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PROGRAM TRANSFORMATIONS IN A DENOTATIONAL SETTING

Abstract
Program transformations are frequently performed by
optimizing compilers and the correctness of applying
them usually depends on data flow information. For
source-to-source transformations it is shown how a
denotational setting can be useful for validating such

program transformations.

Strong equivalence is obtained for transformations that
exploit forward data flow information, whereas weak
equivalence is obtained for transformations that exploit
backward data flow information. To obtain strong
equivalence both the original and the transformed program
must be data flow analysed, but consideration of a trans-
formation exploiting liveness of variables indicates that

a more satisfactory approach may be possible.

Keywords
program transformations, denotational semantics,

correctness proof, forward data flow analysis, backward

data flow analysis, live variables analysis.



1 INTRODUCTION

In this paper we consider a class of program transformations,
where a program is transformed into another in the same language
(source-to-source transformations). Such transformations are useful
for "high-level optimization" in optimizing compilers (see e.g.
[6]). The meaning of the transformed program must equal that of the
original one. The two programs may differ in other respects, such
as running time, but this will not be considered here although it
is generally such differences that motivate the program transfor-
mations. The correctness of transforming a program may depend on
data flow information. Even though this is frequently the case in
practice the literature contains, to our knowledge, no satisfactory
framework for proving the correctness of such transformations. Here

we address this problem in a denotational setting.

To give examples of program transformations consider the following

fragment of a program:
Y := 2 4.5 (no ¥'8) a0 X =y + (1+1) ... (no.x"s) ... x =0

One transformation is to replace x := y + (1+1) by x :=y + 2.

It is easy to validate this transformation because the meaning of
x :=y + (1+1) equals that of x := y + 2, so no data flow informa-
tion is needed. Another transformation is to replace x :=y + (1+1)
by x := 4 (constant folding [1]). This transformation is valid
because the value of y immediately before x := y + (1+1) is always

2, as can be determined by a forward data flow analysis (constant

propagation [1]). It is not so easy to validate this transformation
because the meanings of x := y + (1+1) and x := 4 are not identical.
A third transformation is to replace x :=y + (1+1) by a dummy

statement (or eliminate it). This transformation is valid because
the value of x is not used until after x is assigned the value 0,
as can be determined by a backward data flow analysis (live
variables analysis [1]). The meanings of x :=y + (1+1) and a dummy
statement are different so this transformation is also not so easy

to validate.



Transformations that do not exploit data flow information

(as replacing x := y + (1+1) by X := y + 2) are considered in
[5]. We consider transformations that exploit forward data flow
information (section 3) and backward data flow information
{section 4). In order to factor out the details of actual data
flow analyses we mostly consider abstract formulations of data
flow information. In [9] it is shown how the ideas of [2] can be
used to relate some forward data flow analyses to the formulation
used here. We sketch how a similar connection may be possible for
backward data flow analyses. The framework for validating program
transformations is compared to that of [4] and is claimed to be

better. Section 5 contains the conclusions.



2. PRELIMINARIES

In defining semantic egquations we use the notation of
[11] and [7] but the domains are cpo's (as in [8]) rather than
complete lattices. Below we explain some fundamental notions

and non-standard notation (==, ==, -t>, -c>).

A partially ordered set (S,E) is a set S with partial order =, i.e.

£ is a reflexive, antisymmetric and transitive relation on S. For
S' € S there may exist a (necessarily unique) least upper bound |lS'
in 8 such that Vs € S: (s 2 |IS' © ¥Vs' € S': s 2 s'). When S8' =
{51,52} one often writes S,uS, instead of IS'. A non-empty subset
S' € S is a chain 1if S' is countable and Sqr85 € S'=>LS1E s2V SZE 51).
An element s € S is maximal if Vs' € S: (s'2s=s'= s) and it is
least 1if Vs' € S: s' Zs. A partially ordered set is a cpo if it has
a least element (L) and any chain has a least upper bound. The word
domain will be used for cpo's and elements of some domain S are
denoted s, s', S etc. A domain is flat if any chain contains at

most 2 elements, and it is of finite height if any chain is finite.

Domains N, Q and T are flat domains of natural numbers, quotations
and truth values. From domains S1,...,Sn one can construct the
separated sum S1+ & s +SI‘1' This is a domain with a new least element
and injection functions inSi, enquiry functions ESi and projection
functions |S;. The cartesian product S;x ... xS is a domain with
selection functions +i. The domain S* of lists is {< >} + S+ (Sx 8S)+
Function # yields the length of a list, function ti removes the
first i1 elements and § concatenates lists. By P(S) is meant the
power set o0f S with set inclusion as partial order. Sometimes a set
is regarded as a partially ordered set whose partial order is

equality.

All functions are assumed to be total. For partially ordered sets

S and S' the set of (total) functions from S to S' is denoted

S -t> 8'. A function £ € S -t> S8' is continuous if £(L]S8")

LI { £(s) | s € 8"} holds for any chain S" c S whose least upperbound



exists. The set of continuous functions from S to §' is denoted
by S =c> 8'. A function £ € S -t> S' is additive (a complete-
~morphism) if £(lUs") = W{f(s) | s € S"} for any subset S" c S
whose least upper bound exists. Both S -t> S' and S -c¢> S' are
partially ordered by f1 = f2 & ¥Ys € S: f1(s) c fz{s). If S' is a

domain the same holds for S -t> S8' and § -c¢> S'.

An element s € S is a fixed point of £ € § -t> S if f(s) = s.

When S is partially ordered it is the least fixed point provided it
is a fixed point and s' = f(s') = s' 2 s. If S is a domain and

f € 8 -c> S the least fixed point always exists and is given by
FIX(f) = U{f*(L) | n > 0}. We shall frequently write LJ:zofn(i)
instead of LI{f™(L) | n > 0}.

