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ABSTRACT

A simple algebra-based algorithm for compiler generation is described.
Its input is a semantic definition of a programming language, and its output
is a "compiling semantics!" which maps each source program into a sequence
of compile-time actions whose net effect on execution is the production of a
semantically equivalent target program. The method does not require indivi-
dual compiler correctness proofs or the construction of specialized target

algebras.

Source program execution is assumed to proceed by performing a series of
elementary actions on a runtime state. A semantic algebra is introduced to
represent and manipulate possible execution sequences. A source semantic
definition has two parts: A set of semantic equations mapping source pro-

grams into terms of the algebra, and an interpretation which gives concrete

definitions of the state and the elementary actions on it.

Although simple, the input semantic definitions allow natural expression of
a wide variety of programming language features including many control
flow disciplines. Further, an extension method to allow the use of more

expressive semantic algebras is outlined.

Target programs are essentially flow charts with ""computed goto''; they con-
tain little overhead beyond the elementary actions specified in the source
semantics. Machine code may be generated by macro expansion or traditional
code generation techniques. The method is well suited to bootstrapping -
for example the generated compilers or the compiler generator itself can

be output in flowchart form.

*): at Aarhus University until January 1, 1982,



1. EARLIER WORK IN SEMANTICS-DIRECTED COMPILER GENERATION

Milne and Strachey [MiS76] transformed a fairly large denotational se-
mantic definition into a compiler; subsequent transformational approaches are
described in [Bj#77 ], [Gan80], [Ras80], [Wan80a] and [Wan80b]. At pre-
sent these methods still require considerable creativity and complex correct-
ness proofs (one per compiler) and so have not yvet vielded automatic compiler

generators.

Methods based on partial evaluation of semantic equations (e.g. [Mos79],
[Ers78], [San75], [Set81], [Tur80]) provide more uniformity and generality
but have efficiency problems since compilation proceeds by transformation of
expressions in the semantic definition language. Implementations of this ap-

proach include [Mos79] and [Set81].

The method of [JOSBO] automatically generates correct compilers from deno-
tational definitions using the lambda calculus but produces very inefficient
target programs. The approach is to define a homomorphism mapping lambda
expressions into target programs and to compose this with the semantic equa-
tions, yielding a homomorphism mapping source program parse trees directly
into target programs. The inefficiency comes chiefly from the generality need-

ed in the target code to implement the lambda calculus.

An important decision is the choice of language in which to write the semantic
definition, since several of the foundational and efficiency problems of the

methods above seem to stem from the use of the lambda calculus.

Mosses has written a series of papers ([Mos78], [Mos80], [Mos81]) advocat-
ing the use of algebraic semantic formalisms which express better than the
lambda calculus the intuitive concepts naturally present in computation-se-
quencing, production and consumption of values, binding etc. The benefits
include not only more readable semantic definitions but also greater modul-
arity. Some related ideas appear in [RaS81 ] As we shall see these alter-
nate algebras are also well-suited to compiler generation (this point is also

made in [Mos80]).



Algebraic Approaches to Compiling

A number of papers have been written concerning compiler correctness
proofs and generation in algebraic frameworks ([McP67 |, [BuL69], [Mor73],
[ADJ79], [Gan80], [Mos80], [RaS81]). We now briefly describe two which

are related to the new method.

The left part of figure 1 comes from [Mor73] and [ADJ79]. L is a source
language regarded as a G-algebra, where G is the context-free grammar de-
fining the abstract syntax of L. M is a set containing denotations (meanings)
of pieces of source programs. T is a collection of target programs, and U
contains their denotations. By the '"denotational assumption' the source se-
mantic equations define a homomorphism from L into a G-algebra derived

from M, and similarly for the target semantics.

