ISSN 0105-8517

Using computation sequences

to define evaluators for attribute grammars

by

Hanne Rlis Nielson

DAIMI PB-139
November 1981

Computer Science Department ‘Elj
AARHUS UNIVERSITY %

Ny Munkegade — DK 8000 Aarhus C — DENMARK _% ,
Telephone: 06 — 12 83 55]
= -

i

Ulsing computation sequences

to define evaluators for attribute grammars

Abstract

An evaluator for an attribute grammar takes a derivation tree as
input and produces a computation sequence for it as output. We give
a simple but general construction of an evaluator for any well-defined
attribute grammar and we prove its correctness. Evaluators for several
subclasses of attribute grammars can be constructed by changing a
preprocessing stage of the evaluator. As an example we consider the

absolutely well-defined attribute grammars.

Keywords

well-defined attribute grammars, absolutely well-defined attribute

grammars, evaluators, computation sequences, proof of correctness.

1. INTRODUCTION

Attribute grammars are introduced by Knuth as a tool for associating
meanings with strings of context free languages ([9]). An attribute
grammar is an extension of a context free grammar: each symbol has
associated with it a fixed number of attributes and each production has
associated with it a set of semantic rules defining some of the atiri-
butes of the symbols in terms of others. To each node of a derivation tree
we associate attributes corresponding to those of the symbol labelling
it. The semantic rules of the productions are used to evaluate the attri—
butes of the nodes. The meaning of a string is obtained by first con-
structing a derivation tree for it, then evaluating the attributes of the
tree and finally, taking the tree decorated with attribute-values as the
meaning. We will consider a part of this process, namely that of deter—
mining an order in which to evaluate all the attributes of a derivation
tree without violating their dependencies. Such an ordering is called

a computation sequence ([10], [11]).

A device that takes a derivation tree as input and produces a computation
sequence as output will be called an evaluator. An evaluator can be thought
of as a recursive routine taking a node of the derivation tree as para-
meter — we say that it visits the node. At a node the evaluator can perform
two Kinds of actions: it can append a set of attributes to the computation
sequence it constructs or it can call itself with one of the sons of the node
as parameter. The evaluator can perform any sequence of actions before

it returns. Examples of evaluators that obviously follow this scheme
are given by [2], [3], [6], [7], [8] and [12].

In this paper we present a simple but general evaluator. We show how to
construct an evaluator for any well-defined AG and we prove its correct-
ness. We compare our evaluator with others, especially that of [8]. We
claim that our evaluator is simpler in that evaluators for several sub-
classes of attribute grammars can be constructed by just modifying a
preprocessing stage. The nature of this preprocessing stage is intimately

connected with one way of characterising subclasses of attribute grammars

([10]).

2. PRELIMINARIES

This section contains a review of Knuth's original definition of an attribute
grammar ([9]) together with the definition of a computation sequence

(adapted from [10]).

An attribute grammar (abbreviated AG) is an extension of a context free

grammar G = (VN, VT,P,S). To each symbol F of V| there is associated
a finite set 4(F) of inherited attributes and a finite set 8(F) of synthesized

attributes . We shall assume that J(F) and §(F) are disjoint sets for all
symbols F and furthermore that S has no inherited attributes. Each
(inherited or synthesized) attribute & takes values in a set Da. Each

: . o & =
production p: Fo=V oF 11 Viec 1F Vi (F € VN? Vi € Vi * for 0= j=k)

of P has associated a set of semantic funct:ons. For each o in 8(F) (resp.

in J(F), 1< j<Kk) there is a (semantic) function qu (resp. f) of func—
tionallty Dqg i xD =DD (m andgg depend on @ and j). Eachggl is an
attribute of e|ther‘ J(F) or of S(F) for some 4, 1< 4 < k.

The semantic functions are used to assign meanings to derijvation trees and
thereby strings of the underlying context free language. Consider a deri-

vation tree t and a node n in t where the production p: F_ 2 v FIV

0 0 1°°°
k1" KV s applied. For each ¢ in 8(F) the function ngg. le oo B

D = D assomated with p can be used to deter'mme the value of ¢ at n

e V

when the values of all the attributes Bqseeesl have been determined.
Similarly, for g in J(Fj) (1< j< k) the functmn fja associated with p is
used to determine the value of ¢ at the j'th son of n. If it is possible to
determine the values of all attributes of any node in t as described then the

meaning of t will be t decorated with these values.

The semantic functions associated with the production p: F =+ v F' 1Vq oo

cee V deflne a dependency graph D(p) for p. D(p) has one node

k- 1

[j.a] for each attribute & Och(Fj) U S(I:J.), 0<j<k. If fjog: Da % www K D&
1 m

- D& is a semantic function associated with p and o; is an attribute of

FJ (1< i< m) then there will be an arc from [‘ii'ai] to [j.e] in D(p). These

1
are the only arcs of D(p).