For any domain S we use the symbol == as a continuous equality

predicate (S x S -c> T), whereas = is reserved for true equality.

So (true == 1) will be Ll whereas (true = l) is false. When S is of
finite height it is assumed that S, == 8, is 1L if one of Sq18, is
non-maximal and egquals S, = S, otherwise. We write >»> for the con-

tinuous extension of > (the predicate "greater than or equal to"
on the integers). The conditional t - S418, is Sqs8, Or 1l depending

on whether t is true, false or L. By fly/x] is meant Xz.z == x-y,f(z).



3.x PROGRAM TRANSFORMATIONS AND FORWARD DATA FLOW ANALYSES

In this section we show how to validate program transfor-
mations that exploit forward data flow information. First we
define a toy language. Then we give an abstract way of specifying
forward data flow information by means of a collecting semantics.

Finally we consider program transformations.

Toy Language

The toy language consists of commands (syntactic category Cmd)
and expressions (Exp). It is convenient to let Syn be the union

of Cmd and Exp. The syntax of commands and expressions is:

cmd ::= cmd1;cmd2 | ide := exp | IF exp THEN cmd1 ELSE cmd2 FI
| WHILE exp DO cmd OD | WRITE exp | READ ide

exp exp, ope exp, | ide | bas

We do not specify the syntax of identifiers (Ide), basic wvalues
(Bas) and operators (Ope). The semantics is given by tables 1 and 2.
Table 2 defines some domains and auxiliary functions as well as an
associative combinator (%) used for sequencing. Table 1 defines a
single semantic function T that ascribes meaning to both commands
and expressions. It simplifies some notation to be used later that
only one semantic function is used. The semantic function is in

direct style because continuations are not needed in the development.

A state (element of Sta) consists of an environment, current input
and output and a stack of temporary results. The presence of the
stack of temporary results (stack of witnessed values [7]) indicates
that the semantics is a store semantics [7]. The stack is used to
hold the values of subexpressions during the evaluation of expres-
sions. The functions applyl[ ope 1], contentl[[ idel]]l and assignl[ idell
illustrate how this is done. As an example consider the definition
of apply [lope]l . The function Vapply [[ope]l €Sta -c> T verifies
whether the argument state is on a special form. Only if this is
the case, the state will be transformed as described by Bapply [lopell
€ Sta -c> Sta (B for "body"). The definitions of read, write and
push [[bas ]l are similar and the reader acquainted with [7] should

have no trouble in supplying the definitions.



TABLE 1: Semantic Function

T € Syn -c> G

T cmd1;cmd2H T cmd1H * TI[ cmdzﬂ
Tl ide := expll = Tl exp 1l =x assign[[ idel]
TIl IF exp THEN cmd, ELSE cmd, FI]] =

TIl expll * cond(TI emd 11 , TI[ cmd, 1)
T[[ WHILE exp DO cmd OD]] =

FIX(Ag. T expll * cond(TI[[ cmdll * 9 , Asta.sta inR))
T[[ WRITE expl]]
Tl READ idel]
Tl exp, ope exp,]l = Tl exp, I * Tl exp,ll * applyll opell
Tl ide]l] = content][[ idel]

Tl bas]] = pushll bas]]

]

Tl expll * write

read % assign]|[ idel]



Table 2: Store Semantics

Domains
G = Sta -c> R
R = Sta + {"error"}
Sta = Env x Inp x Out x Tem states
Env = Ide -c> Val environments
Inp = Val* inputs
Qut = Val* outputs
Tem = Val¥* temporary result stacks
val = T + N + ... + {"nil"} values
Combinator

* € Gx G -c> G
9q * 9, = Asta.g1(sta) E Sta-»gz(g1(sta)l Sta), g1(sta)

Functions
cond € G X G =-¢c> G
cond(g1,g2) = Asta.Vcond(sta)—>(Scond(sta)—»g1,g2)(Bcond(sta)),

"error" inR

Vcond<env, inp,out, tem> #tem>>1-tem V1 E T, false

Bcond<env, inp,out, tem> <env,inp,out,tem +1>

tem +1 | T

Scond<env, inp,out, tem>

applyll opell € G
applyll opell = Asta.Vapplyll opel] (sta) - Bapplyll opell (sta) inR,

"error" inR

Vapplyll opel]l <env,inp,out,tem> #ftem== 2

<env,inp,out,<0[[ opell
<tem +2, tem +1>>§(temt2 )

Bapplyl[l opel] <env,inp,out,tem>

assign|[ ide]]l € G

assignl[[ ide]] = Asta.Vassign[[ ide]] (sta) - Bassignl[ ide]] (sta) inR,
"error" inR

#tem == 1

<env[tem +1/ide],

Vassign[[ ide]] <env, inp,out,tem>

Bassignl[[ ide]] <env, inp,out,tem>
inp,out,tem 1>
contentl([ ide]l € G
content[[ idel]l = Asta.Vcontentll idell (sta)- Bcontentll idell(sta) ing,

"error" inR

vVcontentll idell <env,inp,out,tem> true

<env,inp,out,
<envll idell >§tem>
pushl[l basll€ G, read € G, write € G are defined similarly.

Bcontentl[ idell <env,inp,out,tem>



It is not difficult to give a standard semantics that is equivalent
to the store semantics of tables 1 and 2. The main reason for

using a store semantics is that it becomes easier to define the
collecting semantics below. A consequence is that the collecting
semantics is the continuation removed version of that in [9].
Semantic functions 0 (and B) used in apply (and push) are not
defined here, and we also omit the proofs of correctness of the
functionalities stated in the tables. The lemma below is needed

in later proofs. It says that the iterates in a WHILE loop either

give no information or full information.

