.17))

Q[P] =
QUEUE[P] [request/arrive, enter/depart] DEF (5.30)

which does not prevent starvation.
b) A fifo queue (see DEF(5.18))

Q[P] =
FIFO_QUEUE[P][request/arrive, enter/depart] DEF (5.31)

which prevents starvation but may have undesirable run-time characteristics.
c) A limited overtaking queue (see DEF(5.19))

Q[P] =
FAIR QUEUE([P][request/arrive,enter /depart] DEF (5.32)

which prevents starvation and only causes unnecessary delays in situations
where a process has been overtaken too often.

The system which is illustrated in FIGURE(5.28) (with the Q being defined as

a FAIR_QUEUE) constitutes a top level specification of a system which schedules

several independently excecuting processes in such a way that -

1) no two processes which are related through a given Mutex relation are within
the critical section at the same time,

2) The system is deadlock free, with respect to the following definition of the
final state-

72

FINAL_CS P ; DEF (5.33)
NON_CS([P]; Q[P]; CS[P]

(V p:P)
(card(requestd{p}) = MAX(p) A
card(requestd {p}) = card(enteri{p}) A
card(enterd {p}) card(leaved {p}))

]

3) No processes are being starved. By introducing the queue into the
specification we introduced new operations which enabled us 1) to make a
distinction between a requesi to enter and the actual entering of the critical
section. 2) to define starvation and 3) to suggest a ‘dynamics’ which prevents
it.

5.4. PREVENTION OF DEADLOCK.

An inconsistency in the decisions made with respect to - 1) the invariants of the
'system and 2) the final state - .wii result in Deadiock. l.e. if a system is realised
foliowing the rules given for the behaviour of the system (the invariant conditions)
then this system cannot be guaranteed to reach a final state. The importance of
the relationship between Invariant conditions and the definition of the final state
has been discussed in section 3.3.1,

The approach for specifying distributed systems introduced In the preceding
chapters enables the designer to investigate deadlock properties solely from the
information provided in the specification. If a specification cannot be proved to
be deadlock free the designer should either change the behaviour of the system
by modifying the invariant of the system or change the definition of the final state.

We will in this section give an example of a small system which cannot be prooved
to be deadlock free from its first specification. A modification to the specification
which strengthens the invariant conditions will ensure that behaviour which may
lead to deadlock is avoided.

Consider a distributed system consisting of four independent process components.
Two of the components are non-sharable resources (R1. R2). and two are
compeonents in the environment. The first environment component (R_env) is in
control of starting a sequence of jobs (R_jobs). Each R_job will. when initiated,
first occupy resource R1. Next it acquires resource R2. On completion it signais
the R_env. The other environment (L_env) controls a sequence of L_jobs. The
L_jobs behave like R_jobs except for the order in which they acquire the
resources R1 and R2. An L_Jjob requires access to R2 before It requires access
to R1.

The system may be iliustrated as foliows:

w

73

FIGURE (5.34)

k_env
ing out
(1 comﬂ_.___,__f 1
iR1 ! com :¥
- D
utL — inl_
[L_env'
Given two initial sequences:
init, : seq[R];
init, : seqlL]
we define
R_env[R] = [inn,outR:seq[R] | ing, € 1‘nitH] DEF (5.35)
L_env[L] = [inL,outL:seq[L] i int c in:ii:L] DEF (5.36)

i.e. the R_env will transmit all elements from inity along ing in the order

they appear in initg and IL_env will transmit” elements from
init, along inL.
R1 is described as-

R1 RL DEF (5.37)

ing, comg seqg[R];
comL,outL : seqg[L]
com, € ingjout < com
61, + ﬁll <1

where
OlH = #in
blL = #com

L

p ~ #com,
e iout'_

The first two axioms state that the resource-controlier R1 will iransmit the jobs
received along in_ to the channel com, and the jobs received along com;
to the out, channel. The third axiom ensures that only a singie job can use the
resource at any point in time.

Similarly for R2 we have-

74

R2 R L DEF (5.38)
in‘_,comL : seqg[L};
comn,outn : seq[R]
com < inL;outH c comg;
GZR + bZL €1
where
62 = #inL - ﬂcomi_
GZR = #comp - ie:n::tR
In a final state for the system-
RL_SYS R L DEF (5.39)
R_env[R,L];
L_env[R,L];
RI[R,L];
R2[R,L]

we expect all Jobs originally in the input queues (init and initg to have
completed their execution, i.e.
RL._F INAL RL DEF (5.40)
RL_SYS[R,L]

inR = 1n1tn i in = lnltl;

ing = outn i in = out'_
NB, if we are in a finai state then all resources are free. Il.e
RL_FINAL |- OIR - OlL - GZR = GZL =0

We now observe-
1) The specified system will terminate. A variant function can be defined as -

Var = (x RL_SYS)
(#initR*S - #inR = icomn = ioutn +

#init *3 - #inL < icoml_ = ioutL j DEF (5.41)

75
2) The terminal states for the system can be described as -
RL_TERM LA DEF (5.42)
RL_SYS[R,L]
(ing=init_ v olR-l v 61L=1): (1)
(01R=0 v 62.=1v 62L=l); (2)
(61.=0); (3)
(in=init v 62.-1 v 62, =1); (4)
(62,=0 v clﬂal v 61=1); (5)
(62,=0) (6)
NB.

(1) denotes the states where activity aiong ing are blocked.
(2) denotes the states where activity aiong comg are biocked.
(3 denotes the states where activity along out, are biocked.
(4,5.6) denote similar conditions for L_jobs.

3) The system cannot be guaranteed to reach a final state as we cannot prove-
RL_TERM[R,L] }F RL_FINAL[R,L]

However we can prove-

RL THEOREM (5.43)

RL_TERM[R,L] F
{ in =:'mitF| A in
v

(61H=1 A 62L=l)

R =1n1tt A ing=out. A in, =out,)

L R

which states that a RL_SYS wiil terminate in either an acceptabie final staie
or in a state where an R_job occupies R1 (waiting for R2) and an L_job
occupies R2 (waiting for R1).

There are several ways of modifying the specification in order to eliminaie
undesirable deadlocks (see section 3.3.1). For this particular system it seems
reasonable 1o maintain the given specification of the final state and solve the
‘deadlock’ by strengthening the invariant conditions thereby modifying the dynamics
of the system.