A partition of the attributes of a symbol F ([5]) is a non-empty finite

sequence

1°°° " 2m

satisfying

. A2i—1 c I(F) and AZi

. A]U UAZm = J(F) U 8(F)

. AinAj=¢ fori$j, 1<i,j< 2m

cg(F) for 1<i<m

Let HF be the set of partitions for the symbol F. For the production

p: FO - VOFTVT - Vk—1’:kvk consider any sequence

ﬂ'p = (hI,AT) (hP,AP)

where OﬁhiskandAEQJ(F‘h)Us(F-'h)for 1<i<r. For 0< j< k define
i i

ﬂ'p(j) = A, ... A,

l1 'm

1
ff_ is a partition of the attributes of p if for 0< j < k ’n’p(j) is a partition

where i, < ... <imand{£| b, =1 1<g=<r} =§i1,...,im}. The sequence

of the attributes of FJ,. ﬂp satisfies the dependency graph D(p) for p if for
all £, 1< 4 <r, and for all g TnAz
if there is an arc from [i.8] to [hﬂ.g] in D(p)

then for some £', £'< 4, BE A ,and 1 =h£,

J/

Let Hp 7 be the set of partitions of attributes of p satisfying D(p) and with
?

'rrp(o) =1,

We shall assume that the context free grammar G has no useless symbols

([1]). Consider a derivation tree t of G. Each interior node of t is labelled
with a symbol of VN and has (also) associated with it a sequence of positive
integers called the location of the node. The location of the root of t is the

empty string A and the location of the j'th son of a node with location n is

n§j. We will not distinguish between a node and its location. The subtree

of t whose root is n is denoted t(n)' If the production p: Fo - VOF:IVT B
+ Vi _1F VY [s applied at n, we will write tn) = FO[t(n§1(;])' . t(n§k)]'

The part of t with t(n) Memoved except n itself is denoted t''*. DT(G) is

the set of derivation trees for G.

Let p: FO -+ VOFIV] ae Vk—1r:l<vl< be the production applied at a node n

in a derivation tree t. A walk s through t(n) is defined recursively by

+ X is a walk through t(n)’ the empty walk
o i i o i <j. <
if s: is a walk through t(n§ji) for 1<isr, 1< i = By 2,

and if Al c J(I‘—'O) and A_ < 8(F0) then

S
s = (n,AI)s1 sr(n,AS)
is a walk through t(n)

if s and s! are walks through t(n) then so is ss!,

Consider a node n! in t(n)' Then s(t(n,)) is the walk through t(n‘) obtained
by removing all pairs (n", A") from s where n" does not occur in t(n')'

t
Similarly, s(t(n)) is the walk through t(n) obtained by removing all pairs

(', A') from s where n'" # n' and n" is a node in t(n')' Let p!': Fi - va'lv'1 cen

. VI‘<-—7FI‘<‘VI1<' be the production applied at n'. We define a modified
restriction s(n',p') to n! and its direct sons n'§1,...,n'§k! by 1) removing
all pairs (n", A") from s where n'" # n' and n'" # n1§j (1< j< k') and 2)
replacing each of the remaining pairs (n',A) by (0,A) and each of the pairs
n'§j,A) by (j,A), 1< j=< k. Furthermore define s(n') as s(n',p')(0).

The walk s through t(n) is a computation sequence for t(n) if

» s(n,p) is a partition of the attributes of p satisfying D(p)

- S(t(n{jj)) is a computation sequence for t(n§j) for 1= j< k.

The set of walks through complete derivation trees of G is denoted W(G).

Finally, an AG is well-defined if each derivation tree has a computation

sequence ([11]). In this paper we shall only consider well-defined AGs.

We close this seciion by presenting an AG that will be used in examples
throughout this paper. The underlying grammar has two non-terminals

A and S with attributes:

{a,B}
{v,6}

J(s)
8(s)

@ J(A)
{el g8(A)

Each attribute has the set of integers associated. The productions of the
underlying grammar are listed below together with the associated semantic

functions.,

Pyi S+ AA [0.e] = [T.y] + [2.y]
(M) = [2.6] [1.8] = 1
[2.0] = [1.6] [2.8] = [2.¥]
Pyt A aA [0.y] = [1l.y] [0.6] = [1.6]
[1.a] = [0.q] [1.8] = [o.8]
P3i A=b [0.y] = [0.«] [0.8] = 0
Py A=c [0.y] = 2 [0.86] = [0.8]

3. THE EVALUATOR

In this section we will motivate our definition of an evaluator and compare

it with other evaluators, primarily that of [8].

As mentioned we think of an evaluator as a recursive routine that takes a
node of a derivation tree as parameter. When visiting a node the evaluator
will perform a sequence of actions before returning. The main difference
between the evaluators in the literature is how they determine which
sequence of actions to perform. In the approach taken by Kennedy and
Warren ([8]) the sequence of actions is determined from two types of
information. There will be a flag (called a quiescent state by [8]) at each
node telling essentially what has happened at the previous visits to the node
(if any). The second information will be given by an extra parameter of the
evaluation routine. It is a state that summarizes what has happened since
the last visit to the node. The state is called an input-set in [8]; our
terminology is motivated in the tree-automata theory (see e.g. [4]). From
the flag at the node and the current state the evaluator chooses one of a
fixed set of sequences of actions and determines which flag to set at the
node when returning. Briefly, the evaluator will consist of a set T of flags,
a set Q of states and two tables GOTO and PLAN. Given a flag and a state
the GOTO-table determines an index {called an entry state in [8]) which is
an element of a set | . Using this index, the PLAN-table gives the sequence
of actions to be performed and the new flag. Finally, there is a relabelling
r determining the initial flags of the nodes of each derivation tree and there
is an initial state dg* For a production p: FO -+ VOFIV1 - Vk-—-1Fka an
action is either an entity [j.@]| where ¢ is an attribute of Fj (0< j<K)

or it is a visit instruction VISIT(j, q) where q is a state (1< j< k). The

evaluator for the example AG is in table 1.