Lemma 1 Let glgl = TI[ expll * cond(T[[ cmd]] * g, Asta.sta inR) |
Then (Ag.g[gl)™ Ll sta is either 1 or T[[ WHILE exp DO cmd OD]] sta.

m}

Proof It suffices to show that
Vsta: [(Ag.glg])™ L sta # L = Vg, (Ag.glghH™ g, sta =
(A&.g[@])n 1l stal]. This is because (Ag.g g )n+1 1 = (Ag.g[é])n g

when Ds = glL]. The proof is by induction in n and since the casg
n = 0 is obvious consider the inductive step. It is easy to see that
(A&.g[&])n+1 Dy sta independently of - is 1, "error" inR, sta' inR
or (A&.g[é])n g, sta" where sta' and sta" are independent of gy, In
the first three cases the result is immediate and in the last case

it follows by the induction hypothesis.

Collecting Semantics

We now define a collecting semantics [9] that gives an abstract
way of specifying (some types of) forward data flow information.
Like the store semantics the collecting semantics executes the
program for one particular initial state (e.g. sta = <iide."nil"
inval, inp, < >, < >> for some input inp € Inp). Instead of
specifying the result of this execution the purpose of the collec-

ting semantics is to associate each program point with the states

T For typographical reasons we write g[&] instead of gé, SO

glgl € G for any fixed geEG.



in which control can be when that point is reached. The data flow
information specified by the collecting semantics is in a rather
abstract form that is suitable for the subsequent development.

In practice more approximate data flow analyses will be used (to
assure computability) and [9] uses the ideas of [2] to relate
approximate analyses to the collecting semantics. This is done by
formulating an induced semantics (specified by a pair of adjoined
[2] or semi-adjoined [9] functions) that executes the program on
an (approximate) description of a set of states. The data flow

analysis "constant propagation" can be specified this way.

We shall identify a program with a parse-tree and to each node we
associate an occurrence (a member of Occ = N*). The root has
occurrence < > and the i'th son of a node with occurrence occ has
occurrence occ§<i>. A program point will be represented by a tuple
<occ,g> € Pla = Occ x Q. The quotation g is used to indicate
whether the program point is to the left (g = "L") or to the right
(g = "R") of the node (figure 1). From the description above it

follows that only maximal elements of Pla will be used.

occ

hY
e’ X

occ§<i>

/r\

<occ§<i>,"L"> +<occ§<i>,"R">

FIGURE 1
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According to the usual view of parse-trees the occurrence
associated with a node is not part of the node itself, so to

be able to "mention" program points in the semantic equations

we supply the semantic function with an occurrence as an addi-
tional parameter. Furthermore the semantic equations are augmented
with functions (e.g. attach <occ,"L">) that associate information
with program points. Table 3 sketches the result of performing

these changes. The systematic placement of attach is useful later.

The collecting semantics is specified by tables 3 and 4. Domain

A = Pla -c> P(Sta) is used to associate each program point with
those states that control can be in when reaching that point. The
associative combinator * is continuous in its right argument (but
not the left [9]) so FIX (in table 3) is only applied to continuous
functions. To distinguish between the collecting semantics and the
store semantics we use suffixes col and sto, so e.g. Tcol is the

semantic function of the collecting semantics.

The collecting semantics cannot beproved correct with respect to
the store semantics because two programs that look different (and
to which different data flow information pertain) may have the

same meaning in the store semantics. A partial relationship between
the collecting semantics and the store semantics is given by the
following property which says, intuitively, that the store seman-

tics is embedded in the collecting semantics.

Property Ca Let syn £ Syn, occ € Occ be maximal and

sta € Sta. Then Tcolll syn]l occ sta +1 = Tstol[[ syn]] sta.

Proof of Property Ca is by a straight-forward structural induction

and is omitted.
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TABLE 3: Modified Semantic Function

T € Syn -c> Occ -c> G

TI[[ IF exp THEN cmd1 ELSE cmd, FI]l occ =

attach <occ,"L"> &

Tl expll occ§<1> =«

cond (TI[ cmd1H oce§<2> x attach <occ,"R">

, TI cdeH occ§<3> x attach <occ,"R">)

Tl WHILE exp DO cmd OD]] occ =

attach <occ,"L"> =

FIX(Ag.T[[ expl]l occ§<1> =*

cond (T[[ cmd]] occ§<2> * g
, attach <occ,"R">))

T exp, ope expzﬂ pee =

attach <oce, "Ii"> %

Tl exp1ﬂ occ§<1> *

TI exp2H occ§<3> =

applyll opell *

attach <occ,"R">

remaining clauses changed similarly to the one for exp, ope exp,.
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TABLE 4: Collecting Semantics

Domains
G = Sta -t> (R x A)
R = Sta + {"error"}
A = Pla -c> P(Sta)
Occ = N* occurrences
Pla = Occ x Q places

remaining domains as in table 2.

Combinator
*x € GxXx G -t> G (continuous in second argument)
9, * 9, = Asta.<g,(sta) v1 E Sta~g,(g,(sta) ¥1 1 Sta) ¥1,g,(sta)+1
i [g1(sta) v1E Staﬁ-gz(g1(sta) +1 1] sta)+2,11] l_,g,](sta) $2>
Functions

attach € Pla -c> G
attach (pla) Asta.<sta inR, L[{stal}/plal>

cond € G X G
cond (91,92)

c> G
Asta.Vcond(sta) »~

(Scond(sta)'>g1,92) (Bcond (sta)),

<"error" inR, 1>
Vcond, Scond, Bcond as in table 2.
applyll opell €G
applyl[l opell = Asta.<Vapplyll opell (sta) + (Bapplyll opell (sta)) inR,
"error" inR
; 1>

Vapplyll opell , Bapplyll opell as in table 2.

assignl|[ idel]]l , content[[ ide]]l , pushl[ bas]] , read, write

are defined similarly to applyll opell .
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Program Transformations

We now consider how to validate program transformations like

the one mentioned in the introduction where x := y + (1+1)

was replaced by x := 4. This is achieved by theorem 1 below.