Two solutions will be given in the following:

1 The deadlock can be avoided by simply making further assumptions about
the environment. If we can rely on the environment never to start an R_job
while an L_job is in progress and vice versa. then the system will be
deadlock-free. Such a system may be illustrated as-

76

RL_SYS1

F‘"‘_1

ENV

oD

e 1
L____;]"“”—

DEF (5.44)

where R1 and RZ2 are unchanged and-

ENV RL

R_ENV[R]; L_ENV[L]

= ﬂoutR
ﬁL, = #in - _ﬂouti_

DEF (5.45)

The new system-

RL_SYS1[R,L] =
[ENV[R,L] ; RL[R,L] ; R2[R,L]]

with the final state—

RL_FINAL1 RL

RL_SYS1[R,L]

in, = initn ; inl_ - initL;
ing = outR i in, = outL

terminates and can be proved to be deadiock free.

77

The behaviour of the system can aiso be changed by adding a monitor which
coordinates the L-traffic and the R-traffic. Such a system can be iifustrated
as-

RL_SYS2 DEF (5.48)

/_._______l L_env \

term stézt

R_env
start "r.e::mR

MONITOR

outl_ inR
Fr———-—._
|
R1 com
Lo=h

L

where R1 and R2 are unchanged. and the environments are changed ic
communicate with the introduced monitor, i.e.

L_env,[L]=
L_env[L][startL/inL, termL/outL] DEF (5.49)

R_envM[R]a
R_env[R] [startn/inn, termR/outn] DEF (5.50)

The MONITOR is a buffer between the resource controliers and the
environment and delays R_jobs if an L_job is in progress and vice versa.

MONITOR RL DEF (5.51)
startn, inﬁ,outn,termﬁ : seq[Rj;
startl_,in'_,outL,t’,e]:mL : seq[L]

\te]:mF| [= c:ut:R ; term < ocut ;

L L
ing ste‘rtR i in < startL
ﬁn =0 v GL = 0
where

5, = il=rinH = iout"
6, = h.nL o ioutL

RL_SYS2 can with an obvious definition for the final state be proved io be
deadlock-free.

78

Note that we used the result from the analysls of the first system (RL_SYS) to
guide design modifications. However the process of removing deadlock from a
design cannot in general be automated. The presence of deadlock reveals that
the designer has not fully understood the consequences of his design. His design
Is inconsistent and must be modified, but exactly what must be changed Is soleiy
his decision.

5.5. A COMMUNICATION NETWORK.

In this section a specification of a communication network wili be deveioped. The
design decisions taken will be formally stated and motivated. A formai description
of the behaviour of a single station (node) wili be given. as well as a description
of the static properties of the network as a whole. These descriptions wiii be used
to verify that the global behaviour of a network. which consists of stations whose
local behaviour complies with the given specification, agrees with some
independently stated rules for networks.

5.5.1 A Discussion of a Communication Network.

A NETWORK consists of a coliection of STATIONS. in this formal description the
set of stations will be denoted by-

st

The value which is communicated over the NETWORK is called a PACKET. Packets
are denoted by-

Pk
All packets have a SOURCE station and a DESTINATION station—
source, dest : Pk — St

Example:
Consider the netwark illustrated in Figure (5.52) consisting of five stations,

FIGURE (5.52)

79

Given a set of packets,
{ a, b, ¢}

We might have,
source = { (a,1l), (b,5), (¢c,2) }
dest f (a,5), (b,3),s (c,5) }

The set of packets which originates in station i is
source 1 ({i})

The set of packets which can be consumed by i is
dest"1({i})

For the example above we get.

source” *({1})
dest™1({5})

{a}
{a,c}

Let us first formalise some obvious properties for stations in a network. Stations
either consume or transmit packets. In order to formalise this statement we
Introduce the history of the Input performed by each station-

In : St — seq[Pk]
and a history of the output performed by each station—

Out: St — seq[Pk]
The output from station 1, Out (i), will be written Outl;similariy for In.
We can now state some requirements for the behaviour of a station.

a Only packets originating in (or previousiy received by) a station can be
transmitted along the outgoing connections for that station. We have-

(V i:8t)(ran(Out,) ¢ source ' ({i}) u ran(1In,))

b} A packet arriving at its destination must be consumed- i.e. it must not be
retransmitted, therefore we strengthen a)

(V i:8t)
(ran(out) ¢ (source’i({i})uran(ln!)) - dest™ ({i}))

DEF (5.53)

C) If we assume that packets are distinguishable- the fact that no packet can
be transmitted from a particular station more than once can be formaiised-

(Vv i:8t)(Out”! ¢ Pk - N) DEF (5.54)

80

b} and c¢) record the decisions taken with respect to the behaviour of a station,
ignoring the fact it may have several input channels and several output channels.
We may say that a station’s behaviour is like the behaviour of an uniimited
unordered buffer. i.e. a station will always accept Incoming packets, but these
packets may be stored for later transmission. Such a system is called a store
and forward system.

Alternative designs will be discussed below:

1) Limited bufferiﬁg capacity.
In order to describe stations with limited buffering capacity we might have
added the in variant, (for some limit L,

(V i:8t) (card(ran(Ini)—dest‘l({i})) = card(Out’,) £ L)

However. a limit on the buffer-store for a station in a network may cause
the network to deadlock.

2) Scheduling.
No policy for scheduling - the outgoing packets has been suggested. Hence

we allow for the possibliity of wunfair scheduling where a packet within
a station may be starved (overtaken by other packets an unreasonable number
of times).

A FIFO scheduling might be described as foliows:
For a relay-station i where
dest™({i}) = source !({i}) = 0
a FIFO ordering could be imposed as usual by requiring that the history
sequence describing the output is a prefix of the sequence describing the
input. i.e.
Outi c Ini
For a terminal-station i , where
dest ™1 ({i}) = {} v source l({i}) = {}
the ordering axiom could be expressed as follows:

igno:e(sourcekl[{i]))(Outﬁ & ignore(dest'l({i}))(lnﬂ

where

444----IIIl‘.l.llIlllllllllllllllllllll!!!!--'*

81

2 LDEF (5.55)

ignorel[X] : P(X) — seq{X] — seq[X]
(V 5:P(X); s:seq[X])
ran(ignore(S)(s)) = ran(s) - § &
(3 f:Monotone) (ignore(S)(s) = & o f)
where
Monotone = {f:N-»N | (VX,y:N) x€y = f(x)<E(y)}

NB ignore removes elements from a sequence. The result is a new sequence
where the order of the remaining elements Is the same as the ordering
between these elements in the originai sequence, e.g.

ignore(fa,c})(<a b ¢ d e>) = <b 4 e’

A FIFO scheduling policy could cause unnecessary runtime deiays, because
the station to which a scheduled packet is to be transmitted could be
temporarily engaged in other communications. For these reasons we will not
impose a FIFQO scheduling poiicy.

