ISSN 0105-8517

A DENOTATIONAL FRAMEWORK

FOR
DATA FLOW ANALYSIS

by

Flemming Nielson

DAIMI PB- 135
July 1981

Computer Science Department 5 I — =

AARHUS UNIVERSITY | ﬁ:l

Ny Munkegade — DK 8000 Aarhus C ~ DENMARK j_% :
Lt

Telephone: 06 — 12 83 55

A DENOTATIONAL FRAMEWORK FOR DATA FLOW ANALYSIS

Flemming Nielson

Abstract

It is shown how to express data flow analysis in a denotational
framework by means of abstract interpretation. A continuation style
formulation naturally leads to the MOP (Meet Over all Paths) solution,
whereas a direct style formulation leads to the MFP (Maximal Fixed

Point) solution.

Contents
0. Introduction 1
1. Preliminaries 3
2. The Framework S
3. The MOP and MFP Solutions 20
4, Conclusion 30
Appendix 1: Proof of theorem 4 33

Appendix 2: Proof of theorem 5 37

0. INTRODUCTION

In this paper data flow analysis is treated from a semantic point of view.
Data flow analysis is formulated in a denotational framework and in doing

so the method of abstract interpretation is used.

Data flow analysis ([1], [7], [15]) associates properties (data flow
information) with program points. The intention is that a property
associated with some point must be satisfied in every execution of the
program. This is because data flow information usually is used for
applications like transforming a program to improve its efficiency.
Therefore semantic considerations are needed to ensure the safeness of
using the data flow information, e.g. to assure that the program trans-
formation is meaning preserving. Data flow analysis is usually treated

in an operational approach that is not syntax-directed, although there are
exceptions (e.g. [13]). In some papers, e.g. [3] and [2], the semantics

of data flow analysis is considered in this setting.

Here a denotational approach will be used where semantic functions are
""homomorphisms' from syntax to denotations. The motivation for doing so
is two-fold. First, the relative merits of an operational versus a denota=
tional approach are not obvious. Previous formulations of data flow analysis
in a denotational setting([5], [4]) have been more ad hoc than the existing
operational methods. Also the connection with the usual solutions (MFP and
MOP) has not been established. In this paper these two issues are
addressed. A second motivation for the denotational approach is to use

the data flow information to validate program transformations. The
literature on data flow analysis and ""|program optimization" hardly con-
siders the issue at all. It turns out ([12], [11]) that the approach to

data flow analysis developed in this paper forms a suitable platform for

doing so.

In section 2 it is described how to systematically develop non-standard
denotational semantics specifying data flow information. This is achieved
by a series of non-standard semantics leading to a formulation in con-

tinuation style. In section 3 it is shown that this formulation yields the

MOP ("meet over all paths") solution. Also the MFP ("maximal fixed
point") solution is considered and it is shown how it can be obtained

using a direct style formulation. Section 4 contains the conclusions.

1. PRELIMINARIES

This paper builds on concepts from denotational semantics and data
flow analysis (including abstract interpretation). The presupposed
knowledge of data flow analysis is modest and some of the essential
concepts will be reviewed before they are used. In defining semantic
equations the notation of [14] and [10] is used, although the domains
are not complete lattices but cpo's (as in [9:[). Complete lattices

are used when data flow analysis is specified. Below some fundamental
notions and non-standard notation (2>, ==, -t>, -m>, -¢>, -a>) are

explained.

A partially ordered set (S,E) is a set S with partial order E, i.e, E

is a reflexive, antisymmetric and transitive relation on S. For S'c S
there may exist a (necessarily unique) least upper bound IJS' in S such

that Vs € S: (s 2 US'eVs! € S': s 2 s!), When S!' = {sT,sz} one often

writes S, LS, instead of LIS!'. Dually a greatest lower bound MNS! may

exist. A non-empty subset S' ¢ S is a chain if S' is countable and

S 115, ES's (s1 = S,V s, E s]). An element s € S is maximal if
Vs'€S:(s'2s=>s! =s). A partially ordered set is a cpo if it has a
least element (1 = MS) and any chain has a least upper bound. It is a
complete lattice if all US' and MS! exist; then there also is a greatest
element (T = LUS). The word domain will be used both for cpo's and com-
plete lattices, and elements of some domain S are denoted s,s',sI etc,
A domain is flat if any chain contains at most 2 elements, and is of

finite height if any chain is finite.

Domains N, Q and T are flat cpo's of natural numbers, quotations and

truth values. From cpo's SI’ o ’Sn one can construct the separated sum

S]+ G55 +Sn. This is a cpo with a new least element and injection func-

tions 'inSi, enquiry functions g S, and projection functions {Si. The

cartesian product Slx o ¥ xSn is a cpo with selection functions |j.

The cpo S¥* of lists is {<>} +S +(SxS)+... . Function # yields
the length of a list, function Ti removes the first i elements and §
concatenates lists. The complete lattice s®is obtained from a set S

by adjoining least and greatest elements. By P(S) is meant the power-set

of S with set inclusion as partial order. Sometimes a set is regarded

as a partially ordered set whose partial order is equality.

All functions are assumed to be total. For partially ordered sets S and S!
the set of (total) functions from S to S! is denoted S -t>S!. The set

of monotone (isotone) functions from S to S! is denoted S —m> S! and

consists of those f € S -t>S! that satisfy s, 1= S, f(sl) E f(sz). A
function f € S -t>S! is continuous if f(LUS") = U{f(s) | s € S"] holds for
any chain S!"" ¢ S whose least upper bound exists. The set of continuous
functions from S to S! is denoted by S -c> S!. A functionf € S -t>S!

is additive (a complete - ~morphism) if f(US") = U{f(s) | s € sh for any

subset S'"S S whose least upper bound exists. The set of additive
functions from S to S! is denoted by S -a> S'. Any subset of s =t>S! is
partially ordered by f, E fo® Vs€sS:f(s)E f,(s), and if S' is a cpo
or complete lattice the same holds for S-t>S!', S -m> S!, S - S,

S -a> S,

An element s € S is a fixed point of f€ S -t>S if f(s) = s. When S is

partially ordered it is the least fixed point provided it is a fixed point and

s'=f(s')> s' 2s. For S a complete lattice and f € S —-m> S the least
fixed point always exists and is given by LFP(f) = M{s | f(s) Esl. If

f€ S —=c> S then LFP(f) = FIX(f) where FIX(f) = L.l{fnu_) | n=0}. I1fs

is only a cpo but f€ S —c> S then FIX(f) still is the least fixed point of f.

The symbol == denotes a continuous equality predicate (S x S -c> T),
whereas = is reserved for true equality. So true == 1 Is L whereas

true = 1 is false. When S is of finite height it is assumed that Sty R S,

is L if one of s 1755 is non-maximal and equals Sy =5, otherwise,

Similarly == is the continuous extension of > (the predicate 'greater than

or equal to'! on the integers). The conditional t = S11S, is SqsSp0r L
depending on whether t is true, false or 1. By f[y/x] is meant X z.z == x 4y,
f(z). Braces { and } are used to construct sets and to enclose continua-

tions but the context should make clear which is intended.

2., THE FRAMEWORK

In this section it is shown how data flow analysis can be expressed in
a denotational framework. The development is performed for a toy

language and consists of defining a series of non-standard semantics:

[=3 o NN — col sts ind

Figure 1.

All the semantics are in continuation style. Semantics ind is the desired
formulation of data flow analysis. Semantics sto is a store semantics

[10] that is taken to be the canonical definition of the language considered.
It will later be motivated why store semantics and continuation style are

used.

The toy language consists of commands (syntactic category Cmd),
expressions (Exp), identifiers (Ide), operators (Ope) and basic values
(Bas). The syntax of commands and expressions can be deduced from
table 1, that will be explained shortly. For the remaining syntactic
categories it is left unspecified. The syntactic categories are viewed

as being sets or partially ordered sets whose partial order is equality.

Store semantics

The store semantics (sto) is given by tables 1, 2 and 3 together. The
semantic functions C (for commands) and & (for expressions) are defined
in table 1. The domains and auxiliary functions needed in table 1 are
defined in tables 2 and 3. (For the present ignore domains Occ and Pla
and function attach.) The definition of apply (and push) makes use of the

undefined semantic function & for operators (and ® for basic values).