To specify program transformations we need some operations

upon parse-trees. Rather than giving formal definitions using
concepts from tree replacement systems [10] we give informal
explanations. Let "occ points into syn" mean that there is a
node in syn that has occurrence occ and is of syntactic category
Cmd or Exp. In that case "syn at occ" denotes the subtree of syn
with that node as the root. Let occ point into syn and suppose
syn at occ and syn' belong to the same syntactic category. Then
syn [occ « syn'] denotes the parse-tree that is syn with syn at occ
replaced by syn'. We also need some notation to state properties
of the collecting semantics. Let "pla is a descendant of occ”
mean that platl = occ§occ' for some maximal occ' and that
pla¥ € {"L", "R"}. Define the additive function filter from
P(Ssta + {"error"}) to P(Sta) by filter (R) = {(r | Sta)l r € R A

(r E Sta) = truel}. Furthermore abbreviate

condtrue = Asta.<Vcond(sta) -» Scond(sta) -» (Bcond(sta)) inR,

"error" inR, "error" inR, 1> and

condfalse = Asta.<Vcond(sta) - Scond(sta) - "error" inR,

(Bcond (sta)) inR, "error" inR, 1>,

The proof of theorem 1 uses properties Ca, Cb, Cc and Cd.
Property Cb relates data flow information for program points
on each side of a syntactic subphrase. Property Cc relates
adjacent program points (e.g. <occ, "L"> and <occ§<1>, "L">
which often denote the same program point). It is stated by
cases of the syntactic construct. For the construct cmd1;cmd2
the properties Cb and Cc are sketched in figure 2 (arrows cor-
respond to places and dotted rectangles correspond to syntactic
constructs). Property Cd is used in the proof of properties

Cb and Cc. Among other things it says that subphrases can only
supply data flow information for program points contained in

them.
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pla, = <ocec,"L">

pla, = <occ8<i>,"L">
pla3 = <occ§<1>,"R">
pla4 = Locc§e2s, "L
pla5 = <occ§<2>,"rR">

pla6 = <occ,"R">

ce Cb Ce Ch (not needed)
FIGURE 2
Property Cb Let syn € Syn, occ € Occ be maximal, sta € Sta

and occ' € Occ point into syn and abbreviate a-col = Tcolll syn]]

occ sta‘¥2. Then a-col<occ§occ', "R"> =

filter {Tcol[l syn at occ']] < > sta'+1 | sta' € a-col<occ§occ', "L">}

o

Property Cc Let syn € Syn, occ € Occ be maximal, sta € Sta

and occ' € Occ point into syn and abbreviate a-col = Tcoll[ synl

occ stev2.

If syn at occ' is exp, ope exp,

then a-col<occ§occ'§<1>,"L"> a-col<occ§occ',"L">
a-col<occ8occ'§<3>,"L"> a-col<occ§occ'§<1>,"R">

If syn at occ' is IF exp THEN cmd1 ELSE cmd2 FI

then a-col<occ§occ'§<1>,"L">

a-col<occ8occ!',"L">
a-col<occ§occ'§<2>,"L"> filter {condtrue(sta')+1 |
sta' € a-col<occ§occ'§<1>,"R">}
a-col<occ§occ'§<3>,"L"> = filter {condfalse(sta')+1 |
sta' € a-col<occ§occ'§<1>,"R">}
If syn at occ' is WHILE exp DO cmd OD

then a-col<occ§occ'<1>,"L"> = a-col<occ§occ',"L"> U

a-col<occ§occ'§<2>,"R">
a-col<occ8occ'§<2>,"L"s = filter {condtrue(sta')+1 |
sta' € a-col<occ§occ'§<1>,"R">}

For the remaining constructs there are properties "similar" to

the one for eXp, Ope exp,.
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Property Cd Let syn € Syn, occ € Occ be maximal, sta € Sta
and pla € Pla. Then

(i) Tcolll syn]l occ sta +2 pla # @ = pla is a descendant of occ
(ii) Tcolll synll occ sta +2 <occ,"L"> = {sta}
(iii) Tcolll syn]l occ sta +2 <occ,"R"> = filter {Tcolll synl]] occ sta +1}

m}

It is possible to prove property Cd first and then Cb, Cc in any

order, but it is easier to prove the three properties jointly.

Proof of Properties Cb, Cc and Cd

The proof is by structural induction and we omit the suffix col.

It is convenient to define a combinator

A EG=XR-t>R XA
by

l

g Ar r E Sta -» g(r | Sta), <r,l>

Then g (sta) g A (sta inR) and (g1*g2) Ar= <g, A (g1 Ar¥l) ¥1,
9, A (g1 Ard1) 42 w 99 A r¥2> as well as cond(g1,g2) Ari2 =

g, & (condtrue A rvi1) ¥2 [, g, A (condfalse A r+i1) +2.