DEF (5.53) and DEF(5.54) gave some dynamic properties for a station, without

any reference to the topology of the network. ie. so far we have only described
a collection of dis-connected stations-

FIGURE 5.57

The connections between the individual stations are described by:
Network : 8t «» St

where we assume tr.mt the number of connections is finite, i.e.
Network ¢ F(8t x St)

hence we might get:

82

NwW FIGURE 5.57a

——— _ com,,
I
Lk omm__.__——-————-—'t'_ 27
com com,,

1

I #3r

When packets are sent along the connections of the network. the information which
changes is:

Communication_between : St x St s seq[Pk] where
dom(Communication_between) = Network

that is. when a packet is sent from station i to station j. the history sequence
Communication_between(i, 3)
will be extended.

Let c:::mij denote (as in FIGURE(5.57)) the
Communication_between(i, J)

The correct behaviour of a station depends on its capability to transmit each packet
along a proper connection. We will in what follows discuss two possibilities for
proper routing of packets.

a) A packet should not be sent to a station from which the packet's destination
cannot be reached, l.e.

(¥ 1,3:8t | (i,J) e Network)
(Vp:Pk | p e ran(com,)) (j,dest(p)) e Network’

NB Network™ is a description of the stations which are connected through
the network. :

The axiom above does not prevent a packet from ‘entering a loop’ or
‘traveling’ erratically round the network without ever reaching its destination.
We therefore strengthen the axiom:

(V i,3:8t | (i,3) € Network)
(V p:Pk | p ¢ ran(com“)) N
((j, dest(p)) € Network™ a
distance(Network)(j,dest(p)) ¢
distancq(Network)(i,deat(p)))
where

m

83

X

DEF (5.58)

distance : (X «»X) — (X x X - N)
(Vr : X—X)
(Vi,3:X) (i,3) €)
(distance(r)(i,3) = min(n:N | (i,j) € "})

This condition insures that all packets visit a finite number of stations, and
travel along a route of minimal length.

Condition a) does not allow a station to send a packet aiong a connection
which is not on the shortest route for that packet. The following specification
allows a station to choose a longer but possibly faster route. It is stiil
guaranteed that all packets will reach their destinations in a finite number
of steps.

We first formalise the concept of a proper route for a packet, which is a
route within the network where no station is visited more than once, hence

X DEF (5.59)

proper_routes : (X <> X) — FP(segiXx])

(Vr : X e X))
proper_routes(r) =
frt:seq[X] | next(rt) c r; rt ! ¢ %X - N)

NB next is defined in section 2.3.2.

for the network illustrated in FIGURE(5.57a) we have:

<k 2.3 € proper_routes (NW)

CL. 3y € proper_routes (NW)

3 1> £ proper_routes (NW)

{121 3> ¢ proper_routes (NW)

The requirements for a packet router for the network,
Packet_router : Pk —» seq[St]

can now be formalised:

All routes are proper routes:

ran(Packet_router) c proper_routes[St] (Network)

Exactly the packets which can reach their destination from their source can
be given a route by the router:

84

dom(Packet_router) =
{p:Pk | (source(p),dest(p)) e Networkﬁ }

A route for a packet ‘starts’ at Its source and ‘ends’ at its destination:

dest = last e Packet_router
source = first e Packet_router

NB, separate packets sent between the same source and destination may
take (or be given) different routes.

The use of output channels is determined by the packet router in the following
way:

(Vi : st)
(v j:8t | (i,j) € Network)
(Vp:Pk | pe ran(comij) ¥
(i,3) € next (Packet_router(p))

5.5.2. A Specification of a Network.
The decisions taken in the previous section will be summarised in this section.

The static properties of the network presented are described in DEF (5.60).

A description of source and destination (ntroduced above) Is no longer
necessary as the source and destination of packets are the first and the last
stations along their route. Packets are all the packets ever processed by the
Network, hence we must require that at least these packets have a route within
the network. Start_in gives for each station the set of packets originating in

that station. Previously we used the inverse of the source function to describe
these packets.

5t Pk DEF (5.60)
Network : F(St x 8st) ;
Packet_router : Pk - seqg[St] ;
Packets : P(Pk) ;
Start_in : 8t - P(Pk)

ran(Packet_router) c proper_routes(Network);
Packets c dom(Packet_router);

Start_in = (first e Packet_router) ! { Packets

The dynamic properties are described in DEF(5.61). The properties are described
In terms of /nvariant conditions on the histories of the communications between

B

85

the stations. Axioms (2) and (3) are substituted for the axioms DEP(5_53) and
DEF (5.54) respectively: they have been simplified as the Packet_router, axiom
(4). insures that-

a) a packet cannot ‘leave’ its destination.

b) a packet can ‘leave’ a station along only one outgoing connection.

NETWORK st Pk DEF (5.51)
com (8t x St) -+ seq[Pk]
dom(com) = Network; (1)
(Vi:st)
(Vj: 8t | (i,3) € Network)
(ran(com(i,j)) € Start_in(i) v IN(i) A (2)
com(i,j) ! € Pk - N A (3)
((V p:Pk | p ¢ ran(com(i,j)))
(i,J) € next (Packet_router(p)))) (4)

where IN(i) = u{ran(com(k,i) | k : Network 1 ({i})]

The Initiai state of a network system is a system where no communication has
taken place-

INITIAL NW St Pk DEF (5.62)

NETWORK[St, Pk]

(Vv (i,3): 8t x St | (i,j) € Network) (com(i,j) =<(»)

The final state of a network system is a system where all packets have reached
their destination-

FINAL_NW st Pk DEF (5.63)
NETWORK[St, Pk]

(V i:8t | i € dom(Network))
(Vv p:Pk | p ¢ (Start_in(i) v IN(i)) - OUT(1i))
(i = last(Packet_router(p)))
where [IN(i) = u{ran{com(k,i) | k : Network ! ({i})}
and OUT(i) = u{ran(com(i,j) | J : Network({i})}

5.5.3. An Analysis of the Network.
The given network will be analysed with respect to termination and deadlock.
Under the assumption that a finite number of packets are being ‘submitted’ to

the network system. i.e.