TABLE 1: Semantic functions

CECmd -c>C —c>C

C[[cmdl;cmdz:ﬂ c =
C[[cmddl{@[[cmdﬂ]{c} }

Cllide := exp]] ¢ =
elexp]{assign[ide]{c}}

C[[IF exp THEN cmd, ELSE cmd, Fi]] c=
eflexp] {cond(C[cde]] {cl, Clemd,]{c})]

C[WHILE exp DO cmd OD]| ¢ =
FIX(Ac'.e[[exp]{cond(C[ecmd]{c'}, c)})

CIWRITE exp] c =
elexp] {write{c} |

C[READ ide]] ¢ =

read {assign[[ide]{c}}

£ € Exp -c>C —c>C

€[exp, ope exp,] c =
ellexp,Jie[exp,] {apply[ope]{c}}}

eflide] ¢ =
content[[ide] { ¢}

gl[bas]] c =
push[[bas] { c}

Domain Sta is the domain of states. The connection between identifiers
and their values is established without using locations but this is not
important for the development to go through. The component Tem is used
to hold temporary results arising during evaluation of expressions.

This is done by the ordinary method of evaluating expressions on a stack.

TABLE 2: Some domains and auxiliary functions

Domains
Val = T+ N+.... + {'il} ' values
Env = Ide -c> Val environments
Inp = Val* inputs
Out = Vval* outputs
Tem = Val¥* temporary result stacks
Sta = Env X Inp x Out x Tem states
Occ = N* occurrences
Pla = Occx Q places

Auxiliary functions
applyJope]] € C -c>C
apply[[ope] = do(Vapply[ope],Bapply[ope])
Vapply[ope] € Sta —c> T ("verify")
Vapply[ope]] =X < env, inp, out, tem>.# tem == 2

Bapply[[ope] € Sta -c> Sta ("body")
Bapply[ope]] =X <env, inp, out, tem>.
<env, inp, out,<6[ope]] < tem! 2, tem! 1>>§(tem | 2)>
assign[[ide]], content[[ide], push[bas [, read, write
defined similarly
Auxiliary functions used in the conditional
Vcond € Sta -c> T ("verify!)

Vecond = A<env, inp, out, tem>. #tem == 1= tem{1 T, false

Scond € Sta —c> T ("selecth)
Scond = A<env, inp,out, tem>. (temi1) | T

Bcond € Sta -c> Sta ("body")
Bcond = \<env, inp, out, tem>. <env, inp, out, tem 11>

As an example consider apply[[ope]{c) <env, inp, out, tem>. If two
temporary results are on top of tem they are replaced by their result
and the new state is supplied to c. If tem is not of the expected form
an error occurs, The reader acquainted with store semantics]:IO]

should find it straight-forward to supply the omitted definitions.

Table 3 is labelled "interpretation sto' because it is essentially by
supplying replacements for table 3 that the remaining semantics (col,
sts and ind) are defined. To indicate which semantics is meant, a suffix
may be used, e.g. Csto. SoCsto[cmd [|(fin-sto) < Xide. "nil"inVal,

inp,<>,<>> specifies the effect of executing program cmd with input inp.

TABLE 3: Interpretation sto

Domains

S = Sta states

A = Out + {"error!} _ answers

C = S —c> A continuations
Constant

fing C fin = A<env, inp, out, tem>, out inA

Auxiliary functions

cond€ Cx C -c>C
cond(cl,cz) = Asta. Vcond(sta) + [Scond(sta) - c],cz:l(Bcond sta)
y Nerrort inA -

attach € Pla -=c> C —-c> C
attach (pla) c = ¢

do € (Sta -c> T) x (Sta -c> Sta) —c> C -¢> C
do(Vvg,Bg) c =)\sta. Vg(sta) + c(Bg sta), "error! inA

For tables 1, 2 and 3 it is presumably obvious that the functionalities
shown are correct. For the remaining semantics the proofs of correctness

of functionalities are straight-forward and therefore omitted.

Collecting semantics

For data flow analysis purposes an important concept is that of associating
information with a program point. This concept is not expressed in the
store semantics and it is therefore convenient to add it to sto, yielding

a collecting semantics (col).

A program point can be specified by a tuple <occ,q> € Pla. All the tuples
to be considered will be maximal (with respect to the partial ordering).
Occurrences (like occ) are used to label nodes of the parse tree. The
root is labelled <> and the i'th son of a node labelled occ is labelled
occ§<i>. The quotation q is useful for specifying whether the program

point is to the left or to the right of the node:

ocCccC

1)
<occ§<i>,"L"> <occ<i>,"R!"'>

Figure 2.

In the usual view of parse-trees the nodes are not labelled by occurrences.
To be able to let the semantic equations associate information with program
points (represented by tuples like <occ, q>) it is necessary to supply the
appropriate occurrence as an additional argument to the semantic functions:
C and €. In this way occurrences are used much like the positions of [6]
Furthermore the semantic equations must be augmented with functions
associating information with the program points. The function attach <occ, gq>
is used for associating information with the program point specified by

<occ, g>. The result of performing these changes is sketched in table 4.

The proofs of theorems 4 and 5 benefit from the chosen placement of attach.

10

Because of attach in table 3 the store semantics can be defined using

table 4 instead of table 1.

In the collecting semantics (tables 4, 2 and 5) the information to be
associated with a program point is the set of states the program can be in
whenever control reaches that point. Domain A-col = Pla -c> P(sSta) is
used for that and attach-col(pla) is defined accordingly. This choice of

A is not the only possibility, e.g. A = (Pla x Sta) * of [5] can be used
instead. While this may give more information it is not needed for a

large class of data flow analyses (including those usually handled by
means of abstract interpretation). It will later be discussed why the

continuations (C-col) are not continuous.

Intuitively sto and col are closely related, because essentially only

domain A is different. A connection is formally expressed by:

Theorem 1: For any sta € Sta, cmd € Cmd and out € Qut:

Csto[[emd]| <> fin-sto sta = out inA o

I sta' € Sta: sta' 14 =out A Cecol[emd]] <> fin-col sta <<>,"R""> = {sta!}
Proof The proof is by structural induction [14] making use of the pre-

dicate P-C € C-sto x C-col =t> {true,false} defined by P-C(c-sto, c-col) =

V sta € Sta: Vout € Out:

[c-sto(sta) = out inA & Tsta' € Sta: sta' 14 = out A c-col(sta)(<<>, "R!>)={ sta'l 1:
By structural induction on cmd (and likewise exp) it is shown that
P-C(c-sto,c-col) A occ# <> = P-C(Csto[[emd]] occ c-sto, Ccol[emd]] occ c-col).
Similarly, by case analysis of cmd it can be shown that

P-C(Csto[fcmd]] <> fin-sto, Ccol[emd] <> fin-col) using that
P-C(attach-sto(<<>,"R">) {fin-sto}, attach-col(<<>,"R">) {fin-col}).

The interesting case of the proof is that of the WHILE loop. Abbr‘eviate:F
glc,] =Ac,.e[expJloccl<i> { cond(C[[cmdJJocc§< 2>{c2] ,ci)} and assume
P—C(CT-sto,cl—col). It is to be shown that P—C(le(g-—sto[cl-sto]),
le(g—col[cl—colj)). It is easy to establish¥nz= 0: P—C((g—sto[cI—sto])nJ,,
(g—col[c]—col])n_L) but this does not immediately yield the result, The result

follows from

¥ For typographical reasons 9. is written g[CT:l‘

11

Vstadnyvnz nO:(g—sto[c]-—sto])7L sta = (L (g—sto[c1—sto]) |n= 0})sta
and a similar equation for col. To establish the above equation it suffices
to show (dropping suffix sto)

V sta: [(g[cij)nJ_ staf 1 =Vc,: (g[clj)n c, sta = (g[cl:[)n; sta |

This is because C, = g[c]] L implies that (g[cT])ncz is (g[clj)n-ﬂ

Proof is by induction in n and the case n=0 is trivial so consider the induc—
tion step. It is straight-forward to see that (g[cT])n+I(c2)(sta) inde—
pendently of ¢, is either 1, "error'inA, cl(sta') or (g[c1])n(c2)(sta")
where sta'! and sta' are independent of Cye INn the first 3 cases the equation

is immediate and in the latter case it follows from the induction hypothesis

for n. |

TABLE 4: Modified semantic functions

CeCmd -c> Occ -c>C -c>C

C[IF exp THEN cmd, ELSE cmd, FI] occc =
attach <occ, "L"> {
Elexp] occ< 1> §
cond(G[[cde] occ§< 2> {attach <occ,"R"> {c}}