For the structural induction we only consider the case where syn

is WHILE exp DO cmd OD. Abbreviate

glgl = Tl expll occ§<1> » cond (T cmdll occ§<2> % g, attach <occ,"R">)
iter = T[[ expll occ§<1> x condtrue * T[[ cmd]]l occ§<2>
iter*” = JAsta.<sta inR, 1> and iter*(n+1) = iter * iter*" =
iter*n x iter (by * associative)
9, = Asta.T[l expll occ§<1> sta
9, = Asta.Tll cmdll occ§<2> A (condtrue A (Tl expll occ§<1> sta ¥1) +1)

and let pla be different from <occ,"R">.
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Calculations show
(23.9Lg1)™" 1 (sta) +2 (pla) = g,(sta) +2 (pla) ., g,(sta) +2 (pla)
L (Ag.glg™ L a (iter(sta) +1) +2(pla)
so that it can be proved (by induction in n) that
(23.9031) ™" L (sta) +2 (pla) = LJmEOLJ131 g; & (iter*™(sta) 1) +2(pla)

Hence, T[[ WHILE exp DO cmd OD]] occ sta +2(pla)
= attach<occ,"L"> sta V2 (pla)
o Uog g, A (iter*"(sta) +1) +2(pla)
. n
- LJnfO g, A (iter* (sta) +1) +‘2(pla)
Then Cd(i) and Cd(ii) are immediate. For Cd(iii) we have (the steps

are justified below):

Tl WHILE exp DO cmd OD]] occ sta +2 <occ,"R">

= LJ;ZO ((Ag.glg])™ L (sta) +2 <occ,"R">)

= U, filter {(g.glgD™ L (sta) +1}

= filter {T[[ WHILE exp DO cmd OD]] occ sta +1}

The second step follows because
vsta: [(Ag.glgD)™ 1 sta +2 <occ,"R"> = filter {(A\g.glg])™ L sta +11

as can be shown by induction in n. The third step follows because
filter {L} = @ and (Ag.g9lg])™ L sta ¥1 is L or TI[ WHILE exp DO cmd OD]]
occ sta ¥1. The latter result is proved similarly to lemma 1 (or

use lemma 1 and property Ca).

The proof of Cb is by cases of occ'. If occ' = < > the result
follows by Cd, because T[[ syn]l occ" sta +1 is independent of

occ". If occ' = <1>§occ" or occ' = <2>§occ" the result follows

by the hypotheses of the structural induction, the above expression
for T[[ WHILE exp DO cmd OD]] occ sta +2(pla) and the additivity

of filter.
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The proof of Cc is also by cases of occ'. Assume occ' = < > and

consider the first result. It follows from

9, A(iter*o(sta) +1) +2 Roce§<Ts, """ = {sta}
94 atiter* ™V gta 11) 42 <occ§<i>,"L"s = filter {iter* ™ Mgrayr)
9, A(iter*n(sta) +1) +2 <occ§<2>,"R">

Next consider the second result. Abbreviate

r = Tlexpll occ§<1> & (iter*™(sta) +1) +1 so that
Tl WHILE exp DO cmd OD]]l occ sta ¥2 <occ§<2>,"L"> ==
U

. filter {condtrue A r_ +1} and
n=0 n

T[[ WHILE exp DO cmd OD]] occ sta +2 <occ§<13,"R"> =

co

U. £filter {r_ F.
n=0 n
The result follows by the additivity of filter.

If occ' = <1>§occ" or occ' = <2>§occ" the proof is by cases of
syn at occ'. 1In all cases the result follows from the induction
hypothesis and "additivity" (i.e. if x = H(y) is to be proved
then H is additive).

)
Using properties Ca, Cb, Cc and Cd we can prove the following
replacement theorem. In practice one will use an approximate data
flow analysis and descriptions of sets of states [9, 2] rather than

the collecting semantics and a single initial state.

Theorem 1 ("Forward" replacement theorem)

Consider some program syn € Syn and occurrence occ that points into

syn. Let sta € Sta be an initial state and let a-col = Tcolll synll

< > sta +2 be the result of data flow analysing syn.

If - syn' is of the same category as syn at occ, and
syn' behaves the same as syn at occ on each state (sta')
possible before syn at occ (sta' € a-col <occ,"L">)

then syn [ occ « syn'] behaves the same as syn on the initial state

(sta).



18

Proof Let P(occ') be Vsta' € a-col <occ',"L">:

Tstoll syn at occ']] (sta') = Tstoll synlocc + syn'] at occ']] (sta').
The theorem assumes P(occ) and by property Cd the result follows
from P(< >). The proof amounts to showing P(occ'§<i>) = P(occ')

by cases of syn at occ' for (occ'§<i> a prefix of occ). We only
consider the case where syn at occ' is WHILE exp DO cmd OD. Then
i=1 or: i=2 and syn[occ « syn'] at occ' is WHILE exp' DO cmd' OD.
We have both P(occ'§<1>) and P(occ'§<2>): P(occ'§<i>) is by
assumption and P(occ'§<3i>) follows from syn at occ'g§<3-i> =

synlocc « syn'] at occ'§<3-i>.
To show P(occ') abbreviate

Tstoll exp]l] * cond(Tstoll cmd]] *+ g, Asta.sta inR)
Tstoll exp']l » cond(Tstoll ecmd']] * g, Asta.sta inR)

g-stolg]
g'-stolg]

We first show sta € a-col <occ'§<1>,"L"> = (Ag.g-sto[g])” L sta =
(A@.g'—sto[g])n 1l sta. The proof is by induction in n and since the
result is trivial for n=0, consider the case n+1. Let

sta € a-col <occ'§<1>,"L"> so Tstoll expll (sta) = Tstoll exp']l (sta) by
P(occ'§<1>). If the common value is L or "error" inR the result is
immediate, so assume it is sta' inR. Then sta' € a-col<occ'§<1>,"R">
follows by properties Ca and Cb. Unless Vcond(sta') = true and
Scond(sta') € {true,false} the result is immediate. If Vcond (sta') =
true and Scond(sta') = false then (h§.g~-sto[§])n+1 L sta =
n+1J.sta. If Vcond(sta') = true

i

(Bcond(sta')) inR = (Ag.g'-stolgl)
Scond (sta') then Bcond(sta') = condtrue(sta') +1 | Sta is in
a-col<occ'§<2>,"L"> by property Cc. Then Tstoll cmdl]l (Bcond(sta')) =
Tstoll cmd']l (Bcond(sta')) by P(occ'§<2>). Again the result is immediate
unless the common value is sta" inR. From properties Ca, Cb and Cc we
have sta" € a-col <occ'§<1>,"L"> so (Ag.g-sto[g])™*! 1 sta =
(A\g.g-sto[g])™ L sta" = (A\g.g'-sto[g])™ L sta" = (A§.g'—sto[§])n+1 Ll sta
follows by theiinduction hypothesis.
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We now show P(occ'). Let sta € a-col <occ!',"L"> so that
sta € a-col <occ'§<1>,"L"> by property Cc. The above result then gives
Tstoll WHILE exp DO cmd OD]] (sta) = L]n:O (A\g.g-sto[g])™ 1L (sta) =

<o

U, 2y (Ag.9'-sto[g])™ L (sta) = Tstoll WHILE exp' DO cmd' ODIl (sta).