(.
semantic \\ generated
equations \compiler
: 1 \
compile Implement §
>T = > T
source )
seman?ics target S;—:‘m?antlc té;r*ggt
(equations S amahiTes algebra algebra
and model) model model
encode U ' encode R/
£ >

FIGURE 1. Compiler Correctness Diagrams

"Compile'! is also assumed to be given homomorphically, so all four corners
can be made into G algebras with T, M, U derived. Compiler 'correctness!
is shown by defining a mapping encode:M - U and showing commutativity of
the resulting diagram. Since L is initial this may be done by showing encode

to be a homomorphism.

In order to avoid trivial "correctness" in case T and U are one-point alge-
bras it has been suggested that encode be injective. However, this is insuf-
ficient: Both commutativity and injectivity are consistent with an erroneous
compiler which maps "+" into the subtraction operator of T, provided encode
does the same on a semantic level. The problem is that with this approach

both encode and compile are supplied by hand.



In the right of figure 1 (from [Mos80 ) a semantic algebra S has been insert—
ed between L and M. The semantic equations map parse trees into elements
of S, an equationally-defined abstract data type (e. g. [ADJ?B]) designed to
contain natural semantic primitives suitable for expressing the semantics of
a wide variety of source languages. The function "implement! represents S
by the target algebra T, also an abstract data type. Compiler generation
may be accomplished by composing the semantic equations with "implement!
yielding a new set of semantic equations mapping parse trees directly into
the target algebra. Models are not central to this approach, being needed

only to show nontriviality of the abstract data types.

Overview of the New Approach

A common characteristic of the approaches above is that the target al-
gebra T and its semantics are rather complex. One reason is inherent in
the approach: T must have a sufficiently rich structure so that derived
operations modelling the syntax operators of L can be defined; which in
turn implies that corresponding operations must be defined on U. This can
lead to some complex and unnatural semantic rules. For example (from

[Mor73], p.149)

"To compute in a flowchart sewn together from pieces is
to compute by turns in the pieces, jumping back and forth

as often as one pleases at the stitches!,

We see no good reason for introducing such complexities into the semantics
of a target language which is typically intended to model machine code In-

structions.

To simplify T we introduce the traditional distinction between compile time

and runtime. T is split into two parts - a compiling algebra C whose elements

describe compile-time actions and whose operations can combine these ac-
tions according to source program syntax, and a much simpler target lan-

guage T.
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FIGURE 2. New Correctness Diagram

Figure 2 indicates that semantic equations 8 map sourbe program parse trees
into terms of a semantic algebra S. Interpretation | maps terms of S to their
denotations via mode||: s —>Ml. In the bulk of this paper S will be extremely
simple, specifying only control flow; consequently source program and tar-

get program denotations will be identical.

Generality is obtained in spite of the simplicity of S by use of the interpre-
tation parameter |, This specifies the form of the runtime state and the mean-
ings of the elementary actions appearing in 8 (these are constants in S). The
interpretation also serves to define the meanings of target program instruc—

tions.

The compiler generator will transform a set of semantic equations S into a
i & & C . ) %
"compiling semantics'' 37, which maps each source program parse tree into
a sequence of compile-time actions. The effect of performing these actions
is to produce a target program in T which is semantically equivalent to the
source program under the runtime interpretation I. The compile-time inter-

pretation J specifies the meanings of the compile-time actions.

ge is constructedby composing &: L - S with the compiler generation homomor-

phism cgen: S 5 C. Correctness of 8¢ is expressed via commutativity of the



diagram: For any interpretation | of 8 and for any term a in S of appropriate

sort (letting (f e g)x denote g(f(x)))
(modelI o encode)a = (cgen o modelLJ ° r‘unl)a

Practical use of 8¢ will be discussed in section 4. In most of this paper S

will be very simple, but a way to extend S will be exemplified in section 5.

Elements of C are '"compile-time actions" which can specify the generation of
target instructions and the updating of a compile-time state. It is not required
(as it was in figure 1) that every element of C have a concrete meaning in the
target semantic model U. Consequently a compiling semantics can specify com-
pile-time loops and multipass compilation, both of which seem difficult to ex—

press in previous algebraic frameworks.