Table 1. The Kennedy & Warren evaluator for the example AG

z = {ojl

7 : arelabelling determined by

if t = S[t“)t(z)] then r(t) = {S,UT)[r‘(t(”) r(t(z))]

1< j< 14}

ift= A[t“)] then r(t) = (Atos)[r (t(1))]

ift= A[], P53 A = b is applied then r(t) = (A,o,?)[]

ift= A[], P, A = cis applied then r(t) = (A,c“)[]
| = {1j! 1< j<13}

qqg Is initial

GOTO: Zx Q =+ | (apartial mapping)

91 02 93 94 U5 9 Oy Og Og 049 Oy Uqp O3 Oy
qo '1 - - - = = - - - - - - - -
W= = 2= = = g - - = Q= = =
BIT 5 &8~ = = = = 85 Iy & = -
ST T 7 e s - - g g = = iy iy -

PLAN : | »+ {sequence of actions} x T, (a total mapping)

sequence of actions 2
i [0.-] [1.8] VISIT(I,qz) [2.a] VISIT(Z,ql)[Z.ﬁi]

VISIT(2,q5) [1.a] VISIT(1,q5) [0.€] 0o
iy [1.a] VISIT(1,q,) [0.v] o,

Iy [1.8] VISIT(1,q,) [0.6] Og
i, [[1.8]VISIT(1,q5) [0.6] Og
ig | [1.a] VISIT(1,4q3) [0.y] Og
i6 [0.7] Og
in [0.6] 0g
ig | [0.8] 910
ig [0'7] 0’10
1o | [0-7] g
i,y | [0.6] 013
1o [0.8] 014
i3 [0.¥] 014

The evaluator behaves as follows when applied to a derivation tree t:

1. Each node in t is flagged by its initial flag as determined by 7y

2. the algorithm EVALUATE(A,qO,s) below is called; s will be a

computation sequence for t.

Algorithm EVALUATE(N, q, s); call-by-value: n,q; call-by-result: s

1. let ¢ be the flag of the node n, and let s =) ;
let i = GOTOl(g, q) and let PLAN(i) = (al cee @ ,0')

2. for £ =1 to mdo
ifa, = [0.¢] then append (n, {@}) to s;
if a, = [i.-a], j# 0 then append (n§j, {a}) to s;

if a, = VISIT(j,q') then call EVALUATE(n§j,q',s') and

append s! to s

3: let g! be the flag of n

The main difference between the approach of [8] sketched above and
ours is that we do not allow the evaluator to change the flags at the
nodes. All information needed in order to choose the wanted sequence
of actions to be performed must be given by the (initial) flag of the node
and the current state. Briefly, our evaluator will consist of a set &

of flags, a set Q of states and a transition mapping 6 that given a flag

and a state determines a sequence of actions (for a production).
Furthermore there is a relabelling r putting flags on the nodes of the
derivation trees and there is an initial state dg- The evaluator behaves
almost as that of [8], the main difference being that the flag is not

changed.

In our formal definition we will make a slight change in the form of a

sequence of actions, Let p: FO - VOF 1Vy oo Vk—IFka be a production,

A sequence of actions for p has the form

(AI’(jI’qT) LA (.jm’ qm),AS)

where AI = J(FO), Ag < S{FO) and (ji, qi) is an abbreviation for VISIT(ji,qi).
This means that when visiting a node we will first "evaluate" some

inherited attributes, next we will visit some of the sons of the node and
finally we will "evaluate!" some synthesized attributes. In practice other
interpretations of a visit may be useful, however we believe that most

of them can be simulated by our interpretation. Formally we define

An evaluator for an AG with underlying context free grammar

G = (\/N,\/ P,S) is a tuple

T’

M=(Q,%,8, ao,r)
where

s Q is a finite set of states
* L is an alphabet of flags

» 0 is a family of transition mappings §6p} pEP

For p:F_. = v FTV Y

0 0
functionality

F, v ép is a partial mapping of

1°°° "k=1 k'k?

Op QX I 4 PF) x ([1,k] x @)* x P8(F)
where [1,k] ={j | 1= j<k} and P(A) is the set of subsets of the

set A,

J 60 is a finite nonempty sequence of initial states (an element)
of Q%
* r is a relabelling
r:DT(G) =+ DTE(G)
where DTE(G) is the set of derivation trees for G except that

the nodes are labelled by elements of VN X L instead of VN.

10

We have a sequence of initial states because we want to allow for the
possibility of several visits to the root of the derivation tree. We now

formalize the algorithm EVALUATE considered above By defining the
-~
behaviour mapping 6:

The behaviour of the evaluator M is defined by the mapping
5:QxDT(G) » W(G)

Let t be a derivation tree and consider a node n of t where the production

P: Fg = VoF vy «es _1F VY s applied. Let (Fo,o) be the label of the node

k
nin r(t). Then for g€ Q
A
6(q: t(n)) =5
if and only if

e ﬁp(q,o') = (AI’('iT’ q'l)"" (jm’ qm)’AS)
. Ci(qj,t(n§ji)) = s, for 1<i<m

¢ s =(n,A|)s.’ cees (n,Al)

The evaluator M defines a translation from derivation trees of G to

walks through derivation trees:

I(M) = {(1,s) | S=8(q1,t)... g(qm,t), ao=q1 ... q_ and

t € DT(G) has root labelled S}

The evaluator M is a correct evaluator for the AG if for all t in DT(G)

with root labelled S there is a computation sequence s such that (t,s) € J(M).