[m}

Theorem 1 can be compared with the results achieved in [4] where
forward (and backward, see section 4) "data flow information" is
exploited to guarantee that transformations preserve the partial
correctness of programs with respect to input and output assertions,
In [4] the semantics is not considered explicitly but is merely
assumed to be such that some constructed verification formulae are
"sound". Theorem 1 above expresses strong equivalence with respect
to a store semantics (that can easily be converted to a standard
semantics). For the method of [4] to be applicable any loop of a
program must be augmented with relevant "data flow information"
(to be proved correct by theorem proving methods). In the present
approach data flow analysis is used to "automatically" compute

(approximations to) the required information.
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4. PROGRAM TRANSFORMATIONS AND BACKWARD DATA FLOW ANALYSES

In this section we show how to validate program transfor-
mations that exploit backward data flow information. An example
is the tranformation mentioned in the introduction where
x := y + (1l+l)was replaced by a dummy statement. The intention
is to specify the backward data flow information in an abstract
way (using a so-called future semantics) similar to the collec-
ting semantics of the previous section. It is possible to re-
late data flow analyses like "live variables analysis" [1] and
"states that do not dead to an error" [3] to the future seman-
tics, and the replacement theorem guarantees weak equivalence.
Strong equivalence can be obtained by applying the replacement
theorem twice (by also data flow analysing the transformed pro-
gram). In a special case we are able to obtain strong equiva-

lence even when only the original program is data flow analysed.

Future Semantics

The purpose of the future semantics is to associate each
program point with the meaning of the remainder of the program.
The dynamic effect of the remainder of the program can be gi-
ven by a continuation [11] so it seems natural to associate a
continuation with each program point. The continuations to be
used are those that would naturally be used in a eontinuation
style store semantics, e.g. members of C = Sta -c¢> (Out+{"error"})
and the obvious "final" (or initial [11]) continuation is

Asta.sta +3 in(Out+{"error"}).

The future semantics is given by tables 3 and 5. Domain

C = Sta -c> R is the domain of continuations. As in the pre-
vious section domain A = Pla -c> C is used to associate each
program point with the desired information (here a continuation).
Combinator * is associative and auxiliary functions cond' and

® satisfy that cond'(g1—sto e c, gz—sto & c) = (cond-sto(qT—sto,
gz—sto)) ® c and (g1—sto o g2-sto) ® c = g1—sto @ (gz—sto @ c).
We shall use suffix fut for the future semantics.
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The first component of the semantic function (i.e. Ac. Tfutll synll
occ ¢ ¥1) is an ordinary continuation style store semantics. The
store semantics of section 3 is the continuation removed version
of this continuation style semantics. This is formally expressed

by the following property (an analogue of Ca).

Property Fa Let syn € Syn, occ € Occ be maximal and c¢ € C. Then

Tfutlisyn ]] occ c +1 = Tstollsynll ® c. o

Proof of Property Fa is by {(an omitted) structural induction.

[m}

The second component of the semantic function applied to some
continuation (i.e. Tfutllsyn ]l occ c +2) maps a program point

to the continuation corresponding to the remainder of the pro-
gram. This gives an abstract way of specifying backward data flow
information that is similar to the collecting semantics. To ob-
tain a replacement theorem we need to state some properties (Fb,
Fc and Fd) of the future semantics. These properties correspond
closely to Cb, Cc and Cd of section 3, except that intuitively

information now flows from right to left rather than left to right.

Property Fb Let syn € Syn, occ € Occ be maximal, ¢ € C and occ'€ Occ

point into syn and abbreviate a-fut = Tfutllsyn ]l occ ¢ +2. Then
a-fut<occ§occ', "L"> = Tfutllsyn at occ' ]l < > (a-fut<occ§occ', "R">) 4
= ]

Property Fc Let syn € Syn, occ € Occ be maximal, ¢ € C and occ'€ Occ

point into syn and abbreviate a-fut = Tfutllsyn ]l occ c ¥2.
If syn at occ' is WHILE exp DO cmd OD
then a-fut<occ§occ'§<2>, "R"> = a-fut<occ§occ', "L">
a-fut<occ§occ'§<1>, "R"> = cond' (a-fut<occ§occ'§<2>, "L">,
a-fut<occ§occ', "R">)
For the remaining constructs there are more or less similar proper-
tiegs.

o

Property Fd Let syn € Syn, occ € Occ be maximal, ¢ € C and pla € Pla

Then

(i) Tfutl[syn ]l occ ¢ ¥2 pla#=l =pla is a descendant of occ
(ii) Tfut[[syn 1l occ ¢ +2<occ, "R"> = ¢

(iii) Tfutllsyn ]l oce ¢ +2<occ, "L"> = Tfutllsyn ]l occ c +1
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TABLE 5: Future Semantics

Domains
G = C -c> (CxA)
C = Sta -¢> R
R = Out + {"error"}
A = Pla -c> C

remaining domains as in tables 2 and 4.