2. THE TARGET LANGUAGE

A target program is a flow chart built up from instructions each of which
changes the computation's state and/or point of control. Syntactically a pro-

gram Is very simple: a sequence
[0: strg 1:stry ..u. i str‘r‘]

of labelled instruction streams, where each instruction specifies either an
elementary action or a jump. Instruction goto (I, disp) jumps to the instruc-

tion at displacement disp from the start of stream |I.

As in traditional machine code we optain great flexibility in control flow dis-
cipline by incorporating changes of control in the semantics of the instruc-
tions rather than in the topology of the flow chart. To do this we allow labels
as parameters to instructions (constant parameters are also allowed). For
example an interpretation could specify the effect of instruction cond (L1 , L2)
to be to jump to stream L1 or L.2 depending on a value found in the state. Al-
t ernatively labels may be saved in the state and later fetched and branched to,

allowing performance of subroutine calls, coroutine resumptions etc.



Following are two examples of code produced by a generated compiler. The

instruction interpretations are found in table 1.

Code [ x+ (if y then 7 else z) + 8]
= [0: find(x); find(y); cond(1,2); plus; load(8); plus
1: load(7); goto(0, 3)
2 : find(x); goto (0, 3) ]

both goto '"plus ... " in stream 0

Code |[[ (Ax.xx) (hy.y) 7]
= [0 : pushclosure(1); pushclosure(2); apply; load(7); apply
1 : bind(x); bind(x); find(x); apply; return
2 : bind(y); find (y); return |

Semantics

A conventional continuation semantics will be used for flow charts; details
are omitted for brevity. Every program label (I, disp) thus denotes a continua-
tion p(l, disp) in CONT = [State » Answer |. Instructions will denote continua-
tion transformers in CT = [CONT - CONT |.

An interpretation is a tuple | = (State, 9o Answer, ¢, o) where State and

Answer are domains, the initial state is g. and the final continuation is € (so

0
a program's final answer is c (final state)). Further, g maps each instruction

without parameters to g ein CT and each e(p1, . ww iy pn) to a function
qe€ [D1 Xeoo xD eT]

where D1, ..., D_ are appropriate domains. If p; is an atomic type (e.q.

integer) then Di is its natural domain and if P; is a label then Di = CONT.

For implementation we assume instruction meanings are given by equations

of the form
(o instr) co = ct(g")

which specifies how the current state g and continuation ¢ are transformed
into their successors ¢! and ¢!, specified via expressions built from ¢ and g.
The successor c! can be c (hormal control flow), or a constant (e.g. normal
termination or an error exit), or a component fetched from ¢ (e. g. from a

"mreturn address stack!"), or it can be a computed value.



During program execution the label parameters of an instruction e(p1, cer pn)

will be mapped to their denoted continuations so that g e may be applied.

Table 1 contains the interpretation used to support the semantics of table 2.

TABLE 1. An Interpretation |

State = Env x Value® typical element: o = (e,s)
where Env = [Variable » Value] typical element: e
Value = Number + CONT x ENV typical elements: a,b
Og = (empty environment, empty stack)
Answer = Value
Final Continuation: c, (e, a* s) = a [answer = stack top ]
Elementary Action Denotations
aplus c(e, b*a- s) = cl(e, (a+b)* s) [pop a, b, push a+b]
aload(con) c(e,s) = c(e, con* s) [ push con |
afind (var) c (e, s) = cl(e,e(var)- s) [push value of var]

acond(CT, cz) cle, a*s) (if a then c, else cz) (e,s) [conditional ]

abind (var)c (e, a* s) c(e {a/var}, s) [bind var to a]

qpushclosur‘e(CI) cle,s) = c(e, (CI’ eT) * s) [ push closure |
aapply c (e, a* (<:1, e])' s) = ci(e,,a‘ (c,e)* s) [subroutine call ]
areturn c(e, a- (c1, el) *s) = <, (e1, a*s) [return ]

Informal Description of |

I will be used for lambda expression evaluation. A state consists of a
value stack and an environment binding variables to values. The net effect of
evaluating an expression is to be to push its value on the stack, leaving the
environment and the rest of the stack unchanged. A value is either a number
or a closure (c, e) representing an abstraction and the values of its free

variables,

Implementation

For machine implementation the state should be defined by first-order

operations - e. g. arithmetic and selection and construction functions. Con-




tinuations as data objects can of course be replaced by labels, so application

of a continuation amounts to a ""computed gotol'.
Code generation appears - to be easily accomplished by macro expansion -

replacing each instruction e by a sequence of machine language instructions

semantically equivalent to g e.