Packets ¢ F(Pk) ,

86

we will verify that

1) The operations of the system cease after the occurence of a finite number
of communications (termination).

2) The network system only terminates in an acceptable final state — as described
in FINAL-NW (deadlock-free).

Termination.

Termination is guaranteed if we can present a decreasing variant function.
A communication between station 1 and station j can be described as-

Observations Pk DEF (5.64)

0BS. : Pk — {NETWORK} —> {NETWORK}

OBS; = (A p:Pk) (ANETWORK) (4 NETWORK')
(com' = com & {(i,j) — com(i,j) * <p>})

NB, (&) is the function overriding operator.
According to the definition above a communication will jncrease the length of the
history of the communications along a single connection. Therefore the foliowing

function must be an /ncreasing variant function -

V1l : {NETWORK} — N
V1l = (A NETWORK) (Sigma(com, card ® ran))

where Sigma is defined as

LS DEF (5.65)
Sigma : (F(X) x (¥+N)) =» N

(V s:F(X); f:X»N | s c dom(f); s # (})
Sigma(s,f) = £(7(s8)) + Sigma(s-{7(s)}.,f)
sigma({},f) = 0

According to axiom (3) of NETWORK a packet can appear only once along any
connection, hence

(V nw:NETWORK) V1(nw) € card(Packets)*card(Network)
Therefore the following function is a decreasing variant function-

¥ : {NETWORK} — N

V = (A nw:NETWORK)

((card(Packets)*card(Network)) - V1(nw))

NB, in a termination state 's’ we do not guarantee that V(s) = 0.

87
Deadlock.
We can describe the activity along channel (i,3j) as follows:
Ek DEF (5.66)
a.ctivity__alongi‘. : {NETWORK} <> {NETWORK}
.'=1c:t1‘.\71‘.ty_a.‘r.ongij = U{ OBSi’.(p) I p : Pk}

A termination state of a network is a state where no activity can take place. and
can be described as:

DEF (5.867)

Terminal : P({NETWORK})

Terminal =
{NETWORK} - u{dom(activity_alongii) I(1i,j) : Network}

A system Is deadlock-free if it only terminates in acceptable final states.

For this network system we have:

THEOREM (5.68)

I Terminal ¢ {FINAL_NW}

The proof of THEOREM(5.68) is directly derivable from LEMMA (5.70) and
LEMMA(5.71)

We first describe the states of the network in which a communication is expected
to take place.

Pk
= dom(activity»alongu) =
{NETWORK | (3 p:Pk)
(p € (Start_in(i)UIN(i))-OUT(i)) A

(i,j) € next(Packet_router(p)) }

LEMMA (5.69)

P U{dom(activity_along”} I (i,3J) : Network)} =
{NETWORK | (3 p:Pk) (3 (i,3) :Network)
(p € (Start_in(i)UIN(i))-QUT(i)) A
(i,3) € next(Packet_router(p)) }

NB the functions IN and OUT are defined as in FINAL_NW DEF(5.63).

88

LEMMA(5.70) describes the termination states:

Pk LEMMA (5.70)

F Terminal =
{NETWORK | (V (i,j):Network) (V p:Pk)

(p £ (Start_in(i)UIN(i))-0QUT(i)) v

(i,3) #£ next(Packet_router(p)) }

LEMMA(5.71) states that a termination state is an acceptable final state.

5t Pk LEMMA (5.71)

NETWORK ;

(V (1i,]) :Network)

(V p:Pk)
(p £ (Start_in(i)UIN(i))-0OUT(i)) v
(1,3) £ next(Packet_router(p))

- FINAL_NW

proof:
(Vv i:8t | i e dom(Network))
(V p:Pk | p e (Start_in(i)uIN(i)) - QUT(i))
(V j:St | (i,3) € Network)
we deduce from the hypothesis

(1) (i:/3) £ next(Packet_router(p))
as p is ‘within’ the buffer. we conclude

(2) i e ran(Packet_router(p))
from (1) . (2) we get

(3) i = last(Packet_router(p))

which according to DEF(5.63) complietes the proof

;1]

6. DECOMPOSITION.

A complex system is easier to comprehend if it is described through severai
specifications presenting the system in increasing degrees of detail. For that
reason. and in order to make the development process more manageabie as weli
as to make the end-product easler to modify. it has become a convention to
describe (if not develop) systems in a top-down fashion. A system is first described
in terms of a limited set of modules and their inter-relationship. When first
presented the modules are specified solely in terms of their external interfaces.
i.e. the services they provide for the surrounding modules. In a more refined
description the decisions made with respect to the internal structure of each module
wil be documented. During the development the designer must verlfy that the
internaf structure provided for each module is consistent with the definition of its
external interface.

The independent module (as described in section 4.2.1) which is specified through
an input-output relation can be decomposed by giving a set of new independent
modules. From the description of the input-output reiation for each individuai
sub-module we can infer the input-output relation computed by the compound
system. giving us a method for analysing whether the behaviour of the refined
system agrees with the behaviour of the system it is intended to implement. The
techniques for calculating the input-output relation computed by a compound system
are based on the assumption that each individual module-realisation runs in
isolation.

As mentioned in section 4.3. it is important to provide a comparable refinement
and development method for systems whose constituents are process-modules.
However, these modules, which run In parafiel and which,. during their execution.
can inspect and influence the execution of one another, cannot be described
through a simple input-cutput relation. Hence, the refinements methods and the
techniques for validating a decomposition will take a different form from the methods
used for modules running in isolation.

A process-module is refined by replacing one specification of the module with
another specification, in which the assertions about the histories of the
communication are decomposed and partitioned. A refinement reflects the decision
to realise a process-module using two or more concurrently operating process
componenis (a decision taken, for example, In order to increase performance).
A refinement will normally increase the number of visible connections as some
local communications between the modules of the refinement will be added to the
description.