3 C[cmdz:ﬂ occ§< 3> {attach <occ, '"RI'> {cf DI

C[[WHILE exp DO e¢md OD]| occ c =
attach <occ, "L"> {
FIX(AC'.&[[exp] occ< 1> |

cond(C[[emd] occ§<2> {c!'}

, attach <occ, "R'"'> {c})})}

the remaining clauses are changed similarly to the one for eprOpe esz

£ € Exp -¢c> Occ =c>C —c>C

8”:8)([)1 ope exp,]| occ c =
attach <occ, "L"> |
8[[e><p1:ﬂ occf< 1> |
elexp,] occ§<3> {
apply[ope] {
attach <occ,"R"> {c} }}}}

the remaining clauses are changed similarly to the one for exp ;ope exp,

12

TABLE 5: Interpretation col

Domains
S =5Sta
A = Pla -c> P(Sta)
C=S -t> A
Constant
fin € C fin =4

Auxiliary functions

cond EC x C —¢c>C
cond(cl,cz) = Asta. Vcond(sta) + [Scond(sta) -+ C1,02](BCOHd sta), 1

attach € Pla -c> C -c> C
attach(pla) ¢ = xsta. c(sta) _, 1[{sta} /pla]

do € (Sta -c> T) x (Sta -c> Sta) -t> C —c> C
do(Vg,Bg) c = \sta. Vg(sta) #+ c(Bg sta), 1

Example
Consider analysing the program x := 1 with some input inp € Inp.
Abbreviate env =) ide.!!nil" inVal and a-col = Gco[[[x:=1]]<> fin-col<env, inp,

<>,<>>. The result of analysing x:=1 is a-col, and

a-col = attach <<>, "L!> |

attach << 1>,"L">{push[[1] {attach << 1>,"R! > {

assign[[x] {attach <<>,"R!'> {fin}}}}}}<env, inp,<>,<>>
This means that
a-col <<>,"L"> = a-col<< 1>,"L"> = {<env, inp, <> ,<>>}
a-col<<1>,"R"> = {<env, inp,<>,< 1 inVal>>}
a-col<<>,"RI'> = { <env[1 inVal/x], inp, <>, <>>}

and a-col(pla) = @ otherwise. 0

13

Static semantics

There are two ways in which the collecting semantics is not the desired
formulation of data flow analysis. One is that the program is only
executed for one particular input rather than a set of inputs (e.g. Inp).
This is remedied by the static semantics (§_!‘.§) to be considered below.
Another is that sets of states are considered rather than approximate
descriptions of sets of states. The latter will be remedied by the induced

semantics.

In the static semantics (tables 4, 2 and 6) domain S and functions do and
cond have been changed. The intention with do(\Vg, Bg)(c) is to supply

to c a set of transformed states. Excluded from consideration are states
that would not be supplied to the continuation in the collecting semantics.
The conditional cond is modified so as to '"traverse! both the true and
false branch with an appropriate set of states. The partial answers from
the two branches are then combined. The connection between col and sts
is expressed by the theorem below. A more or less similar result appears

in [2] but there for an operational semantics.

Theorem 2: For all cmd € Cmd and s € P(Sta):
Csts[emd] <> fin-sts s = LU{Ccol[cmd]] <> fin-col sta | sta € s}

Proof The proof is by structural induction making use of the pre-
dicate P-C € C-col x C-sts ~t> {true, false} defined by

P-C(c-col, c-sts) = Vs € P(Sta): c-sts(s) = | c-col(sta) | sta€ s}.

By structural induction on cmd (and likewise exp) it is shown that
P-C(c-col, c-sts) = P-C(Ccol[cmd]] occ c-col, Csts[[cmd] occ c-sts).

The proof of the WHILE case makes use of the fact that for a complete
lattice L.I{L_I{xj,jlie I} | je Jf = uf Ll{xi;j;l_j € J} | i € 1} which follows from
the fact [14] that U{Uixi,jl i€t} |je df = u(UHxi,J.Ue i} i€ Jb).

A more detailed proof of this theorem, as well as theorems 3 and 4 later,

can be found in [11] in a slightly different notation. 0

14

It appears to be mandatory to work from a store semantics in order for
this theorem to hold. (In an approach based on a standard semantics
presumably only T holds [11].) The techniques of [10] can be used to

transform a standard semantics into a store semantics.

TABLE 6: Interpretation sis

Domains
S =P(Sta)
A = Pla -c> P(Sta)
C =S -a> A
Constant
fin € C fin = 1

Auxiliary functions

cond E C x C —c>C
cond(c 1 cz) = XS, CT{ Bcond(sta)\Vcond(sta)=trueAScond(sta)=tr~ue/\staés}

ucz{ Bcond(sta)| Vcond(sta)=trueAScond(sta)=falseAsta €s]

attach € Pla -¢c> C -c> C
attach(pla) ¢ =Xs. c(s) ,1[s/pla]

do € (Sta -c> T) x (Sta -c> Sta) -t> C —c>C
do(\Vvg,Bg) c = s, c{Bg(sta)[Vg(sta) = true A sta € s}

The method of abstract interpretation

Data flow analysis is almost always expressed in terms of approximate
descriptions of sets (of states or values) rather than the sets themselves.
It is necessary to work with approximate information if data flow analysis
is to be carried out automatically, because otherwise the data flow
information might not be computable. The approximate data flow information

must be ''safe!, i.e. describe a set that is not smaller than the precise

set.

15

Example (preparing for constant propagation)

o
} . An element of

Define the complete lattice VVal = {val € Vval] val is maximal
Val is to describe a set of values, i.e. an element of P(Val). The method

of abstract interpretation ([3], [2]) makes use of a concretization function

Yy € Val -m> p(Val) to express the subset of Val that some element of
Val describes. A natural choice isy, (1) =@, y (T) = val and n/val) =

{vall otherwise.

The abstraction function ggVE P(Vval) -m> Val can be used to approximate

sets of values. It is natural to define a\}v) = M{val | mhval) 2 v} because
then av(v) is the "best!' approximation of the set v of values. As an example

ggv({ true}) = true and o(V({ true, false}) = T, 0

It is useful when the concretization function (y) and the abstraction function

(o) are related as described by one of the two concepts defined below.

Definition <@,y > is a pair of semi-adjoined functions between partially

ordered sets LL and M iff

(i) €L -m>Mandy € M -m> L
(i) yoa 2)I.1

Furthermore, <&,y > is a pair of adjoined functions [3] between L and M

iff in addition to (i) and (ii) also
(iii) @°y Exm.m -

The pair <Q¢V,yv_> of the example is a pair of adjoined functions between
complete lattices P(Val) and Val. Condition (ii) expresses the intentjon
that a set of values is approximated by a not smaller set of values so that
one can only make ""errors on the conservative sidell [1]. Condition (i)
relates the partial orderings so that obtaining more information in

P(Vval) = L corresponds to obtaining more information in Val = M and

vice versa. Condition (iii) is usually satisfied but it is not needed for the

substance of this development. An analysis of the concepts semi-adjoined

16

and adjoined is given in [11]. Whenever y ¢ M -m> L satisfies

VM!S M:y(MIM!) = M{y(m) | m€& M'} there is a unique g € L -m> M so
that <@,y > is a pair of adjoined functions. If <g,y > is a pair of adjoined
functions (between complete lattices L and M) theng = Al. r'l{m|-y'{m) 21},
@ is additive and y satisfies the condition displayed above [8]s

There is an important difference between VVal on the one hand and val

and P(Val) on the other. The partial order of Val means !"less defined
than' (in the sense of Scott), so a natural condition to impose Is that

the domains must be cpo's. The partial orders of Val and P(\Vval) mean
something like "logically implies", e.g. El ‘5@'2 means that if a set of
values is approximately described by vall then val2 is also a safe de-
scription of the set. The condition that will be imposed is that the domains
are complete lattices. While this can be weakened it is important that a
greatest element is present. This is contrary to \Val where a greatest
element would be artificial. It is also this difference in partial orders

that accounts for why the continuations of col are not continuous.