3. CONTROL FLOW SEMANTICS

A simple semantic algebra S will now be developed to represent and mani-
pulate sequences of elementary actions. S may be regarded as a formalization
of (continuation-based) 'store semantics'' as used in [MiS76] and by many
others, or simply as a notation for expressing flow charts. In spite ot its
simplicity surprisingly many programming language features can be natural-
ly expressed via S. Five examples may be found in [Chr81] encompassing
escapes, gotos, nested blocks, recursive procedures and coroutines. Sec-

tion 5 will show how larger semantic algebras may be represented in S.

Table 2 contains semantic equations S mapping parse trees into S terms, fol-
lowed by an informal description which assumes the interpretation of the pre-
vious section. Sequencing of actions is indicated by semicolon (a fuller de-

scription of S follows the example).

Such a set of semantic equations defines a '"generalized homomorphism! map-
ping parse trees to S terms - generalized due to the presence of semantic
functions P, &, etc. In this case P and €& can be identified to yield a homomor-
phism h: L - S but such will not be the case if two semantic functions are

applied to the same parse tree (e. g. L- and R-values of expressions).
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TABLE 2. Semantic Equations $

Source Syntax: program :: = exp
exp :i = con | var | exp, + exp,
[ if exp, i:_h_(_a_rlexpz else exp 4
| exp, (expz) | Avar. exp,
Semantic Equations:

P [ program] = execute (€ [program])

& [[con] = load (con)

e [var] = find (var)

e [exp, +exp,] = ¢ [[exp, I; & [exp, TI; plus

e [[if exp, then exp, else e><p3] = g [[expl I; cond (e [expzﬂ, e [[exp3ﬂ)
e [exp, (exp,) ] = & [exp, i€ [exp, T; apply

& ﬂ:x var., exp] = pushclosure

(bind(var); € [ exp [; return)

Example Applications of 8:
E[x+ (ify then7 else 8) + z]| = find(x); find(y); cond(load(1), find(z));

plus ; load(z); plus

e[ (nxexx)(ry. yv)7] = pushclosure (bind(x); find(x); find(x); apply; return);
pushclosure (bind(y); find(y); return);
apply ; load(7) ; apply

Informal Reading of Example Semantics

The intended effect of performing € [ex] is to push the value of "exp" on
the stack, leaving the environment unchanged. The first three & equations

clearly accomplish this,

e [[ﬁ_ ... || first pushes the value of expy, and cond pops this and activates

e ﬂ:expz] or & [exp3]. After the appropriate € [[expi]] actions are performed,
execution will continue with the first action following & [if ... ] (this follows
from the way parameters are modelled - see the definition below of the model

induced by an interpretation).
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e [[A Xa exp] will push a certain "delayed action! onto the stack. The equation
for € ﬂ:expl (expz)]] resembles that for & [I:exp1 + expzj] but "apply!" is essen-
tially different from !"plus!": pushes its successor action onto the stack and
then activates the delayed action which must be the value of € [[exp1:ﬂ (i.e.
the value of some abstraction ) x. exp). This will bind x to the value of exP s
evaluate the body exp in the updated environment (leaving the result on the
stack, and finally return to the control point and environment which were

saved by '"apply!,

The Semantic Algebra S

We assume familiarity with many-sorted algebras, e.g. [ADJ78]. S is
the term algebra whose sorts and operations are given in table 3. The nota-
tion used resembles that of [Mos80 | and [Mos81]. Operator symbols are
written in "mixfix" notation (called "distributed-fix" in [Gog78]). This is a
generalization of prefix, infix and postfix notation: Operator symbols can be
distributed freely around and between operands. Further, the arity and co-

arity of an operator are indicated by the notation

where f has arity 51 Kow s X Sn and coarity SO‘
Each elementary action with parameters will have certain type requirements
on its parameters (e.g. find(x) requires x to be a variable). These require-
ments are expressed by equipping each elementary action e with a list T e of

its parameter types. The symbol A designates the set of possible parameter

types.
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TABLE 3. Signature of S