Combinator
* € G x G -c> G
94 * g, = Ac. <g1(g2 c ¥1) 41, 91(92 c +1) ¥2 g, ¢ ¥2>

Functions
attach € Pla -c> G
attachi(pla) = ke. <¢, JLlcfplal>

cond € G X G -c> G
oy [}
cond(q1, gz) = Ac. <cond (g1 c +1, g, © ¥1) , 9, ¢ +2LJg2c:+2>
where cond' € C x C -c> C
is cond'(c1, c2) = Asta. Vcond(sta) -
r

(Scond(sta) - Cyr 02) (Bcond (sta))

"error" inR
and Vcond, Scond, Bcond are as in table 2.

apply [[ope ]l € G
apply [lope ]l = Ac. <apply-stollopell ® c, 1 >
where & € G-sto x C -c> C
is g-sto ® ¢ = Asta.g-sto(sta) E Sta » c(g-sto(sta)| Sta),

"error" inR

assign[[ide ]] , content[[ide ]] , pushl[bas ]l , read, write

are defined similarly to applyllope ]l .
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Proof of Properties Fb, Fc and Fd is by structural induction and is

omitted.
a

Using properties Fa, Fb, Fc and Fd we can prove the following re-
placement theorem, which expresses weak equivalence. The statement
of the theorem makes use of the phrase syn' followed by c', which

means Tsto[[syn']]l ® c'.

Theorem 2 ("Backward" replacement theorem)

Consider some program syn € Syn and occurrence occ that points
into syn. Let ¢ € C be a "final" continuation and let a-fut =
Tfutllsyn ]l € > ¢ ¥2 be the result of data flow analysing syn. If

"syn' is of the same category as syn at oecc,
and "for the continuation c' holding after syn at occ (c'= a-fut
<occ, "R">) that syn' followed by c' is less defined than

syn at occ followed by c'

then synlocc«syn'] followed by the final continuation (c) is less
defined than syn followed by the final continuation. o
Proof Let P(occ') mean that for c¢' = a-fut<occ', "R">:
Tstollsyn at occ' ]1 ® ¢' = Tstollsyn [occ <syn'lat occ'll ® c'.

The assumption is P(occ) and the result follows from P(< >) by
property Fd. The proof consists in showing P(occ'§<i>) = P(occ')
by cases of syn at occ' (for occ'§<i> a prefix of occ). We only
consider the case where syn at occ' is WHILE exp DO cmd OD. Then
i € {1,2} and synfocc«syn'] at occ' is WHILE exp' DO cmd OD and
we have both P(occ'§<1>) and P(occ'§<2>).

Define two abbreviations
g-stolg] = Tstoll expll * cond(Tstoll cmd]] * g, Asta.sta inR)
g'-stolg] = Tstoll exp']l * cond(Tstoll cmd']] * g, Asta.sta inR)

We first show FIX(Ag.g-sto[g]) ® c' 2 (Ag.g'-stolg])® L & ¢' for
¢' = a-fut<occ', "R">. The proof is by induction in n and the re-

sult is easy for n = 0, so consider n + 1. By Fa, Fb and Fc we have
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a-fut<occ'§<2>,"R"> = FIX()Ag.g-stolg]) & c' so

a-fut<occ'§<2>,"L"> = Tstoll cmd]] ® (FIX(Ag.g-stol[gl) & c')

= Tstoll cmd']] ® ((Ag.g'-sto[g])™ L & c") by Fa, Fb, P(occ'§<2>)

and ® continuous. Proceeding in this way a-fut<occ'§<1>,"R">

= cond' (Tstol[ cmd]] ® (FIX(Ag.g-stolgl) ® c¢'), c')

2 cond' (Tstol[ cmd']] @ ((Aé.g'—sto[&])n 1l ®c'), ¢') and

Tstoll exp]l ® cond' (Tstoll cmdll ® (FIX(Ag.g-stol[gl) & c'), c')

3 Tstoll exp'll ® cond' (Tstoll cmd']l & ((Ag.g'-sto[g])™ L @ c'), c')
i.e. g-sto[FIX(Ag.g-stolgl)] ® c' 2 (AF.g'=-stolg)™*1 1L & c'.

Then Tstoll WHILE exp DO cmd OD]] ® ¢' = g-sto[FIX(Ag.g-sto[g])] @ c'
= |] n20 ((rAg.g'-stolg)])™ 1L ® c') = Tstoll WHILE exp' .DO.cmd' OD]] @ c'.

[m}

Even if we assume that (in the notation of the theorem) syn' followed
by ¢' is equal to syn at occ followed by c' we cannot obtain that
syn[occ « syn'] followed by c is equal to syn followed by c. The
following example shows that this must be so. Consider the program
READ (x); WHILE x > 0 DO x := 0-x OD; WRITE(0) followed by the final
continuation ¢ = Asta.sta v3 inR that simply emits the output. The
continuation c¢' holding immediately before OD is Tsto[[ WHILE x > 0
DO x := 0-x OD; WRITE(O)]] ® ¢ so that x := 0+x followed by c' is
equal to x := 0-x followed by c'. But the above program always
terminates whereas the transformed program READ(x); WHILE x > 0

DO x := 0+x OD; WRITE(O) loops on some inputs. Intuitively, this

is because the continuation holding before OD is affected by the
transformation. So as in [4] only weak equivalence is obtained, but
even._then there are advantages. of using the present approach: We
consider a formal (store) semantics and WHILE loops need not be

augmented with assertions.