Induced semantics

The static semantics is not the desired formulation of data flow analysis
because it does not work with approximate description elements. Let Sta
be a complete lattice deemed to be more approximate than P(Sta). Also

let there be a concretization functiony € Sta -m> P(Sta) and an abstraction
function & € P(Sta) -m> Sta such that <@,y > is a pair of semi-adjoined
functions. The induced semantics (ind <@,y >) is obtained by modifying the
static semantics in essentially two ways. One is to use Sta instead of
P(Sta). The other is to redefine the auxiliary functions so that their effect
upon some sta is obtained by first applying the analogous mapping of the

static semantics toy(sta) and then applying & to the result.

17

TABLE 7: Interpretation ind<g,y >

Domains
S =Sta <o,Y > 1s a pair of semi-adjoined functions
A =Pla -c>5S between complete lattices P(Sta) and Sta
C=5 -m>A

Constant
fine C fifi =

Auxiliary functions

cond€E Cx C —c>C
cond(c .. ¢,) = As.e (a{Bcond(sta)]Vcond(sta)=tr‘ue A Scond(sta) =
1772 1
true A sta € y(s))

w cz(a{Bcond(“_sta)lVcond(sta)mtr‘ue/‘\ Scond(sta) =
false A sta € y(s)})

attach € Pla -c> C -c> C
attach(pla) ¢ = \As.c(s) wuil[s/pla]

do € (Sta -¢c> T) x (Sta =c> Sta) -t> C —c> C
do(Vg,Bg) ¢ = \s. claf Bg(sta)| Vg(sta) = true A sta € y(s)})

Tables 4, 2 and 7 contain the details. That the induced semantics is

lsafe!! follows from:

Theorem 3: For all cmd € Cmd and sta € Sta :
Csts[[emd]] <> fin-sts (y(sta)) Eyo (Cind[[cmd]]<> fin-ind sta)
whenever <a,Y > is a pair of semi-adjoined functions (between complete

lattices P(Sta) and Sta) and ind is ind<g,y >.

Proof The proof is by structural induction making use of the predicate
P-C € C-sts x C-ind -t> {true, false] defined by P-C(c-sts, c~ind) =

[c-sts o y Exsta.y o (c-ind(sta))]. By structural induction on cmd (and
likewise exp) it is shown that P-C(c-sts, c-ind) = P-C(Csts[cmd] occ c-sts,
Cind[[emd] occ c-ind). The proof makes use of Af.y o f being monotone,

thaty ° & 2 \states. states and that continuations of sts are monotone.

18

It is also possible to specify data flow analysis by means of approximate
semantics other than ind<g,y >. Then an analogue of theorem 3 can be

used to relate such semantics [11].

Example (constant propagation)

One way to specify the data flow analysis "constant propagation' is by

the induced semantics ind<og5,ys_>. Domain Sta is (Ide -c> Val) x Val ®

where Val@ is Val ¥ augmented with a greatest element (T). The con-

cretization function Ys € Sta -m> P(Sta) is given by:

Y5 <env, tem> = {<env, inp, out, tem> € Sta |
Vv ide € Ide: env[ide] €y, (env[ide]) A (i)
[tem = Tv [tem ¢ {1,T} A #tem = #tem A (ii)
Vi€ {1,...,#tem}: tem 1j €y (tem 1j)]]} (iii)

For a state <env, inp, out, tem> to be one of those described by <-en_v', tem>
the environment env must be one of those described by env (condition (i))
and the temporary result stack tem must be one of those described byEFn-
(conditions (ii) and (iii)). Conditions (i) and (iii) are reasonably straight-—
forward. Condition (ii) is somewhat more "technical': The greatest element
of Val® describes any stack in Val ¥, the least element of Val® describes
no stacks in Val * and <ET1, £ % ,.va_ln> € Val® describes some stacks of

n elements. The abstraction function asé P(Sta) -m> Sta is defined by
gs(states) = [M{sta | yS(s_tE) 2 states| . Then <g Vs> is a pair of adjoined

functions between complete lattices P(Sta) and Sta.

In data flow analysis it is usually assumed that the description lattices are
of finite height (to ensure computability of the data flow information).

This is the case when Ide is finite. For an example constant propagation
analysis consider the program x := 1. Abbreviate env = Aide. "nilinval
and a-ind = Cind[[x:=1] <> fin-ind <m,<>> . The result of analysing

x := 1 then is a-ind, and

19

a-ind <<>,"M. "> = g-ind<< 1>, "L"> =<env,<>>
a-ind << 1>,'"R"> = <env,< 1 inVal>>

a-ind<<>,"R" > = <env[1 inval/x],<>>

and a-ind(pla) = | otherwise. Note that information is obtained about the
evaluation of expressions (here 1) without the need for converting the
program to a sequence of one-operator assignments. This is because

attach has been placed in the semantic clauses for expressions.

In summary, the development performed has succeeded in formally
validating the data flow information (specified by the induced semantics)
with respect to the collecting semantics (theorems 2 and 3). This is
essentially similar to what is done in [5], although the present development
is more systematic: a data flow analysis (ind<@,y >) is obtained merely by
specifying an abstraction function (&) and a concretization function (v),

such that the pair (<@,y >) of functions is a pair of semi-adjoined functions.
However, the semantics of a program is really given by the store semantics.
None of the theorems (including theorem 1) can be used to validate data
flow information with respect to the store semantics. (A similar defect
holds for [5].-) It seems impossible to do so directly because two programs
may have the same denotation in the store semantics and yvet different
denotations in the induced semantics. An indirect way of relating the
collecting semantics (and by theorems 2 and 3 also the induced semantics)
to the store semantics is considered in [12] and [11] where the collecting

semantics is used to validate program transformations.

20

3. THE MOP AND MFP SOLUTIONS

In this section the data flow information specified in section 2 is related

to the traditionally considered MOP and MFP solutions. ""[t appears
generally true that for data flow analysis problem, we search for the

[MOP] solution" [7], and theorem 4 will show that Cind[[emd] (<>)(fin-ind)(s)
yields the MOP solution. By using a direct style formulation instead of the
continuation style fornmulation it is possible to obtain the MFP solution

(theorem 5).

To compare the traditional (operational) approach to data flow analysis

with that of section 2 it is necessary to superimpose a flow chart view

upon programs. The flowcharts to be considered will have arcs to correspond
to "places!'. The flowchart constructed from program cmd has unique entry
arc <<>,"E">, unique exit arc <<>,"R"> and is represented by a set of
tuples of the form <pla1,plaz, tf>. Such a tuple is intended to express that
when "going!" from pla? to |:>Ia2 the data flow information is changed as

specified by tf € TF =S -m> S. Thus tf is a transfer function [1] associated

with the basic block {nhode) that has pla1 leading in and pla, leading out. The
basic blocks are smaller than is usual (in fact many are "empty!'') because
attach functions have been placed as they have; while this can be remedied,
the placement used makes the proofs of theorems 4 and 5 less involved and

simplifies the presentation below,

To construct a flowchart from a program the semantic functions FC and Fe
are used (tables 8, 2, 7 and 9). As an example consider the flowchart in
figure 3 (ignoring the dotted rectangle). It has arcs labelled plag,...,pla,
and basic blocks with transfer functions tfo, & e tf3 associated and is re-
presented by fc = §<p|ai,plai+1, tfi>|0 =i< 3} . This representation is
obtained from the program x := 1 using the function FC. Since EC [x:= 1] <>
is

Fattach(pla 1)*1:8 [1]< 1> % Fdo(Vassign[[x], Bassign[[x]) « Fattach(pla4)
and FE[[1]< 1> is Fattach(plaz) x Fdo(Vpush[1] ,Bpush[1])) * Fattach(plas)

the result of FCind[[x := 1] <> <pla tfg> is <<pla, tf,>, fc>,

0,

21

TABLE 8: Semantic functions specifying the flowchart

FC € Cmd-t> Occ -t> FG

FC[IF exp THEN cmd, ELSE cmd, F1] occ =
Fattach <occ, "L"> %
Fellexp] occf< 1> *
Fcond(FC [Cmd1] occ§<2> * Fattach<occ,''R!'>
,FC[cmdzI[occ§< 3> x Fattach<occ,''R">)