Types: A = {a} U {integer, boolean, string, ...} parameter types
Sorts: ans answers (values of entire source programs)
E elementary actions, each with parameter type list me in A*

parameters, each with a target type 17p € A

actions
Operators: ans execute(a) perform an action sequence
a < skip empty action
; a i -
! as a, sequencing - do a,, then a,
| e elementary action without parameters

| e(p1, . pn) elementary action with parameters.
Requirement: me = TP1 % wus Tpn

| Ffixtr L, =ay, eee I_n= a Ina,

recursively defined action

| goL proceed to an action defined in an en-
closing fixtr
P = con constant of atomic sort as parameter.
p has target Tp = sort of con

a action as parameter, target Tp = a

Informal Explanation

Terms of S describe the same computation sequences as flow charts, but
in a more abstract way, so the operations may be seen as flow chart construc-
tors. The equations given below are not definitions as in an abstract data type
but rather theorems about equivalence in any model induced by an interpreta-

tion.

A program meaning will be a term of sort ans and must have the form execute(a)
for any action a. An action may be the null action skip, an elementary action
(possibly with parameters) whose meaning will be specified by an interpreta-
tion, or it may consist of two actions to be done in sequence. These operators

satisfy

skip;ja = a

a; skip
(@15 agliag= ays(ays ay)
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An action appearing as a parameter can be thought of as a data value repre-—
senting a '"delayed action". This value may be put into the store by an elemen-
tary action (e.g. pushed onto a return stack), and can at some later time be
fetched from the store and executed. An elementary action may change the
flow of control dynamically by selectively activating delayed actions, thus
giving the effects of loops, conditional branches, subroutine or coroutine

calls and resumptions etc.

Suppose an action parameter (e. g. a, in cond (a1, az)) has been activated,

and that execution ofa] has been completed without a control transfer to an-
other action via go. Control then passes to the action following the elemen—
tary action containing a, (e. g. the successor of cond(aI, az)). Consequent-

ly a source-language if-statement might naturally be mapped into a term
evaltest; cond (thenaction, elseaction)

j# 1w g L™

o *tr o0 2 indicates

An action may also be defined recursively: a = (fixtr I_1 = a
a, in ao). A free occurrence of go L, within one of a
that control is to pass to a; irrevocably, so the successor of go L.i will be

ignored. Each of a a_ is chained to the natural successor of a in the

0’ . & 8 ?
same way that action parameters are. Consequently a while-statement might

naturally be mapped into a term

fixtr L = evaltest; cond(bodyaction; go L., skip) ingoL

Note: The special case of n = 1 and a, =.go L can be shortened to fixtr I_1 = a

essentially the conventional syntax for fix. However, in general it should be

11

clear that the actions of any flow chart in T can be described by an S term
involving a single fixtr. Following are some equivalences valid in all inter-

pretations.

1. golLj;a = golL
2s (_fi_>gt_r'l_1=a1,..., Ln=ani_na0);a = (fixtr‘L_1=a1; oy wix s 5 Ln=an;a)

ina.; a
=t "y
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Equation 1 implies any S term may be reduced to an equivalent "tail recursiven
form in which go L appears only in actions found at the ends of actions found
in parameters or fixtr clauses. In such a term any reference to 9oL, can be
replaced by a; without changing the meaning (provided no free variable refe-

rences are captured). Equation 2 expresses the chaining of defined actions.

Omission For reasons of brevity we will not treat fixtr in the remainder of
this paper. A full treatment involves the addition of semantic environments
mapping labels to continuations in the definition of mc)dell and the addition

of compile-time environments to compiler states.