90

6.1. INTRODUCTORY EXAMPLE.
This section will introduce the decomposition method by means of an example.

Consider the system presented in section 4.2, (DEF(4.4)) which can be
iliustrated-

P2_MODULE FIGURE (6.1)

in |] out
[P2 |

Its decomposed (distributed) counterpart from section 4.3, (DEF (4.9} can be
illustrated

P2_SYSTEM FIGURE (6.2)
in I com } out.

B2l J I P2 2 |

informally, we will say that a distributed system (ke P2_SYSTEM is an
implementation (or valid decomposition) of a module (ike P2_MODULE) If its
externally observable behaviour (i.e. for this example the behaviour along in and
out) is indistinguishable from the behaviour of the module it implements. Hence.
after decomposing @ module, we must compare the behaviour which can be derived
from the new compound system (after having hidden internal communications) with
the expected behaviour of the module. For the example above. we must answer
the question, is—

? = P2
where
FIGURE (6.3)

{70 T TR S SRS m rmas R i |

|

in ! f | com f 1 '+ out

1 p2 1 p2_21 1
| — ? i
Lo o s vy @i i = Sy J

91

Before formalising the notion of indistinguishability, consider. for comparison, the
foliowing system-

P2_SYSTEM2 FIGURE (6.4)

in I [b g [}c2 J L out
lPZ_l[cl/com]; BUF ! P_2[{c2/com]

where
BUF[X] = [cl,c2:seq[X] | c2ccl; #cl-#c2<1] DEF (6.5)

In an Environment where

#in € Limit
for some Limit. and with a final state requirement that

out = F o in
We can prove that all three systems- P2_MODULE, P2_SYSTEM and P2_SYSTEM2
— are totally correct systems, i.e. they terminate and are deadlock free. However.
the dynamic behaviour of P2_SYSTEMZ is diiferent from the dynamic behaviour
of P2_SYSTEM and P2_MODULE. e.g. P2_SYSTEM2 may be observed to consume
three consecutive inputs before the activity along the in connection is blocked,
while P2_MODULE and P2_SYSTEM can consume at most two before blocking.
Hence a system. consisting of P2_SYSTEM (or P2_MODULE) in an environment
which insists on performing three inputs before participating in an output, will
deadlock.
NB. such an environment could be defined by
ENV[X] = [in,out:seq[X] | #in<3 = out=0]

It P2_SYSTEMZ is placed in the same environment no deadiock will occur.

As the dynamic behaviour of P2_SYSTEM2 is distinct from that of P2_MODULE.
we will not accept

P2_1[cl/com]; BUF; P2_2[c2/com]
as a valid decomposition {or distribution) of
B2

A method for proving that [P2_1; P2_2] is a valld decomposition of P2 Is given
In the next section.

D

92

6.2. VALID DECOMPOSITION.

Let us consider a system which is specified in terms of predicates on its behaviour
along external connections only, l.e.

M_SPEC = [ext_con | PREDSPM] DEF (6.6)

A refinement (decomposition) of this module will expose some internal interiaces
and the connections across them. Furthermore a new set of predicates will be
given. now involving both the communications along the external connection and
the internal connections. We have

M_IMP = [ext_con; int_con | PREDimp] DEF (6.7)
Example:

For the system described in the previous section we have a specification of a
module (ntroduced in section 4.3),

P2_SPEC X DEF (6.8)
in,out : seqg{X]

#in-f#out € 2; out c Fein

and a description of an Implementation of that moduie

P2_IMP X DEF (6.9)
in,out,com : seqg[X]

#in-#com € 1; com € Gein;
kcom-#out € 1; out © Hecom

which is a distributed description because the axioms can be divided in to two
groups - one group involving in and com only, and one involving com and out
only. Furthermare we claim that this Is an implementation (valid decomposition)
of the specification P2_SPEC.

An analysis of a system consisting of interconnected modules will be carried out
without any reference to the internal structure of the modules, i.e. a top-ievel
specification for each module (like M_SPEC) will be used as a basis for the anaiysis.
When refining a system we provide an implementation for each individuai module
(like M_IMP for M_SPEC) and. in order to ensure that the global dynamic properties
(termination and deadlock) are maintained, we must give a guarantee. for each
module, that the behaviour of the Implementation simulates the specified behaviour
along the external connections. In other words., the behaviour along the externai
connections (ext_con) which can be derived from M_IMP must simulate the
behaviour along these connections as derived from M_SPEC.

—*

93

In order to compare the two systems ®_IMP and M_SPEC)

; we
projection function— Introduce &

project : {M_IMP} — {M_SPEC}

NB. this Is analogous to a retrigve-function [Jone
s.14] or an abstraction- 1
[Hoare,9] " enction

For the system introduced above we can define the projection function as follows~

project =
(X P2_IMP) (pn PZ_SPEC')(in‘=in;out'=out) DEF (6.10)

Let
x1, x2 : seq[Y]

be the only external connections for'M_SPEC (and M_IMP) then a communication
of a value y along the X1 connection can be described as-
1 According to the M_SPEC description-

CDlespec (y) =
(A M_SPEC) (1 M_SPEC') (x1'=x1*<(y); x2'=x32)
DEF (6.10)

2) According to the M_IMP description-

comxl, (¥) = (: M_IMP) (u M_IMP') (x1'=x1*<y);x2"'=x2)
DEF (6.11)

In the following we will use the examples introduced above to iliustrate the method
for proving that an implementation is a valid decomposition of its specification,

We must prove-

1 A Consistency property.
External activity (as performed by the implementation) must only occur when
it is expected to occur, le If a communication (along an external connection)
can take place according to the rules imposed by the implementation (e.g.
PLIHP) then the same communication must also be permitted by the rules
Imposed by the specification (M_SPEC).

Exampie 1:

For the communication along x1 In the system described by M_IMF. we must
prove-

(¥ y:Y)
(pr°ject(dom(comxl_v(x)) < dom(comxaum(y))

94

2)

which can be verifled simply by proving-

M_IMP | M_SPEC

Intuition - If the axioms of the specification are kept invariant by the operations
performed by the implementation then these operations (extension of a history
sequence) are also 'allowed’ to take place by the specification (NB. an
operation can take place whenever its occurrence does not invalidate the
axioms).