FC[WHILE exp DO cmd OD] occ =
Fattach<occ, "L.""> «%
[Fe[[exp] occ§< 1> % Fecond(FC [emd]| occ§< 2>, Fattach< occ, "R">)
Ffix < <occ§<2>,"R">, <occf 1>,"L">, As.s> |

the remaining clauses are similar to that of exp, ope exp,
F& € Exp -t> Occ -t> FG

I'—'E[[exp1 ope exp,] occ =
Fattach<occ, '"L"> x
Fel[exp] occ§< 1> x
FB[]:epo] occ§<3> x
F'do(‘Vapplleope:ﬂ,Bapply[ope:ﬂ) x
Fattach<occ, "R">

the remaining clauses are similar to that of exp, ope exp,

22

TABLE 9: Additions to interpretation ind (for FC and F¢)

Domains
TF = S —-m>S transfer functions
FC = P(Playx Plax TF) (representation of) flowcharts
Pl = Playx TF partial information
FG = PI -t> Pl x FC flowchart generators

Combinator
fgl * f92 =)Lpi.<fgz(fgj(pi)L 1)1, fgz(fg](pi)l 112 I_,fg;;‘(pi)\12>

Auxiliary functions
Fcond € FG x FG -t> FG
F cond(fg 1,fgz) =\ <pla, tf>.<f92<pla, tff o tf> |1
, Tg 1<pla, tft o tf> 12, f92<p|a, iff @ 1fs 12%

tft = \s.a{Bcond(sta) | Vcond(sta)=trueAScond(sta)=trueAsta € y(s)}
tff = Xs.q{ Bcond(sta)] VVcond(sta)=trueAScond(sta)=falseAsta € y(s)}

Fattach € Pla -t> FG
Fattach(pla) = A<pla', tf>.< <pla,\s.s>, {<p|a‘,pla,tf>} >

Fdo € (Sta -¢c> T) x (Sta -c> Sta) -t> FG
Fdol(vg,Bg) = A<pla, tf>.< <pla,)\s.a§Bg(sta)lVg(sta) =trueAsta€y(tf(s))] >

, P>

Ffix€ FG x (Plax Plax TF) -t> FG (infixed)
fg Ffix <pla,,pla,, tf> = xpi.<fg(pi)i 1, fg(pi)i2 U{<p|a1,p|a2,tf>f >

23

@ plag plag = <<>,"EN>
e LMo | play = <<,
plal : I s 1> npn
1oplay, = <<, >
’tf1 : pfa3 = << 1>,"R"'>
: pla, !
1 \ pla4 = <<>,IIR">
tf
2
{ pla3
! . thy =tf, =tf, =Xs.s
tf, = As.aiBpush[1] sta| Vpush[[1] sta=trueAsta€y(s)}

, pla, |
R I 1 tf3 =xs.af{Bassign[x]sta| vassign[x] sta=
trueAsta€y (s)}
Figure 3.

Here the <> is the occurrence that is needed as usual. The <p|a0, tf0> is
needed because the representation of the basic block to which tfo is-associated
can only be constructed once pla1 is known, Therefore F€ is defined so as
to take <p|a0, tf0> as a parameter and construct the relevant tuple

(= p!ao,plal, tf0>), although it is only the part of the flowchart enclosed in
the dotted rectangle that intuitively ""corresponds'" to x := 1. In order for
sequencing (by means of x) to work it is necessary to let FC produce not
only a flowchart but also a tuple like the <pla4, tf4> above; indeed <pla0, tf0>
could in principle have been produced by some FC[...] if x ;= 1 had occurred
in some context. One way to read <pla0, tf0> and similarly <plaa, tf4>, is

that since arc pla0 was traversed the (as yet unrecorded) transfer function

tf0 has been encountered.

In general the flowchart associated with program cmd is specified by
FCind[cmd [<> <plag,
the clause for WHILE exp DO cmd OD that is illustrated in figure 4. Z

tf0> I 2. As a further explanation of FC consider

24

l pla0
% 4
pla‘l la = < 0oC I'II_H
, pla, = 5y >
I
| As.s pla, = <occl< 1>, ">

e 0T 2
plaz = 1 pla5 p|a3 = <occl< I> ,"'RI">

3
) I |
I i l I :
l | ! 1 | pla4=<occ§<2>,"L_">
1 exp ; ! cmd .
1 : : 1 p1a5 = <occ§< 2> ,I'R">
1 |
[, i
'\ p|a3 | pla4 } plaﬁ = <0CC,"R">
M P iTt N L
I -
| tff
1
pla
L l_ 5 tff, tft as in table 9

s B e e e e e e e e S e e T L S e S e S o S S S

The dotted rectangles correspond to syntactic subphrases. The flowcharts
for exp and cmd have not been shown in detail. The entire flowchart

FCind[[WHILE exp DO emd OD] occ <plag, tf> | 2 is

i<p!a0,pla1,tf0>} U

Feind[exp] occi< 1> <pla,,As.s> 12y
§<pia3,p|a6,tff>} U

FCind[cmd] occ§< 2> <pla3, tft> 12U
{<pta5,pla2,)\s.s>}

It is the tuple <p|a5,piaz,ls. s> that accounts for the "iterative nature!
of the WHILE construct.

Some properties of FC and FE are mentioned below. They are needed in the
proofs of theorems 4 and 5 and may help in giving a better understanding of .
FC and FE. The proofs of these properties are omitted since they are
straight-forward (e.g. by structural induction). The formulation uses the

phrase ""pla is a descendant of occ!, which means that plal 1 = occ§occ! for

some maximal occ!, and that plal2 € {"L" 6 "R"} , Consider
FCindemd]] occ <plag, tf> = <pi, fc> or similarly Feind[[exp] occ <plag, tf> =
<pi,fc>. Let <pla,pla’, tf> be an arbitrary element of fc, and assume (as

will always be the case) that occ and plaO are maximal and that p!a0 is not

25

a descendant of occ. Then,

* pi=<<occ,'"R">, As.s>

+ pla' is maximal and is a descendant of occ

« pla is maximal and is either pla0 or a descendant of occ,
but it.is not <occ,"R!">. Intuitively this means that the flowchart fc
is immediately left after traversing <occ,"R"'> .

. <p|ao, & oo, ks, tf0> is the only tuple of fc with pla0 as the
first component. This means that the first arc of fc to be
traversed is <occ, '"lL."> and also that fc\{<pla0,<occ, s, tf0>}
is independent of <p|a0, tf0> (i.e. independent of "how the flowchart

is entered!),

The MOP solution

For a flowchart fc with entry arc pla and description element s holding
there let MOPS(fc,pla,s) € Pla -t> S denote the MOP ('"meet over all paths!')
solution. It is defined by MOPS(fc,pla,s) = Apla'. LI{ tfn(. . ‘(tfi(s))) [
<plag,pla,,tf;>,...,<pla__;,pla_, tf > € fc A plag = pla A pla_ = pla'}.

This formulation essentially is that of [7]. One difference is that [7] uses
M instead of LI, i.e. uses the dual lattice, but this is not crucial [13],
Another is that MOPS(fc,pla, s)(pla) need not be s but is likely to be 1. The
similarity between the approach of section 2 and the traditional approach

is expressed by:

Theorem 4: For all cmd € Cmd, s € S and pla € Pla:

Cind[[emd] <> fin-ind s pla =

MOPS(FCind[[cmd] (<>)(< <<> ,"E">, As.s>)12, <<>,"E">, s)(pla)
where ind = ind<g,y> for <@,y > a pair of semi-adjoined functions between

complete lattices P(Sta) and S.
Proof: See appendix 1. M

Note that both sides of the equality sign yvield 1 when pla is not maximal

or not a descendant of occ.

26

The MFP solution

Denote by MFPS(fc,pla,s) € Pla -t> S the MFP ("maximal fixed point!')

solution for flowchart fc with entry arc pla and description element s
holding there. It is defined by MFPS(fc, pla, s)= LFP(step(fc,pla, s))
where step(fc,pla,s) € (Pla -t> S) -m> (Pla -t> S) is the '"data flow
equations'', i.e. specifies the effect of advancing data flow information
along one basic block. It is defined by step(fc,pla,s) =

la.\pla'. Uf tf(a[s/pla]pla") | <pla",pla', tf> € fc|. Here pla,pla' and
pla' are going to be maximal so that a[s/pla|pla is s and a[s/pla]pla"

is a(pla'") otherwise. Again, this formulation is essentially the one given
in [7] (where greatest fixed points and I are used instead of least fixed :

points and U).