Models of S

Given an interpretation | = (State, Ty Answer, c., o), one can extend
o to give meaning to all terms of S. The set of such meanings can be made in-
to an algebra MI of the same signature as S by defining operations correspond-
ing to the operations of S. Since S is initial, ¢ is uniquely extendible to a

homomorphism modeII: S - MI'

TABLE 4. Model Algebra M

Carriers:
Sort ans: Answer
Sorta : CT=[CONT 5CONT] . appropriate Dy, ..., D
Sorte : Dyx...x D, »CT if’rre=d1...dnr i
Sortp : CONT =D if Tp = atomic type D
Sortp ¢ CONT - CONT if 7p = a

Operations:

Arity and Co-Arity Definition

ans « a @dns = qa ¢, 0, [final answer ]
a « skip (yalc= ¢ [null action ]
| asa, (yalc = (y a1) ((a az) c) [sequencing = composition |
| e sa = ae [as found in 1]
| e(p1,..., pn) ga = one(ot,pIC,-.., [ parameters chained to
ap, &l 6 next c
p & con (ap)c = con [ constant parameter ]

| a (agple = (ga)c [action parameter ]
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4, COMPILER GENERATION

The Compiling Algebra and lis Interpretation

C is actually identical to S, making the method suitable for bootstrapping.
However, the fixtr operator is not needed, and a fixed interpretation J will be
used which specifies the compile-time state and the elementary actions needed
to generate target code. For brevity J is only described informally; a more

complete specification may be found in [Chd81 :[.

The compile-time state is very simple since only control flow is handled. Its
components are: A partially generated program 1 = [0: Strge.. ki str‘k] and
two stacks, one for parameters and one for stream origins. The following

elementary actions are enough to translate fixtr-free S terms into flow chart

code:

addcode(ins) - add a new instruction "ins!! to the end of the
instruction stream currently being generated

neworig - establish the origin of a new stream (used
when an action parameter is processed)

oldorig - re-establish the old origin previously in use;
further, save the new origin in a compile-time
parameter stack p*

push(atom) - push an atomic parameter on the parameter
stack p*

addcoden(ins) - add instruction ins (DT’ ceny pn) to the current
stream where Pqse--s P, are parameters pop-
ped from p*

goback - end the current stream with an instruction

"goto (destination)" to transfer control back

to the stream previously in use

The CGEN Homomorphism

Table 5 contains a ""compiler generation!" homomorphism cgen: S - C
mapping each operator of S into a derived operator on C. Let a be a term
in S and cgen(a) its image in C. Then cgen(a) when interpreted by J will

transform compile-time state (rr1 ye..) into (T'Tz, ...) where 1, equals My aug-

2
mented by instructions to perform a.
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TABLE 5. Compiler Generation Function cgen: S —» C

S Operators Derived Operators on C
ans « execute (a) execute (cgen (a))
a = skip skip
| a;a, cgen(al); cgen(az)
| e addcode (e)
| e (p1 S5k § 5 pn) cgen (p1); ... Cgen (pn); addcoden(e)
p &con push(con)
| a neworig; cgen (a); goback; oldorig

Correctness Theorem

Theorem Let | be any interpretation of S and ans any S term of the answer

sort. Then

model (ans) = (cgen o model‘J ° r*unl) ans
Proof is by structural induction on terms of S; it is omitted due to lack of
space. A closely related proof may be found in [Chr81]. Note that ans must

be of the form execute (a).

Application to Compiler Generation

A set of semantic equations defines a generalized homomorphism $ : syntax
algebra - S. Suppose the initial equation of & has the form p[[ program] =
execute (a). By the correctness theorem (8 ¢ cgen o modeld) [ program] is a

flow chart equivalent to "program!.