Exampie 2.
For the system P2_IMP we must prove-

P2_consistency. THEOREM (6.13)

P2_IMP | #in-#out € 2; out € Fein

NB:

Because we require that an impiementation is consistent with its specification
we can always describe an implementation as an extension of its specification.
e.g. P2_IMP could have been defined as

P2_IMP Xz¥ DEF (6.14)
P2_SPEC[X,Y];
com : seq[Z]

$in-#com € 1; com c Gein;
#com—-$out € 1; out < Hecom

An adequacy property.

When an external communication is expected to take place (according to the
rules of the specification). then either this communication or an internal
communication can take place (according to the rules of the impiementation).

Example 1:
For the communication along x1 in M_IMP we have-

(V y:Y)
: -1
(project™ " (dom comxlm{y,)) c

dom(comxliw(y.) U dom(internal_activity))

where internal activity Is a relation describing internal
communications.

95

Example 2:
For the system P2_IMP we must prove

P2_adequacy.
P2_IMP =
6 (2 = 61 (1vVv (61 =1na2562 1) ;
6 # 0 =82+ 0vVv (62 =0 A 61 # 0)
where
6 = #in - #out;
81 = #com - #in;
82 = #out - fcom

THEOREM (6.15)

which states -
a) i an input is expected to occur, i.e

6 ¢ 2

then either the Input can be performed. i.e.
61 < 1

or an internal communication can take place. i.e.
62 « 1

b} If an output Is expected to occur, i.e.

6 # 0

then an output can take place , i.e.
62 # 0

or an internal comunication can take piace. i.e.
861 # 0

3) A Halting property.
The adequacy property does not guarantee that a communication which s
expected 10 take place will ever happen. because non-terminating internal
activity (infinite chatter) could prevent the system from ever reaching a state
which allows the occurrence of the external communication.

We must verify that internal activity will terminate if the system is unstimulated
(no external activities wili occur). This property can be verified by presenting
a decreasing variant function for the internal activity.

Example:
The following function is a variant function for system P2_IMP

P2_var = (A P2_IMP)(#in - §com) DEF (6.16)

Summary-

The consistency property ensures that communications along the external connection
only occur when they are expected to occur. The adequacy and halting properties
ensure that a communication which is expected to occur can occur before the

96

occurrence of any other external communication. Furthermore, the occurrence can
only be delayed by a finite number of internal events. (NB. compare these propertles
with the readyness principles from section 4.2.3),

An implementation which satisfies all three properties with respect to a specification
is said to be a valid decomposition of that specification. Hence. P2_IMP Is a valid
decomposition of P2_SPEC (see THEOREM(6.13), THEOREM(6.15) and
DEF (6.16)).

6.3. LIMITATIONS OF THE METHOD.

In this section we will define some systems which consist of two or more
process-modules. The examples are given mainiy to reveal the limitations of the
method for decomposition (or distribution) presented in the two previous sections.
Suggestions for surmounting these limitations will be given.

6.3.1. Piped Systems.

As the example (P2) presented in the previous sections illustrated. an
implementation (or refinement) where a single process-module Is replaced by a

~set of process-modules in a pipe-iine arrangement is easily expressible In the

provided framework. Furthermore the tools proved to be adequate for checking the
behaviour of such pipe-line arranged systems against an abstract description in
which no reference is made to the (local) communications between the individual
stages of the pipe-line.

The following example is a continuation of the bounded buffer example from section
5l

We will apply the method developed in the previous section to the implementation
of a bounded buffer as specified by BB, (DEF(5.3)). The example is similar
to the example (P2) presented previously. and does not add 1o the explanation
of the method. However the example is included to give yet another overview of
the approach for decomposing systems and to illustrate the convienience of the
schema-notation used as a development 1ool.

let
Bl,B2 : N1

be given. In order to verify that

PIPE DEF (6.17)
BB[com/out;B1/B]; BB[com/in;B2/B]

97

is an implementation of

BB[B1+B2/B]

we must prove
1) a consistency theorem, which Is

THEOREM (6.18)

PIPE | BB[Bl+B2/B]

2) an adequacy theorem, which for this system can take the form

THEOREM (6.19)

PIPE;

#in - #com = 0 v #com - #out = B2
|_

6 ¢ Bl1+B2 = 61 < Bl;

6 # 0 = 62 = 0

where

6 = #in - #out;

61 = #in - {ficom;

82 = #com - #out

3) a halting property, which is ensured by the presentation of a variant function,

VaxPipe = (X PIPE)(#in - #com)

6.3.2. Unordered Pipe.

The unordered queue Introduced in section 5.2.2. (DEF (5.17)) can. as mentioned
in that section, conveiniently represent queues of jobs in an operating system.

let

In_Spooler[J] QUEUE[J] [cardread/arrive;in_chan/depart];
Processor[J] e QUEUE[J][in,chan/arrive;out_chan/depart];
OQut_Spooler[J] = QUEUE[J][out_chan/arrive;print/depart]

1]

be components of a simplified batch operating system. which can be represented
as

98
BATCH FIGURE (5.20)
cardread print
In \ia—_eha_fl__—[w

Spooler Processor Spooler

BATCH is indeed an Implementation of SYSTEM, where
SYSTEM = QUEUE[cardread/arrive;print/depart] DEF (5.21)

let us now consider a siightly modified version of BATCH. By restricting the buffering
capacity of the Out_Spooler. ie. for some L : N1 we may have

Qut_Spooler2 = [Out_Spooler | #out_chan-#print<L }

and by defining a new batch system as

BATCH2 = [In_Spooler; Processor; Out_Spooler2] DEF (5.22)
we get a system whaose behaviour cannot be explained by an abstraction which
does not refer to the internal communications between Processor and
Out_Spooler. BATCHZ2 is Indeed distinct from BATCH because BATCH allows
for any job currently within the system to get priority and to run to compietion
(i.e. being served by the printer), whiie this may not be possibie for system BATCHZ.
In a state where

#out_chan - #print = L

BATCH2 cannot accept further requests along out_chan before another job has
left the print-spooler queue. Hence a job currently in the input-spooler queue or
in the processor queue cannot be completed before at ieast one other job has
been completed.

BATCH2 therefore (according to the rules stated in the previous section) is not
an implementation of SYSTEM. However it we can rely on the environment never
to insist on the completion of a particular job. then, intuitively, BATCHZ wiil be
a perfect implementation of SYSTEM. This can be formalised.