To obtain a denotational semantics specifying the MFP solution, new
semantic functions DCind and Deind are defined (tables 10, 2, 7, ard 11).
They are in ""direct style'" and the functionality for DCind[[emd] (occ)

is S -m>S x A. From description element s € S is obtained the tuple
<s',a> where the component a specifies partial data flow information for
cmd. When occ is maximal it is easy to show that s! = a <occ, "R!""> (see

appendix 2, lemma 3).

In the clause for DCind[[IF exp THEN c:md1 ELSE cmdz F1]] use is made

of the function Dcond. The approximate description element supplied to "the
rest of the program' is S{uSy where S is produced along one branch

and S, along the other. This differs from Cind where "the rest of the program!
is analysed with S, and Sy separately and only the resulting data flow in-

formation is combined.

Note in the clause for DCind[[WHILE exp DO cmd OD] that As'.Dg(s' wS)
rather than e.g. As'.Dg(s') is used. Consider some iteration of the WHILE
construct where s holds at pla2 (see figure 4). Then some s' will be com-
puted to hold at pIaS. It is then s' s (not s') that holds at plaz and must

be used in the next iteration if the MFP solution is to be obtained.

27

TABLE 10: Semantic functions in direct style

DCE€ECmd ~¢c> Occ =c> S —=m> S x A

DC[IF exp THEN cmd, ELSE cmd, FI] occ =
Dattach <occ,"L""'> &
Deexp] occ§< 1> x
Dcond(DC[cmdlj] occ§< 2> ¥ Dattach<occ,"R'">
, DCI]:cmdz:ﬂ occ§< 3> * Dattach<occ,'R">)

DC[WHILE exp DO cmd OD]| occ =
Dattach<occ,''L"> %
FIX(XDg.xs. [DE[[exp] occi< 1>
Dcond(DC[[cmd]| occ§< 2> * (\s'.Dg(s! wu s))

, Dattach<occ, "R!">)] s)
the remaining clauses are similar to that of exp, ope exp,
DE € Exp -c> Occ -¢> S -m> S x A

DS[epr ope expz:ﬂ occ =
Dattach<occ, "L"> *
D&[[epr] occf< 1> «
D&’[[expz] occ§< 3> *
Ddo(VappIy[[Ope]],Bapp[y[[ctpe]]) *
Dattach <occ, "R!'>

the remaining clauses are similar to that of exp, ope exp,

28

TABLE 11: Additions to interpretation ind (for DC and De)

Auxiliary functions
Dcond € (S -m>S x A) x (S -m> S x A) =c> (S -m> S x A)
Dcond(dg 1 dgz) = \s.dg 1(tft(s)) i dgz(tff(s))

tft, tff as in table 9

Dattach € Pla —c> (S -m> S x A)
Dattach(pla) = As. <s, ,L[s/pla:l B

Ddo € (Sta -c> T) X (Sta -c> Sta) -t> (S -m> S x A)
Ddo(Vg,Bg) =As. <a{Bg(sta) | Vg(sta) = true A sta € y(s),1>

Combinator % as in table 9,

The connection between the MFP solution and DCind is given by:

Theorem 5: For allcmd € Cmd, s€ S and pla € Pla:

DCind[[emd] <> s 12 pla =

MFPS(FCind[emd][(<>)(< <<> ,"El>,xs.8>) 12 , <<>, IENS , s) pla
where ind = ind<gq,y > for <&,y > a pair of adjoined functions between

complete lattices P(Sta) and S, where S is of finite height.

Proof When <o,y > is as above then ¢ is additive and hence continuous.
Also?Y is continuous when S is of finite height. The only properties of
<@,y > to be used in the proof is that <@,y > is a pair of semi-adjoined
functions between complete lattices P(Sta) and S such that & andy are con-

tinuous. For the proof proper see appendix 2. O

Both sides of the equality are | when pla is not maximal. In the literature

it is usually assumed that S is of finite height because then the MFP solution
is computable (provided the transfer functions are). This holds even if S s
infinite (as in the constant propagation analysis of section 2). In contrast,
the MOP solution need not be computable even when S is of finite height

[8]. It follows from a theorem of J.B. Kam [7] that the constant propagation

29

analysis is an example of this.

That Cind[[emd] (<>)(fin-ind)(s) E DCind[cmd (<>)(s) 12 follows from
theorems 4 and 5 when <g,y > satisfies the conditions of (the proof of)
theorem 5. This is because MOPS(fc,pla,s) & MFPS(fc,pla, s) (see

e.g. [3]). Since sts is a special case of ind (with S = P(Sta) and

o =Y = Astates. states) it is meaningful to consider DCsts. The transfer func—
tions of sts are additive and it therefore follows from [3] that

Csts[[emd] (<>)(fin-sts)(s) = DCsts[[emd]|(<>)(s) 12.

30

4, CONCLUSION

It has been shown how data flow analysis can be specified in a denotational
approach, by systematically transforming a store semantics to an ''induced
semantics!' parameterized by a pair of semi-adjoined functions. It is
claimed that the approach is no less systematic than existing operational
methods. Semantic characterizations are with respect to the collecting
semantics. To give a "'semantic characterization! of the collecting seman-
tics in terms of a store semantics it seems to be necessary to consider

program transformations (as is done in [12], [11]).

The data flow analyses considered in this paper could be called "history-
insensitive". In [11] a similar development yields a semantic characteri-
zation of '"available expressions! (a "history-sensitivell analysis).
Unfortunately the machinery required to establish the semantic characte-
rization is somewhat complex. More research is needed to handle "ljve
variables' (a "future-sensitive!' analysis) and languages with arbitrary

jumps and procedures.

The relationship between continuation-style and MOP and between direct-
style and MFP shows that for data flow analysis purposes continuation-style
is inherently more accurate than direct style. However, it should be kept
in mind that the MOP solution can always be specified as the MFP solution
to a different data flow analysis problem (whose MFP solution need not be

computable) [3].

Acknowledgement

I should like to thank Neil Jones for his continuing interest in and helpful
comments upon this work, and Patrick Cousot, Gordon Plotkin and Hanne

Riis for helpful comments.

31

References

1

Aho, A.V. and Uliman, J.D.: Principles of Compiler Design.
Addison-Wesley, London, 1977.

Cousot, P. and Cousot, R.: Abstract Interpretation: a unified lattice
model for static analysis of programs by construction or
approximation of fixpoints. Proc. 4th ACM Symp. on Principles

of Programming L.anguages (1977) 238-252.

Cousot, P. and Cousot, R.: Systematic design of program analysis
frameworks. Proc. 6th ACM Symp. on Principles of Programming
Languages (1979) 269-282,

Donzeau-Gouge, V.: Utilisation de la semantique denotationelle
pour I'étude d'interpretations non-standard. Report no. 273,
INRIA, France (1978).

Donzeau-Gouge, V.: Denotational definition of properties of program
computations. In: Program Flow Analysis: Theory and
Applications (S.S. Muchnick and N.D. Jones, Eds.), Prentice-
Hall, New Jersey, 1981, pp. 343-379.

Gordon, M. J.C.: The Denotational Description of Programming

Languages: An Introduction, Springer Verlag, Berlin, 1979,

Hecht, M.S.: Flow Analysis of Computer Programs. North-Holland,
New York, 1977,

Kam, J.B. and Ullman, J.D.: Monotone data flow analysis frameworks.
Acta Informatica 7 (1977) 305-317.

Milner, R.: Program semantics and mechanized proof., In:
Foundations of Computer Science Il (K.R. Apt and J. W. de Bakker,
Eds.), Mathematical Centre Tracts 82, Amsterdam (1976), 3-44,

32

10.

11,

12,

13.

14,

15;

Milne, R. and Strachey, C.: A Theory of Programming Language
Semantics. Chapman and Hall, London, 1976,

Nielson, F.: Semantic foundations of data flow analysis. M.Sc.
Thesis, Report no. PB-131, Aarhus University, Denmark (1981).

Nielson, F.: Program transformations in a denotational setting.

Report no. PB-140, Aarhus University, Denmark (1981).