In table 2 we have given our evaluator for the example AG.

11

Table 2. The evaluator M for the example AG

M=(Q,Z,80, 30, r)
where

Q = {aq,,q,
L = {Ui] 0< i< 4
6

épl(qT’UO) = (¢ ’ (1,QT)(Z,QI)(Z,QZ)“,QZ), ’E})

GpE(QT,cr]) = (o} , (1,a,), {¥})
6, (az0q) = ({8}, (1,a,), {6})
8, tapop) = (gl (1,ay), {6})
8, (d2:05) = (el 5 (1,a5), {7})
6, (a3 = (o, x,ivh)
éps(qz,os) = (18} ;s h.]01)
6, (a0, = (B}, X, {8})
6, (az0,) = (el , X, {x})

d =
r a relabelling defined by
ift=3St 1)tz):lthen r(t) = (S,co)[r“(t 1)) r‘(z))]
A[tm] then r!(t) = (A,0)7 (t(”)]and (L) = ’02)[r|:(t{2))]

if t =A[] then r'(t) = (A,05)[] and r1(t) = (A,cr4)[]
M

12

Example

Consider the following derivation tree t of the example AG:

£ S Blth: (S,0,)
N N
A A (A,0,) (A,05)
/| | S |
a A b a (A,0,) b
l
[C

The evaluator of table 2 constructs the following computation sequence

s for t:

s =, @) (1, {81181, {8181, {8} 1, {6})(2, {e})2, {¥})
(2, 18102, {61)(1, {ad)18, {al)18, {¥})(1, iy} Xo, (€})
O

The basic idea of the evaluators of [3] and [12] is the same as that of [8]:
To each node of the derivation tree there is associated a flag that is changed
during the evaluation process. The evaluators for the ordered AGs defined
by [7] do not associate flags with the nodes at all because of the restrictions
imposed on the AGs. The same holds for the pass-oriented evaluators of

[2] and [6].

13

4. CONSTRUCTION OF THE EVALUATOR

In this section we show how to construct an evaluator for a well-defined

AG and we prove its correctness,

LLet us start by analyzing the behaviour of a correct evaluator
M=(Q,%,80, ao,r) when applied to a derivation tree t. Let (t,s) € T(M)

and consider a node n in t where the production p: FO -+ VOFIV1 . Vk-leVk

is applied. Suppose that s(n) = A1 § S AZm so that the node n has been

visited m times. At the £'th visit f(n,Azﬂ_i) and (n,Azz) have been added to s.
If the label of n in r(t) is (Fo,o) and the state at the £'th visit is q then we

have
Op(QsU) = (AZ,@-]’V,Z’AZ,Q,)

for some Vv, We can arrange that Vg can be determined from s(n,p).

Define the sequences Ugseresu by

s(n,p) = (O,Al)u1(0,A2) A (0,A2m“1)um(0,A2m)

Let s(n§j) = Al ... A is a sequence of pairs

1 2m) :
where each pair has the form (j’AJZi-1)U’AJ2i) and specifies the
s Y
replacing each pair (j,AJZE_I)(j,A{,Zi) by (j,i). Since G,E mentions

the numbers of the visits to the sons of n it can be used for vz in the

definition of ép(q,o-) provided we let a state denote the number of a visit.
Thus

for 1= j< k. Thenu

i'th visit to the j'th son. Let Gﬂ, be the sequence obtained from u

A
Gp(Q:U) . (A2q—]’ uq5 A2q)

By assuming that ¢ = s(n, p) we can determine 6p(q,c) directly from g and q.

This analysis motivates the following decisions when constructing the
evaluator M: The states (elements of Q) are numbers of visits and the
flags (elements of T) are partitions of attributes of productions. The

transition mapping 6 is defined as follows. Let !n'p € Z be a partition of

14

the attributes of a production p: FO - VOF:1V1 i G Vk—TFka and let g € Q
be such that 1< g< m where ﬂ‘p(O) = A1. . 'A2m' Definf ERTERRIACIN by
.= (0,Auq(0,A,) oo (0,A, JJu (0,A,) and let Uy be obtained by

replacing (j,AJZi_T)(j,Afzi) by (j,) (here 7 _(j) = Al .AJZm for 1< j<k).
. - A -

Finally, define Gp(q,'n‘p) = (Azq_1,uq,A2q). The relabelling r to be con-

structed will fulfill that if (Fo,ﬂ‘p) is the label of some node n in r(t)

where p: I':O = \.f0|:1v1 & o Vk—1':kvl< is applied at n in t then the label

(F-:"Tpl) of n§j in r(t) will have '_rrp(j) = ﬂ‘pl(O). Furthermore i’rp will satisfy

D(p).

The rest of this section consists of three parts. First we show how to
put restrictions on the sets T and Q to make them finite. Next we construct
the relabelling r using some additional notation and finally we prove the

correctness of the evaluator.

In general a production (and a symbol) has an infinite number of partitions
of its attributes. We will here restrict ourselves to reduced partitions.
A partition f = A1 sii s A2m of the attributes of the symbol F is a reduced
partition if for all i, 1<i<m, A21—1=A2i= @ implies m = 1. A partition
ff_ of the attributes of a production p: F’O -+ VOFIVI i al Vk-—l’:kvk is
reduced if ’frp(j) is a reduced partition of the attributes of Fj for 0< j< k.
It is not a severe restriction just to consider reduced partitions since the
transformations on computation sequences given by [11] easily can be
modified to construct a reduced partition of the attributes of a production
from an unrestricted one. It is easy to see that a reduced partition has

a maximal length and thereby that there is a finite number of reduced partitions.