Let O_ENV(p) describe the environment's restriction on the printer connection
(p). if we can prove

99

THEOREM (5.23)
(V¥ i:N; j,3':3J)
(V p_s : Print_Stream)

({i—=jlep_8)) = ((p_sB{i—j'}) € Print_Stream)
where
Print_Stream = {p : seq{J] | O_ENV(p)}

which states that the given environment does not insist on the completion of any
particular job. then we will accept BATCH2 as an implementation of SYSTEM.

NB, if we do not make this (or a similar) assumption about the environment then
BATCHZ cannot be considered to be a refinement of SYSTEM because BATCHZ
might reject requests which could be accepted by SYSTEM. ie. introducing
BATCH2 as a refinement for SYSTEM may also introduce deadlock possibilities.

6.3.3. A Resource Monitor.

Consider the system In DEF (5.44) whose constituents are R1 from DEF(5.37).
RZ from DEF (5.38) and ENV from DEF(5.45).

The subsystem

RL_PIPE = [R1l; R2] DEF (6.24)
does not implement
RL_SYS RL DEF (6.25)

ing, rautH : seq[R];

in , outL : seq[L]
outR c inn; outL c inL;
6y + 8, <

where

oy = #inn - Ioutn;
8 = ﬂinL - loutL

as the RL_PIPE will deadlock in the situation where
bln = 1A GZL =1

However, the system

100
RL._PIPE2 DEF (6.26)
RIL_PIPE
5Fi -0 v aL =0
where
Dy = it.inR N ioutn;
bt = #mL - loutL

does implement
RL,_S¥S2 = [RL_SYS | 6p=0 v Gl=0] DEF (6.27)
RL_PIPE2 is a system consisting of three processes. one of which (a Monitor)

does not refer to the local communications between the resource controilers R1
and RZ2. This system can be illustrated as

FIGURE (6.28)

_ing l f ! com, 11 out
| | = | & |

_?_u_tl_ _~—/_‘—["“"-.______’CCDTI'IL .._._——-——"—'l ‘.——-—‘—_’ inl_‘——.__,_

R~

GR=0VOL=0

101

7. CONCLUSION.

The goal of this thesis has been to develop a method for specifying. analysing
and refining the designs of distributed systems.

A new approach for specifying distributed systems has been proposed in chapter
4 to accomplish this goal. The approach can be used to speclfy distributed systems
in different degrees of detail; lLe. a description with few visible internai interfaces
is considered to be more abstract than a description in which all interfaces from
the future realisation take part. The systems are described through predicates on
the histories of communications across the visible interfaces. and the moduiarisation
lor distribution) of the system is determined by the possibie grouping of these
predicates (ocalisation of knowledge).

A method for analysing the behaviour of distributed designs has been proposed
In sections 4.5 and 5.2, The analysis is based on a technique presented in chapter
3. It should be pointed out that the formal framework developed (in chapter 3)
for analysing non-deterministic systems consists mainly of reformulations of familjar
concepts (transition-systems: [Keller,16], [Lamswerde.17). well~founded relations:
[Abrial,1]; and correctness of non-deterministic constructs: [Dijkstra.7). The
techniques presented in chapter 3 are, as illustrated in section 3.2. (A Bounded
Buffer) applicable to descriptions based on abstractions of internal states as well
as to descriptions based on abstractions of external behaviour (section 5.1, A
Bounded Buffer).

An important aspect of the method presented is its use in refinement or step-wise
development of distributed systems. Chapter 6 introduced a simple method for
comparing different levels of descriptions using projections as retrieve~functions
[Jones.14]. it was demonstrated that the refinement method is especially suitable
tor reflnements where a single process-module Is replaced by several modules
arranged In a pipe-fine. Note that when abstracting detalls of the protocols
(hand-shaking, synchronisatlons etc) used for communications between
process-components, the number of systems falling into this category is quite large.
Some limitations of the method have been pointed out, together with informal
suggestions, for overcoming them. From example 6.3.2.(Unordered Pipe) we learned
that some internal Interfaces (i.e. internal communications) of compound systems
can be so integral to the system’s behaviour that they cannot be hidden without
losing information about the true -behaviour along the external connections of the
system. Instead of hiding such internal events (and Introducing an unmanageable
kind of non-determinism) a 'solution’. in which assumptions are made about the
behaviour of future environments, Is proposed. (rely-conditions).

102

7.1. RELATED WORK. -

Communication between cooperating processes has become an area of concern
especially since the introduction of multiprogramming systems. In such systems
the possibility for breaking down large tasks into smaller communicating
(concurrently operating) processes provides a useful abstraction tool. The advance
in technology - ie. the introduction of inexpensive microprocessors - has further
stimulated research In this area.

The basis for a formal treatment of cooperating processes was laid with the
introduction of semaphores [Dijkstra.6]. Since then, several programming languages
which embody the notion of processes have been suggested and high level
language constructs, which provide the programmer with an abstract (and ‘secure’)
tool for managing process communication and synchronisation, have been proposed.
Examples of earlier work in this area are to be found in the work of [Hoare,10]
and [Brinch Hansen,2] on monitors and [Campeil.3] on path expressions. More
recently and certainiy more notably, there are the high-level communication
facilities provided through CSP [Hoare,11] and Ada [13I].

Verification of concurrent programs has also been investigated (e.g. [Owicki,19].
Verification of programs requires a specification with which the program can be
compared. which suggests that it is important to have a framework (or a style)
in which specifications can be expressed. The methads for specifying sequential
programs are well understood: however, methods for specifying distributed
(concurrent) programs are still in their infancy. For distributed systems which
consist of several cooperating components the properties to be specified consist
not only in WHAT Is to be computed but also WHEN and WHERE (see section
4.3). Hence an approach for specifying - like the approach presented in this thesis
- must be concerned with time In one form or anaother.

In this thesis sequences of past communications (i.e. histories of communications)
across interfaces are used to give the needed notion of time.

in the area of program verification we find the use of communication sequences
as ghost (or mythical) variables Iniroduced in order to verify the correctness of
co-routines [Clint.5]. Assertions involving the past history of communications along
external channels have more recently been used in [Chen.4] and [Hoare.12) (NB,
the assertions used in (Hoare.12] also invoive the immediate future).