Rosen, B.K.: Monoids for rapid data flow analysis. SIAM J. Comput.
9 (1980) 159-196.

Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. MIT Press, Cambridge, MA,
1977.

Ullman, J.D.: A survey of data flow analysis techniques. 2nd USA -
Japan Computer Conf. (1975) 335-342.

33

Appendix 1: Proof of theorem 4

In this appendix suffix ind is omitted. For the proof the function
Close € FC x Pla x P(S) -t> Pla -t> P(S) is useful. It is defined by
Close(fc,pla',S!')(pla) =

{tfn{...(tfj(s)))}s € S' A <play,pla ,tf>,... s<pla__,,pla_,tf > €

— 1 =
fc A pla0 pla' A p!an pla}

Then MOPS(fc, pla, sg) =Apla. U[Close(fc,plao, { so} Jpla)] =
LI o Close(fc, pla), { so}).

The proof of the theorem is by a structural induction showing P-Cmd(cmd)
and P-Exp(exp). Predicate P-Cmd € Cmd -t> {true, false} is defined by
P-Cmd(cmd) = Vc€ C:V Sl c S :
pla' maximal and occ maximal and pla' not a descendant of occ =
U{C[cmd](occ)(c)(s)‘s € st} = I.J{C(s)[s € cl<oce, "RU=] | (LI °ef)
where cl = Close(FC[[emd] occ <pla',As.s> 12, pla!, S').
Predicate P-Exp is defined similarly. Clearly the theorem follows from

P-Cmd(cmd) because fin = | .

Since this proof is long, only the most difficult case will be considered.

It amounts to showing P-Cmd(WHILE exp DO cmd OD) assuming P-Cmd(cmd)
and P-Exp(exp). So let occ be maximal and abbreviate plao, g ,plae and

tft, tff as in figure 4. Further abbreviate g[c] =Ac'. g 1{cond(92c‘,g3c)}
where g, = e[[exp] occ§< 1> and 9y = Cemd] occ§<2> and By attach(plas).
Similarly fg = fg, * Fc0ﬂd(fgz,f93) where fg, = Felexp] occ§<1> and

fgz = FC[cmd] occ§< 2> and f93 = F—”attach(plaG).

Lemma 1: For arbitrary c,c' € C and S!' ¢ S:

Ufa[c]c' s |s€ s} = Ufc(s)|s € ci(pla6)} w Ufc'(s)|s € cl(plas)}
e cl)

where cl = Close(fg<pla,\s.s> l2,p|a1,S').

34

Proof: Abbreviate clz[S“] = Close(f92<pla3,)ts.s> 12, pla3,S”).
Then by P-Cmd(cmd), U{gz(c')(s)ls € st} = Lfc'(s)|s € CIZ[S”]pIaS} i

(L e clz[S”]). Abbreviate cl3[5“] =Close(fg3<pla3,)\s.s> 12,plag,sS")
so that Ll{gs(c)(s)|s € s} = u{c(s)ls € cl3[5”]plae} Lo cls[S“]).
Then LJ{cond(g2 c', gzc)s | s¢€ snj
= Ufc'(s)|s € clz[{ tfi(s)|s € S}] plasfu(u ° clz[{ tft(s)|s € S"})
Wic(s) |s € cl [{tff(s)|s € S}] plagt,, (U cl [{tff(s)|s € s}])
= Ufic'(s)|s € (cl,t[s"] ._,C|3'[S"]) plas} o
Ufc(s) |s € (cl,'[s"] ‘_‘C|3'|:S”]) plas} P
(1_] o (Clz'[S”] Y C|3‘[S”]))
where clz'[S”] = Close(fgz<pla3, tft> 12, plag, sh) = c!z[{ tft(s)|s € s}]
and cl,'[S"] = Close(fg <play, tff> 12, plag, S") = cls[{tff(s)]s € s].
The last step is by the definition of Close and the properties of FC mentioned

in section 3.

It will now be shown that cl,'[S"] , cl ![S"] = cl'[S"] where
cl'[S] =CIose(Fcond(fgz,f93)<p|a3,)\s.s> 12, plag, sh) =
Close(fg,<plag, tft> {2 U fgs<pla,, tff> 12, plag, S"). Inequality E is
immediate since Close is monotone in its first argument. To establish
the converse inequality consider any sequence <pla0',plal‘, tf1‘>, o oy

]]] b (&
<pla n-1? pla n’tf’n > that is in fgz<pla3, tft> 12 U fg3<pla3, tff> 12
and has plao' = pla3. Such a sequence is said to be "mentioned" in
cI'[S"](pian'). It is not difficult to see (using properties of EC) that the
sequence is entirely either in fgz<p|a3, tft> 12 (hence "mentioned" in
clz'[S"](plan')) or in fgy<plag, tff> 12 (hence "mentioned" in cl3'[5"](plan’)).

=l 1) © Ifgn g ifgn |

Thus cl'[S](plan) cl, [s :I(plar| Yu cl, [s :|(plan).

Next, abbreviate cl1[5'] = Close(fg,<pla;,As.s>12,pla,, S'). Then
P-Exp(exp) asserts (with S" above being c!I[S'](pla3)) that Lifg[c]c!(s)|s€ s}
= Ufc'(s)|s € (cl1[5'] ucl‘[c!T[S']plae’]) plas} Lo

Uf cls) |s € (C|I[S|I l“_,<:l']:cl1|:5']pl.§|3:|) plasf o

(Lo (el [S'] wcl'l el [s'Hptag)]))
where properties of FE and Close assure cll[S'](plas) =§25?'==cll[51:|(pla67.

35

Finally, it must be shown that CI.I[S|:| i cl'[cll[S']plaSJ = cl[s'].
Consider the inequality 2. Again the key to the proof is to consider

a sequence <p|a0', pla, ', tf, 15 e <pla__, L plan‘, tfnf> that is
"mentioned" in cI[S'](plan'} and has play! = pla;. If pla_! is a descendant
of occl<1 > the properties of F& and FC assert that all of pla1 L yn o moy plan'
are,so the entire sequence is "mentioned!" in cl1[S‘](p!an'). Otherwise
there is some m <n so pla1 L v wru g plamI are all the descendants of
occl<1> (again by properties of F€ and FC). Then <plao', pla1 Y% tf1 Boy i v 4
<plam_1 ',plam‘, tfm'> is "mentioned" in cl1[S'](plam'). Also plam' = p!a3
t

(because <pla_',pla I> is in fg,<plag, tft> 12 U fgz<plag, tff> 12)

1
m+1 2 T
so exp is left through pla3 and not entered again. Also
] 1 1]] Is ig It 3 "
<p|am ,plam_H ’tfm+1 p ,<plaﬁ_1 ,plan ,tfn > is '""mentioned" in
cI'[cll[S'](plaa)](plan'). From this cI][S‘](plan‘) U cI'[cII[S'](pla3)](plan‘)

> cI[S'](plan'). The converse inequality is similar. O

In the next lemma the iterative nature of WHILE is dealt with. The proof
makes use of Luk € FC x Pla x P(S) x Integer x FC —t> Pla —t> P(S) that is like
Close but constrains the number of times some part of the flowchart is

traversed. It is defined by Luk(fc,, pla',S',k, fc,)(pla) =

ftf "o (tf, (sN)|s € S' A <play!, play !y tf, !>, ...,
<pla__;',pla ', tf !> € fc, U fc, Aplay! =pla' Apla ! =pla
A lil<pla,_s'yplat, tf!> € fe) | = K}

Lemma 2: For any ¢ € C and S' ¢ S:
LI{FIX(g[cl)s|s € st =U{c(s)|s € cl(pIaG)} L (U ecl)

where cl = Close((fg Ffix <plag, pla,, As. s>)<p|a],)ts. s> 12, pla;, S').

Proof: Abbreviate Iu[k] = Luk(fg<pla,,)s.s> 12, pla,, S', k,

{ <pla5, p[az,ks. s>]). It corresponds to executing the body of the WHILE k+1

times. Since cl = LJ{Iu] k] |k = 0} it suffices to show by induction in k that
k+1

Uilgf cl) L1 s|s€S' =Ufcls)|s € lu[k](plas}} o(Ue Iu[k]) ...

v (e 1fo]).