This expression represents a three step compilation process which can be re-

duced to two by constructing (at compiler generation time) a compiling semantics

g8€=g ecgen. An example is found in Table 6.
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TABLE 6. Compiling Semantics $€ Generated from Table 3

P [program] = execute (€ [program]))

e€[con] = push (con); addcode1(load)

e [var] = push (var); addcodeT(find)

ec []:exp1 + exPz:ﬂ = g€ [[exp1 1s e® [expz]]; addcode (plus)

|e© [if exp, then exp, else exp3]] = g° H:exp1 T;

neworig; £ [[expz]]; goback; oldorig;
neworig; € [[exp3:[|; goback; oldorig;
addcoc:le2 (cond)

e® [[exp1 (expz)]] = g€ [[exp1 Te 8C[exp2]]; addcode (apply)
(& .
e [ x.exp] = neworig;
push (x); addcode, (bind);
e [expT;

addcode (return);
oldorig;

addcode, (pushclosure)

Practical Use of a Compiling Semantics

We now show that compilation may be done in one step without construction
of any C terms. The equations of table 6 all have a very simple form:

c
a” [syn (tT,...,tn)]] = byibyiees 3 b

where syn is a constructor from the source syntax algebra (i.e. a production),
Lo eee s t  are parse trees and each bi is either an elementary compile-time
action without subactions as parameters or has the form i< U:tj]] for some t;
and semantic function #, In other words S is a syntax-directed translation
[AhU73 ].

Examination of table 5 reveals that 8 can always be put into this form (asso-
ciativity of ; may be needed). The same holds true even when J and cgen are
extended to handle fixtr, so we may assume a compiling semantics is always a

syntax-directed translation.
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Compilation can be done by traversing the parse tree according to Sc, simul-
taneously performing any compile~-time actions specified in $%. The syntax-
directed translation will furthermore be simple if the order of subtree
references in each semantic rule matches that of the corresponding produc-
tion. In this case compiling can be overlapped with parsing. If the syntax is
LL (k) the resulting algorithm bears a strong resemblance to a traditional

handcrafted recursive descent compiler,

Final note: Suppose S contains no semantic rule which refers twice to the
same syntax subtree. Then the subtree references on the right sides of 8°
equations may be rearranged into the order found in the productions by the
addition of fixtr. Consequently any semantic definition without multiple sub-

tree references may be automatically converted into a one pass compiler.

An Implementation

An experimental LISP implementation of the method is currently being tested
at Aarhus. An early use of the system was to produce a compiler generator
which accepts as input a semantic definition and produces as output a com-
piler accepting source program parse trees. The generated compiler, its
target programs and the compiler generator are all in flow chart form. Clear-
ly the whole system could be !"ported!' to a new machine by writing routines
for the elementary compiling and compiler generation actions (provided a

parser is available).

5. LARGER SEMANTIC AL GEBRAS

Construction of a control flow semantics for a programming language
places a considerable burden on the interpretation due to the simplicity of S.
The kind of reasoning needed to write such a semantics is quite similar to
that used in ordinary compiler design - for instance the invention of value
and return address stacks and data access mechanisms. From this view S is
a compiler writing language which can handle control flow and from which com-

pilers! semantic components can automatically be produced.

It would clearly be desirable to have a more expressive, higher-level S, per-
haps along the lines of [Mos80] and [Mos81]. One way to achieve this would
be to redo sections 2 through 4, adding sorts and operations to S, extending

the notion of interpretation and modeIT, and augmenting the cgen function. A
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simpler alternative we briefly exemplify here is to implement such an extend-

ed algebra s% in terms of S, as shown in figure 3.

. 5 + ¢ : -
An implementation of S by S will consist of a homomorphism ex: S+ -+ S, and
a function (also named ex) which transforms an interpretation I+ of S+ into an
. . . + " s
appropriate interpretation ex(l ) of S. Compiler generation amounts to trans-

forming an extended semantic definition s into

L
~
“~
gt 5, B
S
RN
ex cgen
S+ = s g ;'.:-C
FIGURE 3. Extension of S to S+
8¢ = (S+ o ex) o cgen = st o (ex o cgen). The second equality follows from

associativity of (generalized) homomorphism composition and shows that the

method of section 4 can be used, provided cgen is replaced by ex o cgen.