We can now give a formal definition of the alphabet T of flags:

r= {ﬂ‘p | Fo V0F1Vl Vk—]':kvk is in P and ﬂp is a

reduced partition of the attributes of p}

Given 2 we can define the set Q of states. Let .

|

mQ = max{m] WDGE ancf’ITp{0)=A1 AZm

and define

15

Q={q| 1<q<ma}

The sequence of initial states aO will be defined in connection with the

relabelling r.

In order to specify the relabelling we need some notation and definitions

concerning dependency graphs. A dependency graph for a symbol F has

one node denoted [&] for each attribute @ of 9(F) U 8(F) and maybe some
arcs. Given a production p: FO - VOF1V1 - Vk—IFka and dependency
graphs]_"1, « e g I’k for F TRERE Fk we can construct new dependency graphs

for both p and FO. The dependency graph

D(p) [Ty ... T,

for p will have an arc from [j.a] to [i.8] if and only if there is an arc

from [j.e] to [i.B8] inD(p) or if i = j and there is an arc from] to [B]

in 1"J.. The dependency graph T, for Fy derived from D(p)[l:]"‘i - k] has

an arc from [@] to [B] if and only if there is a non-empty path from

[0.a] to [0.8] inD(p)[T; ... T, J. For each node n of a derivation tree

we define a dependency graph sym(t'(n)) for the symbol labelling it. Let

p: F—'o -+ vol'—'1v1 . » Vk-TFka be the production applied at n. Then sym(t(n))

is the dependency graph for ':0 derived from D(p)ﬂ:sym(t(h§ 1)) “es sym(t(n§k)):ﬂ.
The set SYM(F) of dependency graphs for F is defined by

SYM(F) = {sym(t(n}) | tis a derivation tree with a node n
labelled F}

Finally, a partitionft = A1 o w5 A2m of the attributes of F satisfies a
dependency graph T"for F iffor 1< ¢ andg € A£

if there is an arc from [B] to [@] inT
then for some £', 2' <4, B € A,E'

We now turn to the definition of the relabelling r. Consider a derivation

tree t and let p: FO - VOFT\/1 e 5 Vk—TFka be the production applied at n.

16

The relabelling r that we are going to construct will fulfill:

a) if (Fo,ﬁp) is the label of n in r(t) then ﬁ’p satisfies
D(D)[[Sym(t(n§”) - sym(t(n§k))ﬂ

b) if (F,,7) is the label of n§j in 7 (1) then m1(0) = 7 (i)
(1= j=< k).

Later we will see that a) and b) are enough to ensure correctness of the
evaluator. The relabelling r will operate in a top—-down manner. Given a
partition f of the attributes of I':o satisfying sym(t(n)) we will construct

the flag 'rrp at the node n in r(t). ﬂp determines for each j, 1< j<k,a partition
'rrp(j) of the attributes of Fj satisfying Sym(t(n§j))‘ Thus r can be defined

by a set of rules of the form
The following lemma shows that ﬂ'p exists.

Lemma 1

Consider a production p: F—‘0 Vo vy e Vi 1I: v, and let]_" € SYM(FJ.)

for 1= =< k. IfT is a reduced partition of the attmbutes of FO satisfying the
dependency graph derived from D(p)ﬂ:]_-'.' p—],"k:[l then there exists a reduced
partition 'rrp of the attributes of p satisfying D(p)[[l"1 ce. I‘k]] and with

'np(O) = 1.

Proof Letm =A;... A, and T =D(p)[T, ... I“k:ﬂ. Define for
Beilia] |a€s(F)usF), o<kl

NEW-inh(j,B,T) =
{li-e] | @€ =9(Fj) - B and if there is an arc from
[£.8] to [j.e] iInT then [£.g3] € B}
NEW-syn(j,B,T) =
{li.a] | € S(F’j) - B and if there is an arc from
[£.8] to [j.a&] inT then [2.8] € B}

17

The following algorithm taken from [10] constructs a partition rrp with

the wanted properties:

B :=9; np =X
FORi=1TOmDO
BEGINB :=BU {[0.a] | ¢ € Agi_qls T, = "p(O’AZi-I);
IFi=1THEN
BEGIN FOR each j with J(F.) = @ or NEW-syn(j,®,T) # P, <j<k DO
BEGIN Bg := fa | [j.a] € NEW=-syn(j, @, T)} ;
B:=B U NEW-syn(j,/@,T); # =7 (],8)j,B)
END,
END;
WHILE there is a jwith NEW-inh(j,B,T) #+ @, 1< j< k DO
BEGIN determine the least j with NEW-inh(j,B,T) + @, 1< j < k
B, :=la | [i.a] € NEW-inh(j,B,T)}; B :=B U NEW-inh(},B, T);
Bg:={a| [j.a] € NEW-syn(},B,T)}; B:=B U NEW-syn(j,B,T);
T, = ﬂp(j,Bl)(j,B 5

S
END;
B:=BuU {[0.a] | @€ AZi}; T B np(O,AZi);
END

O

The relabelling r will be defined by a mapping R: {m | 7€ HF for some F}
XDT(G) ~» DTZ(G) as follows: if the production p: Fo ™ VoF vy - - Vi 1P ki
is applied at the root of a derivation tree t and f is a reduced partition

of the attributes of FO satisfying sym(t) then
R(m, t) = (Fo,ﬂ'p)[R(ﬂp(T), b)) oo e REESG), 8)]
where ’rj‘p is the partition for p given by lemma 1. We choose the initial

partition of the attributes of the start symbol as simple as possible:

@ 8(S). If t is a derivation tree with root labelled S then

r(t) = R(® s(s), t)

18

We now see that the root of t will be visited exactly once so we define

the initial sequence of states as

9

From the definition above and lemma 1 we immediately have

Lemma 2
The relabelling r constructed above fulfill that for any derivation tree

t where the production p: FO -+ VOFTVI cee Vi IFka is applied at a node
n we have
a) it (Fo,ﬂ) is the label of n in r(t) then wp satisfies

D(p)[[sym(t(n §1)) ok sym(t(n§k)):ﬂ

b) if (I'—"j,{rrp,) is the label of n§j in r(t) then 'rrp](O) =ﬂ‘p(j)
(1< j<k).
|

This completesthe construction of r and thereby the evaluator M. The con-

struction is summarized below;

16

Construction of the evaluator M = (Q, 7, §, ao,_?")

a={j|1=j<ma}
where mQ = max{m | m € T and ﬂ'p(O)“—- Ay e AZm}

T = {wp | p: Fo ?VgFqVy «os Vi-1F Vi s a production and m,
is a reduced partition of the attributes of p}

01
attributes of p with '_ﬂ‘p(O) = Al' . 'AZm and 1< g< m let

)

& & for p: FO -+ v . F Viee vk_1r—“kvk, T!p € T a partition of the

_ A
05(ai) = (Agq 1 UgrAag

where G is defined from uq where
'rrp- = (0,A1)u1(0,A2)...(O,Azmni)um(O,Azm)

by replacing pairs (j,AJ _10s J2i) by
(3,1 (m (1) = A .. AJij)

For m< g< mQ 6p (q,ﬂ'p) is undefined

r : r(t) = R(@S8(sS),t) where
Rim, 8 = (Fo.m)[R (1), 1)) - o Rl (k) 1,)]
and _ is given by (the algorithm of) lemma 1 applied tof and

D(p)[sym(t(TRER sym(t(k))]
We now turn to a proof of the correctness of M:

Theorem 1

For each well-defined AG there exists a correct evaluator,

Proof We will prove that the evaluator M constructed above is

correct, i.e. each derivation tree t with root labelled S has a computation

sequence s such that (t,s) € JI(M). Letp: F_ + v.F Viees Vv

0 0 1 k- 1 kYK
be the production applied at a node n int and let (FO,’H‘) be the label of
ninr(t) with ¥ (J) "AJ AJ for 0< j < k. By structur‘al induction

1° ZmJ

we will show

(*) for 0 = = m, there exists a walk sa through t() such that
5(C|, ()) 5(q, (n))s is a computation sequence for

t(n) with s(n,p) = 'rrp.

20

At the basis we have p: F. 2 v and . = (O,AO) ... (0 AO). Since
0”0 Py 1 A 2m,
frp € T we have Gp(q,qrp) = (Azq_.',)t, A 2q) for 1< g< mg and thereby

A ~ 0 0
G(T,t(n)) 6(q,t(n)) = (n,A1) (n,Azq)

. _ 0 0o .. . N
By letting S:—’I = (n,Azq_H) . (n,Azmo) it is easy to see that (*) holds.
For the induction step Iet'rr =(0,A)u (0 A) . (0, A Ju (O,A0).
2my~-1"m, 2m,
As before let uﬂ be obtamed from u, by r*epiau:mg each pair
6 2i-1)("’AJZi)by (1,0} l_etu (lm,)... (|x££, x‘6.6). From the
definition of 6§ and 8 we get for 1< < Mot
A i 0 A A 0
G(E,t(n)) o (n’AZz—T) 6(h1£’t(n§i)) G(h>< .G’t(n§i))(n AZ,E)
12 j xzf,
) ” % 1
Define s, = 6(1, t(n)) ... 0(q, t(n)) and
qu_ =max{i | (j.1) occurs |nu1...qur‘i=0}
We then have
) = b(1 J ans)
t . % Bk Y .
° ((n§) ' Y(n§) (qu *(n§)

We can now apply the induction hypothesis to t(n§j)' Since 0 < qu. = mJ.

n§jinr(t) (pJ. applied at n§j in t). Because of the property b) of the relabelling

r (lemma 2) s .(n§j) =1 (j). Let Sqj = sT. i wid qj be such that 5 (I’\§J)

.l J
A 1A2” Given the computation sequences sq1 wisei s sqk for t(n§)20 t(n§k)

and given ﬁp we can construct a computation sequence s for t(n) with
0]
n = d s(t)= .. This is done b eplacing each (0 L) in
s(n,p) T, an ((n§J)) Sai is y replacing (,él) T,
by (n,A?) for 1<i< 2m, and by replacing each pair U’AJZi-1)(j’AJZI) by

s' for 1< i< mj, 1< j=< k. Since ﬁ'p is a partition of the attributes of p

21

satisfying D(p) (lemma 2) it is easy to see that s is a computation sequence

0 0
= 1 n n =
for tn)* Lets=sl... S be such that Si(h) Agi A 5+ For 1=2<qwe

have s'! =s sos =s'"... s!". Thens! =s!! _ ... s" isawalk through
4 £ q 1 q q q+1 mq

A A
t uch] ["
(n) S that s = 6(1, t(n)) 7 e G(q,t(n))sq is a computation sequence for

. = o *
t(n) with s(n,p) 'rrp. This proves (¥).