The case k=0 is by lemma 1, For the inductive step the hypothesis and

lemma 1 establish

36

Llf(g[c:]}k-H Ls|s€ st}

= LU{c(s)|s € cl'(plas)} sUoect) ,(Uotu[k]), ... 4 (o1 0])
for cl! = Close(fg<pla1,ls.s> 12, pla,, !u[k](plaG)). The result

follows from cl! = Iu[k+1] which can be shown by the methods used in the

proof of lemma 1. 0

From lemma 2 P-Cmd(WHILE exp DO cmd OD) easily follows.

37

Appendix 2: Proof of theorem 5

In this appendix the suffix ind is omitted. The proof is by structural
induction showing P-Cmd(cmd) and P-Exp(exp). Predicate
P-Cmd € Cmd -t> {true, false} is defined by P-Cmd(cmd) = VsES:

plaO maximal and occ maximal and plao not a descendant of occ =

(i) Def ecmd](occ)s) 1 = DC[emd] (occ)(s) 12 <occ, "RI'>
(ii) DOC[emd] (occ)s) 12 MFPS(FC[[cmd]](occ)<pla0,}Ls.s> 12, plag, s).

Predicate P-Exp is defined similarly.

I

Since the proof is long only the most difficult case will be considered.

It amounts to showing P-Cmd(WHILE exp DO cmd OD) assuming P-Cmd(ecmd)
and P-Exp(exp). Assume that occ is maximal and let f:)la1 5 %% i pla6, 1L,

tff, fgl, fgz, fg3 and fg be as in appendix 1. Also abbreviate dg1 =

Def[explloce§<1> and dg, = DC[[cmd]oce§<2> and dg, = Dattach(plas)

and dg[dg'] = Xs. [dg1 * Dcond(dg, *(Xs'.dg!(s' , s)), dgs)]s. The following

fact is frequently used without explicit mentioning.
Fact: step(fc, -, -}a)(pla) = L if there is no pla! and tf so <pla', pla, tf> € fc.
Lemma 3: Vs € S: FIX(\dg'. dg[dg'])s 11 = FIX(Adg'. dg[dg!'])s 12 plag

Proof: The lemma follows from

VvV s€ S: (Adg'.dg[dg'])nl si1= {Adg'.dg[dg'])n 1 s i2plag
which is proved by induction in n. The case n =0 is trivial so consider
the inductive step. For arbitrary s € S it follows from P-Cmd(cmd) and
P-Exp(exp) that ()Ldg'.dg[dg‘])n-'-1 1s= (Adg'.dg[dg'])" 1 (s waylplag)) ¢
dg3(tff(a1(pla3))) L<l, ajay> where a, = dgT(s) 12 and

a, = dgz(tft(al(plas))) 12. It is easy to see that aT(ptaG) = = az(plas)
because of the fact mentioned above. Hence the result follows. O

From lemma 3 condition (i) of P-Cmd{WHILE exp DO cmd OD) easily
follows. For condition (ii) it is useful to abbreviate fc] = fg 1<pla1,ks.s> 12,

fc, = fg,<plag, tft> 12, fcy = fgy<plag, tff> 12 and fc, = i<pla5,plaz,)\s.s>} ‘

38

Then define
Mo(s) = MFPS(fg<pla1,As.s> ‘2, play, s) = Mt':l:’s(fc:1 U fcz U fcs, pla,, s).

Intuitively Mo(s) is the effect of the WHILE construct when no iterations are

performed.

Lemma 4: For arbitrary dg'€ S -m> (S x (Pla -¢c> S)) and s € S:
(dg[dg'}(s)) 12 =dg' (My(s)plag) (, s) 12, My(s).

Proof: From P-Exp(exp) follows dgi(s) = <a1(pla3),a1> where
ay= MFPS(fci,pla], s). From P-Cmd(cmd) follows dgz(tft(aT(pla3))) =
<a2(pla5),a2> where a, = MI'—"PS(fcz,plas', al(pla3)). It is easy to see
dg3(tff(a](plaa))) = <33(pla6),a3> where a; = MFPS(fCS,pla3,a1(pla3)).
Since al(plas) =1 = a3(pla5) this yields (dg[dg']|(s)) 12 =

a, 851535 (dg'((a] wa, ‘__,a3)(pla5) o S) 12).

It remains to be shown that a, ,a,,a; = M,(s). First it will be shown
e t e .
that a, ., a, = a', where a MFPS(fcz U fes, plag, a](pla3)). Then it

will be shown thata, a' = M,(s).

Thata, a, 2 a' follows from
; . -
(a2 L a3)pla step(fcz U fc3, pla3,a1(pla3))(a2 " a3)pla which is shown
by cases of pla. Consider the case where pla is a descendant of occl< 2>,

Then (using the fact and properties of FC)

(a2 iy aa)pla = step(fcz,pla3,a1(p|a3)) a,pla
= step(fcz,pta3,a1(pla3)) (azua3) pla
= sf:e;:;(fc2 U fc3,pla3,a1(pla3))(a2ua3) pla
The remaining cases are similar. The converse inequality a,as E 5!
follows from a, € a' and as, E al, which are easy to establish because step

is monotone in its first argument.

Thata, ,a' ‘_—-'Mo(s) follows from
(a1 o allpla 2 step(fc1 U fe, U fca,plaT,S)(al _ a')pla which is shown
by cases of pla. Consider the case where pla is a descendant of occ§< 2>.

Then

39

(a1 wal'lpla = step(fczu fc3,pla3,a1(pla3)) a' pla
= ste;)(fc2 U fC3,p|E11,S) (a1 o a') pla
= step(]“c1 U fe, U fca,plal,s) (a] w a') pla

The remaining cases are similar. Thata, a' E My(s) is by a, E Mo(s)
(which is easy) and a' & Mo(s). The latter follows from Mo(s)(pla) =2
ste;:)(fc2 U fc3,pla3,aT(plaa))(Mo(s))(pla). This is proved by cases of

pla using a, = Mo(s) and monotonicity of the transfer functions. |

To express the effect of the WHILE loop when it is iterated an arbitrary
number of times it is useful to define M_(s) = MFPS((fg Ffix <p|a5,pla2,)\s.s>)
<p|a1,ks.s> 12,p|a1,s) =M|:PS(fC1 U fc, U fc3 U fc4,pla1,s).

Lemma 5: For arbitrary s € S:

FIX(\dg'.dg[dg']) s ¢ 2 =M _(s)

Proof: It simplifies the proof to omit the first component of dg[dg']s
from consideration. To this end define M[M!]s = M‘(Mo(s)(plas) wS) L_.Mo(s).
Then using lemma 4 it is not difficult to show FIX(Adg'.dg[dg']) s 12 =
FIXAM'.M[M']) s = LFP (AM'.M[M!]) s.

That FIX(AM!'.M[M!']) s E M_(s) is obtained from M_(s) ;'Mm(Mo(s)(plas) w S)
= Mo(s). Since step(fc1 U fe, U fc3 U fca,plal,s) = step(i’c1 U fc::2 U fcs,pla],s)
it follows that Mm(s) = Mo(s). By the methods used in lemma 4 it can be

shown that
M_(s) 2 step(fc:1 U fcz U fc3 U fc4,pla1,Mm(s)(pla5) w SHM_(s))

so that M_(s) 2 M, M (s)(plag) , s) QMW(MO(S)(pIaS) i 5)s

The converse inclusion FIX(AM'.M[M']) s - 2M_(s) follows from
FIX(AM'.M[M']) s 2 s:ep(fc1 U fe, U fog U fc4,pfa1,s)(FlX(AM'.M[M‘]) =)

By the continuity of @ and y it follows that step(,~,*) is continuous.

It then suffices to show

()\M‘.M[M‘])n+1 1 s = step(fc1u fc, U feg U fcq,plaT,s)((kM'.M[M'])n L s).
Define bT(S) = Mo(s) and bn+1(s) = Mo(bn(s)(plas) w S). Since it is easily seen

that bn is monotone and b bn it can be shown (by induction in n) that

=
ntl
V s: b (Mg(s)plag) ; s) = My(b _(s)(plag) (;s) so that Vs: MMM L s

= bn(s) follows. Finally bn_‘_T(s)(pIa) = step(fc1 U fcz U fCS U fca,plaps)

40

(bn(s))(pla) is shown by cases of pla.

From lemma 5 condition (i) of P-Cmd(WHILE exp DO cmd OD) easily

follows.