By applying theorem 2 twice we can obtain strong equivalence.
First apply it fo syn and then to synl[occ <« syn'], so that both
syn and synl[occ +syn'] are data flow analysed. Since syn =
(synlocc «+syn']) [occ «syn at occ] this gives conditions for when
syn followed by some final continuation (c) equals syn[occ<syn']
followed by the same continuation. This is the desired result
since only the output of a program is important (i.e. ¢ = Asta.
sta +3 inR), but it is slightly unsatisfactory that also the

transformed program has to be data flow analysed.
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Liveness Semantics
Many backward data flow analyses can be related to the fu-

ture semantics and viewed as approximating it. One example is
the determination of states which do not lead to an error [3].
Consider some program (syn) and final continuation (c). If ¢!
is the continuation holding at some program point pla

(c' = Tfutllsynl]l € > ¢ +2 pla) then the set of states not
leading to an error is {sta € Sta | c'(sta) # "error" inR}.
Another example is "live variables analysis" [1] that is a syn-
tactic way of associating each program point with a set of
live identifiers. Correctness of "live variables analysis" im-
plies that if some identifier (ide) is deemed not to be live

at some program point (pla) then the continuation holding there
(c' = Tfutllsyn ]l < > ¢ +2 pla) must produce the same output
(c'(sta1) = c'(staz)) for any two states differing only on that
identifier (sta1 ¥1 = sta, H[sta1 ¥1[[ide ]] /ide] and sta, +i =
sta, ki For 4 # 1),

By the above correctness condition for "live variables analy-
sis" we can validate program transformations exploiting live-
ness information. But both the original and the transformed
program has to be data flow analysed, contrary to what is done
in practice. We therefore define a liveness semantics (suffix
liv) that computes "live variables" and we sketch how to obtain
strong equivalence when only the original program is data flow
analysed. The liveness semantics (tables 3 and 6) operates in
essentially the same way as the future semantics. The most in-
teresting functions are assign[[ide ]] and content[[ide ]l . It is

easy to see that * is associative.

Property La below expresses the connection between the store
semantics and the first component of the liveness semantics.
For this we need a predicate l-similar such that sta1 is l-si-

milar to sta2 1 sta.I and sta2 differ only on identifiers not

in the set 1 of live identifiers,i.e. sta1 = <env1, inp,out,
tem> = 3env2:[sta2 = <env2, inp, out, tem> A ide € 1 = env1[[ide]]=

envzﬁide]]].
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TABLE 6: Liveness Semantics

Domains
G =1L -c> (L x A)
L = P(Ide)
A = Pla -c> L

remaining domains as in tables 2 and 4.

Combinator
* € G x G =-c> G
* =
94 9, Al <g1(g2 1 +1) +1, g,l(g2 1 41) 42 95 1 42>

Functions
attach € Pla -c> G
attach(pla) = 11.<1, L[1l/plal>

cond € G x G -c> G
cond(g,, 9,) =9, U 9,

applyllope 11 € G
applyllope 1 = A1.<1, 1 >

assign[[ide ]l € G
assign([ide ]] = A1.<1 - {ide}, L1 >

content([[ide ]] € G
content{[ide ] = Al.<1 U {idel}, 1 >

pushllbas ]] , read, write are defined similarly to applyllope 1] .
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Also define syn, to be <11, 1lr> - related to syn, when r, =

TstoHsyﬁj]stai satisfies that if sta1 is 1ll-similar to sta,

_ _ _— ; ol i
then r1 r2 or ri stai inR with sta1 lr-similar to sta2 §

Property La Let syn € Syn, occ € Occ be maximal, lr € L and

11 =T livllsyn ]l occ 1r +1. Then syn is <11, 1lr> - related to syn.

(m}

Proof of Property La is by structural induction. Lemma 1 is
used when syn is WHILE exp DO cmd OD. We omit the details.

We omit stating properties Lb, Lc and Ld that are analogues
of Fb, Fc and Fd. Using these we can prove the following re-
placement theorem guaranteeing "strong equivalence" using on-

ly one data flow analysis.

Theorem 3 Consider some program syn € Syn and occurrence OCC

that points into syn. Let 1 € L be a set of live identifiers

and let a-1liv = Tlivl[syn ]l < > 1 ¥2 be the result of data flow

analysing syn. If

‘syn' is of the same category as syn at occ,

and “for the sets 11 and lr of live identifiers before and
after syn at occ (11 = a-liv <occ, "L"> and 1lr = a-liv
<oecy "R"Z) that syn* is <11, 1lr> - related to syn at occ

then synl[occ+syn'] is <Ide, 1> - related to syn.

Proof is similar to that of the previous theorems. For the WHILE

case lemma 1 is used. We omit the details.

When synl[occ+syn'] is <Ide, 1> - related to syn we clearly have
that synl[occ+syn'] followed by ¢ = Asta.sta +3 inR equals syn
followed by c .
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Hopefully the above development can be generalized so that the
liveness semantics 1is replaced by a more abstract formulation.
The future semantics gives information about program points
(the effect of the remainder of the program) and the liveness
semantics also does so: If 1 is the set of identifiers live

at some program point then any two l-similar states produce the
same output. Additionally, the liveness semantics gives infor-
mation about program pieces (the concept of <l1, 12> - related).
Perhaps the future semantics should be augmented with (suitable

generalizations of) such information.
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5. CONCLUSION

We have shown that it is possible to validate program trans-

formations that exploit data flow information. We have aimed

at using an abstract formulation of data flow information in
order to factor out the details of approximate analyses. For

the "forward" transformations this has been completely success-
ful: By only data flow analysing the original program we ob-
tained strong equivalence (theorem 1). For practical purposes

the use of the collecting semantics can be replaced by a more
approximate data flow analysis [9]. Theorem 1 on "forward" re-
placements can of course be combined with theorems 2 and 3 on

"backward" replacements.

For the use of backward data flow information the abstract for-
mulation (the future semantics) is less satisfactory since only
weak equivalence is obtained. To obtain strong equivalence both
the original and the transformed program must be data flow ana-
lysed. In the special case of transformations exploiting live-
ness information we were able to dispense with the data flow
analysis of the transformed program. If this special case can
be generalized it will be worth-while to characterize backward
data flow analyses with respect to the abstract formulation

(in the spirit of [2, 3, 91]).
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