Example Recursively Defined Actions
In this case S is augmented by adding a non-necessarily-tail-recursive

fixpoint operator. The new operations are
a « fixA.=a,,...,A =a_ ina
—— 1
A

n n— 0
|d

The intention of do Ai is that a; is to be per‘for‘*med, after which control will

be 'returned to the successor of do A;. Implementation in terms of S is by a
- . . +

familiar device - adding a return address stack to the state of S and treat-

ing do Ai as a call. The homomorphism ex: st -5 is given by:

I

fixtr Aq
A

n

call (Ai)

skip, ex(a1; gz) = ex(al); ex(az), etc.

= ex(a,); return,...,

1. e><(fi_><A1 =ap,ee05A
= ex(ao); return in ex(ao)

= an_lﬂao)

n

I

2. ex(do AT)
3. ex(skip)
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< ” £ g
An interpretation of S is the same from as one of S in this case; in general
some extensions might use a substantially different form of interpretation.
: i . o - +
Given interpretation | = (State, 0 Answer, c:; , @ ) of S the correspond-
ing interpretation of S is

ex(I+) = (State x CONT*, (co, emptystack), Answer, c_, a)

where c((o,r)) = c:; (o) and g is defined as follows:

1. (o call)(c1) clo,r) = c, (c, ce r) [ push return address and jump |
2. (areturn) c(o, c, e r) = cq o, r) [return ]

3. Suppose q+e is defined by an equation [otherwise imitate q+:|

+ .
(o e) c o =c'(o") where c!, ¢! are expressions
containing ¢ and 0. Then g e is defined by the equation

(xe) c(o,r) = c'o!,r)

A similar implementation of the produced and consumed values of [Mos80 | has
been constructed (using a value stack), and further extensions to include bind-

ing and other primitives are being investigated.

The implementation concept is essentially the same as that of [Mos80 | but with
one simplification: Since we use term algebras rather than abstract data types
such an implementation requires no correctness proof (since there are no equa-
tions to verify). It is simply a definition and as such may be used for compiler

generation by forming gt o ex o cgen.

. r +
Clearly, however, some implementations of $ are !"better" than others. For
example one would hope the extension just given would satisfy a "loop unrolling

property! so for instance fix A= a is equivalentto a{A « fix A= a}

. . . : + . .
To define this "equivalence" more precisely, suppose S' is an extension of S
and ex an implementation as above. Then an equation a+ = b+ is taken to signify

that for all interpretations it of 5+ the following holds:

(ex o modelex“+)) a = (ex e modelex(l+)) b
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6. CONCLUSIONS

The method just described uses many-sorted algebras with operators
natural for expressing primitive computing concepts, a clear formal separa-
tion between compile-time and runtime, and a simple target language which

is a: slight abstraction of traditional machine codes.

In contrast to [Mor73] and [ ADJ8B0] the method applies uniformly to a class of
semantic definitions (i.e. it is a compiler generator rather than a method for
proving individual compilers correct). This property is shared by [MosBO],
but our method uses term algebras instead of abstract data types, thus avoid-
ing the need for proving correct the representation of one abstract data type
by another. The approach resembles [GauBO] in that it is based on algebras
and homomorphisms and has been implemented (at least a trial version); in con-
trast, however, our method seems to have firmer mathematical foundations and
closer connections with traditional compiler methodology and target program

structure.
Following are some directions for future work:

1. More powerful semantic algebras and implementation strategies are needed.

2. A general method to isolate the evaluation of static information (e.g. sym-
bol tables) and move it into the compiler needs to be developed. This has
mostly been done by ad hoc methods until now, although [ Gan80] is an ex-
ception. It appears likely that flow analysis methods (e. g. [Mudel]) can
be applied to this problem.

3. A general method for transforming definitions of elementary actions into

code generation modules should be developed.
Finally, it should be mentioned that the method cannot handle all programming
language constructs. Counter examples include self-modification, concurrency

and parallelism,
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