A A
- - 1 * I . -
By letting g =m in (*) we get that 8(1, t(n)) i 6(m0, t(m))sm0 is a compu
. A 0 0
. < =
tation sequence for t(n)' Since for 1< 4 < my o(2, t(n))(n) A2£_1A2£

it follows that S:’"o =X. So 8(1, t(n)) - 6(m0’ t(n)) is a computation sequence

for t(n)' This proves that each derivation tree t with root labelled S has a

computation sequence s (= 8(1,t)) and (t, s) € T (M).
[o]

22

5. EVALUATORS FOR ABSOLUTELY WELL-DEFINED AGs

The constructions given in the previous section apply to any well-defined
AG as those given by [3] and [12]. Kennedy and Warren's evaluator

([8]) is obtained as a special case of that in [12] and it only applies to the
absolutely well-defined AGs. In this section we will show how to simplify

the construction of section 4 for absolutely well-defined AGs.

In [10] the absolutely well-defined AGs are characterized by properties
of computation sequences. We will first modify the evaluator of section 4
to construct computation sequences with these properties and next we will
show that the relabelling of the evaluator is not needed for this class of
AGs.

From [10] we have the following definitions: An assignment of partitions

to the productions P of an AG is any (partial) mapping
a:Px {n|meN_, FE€ V| —»%ﬂp | €M, for somem,pé€ P}

satisfying that Gi(p,f) is a partition of the attributes of p with G(p,®)(0) = .

A computation sequence s for a subtree t(n) of t is uniform with respect

to G if
. s(n,p) =G(p, s(n)) where p: FoVoFvy--- Vi 1P Vi 1S
applied at n
. s(t(ﬂ§ 1)) is a computation sequence for t(n§j) that is uniform

with respect toG (1< j < k)
And we have the following characterization stated and proved in [10]:

An AG is absolutely well-defined if and only if there is an assignment G

of partitions to productions and a partition To of the attributes of S such that
each derivation tree with root labelled S has a computation sequence s

which is uniform with respect to and has s(\) = ﬂ'o.

23

It is easy to change the evaluator of section 4 to construct these special
computation sequences. In fact, we only need change the relabelling as
it fully determines the computation sequences - remember that s(n, p)

is the flag at the node n. Consider now a derivation tree t where

p: FO b VI SV Vs F, v is applied at the root of t and define for a

o 171 k-1 k'k

partition & of the attributes of FO:

R(ﬂ, t) = (FO,G(D’")) [R(G(p,ﬂ')(1), t(1)). e R(G(D,'ﬂ’)(k); t(k)]

The relabelling constructed in this way can be proven to satisfy lemma 1,
and theorem 1 gives that the evaluator is correct. From the proof of theorem 1
we directly get that the computation sequences have the right form. So we

state

Theorem 2

Consider an absolutely well-defined AG with assignment G of partitions to
productions and initial partition '_ﬂ'o. Then there is an evaluator M for the
AG such that if (t,s) € 3(M) then s is uniform with respect to G and has
siA) =7,.
For the ordered AGs considered by [5, 7| we can simplify the construction
of the evaluator further and we get (almost) the same evaluators as [5,7].
Again it is only necessary to change the relabelling in order to obtain a
theorem corresponding to that above (in fact it can be omitted). For the pass-—
oriented subclasses of AGs considered ine.g. [2] and [6] we can give
characterizations by computation sequences ([10, 5]). It seems to be possible
to construct evaluators which give computation sequences reflecting the pass

properties by only modifying the relabelling of our evaluator.

In the rest of this section we will show that the relabelling of the evaluator
of theorem 2 is in fact not needed. The reason is that it is deterministic
top-down ([4]) and since the evaluator itself also operates in a top-down
fashion, it is possible to remember the relabelling r in the states of the

evaluator. [n general the transition mapping 6 of the evaluator is of the form

24

Gp(q,ﬂp) ='(A|’(j1’q1)"‘(jm’qm)’AS) (*)

where p: FO - VOFTV.]. . 'Vk—IFka and ﬂ‘p is a partition of the attributes

of p. In our case ’ﬁp is fully determined from p and ﬂ'p(O) (via the

assignment G) so (*) can be rewritten as

6;)(<q,fro>, -) = (A],(j1,<q1,G(p,?To)(j1)>)-..

-{J'm,<qm,G(p,iT0)(jm)>),AS) (*¥*)

Thus the evaluator M = (Q,E,G,ﬁo,r') of theorem 2 can be simulated by an

evaluator M' = (Q',T', §!, ao',r') where

F o
. @ Qx{w|ﬂenF,FevN}
S
. 6' is defined from § as indicated by (*) and (* *)
A i A s A -
i Qg' =<qg, 1> (since dg € Q)

. ri i ps FO - VOFIVI' _— Vk—leVk is applied at the root of t then
rit) = <F,-> [r(t(”). . .r‘(t(k))]

(i.e. r is "almost' the identity)

This leads to the following definition: A direct evaluator for an AG is

an evaluator M = (Q, %, §, aO’ r) where

, T (=1{-} is a singleton
. r is the relabelling defined by
r(t) = <Fgy=> [r'(t(”). .. r(t(k)):[

where p: ':0 - VOFTV1. § 'Vk—IFka is applied at the root of the

derivation tree t.