An alternative approach for documenting time-related properties for concurrent
systems Is to be found in the work on temporal logic (e.g. [Manna,18l. In this
approach the time-related properties are classified into invariant properties,
eventuality properties and precedence properties: these properties can all be
expressed using predicates on communication sequences.

The main goal of the work presented in this thesis is not to provide a method
for program proving. but rather to provide a development tool for distributed systems,
i.e. to provide a uniform formal notation in which design decisions can be

703

documented and analysed, and a method for refining and moadifying such systems.
Little work has been done in this area. However, notable suggestions have recently
been made in [Jones.15] where a ‘module’ executing in an Interfering environment
is described using guarantee- and rely assertions on the information it shares with
other modules.

7.2. FUTURE RESEARCH.

Because the approach presented in this thesis has only been under development
for a short time. research into feasibility of the proposed methods cannot be
declared complete. nor can the methods themseives.

The tools must be studied further and | am convinced that inspiration for further
research can be obtained from 1) [Hoare,12] in which assertions on past
communications are used to describe Intended behaviour for processes, 2)
[Jones,15] where the goal is to find development-methods for concurrent systems,
and 3) [Manna,18] who uses tempora! logic in order to abstract direct references
to execution sequences.

One aspect of the development process which has been intentionally omitied from
this thesis is the problem of realisation. The difficuities in realising a communication
between two distinct process components have not been considered. Iin any
development process we must at some level of refinment consider the physical
properties of the target machinery,. Hence, for distributed systems which consist
of communicating process-components we must consider the means of
communication provided by the inter-process control mechanisms built into the
realisatian tool,

The abstract communications of the operational model in terms of which we analyse
our specifications may not be easlly realisable. Intuitively the difficulties will depend
on the realisation tool (compare the facllities provided by Ada or CSP with
communlications performed entirely by means of shéred memory and
semaphore-operations). We may reformulate a specification before realisation in
order to simplify the task of translating the specification Into a program.

Example;

Consider the communications between Q and CS In FIGURE(5.28).

At any point in time Q will be willing to communicate any ‘job* which does not
Invalidate the axioms of Q. e.g.

{31, 32, 33, 34

and at any point in time CS is willing to ‘receive’ the set of jobs which will not
invalidate the mutual exclusion property. e.g.

{32, 33}
If the intersection of the two sets is non-empty then a communication will take

place., Such a communication is not directly realisable. However, we can reformulate
the specification and obtain a description which is ‘closer’ to a realisation.

104

Let us define (use DEF(5.32) for Q)

0_cs J DEF(7.1.)

Qi
leave seq[J]

M(inside) n inside = {}

where

inside = {j:J | card(enteri{j}) > card(leavel{j})}

as replacement for Q.which gives

FIGURE (7.2)

Q_CS—‘_‘__"] cs

NB. the modification does not change the properties of the system as no axioms
have been added. Furthermore the mutual exclusion axiom from CS can now be
removed as this axiom will be ‘obeyed’ by Q_CS. Hence., the communications
between Q_CS and CS are much simpler as all knowiedge about the
communications along enter has been localised within Q_CS.

Further investigations must be made in the area of realisation of specifications.
It is most pressing. however, to apply the methods presented 10 a wider range

of distributed systems, not only in order to improve the methods but also to expiore
their limitations and to identify the category of systems for which they are suitable.

List of References.

m

[21

3]

4]

[5]

(61

7]

81

[91

[10]

nn

nai

J.R. Abrial:
‘The Specification Language Z: Basic Library’.
Report from Oxford University Computing Laboratory. 1980.

P. Brinch Hansen:
‘Operating System Principles’
Prentice-Hall, 1973.

R.H. Campbell and A.N. Habermann:

‘The Specification of Process Synchronization by Path Expressions’.
Lecture notes in Comp.Sci. Vol 16.

Springer Verlag. 1974.

Zhou Chao Chen and C.A.R. Hoare:
‘Partial Correctness of Communicating Processes and Protocols’.
Proc. International Conference on Distributed Gomputing, 1981.

M. Clint:
‘Program proving: Coroutines'.
Acta Informatica 2, 1973.

E.W. Dijkstra:
‘Cooperating Sequential Processes’.
Programming Languages. Academic Press. New York, 1968.

E.W. Dijkstra:

‘Guarded Commands. Non-determinacy and Formal Derivation of
Programs’.

CACM Vol 18 No 8. 1975.

E.W. Dijkstra:
‘A Disclpline of Programming’.
Prentice-Hall int. Series in Automatic Computation. 1976.

C.A.R. Hoare:
‘Proof of Correctness of Data Representations’.
Acta Informatica 1. 1972.

C.A.R. Hoare:
‘Monitors; An Operating System Structuring Concept'.
CACM Vol 17 No 10. 1974.

C.A.R. Hoare:
‘Communicating Sequential Processes'.
CACM Vol 21 No 8, 1978.

C.A.R. Hoare:
‘A Calculus of Total Correctness for Communicating processes’.

105

Oxford University Computing Laboratory, PRG Monograph no 23, 1987,

108

[131

[14]

[151

[161

17

(18]

(191

[20]

[2nm

Reference Manual, :
‘Rationale for the Design of the GREEN Programming Language’
Honeywell. Inc. Minneapolis, 1979.

C.B. Jones:
‘Software Developmant - A Rigorous Approach’.
Prentice-Hall Int. Series in Computer Science, 1980.

C.B. Jones:

‘Development method of Computer Programs Including a Notlon of
interference’

D.Phil. thesis, University of Oxford, 1981,

R.M. Keller:
'Formal Verification of Parallel Programs’.
CACM Vol 19 No 7, 1976.

A. von Lamswerde and M. Sintzoif:
'Formal Derlvation of Strongly Correct Concurrent Programs’.
Acta Informatica 12, 1979.

Z.Manna and A. Pnuelii:

‘Verification of Concurrent Programs: The Temporal Framework’.
Lecture notes for The International Summer School, Munich, August
1981. '

5. Owicki and D Gries:
‘Verifying properties of Parailel Programs: An Axiomatic Approach’.
CACM Vol 19 No 5, 1976.

P.L. Parnas:
‘On the Criteria to be used in Decomposing Systems into Modules’.
CACM Vol 15 No 12, 1972.

B. Sufrin:
‘Formal Specification of a Display Editor’.

Oxford University Computing Laboratory. PRG Monograph no 21, 1981.