With this definition we easily see that the first part of the following

theorem holds.

25

Theorem 3
An AG is absolutely well-defined if and only if it has a direct evaluator

that is correct.

To prove the second part of the theorem we note that the computation
sequences constructed by a direct evaluator do not have to be uniform
with respect to an assignment G. So we will use another characterization
of the absolutely well-defined AGs, also given in [10]. First we need

define that a property P of computation sequences is preserved under

substitution if for any derivation trees t and t' with roots labelled S and
for any computation sequence s for t with property P the following holds:

i(n) _ 4i(n)

if for some node n, then t' has a computation sequence s!

with property and furthermore s'(t'(n)) = s(t(n)).

The characterization of the absolutely well-defined AGs we are looking
for is as follows: An AG is absolutely well-defined if and only if there is

a property P of computation sequences such that

1) each derivation tree with root labelled S has a computation
sequence with property

2) property P is preserved under substitution.

Now let M = (Q,E,G,ao,r) be a direct evaluator for an AG which is correct.
We will show that the AG is absolutely well-defined. Define that a computation
sequence s has property P if and only if (t,s) € 3(M) for some derivation tree
t. Since M is correct condition 1) above is clearly satisfied. Thus it

suffices to prove that property P is preserved under substitution.

Consider a derivation tree t with root labelled S. To each noden in t we can
associate an element qj. . .qm of Q¥ where qi is the state in which M visited
n for the i'th time, and m is the total number of visits to n. Let st(t,n) =

Aqe -9 be the state sequence associated with n in t.

26

= tl(n)

Now let t! be a derivation tree and assume that for some n, t(n)
by induction on the length of the path from the root of t (t!') to a node

n' in t(n) (t'(h)) we will show that st(t,n') = st(t',n'). If the length of
the path is zero (i.e. n' =)) we have st(t,n') = aO = st(t',n!). So let

n' be any node in t(n) (t‘(n)) and let n!'" be the father of n'. The induction
hypothesis gives st(t,n'") = st(t',n'"). For each state q in the sequence
st(t,n") the transition mapping 6 gives a subsequence of the sequence
st(t,n'). Similarly in t' we can determine st(t',n') from st(t',n"), 6 and
the production applied at n". So it is easy to see that st(t,n') = st(t',n')
and the induction step is completed. Now let s and s! be the computation
sequences for t and t', respectively, constructed by M . Since M is
direct the state sequence st(t, n') associated with n' in t determines
s(n',p) uniquely (p is the production applied at n'). Similarly, st(t', n')
determines s'(n',p!) uniquely. When n' is in t(n) (= t‘(n)) and n' # n we
have s(n',p) = s'(n',p) and it follows that s(t(n)) = s'(t'(n)). This means
exactly that property P is preserved under substitution and the second

part of theorem 3 has been proved.

27

6. CONCLUSION

In this paper we have shown how to construct computation sequences for
derivation trees by an evaluator. We have formally defined evaluators

and have shown how to construct a correct evaluator for any well-defined
AG. Using the characterization of the absolutely well-defined AGs given

in [10] we showed how our construction easily could be modified such that
the evaluator produces computation sequences with some special properties.
In fact only a preprocessing stage of the evaluator needed be changed.

For other subclasses of AGs characterized by computation sequences
similar modifications seem to be possible, Because only a preprocessing
stage of the evaluator has to be changed in order to obtain evaluators
reflecting special properties of AGs we claim that our evaluator is simpler

than the general ones of e.g. [3] and [12].

Acknowledgement

I wish to thank Joost Engelfriet for his helpful comments, especially his

suggestion of theorem 3. Also thanks to Brian Mayoh and Flemming Nielson.

28

REFERENCES

[1] A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation
and Compiling, Volume I: Parsing, Prentice-Hall, Inc., 1972.

[2] G.V. Bochmann, Semantic evaluation from left to right, Comm. ACM,
19 (1976), pp. 55-62.

[3] R. Cohen and E. Harry, Automatic generation of near-optimal
linear-time translators for non-circular attribute grammars,
Conf. Record of the Sixth ACM Symp. on Principles of
Programming Languages (1979), pp. 121-134,

[4] J. Engelfriet, Bottom-up and top~down tree transformations -

a comparison, Math. Systems Theory 9, pp. 198-231.

[5] J. Engelfriet and G. File, Simple multi-visit attribute grammars,
Mem, 314, Twente University of Technology, The Netherlands,
1980.

[6] M. Jazayeri and K.G. Walter, Alternating semantic evaluator,
Proc. ACM 1975 Annual Conference (1975), pp. 230-234,

[7] U. Kastens, Ordered attribute grammars, Acta Informatica 13
(1980), pp. 229-256.

[8] K. Kennedy and S.K. Warren, Automatic generation of efficient
evaluators for attribute grammars, Conf. Record of the Third
ACM Symp. on Principles of Programming Languages (1976),
pp. 32-49,

[9] D.E. Knuth, Semantics of context free languages, Math. Systems
Theory 2, (1968), pp. 127-145,

[10] H.R. Nielson, Computation sequences: A way to characterize
subclasses of attribute grammars, Aarhus University,

Denmark, 1981,

[11] H. Riis and S. Skyum, k-visit attribute grammars, to appear in
Math. Systems Theory (1982).

[12] S.K. Warren, The efficient evaluation of attribute grammars,

Master'!s Thesis, Rice University, Texas, 1975.

29

